mirror of https://github.com/vladmandic/human
5648 lines
1.4 MiB
5648 lines
1.4 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Rg=Object.defineProperty;var qC=(e,t,n)=>t in e?Rg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var XC=e=>Rg(e,"__esModule",{value:!0});var ra=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var cc=(e,t)=>{XC(e);for(var n in t)Rg(e,n,{get:t[n],enumerable:!0})};var he=(e,t,n)=>(qC(e,typeof t!="symbol"?t+"":t,n),n),O5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var dc=(e,t,n)=>(O5(e,t,"read from private field"),n?n.call(e):t.get(e)),pc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},hc=(e,t,n,s)=>(O5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Lce={};cc(Lce,{Human:()=>QS,default:()=>QS,defaults:()=>aa,env:()=>xe});function tt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function oe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var fe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Dg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Dg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&oe("invalid configuration",s),s}function Sn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Sn(a,o):n[r]=o}),n),{})}var qa=1e3,aa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2.5*qa,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1.5*qa,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3*qa,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4*qa,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:.2*qa},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:2*qa,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:1*qa},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Di={};cc(Di,{Abs:()=>Zi,Acos:()=>Yi,Acosh:()=>Ji,AdadeltaOptimizer:()=>ff,AdagradOptimizer:()=>mf,AdamOptimizer:()=>gf,AdamaxOptimizer:()=>Af,Add:()=>la,AddN:()=>Ya,All:()=>Qi,Any:()=>el,ArgMax:()=>Ja,ArgMin:()=>yc,Asin:()=>tl,Asinh:()=>nl,Atan:()=>sl,Atan2:()=>al,Atanh:()=>rl,AvgPool:()=>Qa,AvgPool3D:()=>xc,AvgPool3DGrad:()=>Wp,AvgPoolGrad:()=>Bp,BackendWasm:()=>q8,BatchMatMul:()=>eo,BatchToSpaceND:()=>ol,Bincount:()=>Vp,BroadcastArgs:()=>Up,BroadcastTo:()=>eb,Callback:()=>Gw,CallbackList:()=>Pv,Cast:()=>to,Ceil:()=>no,ClipByValue:()=>ua,Complex:()=>Gp,ComplexAbs:()=>bc,Concat:()=>il,Conv2D:()=>so,Conv2DBackpropFilter:()=>Hp,Conv2DBackpropInput:()=>ro,Conv3D:()=>vc,Conv3DBackpropFilterV2:()=>jp,Conv3DBackpropInputV2:()=>qp,Cos:()=>ao,Cosh:()=>oo,CropAndResize:()=>ll,Cumsum:()=>io,CustomCallback:()=>zv,DataStorage:()=>Op,DenseBincount:()=>Xp,DepthToSpace:()=>ul,DepthwiseConv2dNative:()=>lo,DepthwiseConv2dNativeBackpropFilter:()=>Kp,DepthwiseConv2dNativeBackpropInput:()=>Zp,Diag:()=>Yp,Dilation2D:()=>wc,Dilation2DBackpropFilter:()=>Qp,Dilation2DBackpropInput:()=>Jp,ENV:()=>fr,EarlyStopping:()=>jw,Einsum:()=>eh,Elu:()=>co,EluGrad:()=>th,Environment:()=>J5,Equal:()=>dl,Erf:()=>cl,Exp:()=>po,ExpandDims:()=>pl,Expm1:()=>hl,FFT:()=>nh,Fill:()=>kc,FlipLeftRight:()=>fl,Floor:()=>ho,FloorDiv:()=>fo,FromPixels:()=>kh,FusedBatchNorm:()=>mo,FusedConv2D:()=>Ko,FusedDepthwiseConv2D:()=>Zo,GPGPUContext:()=>A0,GatherNd:()=>gl,GatherV2:()=>ml,GraphModel:()=>I7,Greater:()=>Al,GreaterEqual:()=>go,History:()=>Mv,IFFT:()=>sh,Identity:()=>Ao,Imag:()=>rh,InputSpec:()=>qt,IsFinite:()=>yl,IsInf:()=>xl,IsNan:()=>bl,KernelBackend:()=>mc,LRN:()=>Cc,LRNGrad:()=>oh,LayerVariable:()=>Dv,LayersModel:()=>Ur,LeakyRelu:()=>yo,Less:()=>vl,LessEqual:()=>wl,LinSpace:()=>ah,Log:()=>xo,Log1p:()=>kl,LogSoftmax:()=>tb,LogicalAnd:()=>Il,LogicalNot:()=>Ic,LogicalOr:()=>Sc,MathBackendWebGL:()=>zu,Max:()=>bo,MaxPool:()=>wo,MaxPool3D:()=>Tc,MaxPool3DGrad:()=>lh,MaxPoolGrad:()=>ih,MaxPoolWithArgmax:()=>uh,Maximum:()=>vo,Mean:()=>ko,Min:()=>Io,Minimum:()=>So,MirrorPad:()=>Co,Mod:()=>Sl,MomentumOptimizer:()=>yf,Multinomial:()=>ch,Multiply:()=>To,Neg:()=>Cl,NonMaxSuppressionV3:()=>Nl,NonMaxSuppressionV4:()=>El,NonMaxSuppressionV5:()=>Rl,NotEqual:()=>Tl,OP_SCOPE_SUFFIX:()=>gb,OneHot:()=>No,OnesLike:()=>Dl,Optimizer:()=>Br,Pack:()=>_l,PadV2:()=>Eo,Pool:()=>GT,Pow:()=>Ro,Prelu:()=>Do,Prod:()=>Fl,RMSPropOptimizer:()=>xf,RNN:()=>Cr,Range:()=>Nc,Rank:()=>Vg,Real:()=>dh,RealDiv:()=>uo,Reciprocal:()=>$l,Reduction:()=>Pn,Relu:()=>_o,Relu6:()=>$o,Reshape:()=>Ol,ResizeBilinear:()=>Fo,ResizeBilinearGrad:()=>hh,ResizeNearestNeighbor:()=>Ec,ResizeNearestNeighborGrad:()=>ph,Reverse:()=>Oo,RotateWithOffset:()=>Zl,Round:()=>Po,Rsqrt:()=>Mo,SGDOptimizer:()=>ld,ScatterNd:()=>Pl,Select:()=>Ml,Selu:()=>zl,Sequential:()=>Iu,Sigmoid:()=>Lo,Sign:()=>Wl,Sin:()=>zo,Sinh:()=>Bl,Slice:()=>Ll,Softmax:()=>Vo,Softplus:()=>Vl,SpaceToBatchND:()=>Ul,SparseFillEmptyRows:()=>fh,SparseReshape:()=>mh,SparseSegmentMean:()=>gh,SparseSegmentSum:()=>Ah,SparseToDense:()=>yh,SplitV:()=>Gl,Sqrt:()=>Bo,Square:()=>Rc,SquaredDifference:()=>Uo,Step:()=>da,StridedSlice:()=>Hl,StringNGrams:()=>xh,StringSplit:()=>bh,StringToHashBucketFast:()=>vh,Sub:()=>Go,Sum:()=>Wo,SymbolicTensor:()=>rr,Tan:()=>Ho,Tanh:()=>jo,Tensor:()=>Ge,TensorBuffer:()=>Jt,Tile:()=>ca,TopK:()=>jl,Transform:()=>ql,Transpose:()=>qo,Unique:()=>wh,Unpack:()=>Xl,UnsortedSegmentSum:()=>Dc,Variable:()=>Lc,ZerosLike:()=>Kl,_FusedMatMul:()=>Xo,abs:()=>Gt,acos:()=>AA,acosh:()=>yA,add:()=>le,addN:()=>Ph,all:()=>Mh,any:()=>Hc,argMax:()=>vs,argMin:()=>xA,asin:()=>bA,asinh:()=>vA,atan:()=>wA,atan2:()=>kA,atanh:()=>IA,avgPool:()=>qc,avgPool3d:()=>TA,backend:()=>Ar,backend_util:()=>R,basicLSTMCell:()=>IE,batchNorm:()=>ai,batchNorm2d:()=>a3,batchNorm3d:()=>o3,batchNorm4d:()=>i3,batchToSpaceND:()=>Xc,bincount:()=>NA,booleanMaskAsync:()=>D_,broadcastArgs:()=>l3,broadcastTo:()=>ou,browser:()=>Ms,buffer:()=>He,callbacks:()=>HB,cast:()=>de,ceil:()=>EA,clipByValue:()=>Zn,clone:()=>Zs,complex:()=>fa,concat:()=>gt,concat1d:()=>u3,concat2d:()=>iu,concat3d:()=>c3,concat4d:()=>d3,constraints:()=>cv,conv1d:()=>Lh,conv2d:()=>Mr,conv2dTranspose:()=>Bh,conv3d:()=>DA,conv3dTranspose:()=>h3,copyRegisteredKernels:()=>qT,cos:()=>Kc,cosh:()=>Wh,cosineWindow:()=>r1,cumsum:()=>Vh,customGrad:()=>xr,data:()=>S7,denseBincount:()=>f3,deprecationWarn:()=>mA,depthToSpace:()=>_A,depthwiseConv2d:()=>lu,deregisterOp:()=>qB,device_util:()=>Wc,diag:()=>eR,dilation2d:()=>FA,disableDeprecationWarnings:()=>BN,dispose:()=>Y,disposeVariables:()=>WN,div:()=>me,divNoNan:()=>$A,dot:()=>m3,dropout:()=>P3,einsum:()=>g3,elu:()=>uu,enableDebugMode:()=>LN,enableProdMode:()=>e3,enclosingPowerOfTwo:()=>M3,engine:()=>as,env:()=>ne,equal:()=>os,erf:()=>OA,exp:()=>is,expandDims:()=>Bt,expm1:()=>PA,eye:()=>MA,fft:()=>ad,fill:()=>cu,findBackend:()=>gA,findBackendFactory:()=>HN,floor:()=>du,floorDiv:()=>Oh,forceHalfFloat:()=>J4,fused:()=>va,gather:()=>oi,gatherND:()=>O3,gather_util:()=>lA,getBackend:()=>Ys,getGradient:()=>zg,getKernel:()=>Ih,getKernelsForBackend:()=>Or,getThreadsCount:()=>Eue,gpgpu_util:()=>C4,grad:()=>RR,grads:()=>DR,greater:()=>Yn,greaterEqual:()=>xa,ifft:()=>gu,imag:()=>Uh,image:()=>_e,inTopKAsync:()=>V_,initializers:()=>Av,input:()=>iw,io:()=>Xn,irfft:()=>sf,isFinite:()=>A3,isInf:()=>y3,isNaN:()=>zA,keep:()=>dn,kernel_impls:()=>vr,layers:()=>Nv,leakyRelu:()=>Zc,less:()=>Gh,lessEqual:()=>ba,linalg:()=>K3,linspace:()=>x3,loadGraphModel:()=>Qe,loadLayersModel:()=>tL,localResponseNormalization:()=>LA,log:()=>ls,log1p:()=>Yc,logSigmoid:()=>v3,logSoftmax:()=>jh,logSumExp:()=>VA,logicalAnd:()=>zs,logicalNot:()=>Jc,logicalOr:()=>qh,logicalXor:()=>S3,losses:()=>I$,matMul:()=>Ve,math:()=>$b,max:()=>$n,maxPool:()=>Qc,maxPool3d:()=>UA,maxPoolWithArgmax:()=>C3,maximum:()=>br,mean:()=>Ft,memory:()=>Fh,meshgrid:()=>QR,metrics:()=>Ww,min:()=>ed,minimum:()=>pu,mirrorPad:()=>GA,mod:()=>HA,model:()=>Qz,models:()=>Vw,moments:()=>Xh,movingAverage:()=>$_,mul:()=>B,multiRNNCell:()=>iD,multinomial:()=>T3,neg:()=>Tt,nextFrame:()=>Z3,norm:()=>lf,notEqual:()=>ui,oneHot:()=>nu,ones:()=>us,onesLike:()=>cs,op:()=>V,outerProduct:()=>pD,pad:()=>ks,pad1d:()=>mD,pad2d:()=>AD,pad3d:()=>xD,pad4d:()=>vD,pool:()=>N3,pow:()=>zr,prelu:()=>nd,print:()=>Nb,prod:()=>Kh,profile:()=>VN,rand:()=>RD,randomGamma:()=>$D,randomNormal:()=>E3,randomUniform:()=>hu,range:()=>fu,ready:()=>$h,real:()=>sd,reciprocal:()=>XA,registerBackend:()=>ru,registerCallbackConstructor:()=>nL,registerGradient:()=>nb,registerKernel:()=>pa,registerOp:()=>jB,regularizers:()=>Uw,relu:()=>Js,relu6:()=>Zh,removeBackend:()=>GN,reshape:()=>U,reverse:()=>ds,reverse1d:()=>UD,reverse2d:()=>HD,reverse3d:()=>qD,reverse4d:()=>KD,rfft:()=>od,round:()=>Yh,rsqrt:()=>Jh,scalar:()=>Re,scatterND:()=>$3,scatter_util:()=>uA,selu:()=>Qh,separableConv2d:()=>KA,sequential:()=>eL,serialization:()=>ue,setBackend:()=>t3,setPlatform:()=>jN,setThreadsCount:()=>Nue,setWasmPath:()=>Tue,setWasmPaths:()=>K8,setWebGLContext:()=>l0,setdiff1dAsync:()=>R3,sigmoid:()=>Kn,sign:()=>ZA,signal:()=>k$,sin:()=>ef,sinh:()=>tf,slice:()=>Fe,slice1d:()=>nf,slice2d:()=>YA,slice3d:()=>mu,slice4d:()=>rd,slice_util:()=>Fn,softmax:()=>ci,softplus:()=>ii,spaceToBatchND:()=>td,sparse:()=>id,sparseToDense:()=>s1,spectral:()=>w$,split:()=>pn,sqrt:()=>xn,square:()=>ft,squaredDifference:()=>rf,squeeze:()=>rt,stack:()=>bn,step:()=>Au,stridedSlice:()=>JA,string:()=>hf,sub:()=>be,sum:()=>Se,sumOutType:()=>Eh,tan:()=>QA,tanh:()=>ri,tensor:()=>Lt,tensor1d:()=>jt,tensor2d:()=>Qs,tensor3d:()=>Ob,tensor4d:()=>v_,tensor5d:()=>w_,tensor6d:()=>k_,tensor_util:()=>Xs,test_util:()=>Yb,tidy:()=>j,tile:()=>ws,time:()=>UN,topk:()=>e1,train:()=>pi,transpose:()=>Ke,truncatedNormal:()=>af,unique:()=>of,unregisterGradient:()=>jT,unregisterKernel:()=>HT,unsortedSegmentSum:()=>t1,unstack:()=>On,upcastType:()=>Ps,util:()=>w,valueAndGrad:()=>_R,valueAndGrads:()=>FR,variable:()=>D3,variableGrads:()=>b3,version:()=>Bue,version_converter:()=>ZW,version_core:()=>Gc,version_layers:()=>L1,version_wasm:()=>Rue,version_webgl:()=>lY,webgl:()=>uY,webgl_util:()=>Z6,where:()=>Tn,whereAsync:()=>n1,zeros:()=>Ht,zerosLike:()=>Ze});var KC=Object.create,$p=Object.defineProperty,ZC=Object.getOwnPropertyDescriptor,YC=Object.getOwnPropertyNames,JC=Object.getPrototypeOf,QC=Object.prototype.hasOwnProperty,P5=e=>$p(e,"__esModule",{value:!0}),qi=(e=>typeof ra!="undefined"?ra:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof ra!="undefined"?ra:t)[n]}):e)(function(e){if(typeof ra!="undefined")return ra.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Ct=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},ze=(e,t)=>{P5(e);for(var n in t)$p(e,n,{get:t[n],enumerable:!0})},eT=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of YC(t))!QC.call(e,s)&&s!=="default"&&$p(e,s,{get:()=>t[s],enumerable:!(n=ZC(t,s))||n.enumerable});return e},Xa=e=>eT(P5($p(e!=null?KC(JC(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),tT=Ct({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(F){}function s(F,T,M){this.low=F|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(F){return(F&&F.__isLong__)===!0}s.isLong=r;var a={},o={};function i(F,T){var M,G,H;return T?(F>>>=0,(H=0<=F&&F<256)&&(G=o[F],G)?G:(M=c(F,(F|0)<0?-1:0,!0),H&&(o[F]=M),M)):(F|=0,(H=-128<=F&&F<128)&&(G=a[F],G)?G:(M=c(F,F<0?-1:0,!1),H&&(a[F]=M),M))}s.fromInt=i;function l(F,T){if(isNaN(F))return T?b:x;if(T){if(F<0)return b;if(F>=g)return D}else{if(F<=-A)return P;if(F+1>=A)return N}return F<0?l(-F,T).neg():c(F%m|0,F/m|0,T)}s.fromNumber=l;function c(F,T,M){return new s(F,T,M)}s.fromBits=c;var u=Math.pow;function d(F,T,M){if(F.length===0)throw Error("empty string");if(F==="NaN"||F==="Infinity"||F==="+Infinity"||F==="-Infinity")return x;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var G;if((G=F.indexOf("-"))>0)throw Error("interior hyphen");if(G===0)return d(F.substring(1),T,M).neg();for(var H=l(u(M,8)),z=x,X=0;X<F.length;X+=8){var Q=Math.min(8,F.length-X),Z=parseInt(F.substring(X,X+Q),M);if(Q<8){var te=l(u(M,Q));z=z.mul(te).add(l(Z))}else z=z.mul(H),z=z.add(l(Z))}return z.unsigned=T,z}s.fromString=d;function p(F,T){return typeof F=="number"?l(F,T):typeof F=="string"?d(F,T):c(F.low,F.high,typeof T=="boolean"?T:F.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var C=i(-1);s.NEG_ONE=C;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var D=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=D;var P=c(0,2147483648|0,!1);s.MIN_VALUE=P;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(T),G=this.div(M),H=G.mul(M).sub(this);return G.toString(T)+H.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,Q="";;){var Z=X.div(z),te=X.sub(Z.mul(z)).toInt()>>>0,se=te.toString(T);if(X=Z,X.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var M=this.isNegative(),G=T.isNegative();return M&&!G?-1:!M&&G?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=p(T));var M=this.high>>>16,G=this.high&65535,H=this.low>>>16,z=this.low&65535,X=T.high>>>16,Q=T.high&65535,Z=T.low>>>16,te=T.low&65535,se=0,J=0,ee=0,ce=0;return ce+=z+te,ee+=ce>>>16,ce&=65535,ee+=H+Z,J+=ee>>>16,ee&=65535,J+=G+Q,se+=J>>>16,J&=65535,se+=M+X,se&=65535,c(ee<<16|ce,se<<16|J,this.unsigned)},E.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(P))return T.isOdd()?P:x;if(T.eq(P))return this.isOdd()?P:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var G=this.high>>>16,H=this.high&65535,z=this.low>>>16,X=this.low&65535,Q=T.high>>>16,Z=T.high&65535,te=T.low>>>16,se=T.low&65535,J=0,ee=0,ce=0,pe=0;return pe+=X*se,ce+=pe>>>16,pe&=65535,ce+=z*se,ee+=ce>>>16,ce&=65535,ce+=X*te,ee+=ce>>>16,ce&=65535,ee+=H*se,J+=ee>>>16,ee&=65535,ee+=z*te,J+=ee>>>16,ee&=65535,ee+=X*Z,J+=ee>>>16,ee&=65535,J+=G*se+H*te+z*Z+X*Q,J&=65535,c(ce<<16|pe,J<<16|ee,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var G,H,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(P)){if(T.eq(v)||T.eq(C))return P;if(T.eq(P))return v;var X=this.shr(1);return G=X.div(T).shl(1),G.eq(x)?T.isNegative()?v:C:(H=this.sub(T.mul(G)),z=G.add(H.div(T)),z)}else if(T.eq(P))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=x}for(H=this;H.gte(T);){G=Math.max(1,Math.floor(H.toNumber()/T.toNumber()));for(var Q=Math.ceil(Math.log(G)/Math.LN2),Z=Q<=48?1:u(2,Q-48),te=l(G),se=te.mul(T);se.isNegative()||se.gt(H);)G-=Z,te=l(G,this.unsigned),se=te.mul(T);te.isZero()&&(te=v),z=z.add(te),H=H.sub(se)}return z},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=p(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return c(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var G=this.low;return c(G>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?c(M,0,this.unsigned):c(M>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,G){return G?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),nT=Ct({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),sT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=d.toString();for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),M5=Ct({"(disabled):crypto"(){}}),uT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",c=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(v,k,C){var N=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),N),P=new m(N),E=function(){for(var F=P.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=P.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return E.int32=function(){return P.g(4)|0},E.quick=function(){return P.g(4)/4294967296},E.double=E,y(b(P.S),n),(k.pass||C||function(F,T,M,G){return G&&(G.S&&g(G,P),F.state=function(){return g(P,{})}),M?(s[l]=F,T):F})(E,D,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,C=v.length,N=this,D=0,P=N.i=N.j=0,E=N.S=[];for(C||(v=[C++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[P=p&P+v[D%C]+(k=E[D])],E[P]=k;(N.g=function(F){for(var T,M=0,G=N.i,H=N.j,z=N.S;F--;)T=z[G=p&G+1],M=M*a+z[p&(z[G]=z[H=p&H+T])+(z[H]=T)];return N.i=G,N.j=H,M})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var C=[],N=typeof v,D;if(k&&N=="object")for(D in v)try{C.push(A(v[D],k-1))}catch(P){}return C.length?C:N=="string"?v:v+"\0"}function y(v,k){for(var C=v+"",N,D=0;D<C.length;)k[p&D]=p&(N^=k[p&D]*19)+C.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(N){var k=r.navigator,C=k&&k.plugins;return[+new Date,r,C,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=M5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),z5=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=sT(),s=rT(),r=aT(),a=oT(),o=iT(),i=lT(),l=uT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),cT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),gT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(v,k,C){var N=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),N),P=new m(N),E=function(){for(var F=P.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=P.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return E.int32=function(){return P.g(4)|0},E.quick=function(){return P.g(4)/4294967296},E.double=E,y(b(P.S),s),(k.pass||C||function(F,T,M,G){return G&&(G.S&&g(G,P),F.state=function(){return g(P,{})}),M?(r[l]=F,T):F})(E,D,"global"in k?k.global:this==r,k.state)}function m(v){var k,C=v.length,N=this,D=0,P=N.i=N.j=0,E=N.S=[];for(C||(v=[C++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[P=p&P+v[D%C]+(k=E[D])],E[P]=k;(N.g=function(F){for(var T,M=0,G=N.i,H=N.j,z=N.S;F--;)T=z[G=p&G+1],M=M*a+z[p&(z[G]=z[H=p&H+T])+(z[H]=T)];return N.i=G,N.j=H,M})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var C=[],N=typeof v,D;if(k&&N=="object")for(D in v)try{C.push(A(v[D],k-1))}catch(P){}return C.length?C:N=="string"?v:v+"\0"}function y(v,k){for(var C=v+"",N,D=0;D<C.length;)k[p&D]=p&(N^=k[p&D]*19)+C.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(N){var k=n.navigator,C=k&&k.plugins;return[+new Date,n,C,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=M5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),L5=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=cT(),s=dT(),r=pT(),a=hT(),o=fT(),i=mT(),l=gT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),B5=Ct({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),fc=Ct({"(disabled):path"(){}}),AT=Ct({"(disabled):worker_threads"(){}}),yT=Ct({"(disabled):perf_hooks"(){}}),xT=Ct({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.10.0_@tensorflow+tfjs-core@3.10.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return ee.buffer!=It&&An(ee.buffer),Dt}function o(){return ee.buffer!=It&&An(ee.buffer),Hn}function i(){return ee.buffer!=It&&An(ee.buffer),En}function l(){return ee.buffer!=It&&An(ee.buffer),ss}function c(){return ee.buffer!=It&&An(ee.buffer),xs}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(S,_){d=S,p=_});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(S,_){throw _},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(It=u.buffer);var C="";function N(S){return u.locateFile?u.locateFile(S,C):C+S}var D,P,E,F,T,M;if(b){x?C=fc().dirname(C)+"/":C=__dirname+"/",D=function(_,L){return T||(T=qi("fs")),M||(M=fc()),_=M.normalize(_),T.readFileSync(_,L?null:"utf8")},E=function(_){var L=D(_,!0);return L.buffer||(L=new Uint8Array(L)),ke(L.buffer),L},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof uc))throw S}),process.on("unhandledRejection",Dr),A=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var G;try{G=AT()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=G.Worker}else v?(typeof read!="undefined"&&(D=function(_){return read(_)}),E=function(_){var L;return typeof readbuffer=="function"?new Uint8Array(readbuffer(_)):(L=read(_,"binary"),ke(typeof L=="object"),L)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?C=self.location.href:typeof document!="undefined"&&document.currentScript&&(C=document.currentScript.src),typeof s!="undefined"&&s&&(C=s),C.indexOf("blob:")!==0?C=C.substr(0,C.lastIndexOf("/")+1):C="",b?(D=function(_,L){return T||(T=qi("fs")),M||(M=fc()),_=M.normalize(_),T.readFileSync(_,L?null:"utf8")},E=function(_){var L=D(_,!0);return L.buffer||(L=new Uint8Array(L)),ke(L.buffer),L}):(D=function(S){var _=new XMLHttpRequest;return _.open("GET",S,!1),_.send(null),_.responseText},x&&(E=function(S){var _=new XMLHttpRequest;return _.open("GET",S,!1),_.responseType="arraybuffer",_.send(null),new Uint8Array(_.response)}),P=function(S,_,L){var K=new XMLHttpRequest;K.open("GET",S,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){_(K.response);return}L()},K.onerror=L,K.send(null)}),F=function(S){document.title=S});b&&typeof performance=="undefined"&&(global.performance=yT().performance);var H=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(S){X.shown||(X.shown={}),X.shown[S]||(X.shown[S]=1,z(S))}var Q=Atomics.load,Z=Atomics.store,te=Atomics.compareExchange,se;u.wasmBinary&&(se=u.wasmBinary);var J=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Dr("no native wasm support detected");var ee,ce,pe=!1,ve;function ke(S,_){S||Dr("Assertion failed: "+_)}function Te(S){var _=u["_"+S];return ke(_,"Cannot call unknown function "+S+", make sure it is exported"),_}function Pe(S,_,L,K,ye){var ge={string:function(Rn){var ji=0;if(Rn!=null&&Rn!==0){var $5=(Rn.length<<2)+1;ji=Ui($5),ot(Rn,ji,$5)}return ji},array:function(Rn){var ji=Ui(Rn.length);return ht(Rn,ji),ji}};function Ae(Rn){return _==="string"?et(Rn):_==="boolean"?Boolean(Rn):Rn}var Ne=Te(S),ut=[],ln=0;if(K)for(var Yt=0;Yt<K.length;Yt++){var sa=ge[L[Yt]];sa?(ln===0&&(ln=lc()),ut[Yt]=sa(K[Yt])):ut[Yt]=K[Yt]}var Hi=Ne.apply(null,ut);return Hi=Ae(Hi),ln!==0&&Vi(ln),Hi}function Be(S,_,L,K){L=L||[];var ye=L.every(function(Ae){return Ae==="number"}),ge=_!=="string";return ge&&ye&&!K?Te(S):function(){return Pe(S,_,L,arguments,K)}}function Ue(S,_,L){for(var K=_+L,ye="";!(_>=K);){var ge=S[_++];if(!ge)return ye;if(!(ge&128)){ye+=String.fromCharCode(ge);continue}var Ae=S[_++]&63;if((ge&224)==192){ye+=String.fromCharCode((ge&31)<<6|Ae);continue}var Ne=S[_++]&63;if((ge&240)==224?ge=(ge&15)<<12|Ae<<6|Ne:ge=(ge&7)<<18|Ae<<12|Ne<<6|S[_++]&63,ge<65536)ye+=String.fromCharCode(ge);else{var ut=ge-65536;ye+=String.fromCharCode(55296|ut>>10,56320|ut&1023)}}return ye}function et(S,_){return S?Ue(o(),S,_):""}function ct(S,_,L,K){if(!(K>0))return 0;for(var ye=L,ge=L+K-1,Ae=0;Ae<S.length;++Ae){var Ne=S.charCodeAt(Ae);if(Ne>=55296&&Ne<=57343){var ut=S.charCodeAt(++Ae);Ne=65536+((Ne&1023)<<10)|ut&1023}if(Ne<=127){if(L>=ge)break;_[L++]=Ne}else if(Ne<=2047){if(L+1>=ge)break;_[L++]=192|Ne>>6,_[L++]=128|Ne&63}else if(Ne<=65535){if(L+2>=ge)break;_[L++]=224|Ne>>12,_[L++]=128|Ne>>6&63,_[L++]=128|Ne&63}else{if(L+3>=ge)break;_[L++]=240|Ne>>18,_[L++]=128|Ne>>12&63,_[L++]=128|Ne>>6&63,_[L++]=128|Ne&63}}return _[L]=0,L-ye}function ot(S,_,L){return ct(S,o(),_,L)}function it(S){for(var _=0,L=0;L<S.length;++L){var K=S.charCodeAt(L);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|S.charCodeAt(++L)&1023),K<=127?++_:K<=2047?_+=2:K<=65535?_+=3:_+=4}return _}function ht(S,_){a().set(S,_)}function mt(S,_){return S%_>0&&(S+=_-S%_),S}var It,Dt,Hn,gn,js,En,ss,_s,xs;function An(S){It=S,u.HEAP8=Dt=new Int8Array(S),u.HEAP16=gn=new Int16Array(S),u.HEAP32=En=new Int32Array(S),u.HEAPU8=Hn=new Uint8Array(S),u.HEAPU16=js=new Uint16Array(S),u.HEAPU32=ss=new Uint32Array(S),u.HEAPF32=_s=new Float32Array(S),u.HEAPF64=xs=new Float64Array(S)}var cr=u.INITIAL_MEMORY||16777216;if(k)ee=u.wasmMemory,It=u.buffer;else if(u.wasmMemory)ee=u.wasmMemory;else if(ee=new WebAssembly.Memory({initial:cr/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(It=ee.buffer),cr=It.byteLength,An(It);var In,dr=[],pr=[],Yr=[],Ju=[],qs=[],lp=!1,am=!1;k||pr.push({func:function(){Cp()}});function up(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)om(u.preRun.shift());Li(dr)}}function cp(){lp=!0,!k&&Li(pr)}function dp(){k||Li(Yr)}function jn(){k||(am=!0)}function pp(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)im(u.postRun.shift());Li(qs)}}function om(S){dr.unshift(S)}function im(S){qs.unshift(S)}var Fs=0,Qu=null,Ua=null;function lm(S){ke(!k,"addRunDependency cannot be used in a pthread worker"),Fs++,u.monitorRunDependencies&&u.monitorRunDependencies(Fs)}function um(S){if(Fs--,u.monitorRunDependencies&&u.monitorRunDependencies(Fs),Fs==0&&(Qu!==null&&(clearInterval(Qu),Qu=null),Ua)){var _=Ua;Ua=null,_()}}u.preloadedImages={},u.preloadedAudios={};function Dr(S){u.onAbort&&u.onAbort(S),k&&console.error("Pthread aborting at "+new Error().stack),S+="",z(S),pe=!0,ve=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var _=new WebAssembly.RuntimeError(S);throw p(_),_}function Ga(S,_){return String.prototype.startsWith?S.startsWith(_):S.indexOf(_)===0}var cm="data:application/octet-stream;base64,";function hp(S){return Ga(S,cm)}var dm="file://";function fp(S){return Ga(S,dm)}var qn="tfjs-backend-wasm-threaded-simd.wasm";hp(qn)||(qn=N(qn));function mp(S){try{if(S==qn&&se)return new Uint8Array(se);if(E)return E(S);throw"both async and sync fetching of the wasm failed"}catch(_){Dr(_)}}function pm(){if(!se&&(y||x)){if(typeof fetch=="function"&&!fp(qn))return fetch(qn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+qn+"'";return S.arrayBuffer()}).catch(function(){return mp(qn)});if(P)return new Promise(function(S,_){P(qn,function(L){S(new Uint8Array(L))},_)})}return Promise.resolve().then(function(){return mp(qn)})}function hm(){var S={a:ag};function _(Ae,Ne){var ut=Ae.exports;if(u.asm=ut,In=u.asm.I,ce=Ne,!k){var ln=De.unusedWorkers.length;De.unusedWorkers.forEach(function(Yt){De.loadWasmModuleToWorker(Yt,function(){--ln||um("wasm-instantiate")})})}}k||lm("wasm-instantiate");function L(Ae){_(Ae.instance,Ae.module)}function K(Ae){return pm().then(function(Ne){return WebAssembly.instantiate(Ne,S)}).then(Ae,function(Ne){z("failed to asynchronously prepare wasm: "+Ne),Dr(Ne)})}function ye(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!hp(qn)&&!fp(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(Ae){var Ne=WebAssembly.instantiateStreaming(Ae,S);return Ne.then(L,function(ut){return z("wasm streaming compile failed: "+ut),z("falling back to ArrayBuffer instantiation"),K(L)})}):K(L)}if(u.instantiateWasm)try{var ge=u.instantiateWasm(S,_);return ge}catch(Ae){return z("Module.instantiateWasm callback failed with error: "+Ae),!1}return ye().catch(p),{}}var fm={10520:function(){throw"Canceled!"},10538:function(S,_){setTimeout(function(){N5(S,_)},0)}};function gp(){De.initRuntime()}function Li(S){for(;S.length>0;){var _=S.shift();if(typeof _=="function"){_(u);continue}var L=_.func;typeof L=="number"?_.arg===void 0?In.get(L)():In.get(L)(_.arg):L(_.arg===void 0?null:_.arg)}}var Jr={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function ec(S,_){if(S<=0||S>a().length||S&!0||_<0)return-28;if(_==0)return 0;_>=2147483647&&(_=1/0);var L=Atomics.load(i(),Gi>>2),K=0;if(L==S){var ye=Atomics.compareExchange(i(),Gi>>2,L,0);if(ye==L&&(--_,K=1,_<=0))return 1}var ge=Atomics.notify(i(),S>>2,_);if(ge>=0)return ge+K;throw"Atomics.notify returned an unexpected value "+ge}u._emscripten_futex_wake=ec;function mm(S){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var _=De.pthreads[S];_.worker.terminate(),De.freeThreadData(_),De.runningWorkers.splice(De.runningWorkers.indexOf(_.worker),1),_.worker.pthread=void 0}function gm(S){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var _=De.pthreads[S];_.worker.postMessage({cmd:"cancel"})}function Ap(S){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var _=De.pthreads[S];if(_){i()[S+12>>2]=0;var L=_.worker;De.returnWorkerToPool(L)}}var De={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=8,_=0;_<S;++_)De.allocateUnusedWorker()},initRuntime:function(){for(var S=ja(228),_=0;_<228/4;++_)l()[S/4+_]=0;i()[S+12>>2]=S;var L=S+152;i()[L>>2]=L;for(var K=ja(512),_=0;_<128;++_)l()[K/4+_]=0;Atomics.store(l(),S+100>>2,K),Atomics.store(l(),S+40>>2,S),Ng(S,!x,1),C5(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;De.threadExitHandlers.length>0;)De.threadExitHandlers.pop()();k&&na()&&S5()},runExitHandlersAndDeinitThread:function(S,_){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),De.runExitHandlers(),Atomics.store(l(),S+4>>2,_),Atomics.store(l(),S+0>>2,1),ec(S+0,2147483647),Ng(0,0,0)},threadExit:function(S){var _=na();_&&(De.runExitHandlersAndDeinitThread(_,S),k&&postMessage({cmd:"exit"}))},threadCancel:function(){De.runExitHandlersAndDeinitThread(na(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in De.pthreads){var _=De.pthreads[S];_&&_.worker&&De.returnWorkerToPool(_.worker)}De.pthreads={};for(var L=0;L<De.unusedWorkers.length;++L){var K=De.unusedWorkers[L];K.terminate()}De.unusedWorkers=[];for(var L=0;L<De.runningWorkers.length;++L){var K=De.runningWorkers[L],_=K.pthread;De.freeThreadData(_),K.terminate()}De.runningWorkers=[]},freeThreadData:function(S){if(!!S){if(S.threadInfoStruct){var _=i()[S.threadInfoStruct+100>>2];i()[S.threadInfoStruct+100>>2]=0,ic(_),ic(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&ic(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){De.runWithoutMainThreadQueuedCalls(function(){delete De.pthreads[S.pthread.threadInfoStruct],De.unusedWorkers.push(S),De.runningWorkers.splice(De.runningWorkers.indexOf(S),1),De.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[F5>>2]=0;try{S()}finally{i()[F5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,_){S.onmessage=function(L){var K=L.data,ye=K.cmd;if(S.pthread&&(De.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=na()){var ge=De.pthreads[K.targetThread];ge?ge.worker.postMessage(L.data,K.transferList):console.error('Internal error! Worker sent a message "'+ye+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),De.currentProxiedOperationCallerThread=void 0;return}if(ye==="processQueuedMainThreadWork")_p();else if(ye==="spawnThread")Ip(L.data);else if(ye==="cleanupThread")Ap(K.thread);else if(ye==="killThread")mm(K.thread);else if(ye==="cancelThread")gm(K.thread);else if(ye==="loaded")S.loaded=!0,_&&_(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(ye==="print")H("Thread "+K.threadId+": "+K.text);else if(ye==="printErr")z("Thread "+K.threadId+": "+K.text);else if(ye==="alert")alert("Thread "+K.threadId+": "+K.text);else if(ye==="exit"){var Ae=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);Ae&&De.returnWorkerToPool(S)}else if(ye==="exitProcess")try{jC(K.returnCode)}catch(Ne){if(Ne instanceof uc)return;throw Ne}else ye==="cancelDone"?De.returnWorkerToPool(S):ye==="objectTransfer"?De.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?S.postMessage(L.data):z("worker sent an unknown command "+ye);De.currentProxiedOperationCallerThread=void 0},S.onerror=function(L){z("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},b&&(S.on("message",function(L){S.onmessage({data:L})}),S.on("error",function(L){S.onerror(L)}),S.on("exit",function(L){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:ee,wasmModule:ce})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");De.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return De.unusedWorkers.length==0&&(De.allocateUnusedWorker(),De.loadWasmModuleToWorker(De.unusedWorkers[0])),De.unusedWorkers.length>0?De.unusedWorkers.pop():null},busySpinWait:function(S){for(var _=performance.now()+S;performance.now()<_;);}};function Am(S,_){D5(S,_),Vi(S)}u.establishStackSpace=Am;function ym(){return J}u.getNoExitRuntime=ym;function xm(S,_){return In.get(S)(_)}u.invokeEntryPoint=xm;function bm(S,_,L,K){Dr("Assertion failed: "+et(S)+", at: "+[_?et(_):"unknown filename",L,K?et(K):"unknown function"])}function vm(S,_){var L=_main(S,_)}var Ha;b?Ha=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:k?Ha=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ha=dateNow:Ha=function(){return performance.now()};function wm(S){return i()[k5()>>2]=S,S}function km(S,_){if(k)return Qr(1,1,S,_)}function Im(S,_){if(S==_)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var L=De.pthreads[S],K=L&&L.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Sm(){Dr()}function Cm(S,_,L){var K=Rm(_,L);return fm[S].apply(null,K)}function Tm(S,_){}function yp(S,_,L){if(S<=0||S>a().length||S&!0)return-28;if(y){if(Atomics.load(i(),S>>2)!=_)return-6;for(var ye=performance.now(),ge=ye+L,Ae=Atomics.exchange(i(),Gi>>2,S);;){if(ye=performance.now(),ye>ge)return Ae=Atomics.exchange(i(),Gi>>2,0),-73;if(Ae=Atomics.exchange(i(),Gi>>2,0),Ae==0)break;if(_p(),Atomics.load(i(),S>>2)!=_)return-6;Ae=Atomics.exchange(i(),Gi>>2,S)}return 0}else{var K=Atomics.wait(i(),S>>2,_,L);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Nm(S,_,L){o().copyWithin(S,_,_+L)}function Em(){return b?qi("os").cpus().length:navigator.hardwareConcurrency}function Qr(S,_){for(var L=arguments.length-2,K=lc(),ye=L,ge=Ui(ye*8),Ae=ge>>3,Ne=0;Ne<L;Ne++){var ut=arguments[2+Ne];c()[Ae+Ne]=ut}var ln=R5(S,ye,ge,_);return Vi(K),ln}var tc=[],nc=[];function Rm(S,_){nc.length=0;var L;for(_>>=2;L=o()[S++];){var K=L<105;K&&_&1&&_++,nc.push(K?c()[_++>>1]:i()[_]),++_}return nc}function Dm(S,_,L){tc.length=_;for(var K=L>>3,ye=0;ye<_;ye++)tc[ye]=c()[K+ye];var ge=S<0,Ae=ge?fm[-S-1]:rg[S];return Ae.apply(null,tc)}function _m(){return o().length}function Fm(S){try{return ee.grow(S-It.byteLength+65535>>>16),An(ee.buffer),1}catch(_){}}function $m(S){var _=_m();if(S<=_)return!1;var L=2147483648;if(S>L)return!1;for(var K=1;K<=4;K*=2){var ye=_*(1+.2/K);ye=Math.min(ye,S+100663296);var ge=Math.min(L,mt(Math.max(S,ye),65536)),Ae=Fm(ge);if(Ae)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Ju.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,_,L){function K(Ae,Ne){if(Ae.length!=Ne.length)return!1;for(var ut in Ae)if(Ae[ut]!=Ne[ut])return!1;return!0}for(var ye in We.deferredCalls){var ge=We.deferredCalls[ye];if(ge.targetFunction==S&&K(ge.argsList,L))return}We.deferredCalls.push({targetFunction:S,precedence:_,argsList:L}),We.deferredCalls.sort(function(Ae,Ne){return Ae.precedence<Ne.precedence})},removeDeferredCalls:function(S){for(var _=0;_<We.deferredCalls.length;++_)We.deferredCalls[_].targetFunction==S&&(We.deferredCalls.splice(_,1),--_)},canPerformEventHandlerRequests:function(){return We.inEventHandler&&We.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!We.canPerformEventHandlerRequests())for(var S=0;S<We.deferredCalls.length;++S){var _=We.deferredCalls[S];We.deferredCalls.splice(S,1),--S,_.targetFunction.apply(null,_.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,_){for(var L=0;L<We.eventHandlers.length;++L)We.eventHandlers[L].target==S&&(!_||_==We.eventHandlers[L].eventTypeString)&&We._removeHandler(L--)},_removeHandler:function(S){var _=We.eventHandlers[S];_.target.removeEventListener(_.eventTypeString,_.eventListenerFunc,_.useCapture),We.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var _=function(ye){++We.inEventHandler,We.currentEventHandler=S,We.runDeferredCalls(),S.handlerFunc(ye),We.runDeferredCalls(),--We.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=_,S.target.addEventListener(S.eventTypeString,_,S.useCapture),We.eventHandlers.push(S),We.registerRemoveEventListeners();else for(var L=0;L<We.eventHandlers.length;++L)We.eventHandlers[L].target==S.target&&We.eventHandlers[L].eventTypeString==S.eventTypeString&&We._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(S,_,L,K,ye){var ge=lc(),Ae=Ui(12);i()[Ae>>2]=L,i()[Ae+4>>2]=K,i()[Ae+8>>2]=ye,Tg(0,S,637534208,_,K,Ae),Vi(ge)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return De.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Om(S){var _=it(S)+1,L=ja(_);return ot(S,L,_),L}function Pm(S,_,L,K){var ye=lc(),ge=Ui(12),Ae=0;_&&(Ae=Om(_)),i()[ge>>2]=Ae,i()[ge+4>>2]=L,i()[ge+8>>2]=K,Tg(0,S,657457152,0,Ae,ge),Vi(ye)}function Mm(S,_,L,K){_=_?et(_):"",Pm(S,_,L,K)}function zm(S){return S>2?et(S):S}var Lm=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Bm(S){S=zm(S);var _=Lm[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return _}function sc(S){return Bm(S)}function xp(S,_,L){var K=sc(S);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=_,i()[K.canvasSharedPtr+4>>2]=L),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var ye=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var ge=K.GLctxObject.GLctx.getParameter(2978);ye=ge[0]===0&&ge[1]===0&&ge[2]===K.width&&ge[3]===K.height}K.width=_,K.height=L,ye&&K.GLctxObject.GLctx.viewport(0,0,_,L)}else if(K.canvasSharedPtr){var Ae=i()[K.canvasSharedPtr+8>>2];return Mm(Ae,S,_,L),1}else return-4;return 0}function bp(S,_,L){return k?Qr(2,1,S,_,L):xp(S,_,L)}function Wm(S,_,L){var K=sc(S);return K?xp(S,_,L):bp(S,_,L)}function Vm(S){}function Um(S,_){}function Gm(S){var _=S.getExtension("ANGLE_instanced_arrays");if(_)return S.vertexAttribDivisor=function(L,K){_.vertexAttribDivisorANGLE(L,K)},S.drawArraysInstanced=function(L,K,ye,ge){_.drawArraysInstancedANGLE(L,K,ye,ge)},S.drawElementsInstanced=function(L,K,ye,ge,Ae){_.drawElementsInstancedANGLE(L,K,ye,ge,Ae)},1}function Hm(S){var _=S.getExtension("OES_vertex_array_object");if(_)return S.createVertexArray=function(){return _.createVertexArrayOES()},S.deleteVertexArray=function(L){_.deleteVertexArrayOES(L)},S.bindVertexArray=function(L){_.bindVertexArrayOES(L)},S.isVertexArray=function(L){return _.isVertexArrayOES(L)},1}function jm(S){var _=S.getExtension("WEBGL_draw_buffers");if(_)return S.drawBuffers=function(L,K){_.drawBuffersWEBGL(L,K)},1}function qm(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(_){lt.lastError||(lt.lastError=_)},getNewId:function(S){for(var _=lt.counter++,L=S.length;L<_;L++)S[L]=null;return _},getSource:function(S,_,L,K){for(var ye="",ge=0;ge<_;++ge){var Ae=K?i()[K+ge*4>>2]:-1;ye+=et(i()[L+ge*4>>2],Ae<0?void 0:Ae)}return ye},createContext:function(S,_){var L=S.getContext("webgl",_);if(!L)return 0;var K=lt.registerContext(L,_);return K},registerContext:function(S,_){var L=ja(8);i()[L+4>>2]=na();var K={handle:L,attributes:_,version:_.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=K),lt.contexts[L]=K,(typeof _.enableExtensionsByDefault=="undefined"||_.enableExtensionsByDefault)&<.initExtensions(K),L},makeContextCurrent:function(S){return lt.currentContext=lt.contexts[S],u.ctx=ea=lt.currentContext&<.currentContext.GLctx,!(S&&!ea)},getContext:function(S){return lt.contexts[S]},deleteContext:function(S){lt.currentContext===lt.contexts[S]&&(lt.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(lt.contexts[S].GLctx.canvas),lt.contexts[S]&<.contexts[S].GLctx.canvas&&(lt.contexts[S].GLctx.canvas.GLctxObject=void 0),ic(lt.contexts[S].handle),lt.contexts[S]=null},initExtensions:function(S){if(S||(S=lt.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var _=S.GLctx;Gm(_),Hm(_),jm(_),_.disjointTimerQueryExt=_.getExtension("EXT_disjoint_timer_query"),qm(_);var L=_.getSupportedExtensions()||[];L.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&_.getExtension(K)})}},populateUniformTable:function(S){for(var _=lt.programs[S],L=lt.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=L.uniforms,ye=ea.getProgramParameter(_,35718),ge=0;ge<ye;++ge){var Ae=ea.getActiveUniform(_,ge),Ne=Ae.name;L.maxUniformLength=Math.max(L.maxUniformLength,Ne.length+1),Ne.slice(-1)=="]"&&(Ne=Ne.slice(0,Ne.lastIndexOf("[")));var ut=ea.getUniformLocation(_,Ne);if(ut){var ln=lt.getNewId(lt.uniforms);K[Ne]=[Ae.size,ln],lt.uniforms[ln]=ut;for(var Yt=1;Yt<Ae.size;++Yt){var sa=Ne+"["+Yt+"]";ut=ea.getUniformLocation(_,sa),ln=lt.getNewId(lt.uniforms),lt.uniforms[ln]=ut}}}}},Xm=["default","low-power","high-performance"];function Km(S,_){var L=_>>2,K=i()[L+(24>>2)],ye={alpha:!!i()[L+(0>>2)],depth:!!i()[L+(4>>2)],stencil:!!i()[L+(8>>2)],antialias:!!i()[L+(12>>2)],premultipliedAlpha:!!i()[L+(16>>2)],preserveDrawingBuffer:!!i()[L+(20>>2)],powerPreference:Xm[K],failIfMajorPerformanceCaveat:!!i()[L+(28>>2)],majorVersion:i()[L+(32>>2)],minorVersion:i()[L+(36>>2)],enableExtensionsByDefault:i()[L+(40>>2)],explicitSwapControl:i()[L+(44>>2)],proxyContextToMainThread:i()[L+(48>>2)],renderViaOffscreenBackBuffer:i()[L+(52>>2)]},ge=sc(S);if(!ge||ye.explicitSwapControl)return 0;var Ae=lt.createContext(ge,ye);return Ae}function Zm(S,_){return Km(S,_)}var Bi={mappings:{},buffers:[null,[],[]],printChar:function(S,_){var L=Bi.buffers[S];_===0||_===10?((S===1?H:z)(Ue(L,0)),L.length=0):L.push(_)},varargs:void 0,get:function(){Bi.varargs+=4;var S=i()[Bi.varargs-4>>2];return S},getStr:function(S){var _=et(S);return _},get64:function(S,_){return S}};function vp(S){return k?Qr(3,1,S):0}function wp(S,_,L,K,ye){if(k)return Qr(4,1,S,_,L,K,ye)}function kp(S,_,L,K){if(k)return Qr(5,1,S,_,L,K);for(var ye=0,ge=0;ge<L;ge++){for(var Ae=i()[_+ge*8>>2],Ne=i()[_+(ge*8+4)>>2],ut=0;ut<Ne;ut++)Bi.printChar(S,o()[Ae+ut]);ye+=Ne}return i()[K>>2]=ye,0}function Ym(S){var _=De.threadExitHandlers.pop();S&&_()}function Jm(S,_){De.threadExitHandlers.push(function(){In.get(S)(_)})}function Ip(S){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var _=De.getNewWorker();if(_.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";De.runningWorkers.push(_);for(var L=ja(128*4),K=0;K<128;++K)i()[L+K*4>>2]=0;var ye=S.stackBase+S.stackSize,ge=De.pthreads[S.pthread_ptr]={worker:_,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},Ae=ge.threadInfoStruct>>2;Atomics.store(l(),Ae+(64>>2),S.detached),Atomics.store(l(),Ae+(100>>2),L),Atomics.store(l(),Ae+(40>>2),ge.threadInfoStruct),Atomics.store(l(),Ae+(80>>2),S.stackSize),Atomics.store(l(),Ae+(76>>2),ye),Atomics.store(l(),Ae+(104>>2),S.stackSize),Atomics.store(l(),Ae+(104+8>>2),ye),Atomics.store(l(),Ae+(104+12>>2),S.detached);var Ne=I5(),ut=Ne+40;Atomics.store(l(),Ae+(172>>2),ut),_.pthread=ge;var ln={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};_.runPthread=function(){ln.time=performance.now(),_.postMessage(ln,S.transferList)},_.loaded&&(_.runPthread(),delete _.runPthread)}function Qm(S,_,L,K){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return z("pthread_create called with a null thread pointer!"),28;var ye=[],ge=0;if(k&&(ye.length===0||ge))return E5(687865856,S,_,L,K);if(ge)return ge;var Ae=0,Ne=0,ut=0;_&&_!=-1?(Ae=i()[_>>2],Ae+=81920,Ne=i()[_+8>>2],ut=i()[_+12>>2]!==0):Ae=2097152;var ln=Ne==0;ln?Ne=_5(16,Ae):(Ne-=Ae,ke(Ne>0));for(var Yt=ja(228),sa=0;sa<228>>2;++sa)l()[(Yt>>2)+sa]=0;i()[S>>2]=Yt,i()[Yt+12>>2]=Yt;var Hi=Yt+152;i()[Hi>>2]=Hi;var Rn={stackBase:Ne,stackSize:Ae,allocatedOwnStack:ln,detached:ut,startRoutine:L,pthread_ptr:Yt,arg:K,transferList:ye};return k?(Rn.cmd="spawnThread",postMessage(Rn,ye)):Ip(Rn),0}function eg(){if(!!k){var S=na();if(!!S){var _=Atomics.load(l(),S+56>>2);if(!_){var L=Atomics.load(l(),S+0>>2);if(L==2)throw"Canceled!"}}}}function tg(){b||x||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function ng(S,_,L){if(!S)return z("pthread_join attempted on a null thread pointer!"),Jr.ESRCH;if(k&&na()==S)return z("PThread "+S+" is attempting to join to itself!"),Jr.EDEADLK;if(!k&&T5()==S)return z("Main thread "+S+" is attempting to join to itself!"),Jr.EDEADLK;var K=i()[S+12>>2];if(K!==S)return z("pthread_join attempted on thread "+S+", which does not point to a valid thread, or does not exist anymore!"),Jr.ESRCH;var ye=Atomics.load(l(),S+64>>2);if(ye)return z("Attempted to join thread "+S+", which was already detached!"),Jr.EINVAL;for(L&&tg();;){var ge=Atomics.load(l(),S+0>>2);if(ge==1){var Ae=Atomics.load(l(),S+4>>2);return _&&(i()[_>>2]=Ae),Atomics.store(l(),S+64>>2,1),k?postMessage({cmd:"cleanupThread",thread:S}):Ap(S),0}if(!L)return Jr.EBUSY;eg(),k||_p(),yp(S+0,ge,k?100:1)}}function sg(S,_){return ng(S,_,!0)}function Sp(S){if(k)return Qr(6,1,S);switch(S){case 30:return 16384;case 85:var _=2147483648;return _/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return wm(28),-1}k||De.initMainThreadBlock();var ea,rg=[null,km,bp,vp,wp,kp,Sp],ag={e:bm,r:vm,x:Im,b:Sm,y:Cm,j:Tm,d:yp,c:ec,f:Ha,p:Nm,A:Em,u:Dm,q:$m,v:Wm,i:Vm,s:Um,w:Zm,l:vp,n:wp,g:kp,o:gp,a:ee||u.wasmMemory,z:Ym,k:Jm,h:Qm,m:sg,t:Sp},w5=hm(),Cp=u.___wasm_call_ctors=function(){return(Cp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},og=u._init=function(){return(og=u._init=u.asm.C).apply(null,arguments)},ig=u._init_with_threads_count=function(){return(ig=u._init_with_threads_count=u.asm.D).apply(null,arguments)},lg=u._get_threads_count=function(){return(lg=u._get_threads_count=u.asm.E).apply(null,arguments)},ug=u._register_tensor=function(){return(ug=u._register_tensor=u.asm.F).apply(null,arguments)},cg=u._dispose_data=function(){return(cg=u._dispose_data=u.asm.G).apply(null,arguments)},dg=u._dispose=function(){return(dg=u._dispose=u.asm.H).apply(null,arguments)},pg=u._Abs=function(){return(pg=u._Abs=u.asm.J).apply(null,arguments)},hg=u._Add=function(){return(hg=u._Add=u.asm.K).apply(null,arguments)},fg=u._AddN=function(){return(fg=u._AddN=u.asm.L).apply(null,arguments)},mg=u._All=function(){return(mg=u._All=u.asm.M).apply(null,arguments)},gg=u._Any=function(){return(gg=u._Any=u.asm.N).apply(null,arguments)},Ag=u._ArgMax=function(){return(Ag=u._ArgMax=u.asm.O).apply(null,arguments)},yg=u._AvgPool=function(){return(yg=u._AvgPool=u.asm.P).apply(null,arguments)},xg=u._BatchMatMul=function(){return(xg=u._BatchMatMul=u.asm.Q).apply(null,arguments)},bg=u._Ceil=function(){return(bg=u._Ceil=u.asm.R).apply(null,arguments)},vg=u._ClipByValue=function(){return(vg=u._ClipByValue=u.asm.S).apply(null,arguments)},wg=u._Conv2D=function(){return(wg=u._Conv2D=u.asm.T).apply(null,arguments)},kg=u._Conv2DBackpropInput=function(){return(kg=u._Conv2DBackpropInput=u.asm.U).apply(null,arguments)},Ig=u._Cos=function(){return(Ig=u._Cos=u.asm.V).apply(null,arguments)},Sg=u._Cosh=function(){return(Sg=u._Cosh=u.asm.W).apply(null,arguments)},Tp=u._CropAndResize=function(){return(Tp=u._CropAndResize=u.asm.X).apply(null,arguments)},Np=u._Cumsum=function(){return(Np=u._Cumsum=u.asm.Y).apply(null,arguments)},Ep=u._DepthToSpace=function(){return(Ep=u._DepthToSpace=u.asm.Z).apply(null,arguments)},rc=u._DepthwiseConv2dNative=function(){return(rc=u._DepthwiseConv2dNative=u.asm._).apply(null,arguments)},Wi=u._Elu=function(){return(Wi=u._Elu=u.asm.$).apply(null,arguments)},Cg=u._Equal=function(){return(Cg=u._Equal=u.asm.aa).apply(null,arguments)},ac=u._Exp=function(){return(ac=u._Exp=u.asm.ba).apply(null,arguments)},re=u._FlipLeftRight=function(){return(re=u._FlipLeftRight=u.asm.ca).apply(null,arguments)},ie=u._Floor=function(){return(ie=u._Floor=u.asm.da).apply(null,arguments)},Ie=u._FloorDiv=function(){return(Ie=u._FloorDiv=u.asm.ea).apply(null,arguments)},st=u._FusedBatchNorm=function(){return(st=u._FusedBatchNorm=u.asm.fa).apply(null,arguments)},Pt=u._FusedConv2D=function(){return(Pt=u._FusedConv2D=u.asm.ga).apply(null,arguments)},St=u._FusedDepthwiseConv2D=function(){return(St=u._FusedDepthwiseConv2D=u.asm.ha).apply(null,arguments)},Xe=u._Gather=function(){return(Xe=u._Gather=u.asm.ia).apply(null,arguments)},Ye=u._GatherNd=function(){return(Ye=u._GatherNd=u.asm.ja).apply(null,arguments)},yn=u._Greater=function(){return(yn=u._Greater=u.asm.ka).apply(null,arguments)},_r=u._GreaterEqual=function(){return(_r=u._GreaterEqual=u.asm.la).apply(null,arguments)},Fr=u._LeakyRelu=function(){return(Fr=u._LeakyRelu=u.asm.ma).apply(null,arguments)},Rp=u._Less=function(){return(Rp=u._Less=u.asm.na).apply(null,arguments)},oc=u._LessEqual=function(){return(oc=u._LessEqual=u.asm.oa).apply(null,arguments)},rs=u._Log=function(){return(rs=u._Log=u.asm.pa).apply(null,arguments)},ta=u._LogicalAnd=function(){return(ta=u._LogicalAnd=u.asm.qa).apply(null,arguments)},Dp=u._Max=function(){return(Dp=u._Max=u.asm.ra).apply(null,arguments)},eC=u._MaxPool=function(){return(eC=u._MaxPool=u.asm.sa).apply(null,arguments)},tC=u._Maximum=function(){return(tC=u._Maximum=u.asm.ta).apply(null,arguments)},nC=u._Mean=function(){return(nC=u._Mean=u.asm.ua).apply(null,arguments)},sC=u._Min=function(){return(sC=u._Min=u.asm.va).apply(null,arguments)},rC=u._Minimum=function(){return(rC=u._Minimum=u.asm.wa).apply(null,arguments)},aC=u._MirrorPad=function(){return(aC=u._MirrorPad=u.asm.xa).apply(null,arguments)},oC=u._Multiply=function(){return(oC=u._Multiply=u.asm.ya).apply(null,arguments)},iC=u._Neg=function(){return(iC=u._Neg=u.asm.za).apply(null,arguments)},lC=u._NonMaxSuppressionV3=function(){return(lC=u._NonMaxSuppressionV3=u.asm.Aa).apply(null,arguments)},uC=u._NonMaxSuppressionV4=function(){return(uC=u._NonMaxSuppressionV4=u.asm.Ba).apply(null,arguments)},cC=u._NonMaxSuppressionV5=function(){return(cC=u._NonMaxSuppressionV5=u.asm.Ca).apply(null,arguments)},dC=u._NotEqual=function(){return(dC=u._NotEqual=u.asm.Da).apply(null,arguments)},pC=u._OneHot=function(){return(pC=u._OneHot=u.asm.Ea).apply(null,arguments)},hC=u._PadV2=function(){return(hC=u._PadV2=u.asm.Fa).apply(null,arguments)},fC=u._Pow=function(){return(fC=u._Pow=u.asm.Ga).apply(null,arguments)},mC=u._Prelu=function(){return(mC=u._Prelu=u.asm.Ha).apply(null,arguments)},gC=u._Prod=function(){return(gC=u._Prod=u.asm.Ia).apply(null,arguments)},AC=u._RealDiv=function(){return(AC=u._RealDiv=u.asm.Ja).apply(null,arguments)},yC=u._Relu=function(){return(yC=u._Relu=u.asm.Ka).apply(null,arguments)},xC=u._Relu6=function(){return(xC=u._Relu6=u.asm.La).apply(null,arguments)},bC=u._ResizeBilinear=function(){return(bC=u._ResizeBilinear=u.asm.Ma).apply(null,arguments)},vC=u._Reverse=function(){return(vC=u._Reverse=u.asm.Na).apply(null,arguments)},wC=u._RotateWithOffset=function(){return(wC=u._RotateWithOffset=u.asm.Oa).apply(null,arguments)},kC=u._Round=function(){return(kC=u._Round=u.asm.Pa).apply(null,arguments)},IC=u._Rsqrt=function(){return(IC=u._Rsqrt=u.asm.Qa).apply(null,arguments)},SC=u._ScatterNd=function(){return(SC=u._ScatterNd=u.asm.Ra).apply(null,arguments)},CC=u._SelectV2=function(){return(CC=u._SelectV2=u.asm.Sa).apply(null,arguments)},TC=u._Sigmoid=function(){return(TC=u._Sigmoid=u.asm.Ta).apply(null,arguments)},NC=u._Sin=function(){return(NC=u._Sin=u.asm.Ua).apply(null,arguments)},EC=u._Softmax=function(){return(EC=u._Softmax=u.asm.Va).apply(null,arguments)},RC=u._Sqrt=function(){return(RC=u._Sqrt=u.asm.Wa).apply(null,arguments)},DC=u._Square=function(){return(DC=u._Square=u.asm.Xa).apply(null,arguments)},_C=u._SquaredDifference=function(){return(_C=u._SquaredDifference=u.asm.Ya).apply(null,arguments)},FC=u._Step=function(){return(FC=u._Step=u.asm.Za).apply(null,arguments)},$C=u._StridedSlice=function(){return($C=u._StridedSlice=u.asm._a).apply(null,arguments)},OC=u._Sub=function(){return(OC=u._Sub=u.asm.$a).apply(null,arguments)},PC=u._Sum=function(){return(PC=u._Sum=u.asm.ab).apply(null,arguments)},MC=u._Tan=function(){return(MC=u._Tan=u.asm.bb).apply(null,arguments)},zC=u._Tanh=function(){return(zC=u._Tanh=u.asm.cb).apply(null,arguments)},LC=u._Tile=function(){return(LC=u._Tile=u.asm.db).apply(null,arguments)},BC=u._TopK=function(){return(BC=u._TopK=u.asm.eb).apply(null,arguments)},WC=u._Transform=function(){return(WC=u._Transform=u.asm.fb).apply(null,arguments)},VC=u._Transpose=function(){return(VC=u._Transpose=u.asm.gb).apply(null,arguments)},UC=u.__FusedMatMul=function(){return(UC=u.__FusedMatMul=u.asm.hb).apply(null,arguments)},ja=u._malloc=function(){return(ja=u._malloc=u.asm.ib).apply(null,arguments)},ic=u._free=function(){return(ic=u._free=u.asm.jb).apply(null,arguments)},k5=u.___errno_location=function(){return(k5=u.___errno_location=u.asm.kb).apply(null,arguments)},I5=u._emscripten_get_global_libc=function(){return(I5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},na=u._pthread_self=function(){return(na=u._pthread_self=u.asm.mb).apply(null,arguments)},S5=u.___pthread_tsd_run_dtors=function(){return(S5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},_p=u._emscripten_main_thread_process_queued_calls=function(){return(_p=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},GC=u._emscripten_current_thread_process_queued_calls=function(){return(GC=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},C5=u._emscripten_register_main_browser_thread_id=function(){return(C5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},T5=u._emscripten_main_browser_thread_id=function(){return(T5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},N5=u.__emscripten_do_dispatch_to_thread=function(){return(N5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},E5=u._emscripten_sync_run_in_main_thread_4=function(){return(E5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},R5=u._emscripten_run_in_main_runtime_thread_js=function(){return(R5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Tg=u.__emscripten_call_on_thread=function(){return(Tg=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},HC=u._emscripten_tls_init=function(){return(HC=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Ng=u.__emscripten_thread_init=function(){return(Ng=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},lc=u.stackSave=function(){return(lc=u.stackSave=u.asm.yb).apply(null,arguments)},Vi=u.stackRestore=function(){return(Vi=u.stackRestore=u.asm.zb).apply(null,arguments)},Ui=u.stackAlloc=function(){return(Ui=u.stackAlloc=u.asm.Ab).apply(null,arguments)},D5=u._emscripten_stack_set_limits=function(){return(D5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},_5=u._memalign=function(){return(_5=u._memalign=u.asm.Cb).apply(null,arguments)},F5=u.__emscripten_allow_main_runtime_queued_calls=10512,Gi=u.__emscripten_main_thread_futex=12148;u.cwrap=Be,u.PThread=De,u.PThread=De,u.wasmMemory=ee,u.ExitStatus=uc;var Fp;function uc(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}Ua=function S(){Fp||Eg(),Fp||(Ua=S)};function Eg(S){if(S=S||m,Fs>0)return;if(k){d(u),cp(),postMessage({cmd:"loaded"});return}if(up(),Fs>0)return;function _(){Fp||(Fp=!0,u.calledRun=!0,!pe&&(cp(),dp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),pp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),_()},1)):_()}u.run=Eg;function jC(S,_){if(!(_&&J&&S===0)){if(!_&&k)throw postMessage({cmd:"exitProcess",returnCode:S}),new uc(S);J||(De.terminateAllThreads(),ve=S,jn(),u.onExit&&u.onExit(S),pe=!0),A(S,new uc(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(J=!1,De.initWorker()),Eg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),bT=Ct({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.10.0_@tensorflow+tfjs-core@3.10.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(re,ie){o=re,i=ie});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(re,ie){throw ie},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function y(re){return a.locateFile?a.locateFile(re,A):A+re}var x,b,v,k,C,N;m?(f?A=fc().dirname(A)+"/":A=__dirname+"/",x=function(ie,Ie){return C||(C=qi("fs")),N||(N=fc()),ie=N.normalize(ie),C.readFileSync(ie,Ie?null:"utf8")},v=function(ie){var Ie=x(ie,!0);return Ie.buffer||(Ie=new Uint8Array(Ie)),H(Ie.buffer),Ie},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(re){if(!(re instanceof Cg))throw re}),process.on("unhandledRejection",qs),p=function(re){process.exit(re)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ie){return read(ie)}),v=function(ie){var Ie;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(Ie=read(ie,"binary"),H(typeof Ie=="object"),Ie)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(re){quit(re)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(re){var ie=new XMLHttpRequest;return ie.open("GET",re,!1),ie.send(null),ie.responseText},f&&(v=function(re){var ie=new XMLHttpRequest;return ie.open("GET",re,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(re,ie,Ie){var st=new XMLHttpRequest;st.open("GET",re,!0),st.responseType="arraybuffer",st.onload=function(){if(st.status==200||st.status==0&&st.response){ie(st.response);return}Ie()},st.onerror=Ie,st.send(null)},k=function(re){document.title=re});var D=a.print||console.log.bind(console),P=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var F=a.noExitRuntime||!0;typeof WebAssembly!="object"&&qs("no native wasm support detected");var T,M=!1,G;function H(re,ie){re||qs("Assertion failed: "+ie)}function z(re){var ie=a["_"+re];return H(ie,"Cannot call unknown function "+re+", make sure it is exported"),ie}function X(re,ie,Ie,st,Pt){var St={string:function(rs){var ta=0;if(rs!=null&&rs!==0){var Dp=(rs.length<<2)+1;ta=rc(Dp),ee(rs,ta,Dp)}return ta},array:function(rs){var ta=rc(rs.length);return ce(rs,ta),ta}};function Xe(rs){return ie==="string"?se(rs):ie==="boolean"?Boolean(rs):rs}var Ye=z(re),yn=[],_r=0;if(st)for(var Fr=0;Fr<st.length;Fr++){var Rp=St[Ie[Fr]];Rp?(_r===0&&(_r=Np()),yn[Fr]=Rp(st[Fr])):yn[Fr]=st[Fr]}var oc=Ye.apply(null,yn);return oc=Xe(oc),_r!==0&&Ep(_r),oc}function Q(re,ie,Ie,st){Ie=Ie||[];var Pt=Ie.every(function(Xe){return Xe==="number"}),St=ie!=="string";return St&&Pt&&!st?z(re):function(){return X(re,ie,Ie,arguments,st)}}var Z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(re,ie,Ie){for(var st=ie+Ie,Pt=ie;re[Pt]&&!(Pt>=st);)++Pt;if(Pt-ie>16&&re.subarray&&Z)return Z.decode(re.subarray(ie,Pt));for(var St="";ie<Pt;){var Xe=re[ie++];if(!(Xe&128)){St+=String.fromCharCode(Xe);continue}var Ye=re[ie++]&63;if((Xe&224)==192){St+=String.fromCharCode((Xe&31)<<6|Ye);continue}var yn=re[ie++]&63;if((Xe&240)==224?Xe=(Xe&15)<<12|Ye<<6|yn:Xe=(Xe&7)<<18|Ye<<12|yn<<6|re[ie++]&63,Xe<65536)St+=String.fromCharCode(Xe);else{var _r=Xe-65536;St+=String.fromCharCode(55296|_r>>10,56320|_r&1023)}}return St}function se(re,ie){return re?te(Te,re,ie):""}function J(re,ie,Ie,st){if(!(st>0))return 0;for(var Pt=Ie,St=Ie+st-1,Xe=0;Xe<re.length;++Xe){var Ye=re.charCodeAt(Xe);if(Ye>=55296&&Ye<=57343){var yn=re.charCodeAt(++Xe);Ye=65536+((Ye&1023)<<10)|yn&1023}if(Ye<=127){if(Ie>=St)break;ie[Ie++]=Ye}else if(Ye<=2047){if(Ie+1>=St)break;ie[Ie++]=192|Ye>>6,ie[Ie++]=128|Ye&63}else if(Ye<=65535){if(Ie+2>=St)break;ie[Ie++]=224|Ye>>12,ie[Ie++]=128|Ye>>6&63,ie[Ie++]=128|Ye&63}else{if(Ie+3>=St)break;ie[Ie++]=240|Ye>>18,ie[Ie++]=128|Ye>>12&63,ie[Ie++]=128|Ye>>6&63,ie[Ie++]=128|Ye&63}}return ie[Ie]=0,Ie-Pt}function ee(re,ie,Ie){return J(re,Te,ie,Ie)}function ce(re,ie){ke.set(re,ie)}function pe(re,ie){return re%ie>0&&(re+=ie-re%ie),re}var ve,ke,Te,Pe,Be,Ue,et,ct,ot;function it(re){ve=re,a.HEAP8=ke=new Int8Array(re),a.HEAP16=Pe=new Int16Array(re),a.HEAP32=Ue=new Int32Array(re),a.HEAPU8=Te=new Uint8Array(re),a.HEAPU16=Be=new Uint16Array(re),a.HEAPU32=et=new Uint32Array(re),a.HEAPF32=ct=new Float32Array(re),a.HEAPF64=ot=new Float64Array(re)}var ht=a.INITIAL_MEMORY||16777216,mt,It=[],Dt=[],Hn=[],gn=[],js=!1;Dt.push({func:function(){gp()}});function En(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)An(a.preRun.shift());Fs(It)}function ss(){js=!0,Fs(Dt)}function _s(){Fs(Hn)}function xs(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)cr(a.postRun.shift());Fs(gn)}function An(re){It.unshift(re)}function cr(re){gn.unshift(re)}var In=0,dr=null,pr=null;function Yr(re){In++,a.monitorRunDependencies&&a.monitorRunDependencies(In)}function Ju(re){if(In--,a.monitorRunDependencies&&a.monitorRunDependencies(In),In==0&&(dr!==null&&(clearInterval(dr),dr=null),pr)){var ie=pr;pr=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function qs(re){a.onAbort&&a.onAbort(re),re+="",P(re),M=!0,G=1,re="abort("+re+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(re);throw i(ie),ie}function lp(re,ie){return String.prototype.startsWith?re.startsWith(ie):re.indexOf(ie)===0}var am="data:application/octet-stream;base64,";function up(re){return lp(re,am)}var cp="file://";function dp(re){return lp(re,cp)}var jn="tfjs-backend-wasm.wasm";up(jn)||(jn=y(jn));function pp(re){try{if(re==jn&&E)return new Uint8Array(E);if(v)return v(re);throw"both async and sync fetching of the wasm failed"}catch(ie){qs(ie)}}function om(){if(!E&&(h||f)){if(typeof fetch=="function"&&!dp(jn))return fetch(jn,{credentials:"same-origin"}).then(function(re){if(!re.ok)throw"failed to load wasm binary file at '"+jn+"'";return re.arrayBuffer()}).catch(function(){return pp(jn)});if(b)return new Promise(function(re,ie){b(jn,function(Ie){re(new Uint8Array(Ie))},ie)})}return Promise.resolve().then(function(){return pp(jn)})}function im(){var re={a:hm};function ie(Xe,Ye){var yn=Xe.exports;a.asm=yn,T=a.asm.j,it(T.buffer),mt=a.asm.r,Ju("wasm-instantiate")}Yr("wasm-instantiate");function Ie(Xe){ie(Xe.instance)}function st(Xe){return om().then(function(Ye){return WebAssembly.instantiate(Ye,re)}).then(Xe,function(Ye){P("failed to asynchronously prepare wasm: "+Ye),qs(Ye)})}function Pt(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!up(jn)&&!dp(jn)&&typeof fetch=="function"?fetch(jn,{credentials:"same-origin"}).then(function(Xe){var Ye=WebAssembly.instantiateStreaming(Xe,re);return Ye.then(Ie,function(yn){return P("wasm streaming compile failed: "+yn),P("falling back to ArrayBuffer instantiation"),st(Ie)})}):st(Ie)}if(a.instantiateWasm)try{var St=a.instantiateWasm(re,ie);return St}catch(Xe){return P("Module.instantiateWasm callback failed with error: "+Xe),!1}return Pt().catch(i),{}}function Fs(re){for(;re.length>0;){var ie=re.shift();if(typeof ie=="function"){ie(a);continue}var Ie=ie.func;typeof Ie=="number"?ie.arg===void 0?mt.get(Ie)():mt.get(Ie)(ie.arg):Ie(ie.arg===void 0?null:ie.arg)}}function Qu(){qs()}function Ua(re,ie,Ie){Te.copyWithin(re,ie,ie+Ie)}function lm(){return Te.length}function um(re){try{return T.grow(re-ve.byteLength+65535>>>16),it(T.buffer),1}catch(ie){}}function Dr(re){var ie=lm(),Ie=2147483648;if(re>Ie)return!1;for(var st=1;st<=4;st*=2){var Pt=ie*(1+.2/st);Pt=Math.min(Pt,re+100663296);var St=Math.min(Ie,pe(Math.max(re,Pt),65536)),Xe=um(St);if(Xe)return!0}return!1}var Ga={mappings:{},buffers:[null,[],[]],printChar:function(re,ie){var Ie=Ga.buffers[re];ie===0||ie===10?((re===1?D:P)(te(Ie,0)),Ie.length=0):Ie.push(ie)},varargs:void 0,get:function(){Ga.varargs+=4;var re=Ue[Ga.varargs-4>>2];return re},getStr:function(re){var ie=se(re);return ie},get64:function(re,ie){return re}};function cm(re){return 0}function hp(re,ie,Ie,st,Pt){}function dm(re,ie,Ie,st){for(var Pt=0,St=0;St<Ie;St++){for(var Xe=Ue[ie+St*8>>2],Ye=Ue[ie+(St*8+4)>>2],yn=0;yn<Ye;yn++)Ga.printChar(re,Te[Xe+yn]);Pt+=Ye}return Ue[st>>2]=Pt,0}function fp(){return 6}function qn(){return 28}function mp(re){return Ue[Tp()>>2]=re,re}function pm(re){switch(re){case 30:return 16384;case 85:var ie=2147483648;return ie/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return mp(28),-1}var hm={a:Qu,d:Ua,e:Dr,f:cm,c:hp,b:dm,h:fp,g:qn,i:pm},fm=im(),gp=a.___wasm_call_ctors=function(){return(gp=a.___wasm_call_ctors=a.asm.k).apply(null,arguments)},Li=a._init=function(){return(Li=a._init=a.asm.l).apply(null,arguments)},Jr=a._init_with_threads_count=function(){return(Jr=a._init_with_threads_count=a.asm.m).apply(null,arguments)},ec=a._get_threads_count=function(){return(ec=a._get_threads_count=a.asm.n).apply(null,arguments)},mm=a._register_tensor=function(){return(mm=a._register_tensor=a.asm.o).apply(null,arguments)},gm=a._dispose_data=function(){return(gm=a._dispose_data=a.asm.p).apply(null,arguments)},Ap=a._dispose=function(){return(Ap=a._dispose=a.asm.q).apply(null,arguments)},De=a._Abs=function(){return(De=a._Abs=a.asm.s).apply(null,arguments)},Am=a._Add=function(){return(Am=a._Add=a.asm.t).apply(null,arguments)},ym=a._AddN=function(){return(ym=a._AddN=a.asm.u).apply(null,arguments)},xm=a._All=function(){return(xm=a._All=a.asm.v).apply(null,arguments)},bm=a._Any=function(){return(bm=a._Any=a.asm.w).apply(null,arguments)},vm=a._ArgMax=function(){return(vm=a._ArgMax=a.asm.x).apply(null,arguments)},Ha=a._AvgPool=function(){return(Ha=a._AvgPool=a.asm.y).apply(null,arguments)},wm=a._BatchMatMul=function(){return(wm=a._BatchMatMul=a.asm.z).apply(null,arguments)},km=a._Ceil=function(){return(km=a._Ceil=a.asm.A).apply(null,arguments)},Im=a._ClipByValue=function(){return(Im=a._ClipByValue=a.asm.B).apply(null,arguments)},Sm=a._Conv2D=function(){return(Sm=a._Conv2D=a.asm.C).apply(null,arguments)},Cm=a._Conv2DBackpropInput=function(){return(Cm=a._Conv2DBackpropInput=a.asm.D).apply(null,arguments)},Tm=a._Cos=function(){return(Tm=a._Cos=a.asm.E).apply(null,arguments)},yp=a._Cosh=function(){return(yp=a._Cosh=a.asm.F).apply(null,arguments)},Nm=a._CropAndResize=function(){return(Nm=a._CropAndResize=a.asm.G).apply(null,arguments)},Em=a._Cumsum=function(){return(Em=a._Cumsum=a.asm.H).apply(null,arguments)},Qr=a._DepthToSpace=function(){return(Qr=a._DepthToSpace=a.asm.I).apply(null,arguments)},tc=a._DepthwiseConv2dNative=function(){return(tc=a._DepthwiseConv2dNative=a.asm.J).apply(null,arguments)},nc=a._Elu=function(){return(nc=a._Elu=a.asm.K).apply(null,arguments)},Rm=a._Equal=function(){return(Rm=a._Equal=a.asm.L).apply(null,arguments)},Dm=a._Exp=function(){return(Dm=a._Exp=a.asm.M).apply(null,arguments)},_m=a._FlipLeftRight=function(){return(_m=a._FlipLeftRight=a.asm.N).apply(null,arguments)},Fm=a._Floor=function(){return(Fm=a._Floor=a.asm.O).apply(null,arguments)},$m=a._FloorDiv=function(){return($m=a._FloorDiv=a.asm.P).apply(null,arguments)},We=a._FusedBatchNorm=function(){return(We=a._FusedBatchNorm=a.asm.Q).apply(null,arguments)},Om=a._FusedConv2D=function(){return(Om=a._FusedConv2D=a.asm.R).apply(null,arguments)},Pm=a._FusedDepthwiseConv2D=function(){return(Pm=a._FusedDepthwiseConv2D=a.asm.S).apply(null,arguments)},Mm=a._Gather=function(){return(Mm=a._Gather=a.asm.T).apply(null,arguments)},zm=a._GatherNd=function(){return(zm=a._GatherNd=a.asm.U).apply(null,arguments)},Lm=a._Greater=function(){return(Lm=a._Greater=a.asm.V).apply(null,arguments)},Bm=a._GreaterEqual=function(){return(Bm=a._GreaterEqual=a.asm.W).apply(null,arguments)},sc=a._LeakyRelu=function(){return(sc=a._LeakyRelu=a.asm.X).apply(null,arguments)},xp=a._Less=function(){return(xp=a._Less=a.asm.Y).apply(null,arguments)},bp=a._LessEqual=function(){return(bp=a._LessEqual=a.asm.Z).apply(null,arguments)},Wm=a._Log=function(){return(Wm=a._Log=a.asm._).apply(null,arguments)},Vm=a._LogicalAnd=function(){return(Vm=a._LogicalAnd=a.asm.$).apply(null,arguments)},Um=a._Max=function(){return(Um=a._Max=a.asm.aa).apply(null,arguments)},Gm=a._MaxPool=function(){return(Gm=a._MaxPool=a.asm.ba).apply(null,arguments)},Hm=a._Maximum=function(){return(Hm=a._Maximum=a.asm.ca).apply(null,arguments)},jm=a._Mean=function(){return(jm=a._Mean=a.asm.da).apply(null,arguments)},qm=a._Min=function(){return(qm=a._Min=a.asm.ea).apply(null,arguments)},lt=a._Minimum=function(){return(lt=a._Minimum=a.asm.fa).apply(null,arguments)},Xm=a._MirrorPad=function(){return(Xm=a._MirrorPad=a.asm.ga).apply(null,arguments)},Km=a._Multiply=function(){return(Km=a._Multiply=a.asm.ha).apply(null,arguments)},Zm=a._Neg=function(){return(Zm=a._Neg=a.asm.ia).apply(null,arguments)},Bi=a._NonMaxSuppressionV3=function(){return(Bi=a._NonMaxSuppressionV3=a.asm.ja).apply(null,arguments)},vp=a._NonMaxSuppressionV4=function(){return(vp=a._NonMaxSuppressionV4=a.asm.ka).apply(null,arguments)},wp=a._NonMaxSuppressionV5=function(){return(wp=a._NonMaxSuppressionV5=a.asm.la).apply(null,arguments)},kp=a._NotEqual=function(){return(kp=a._NotEqual=a.asm.ma).apply(null,arguments)},Ym=a._OneHot=function(){return(Ym=a._OneHot=a.asm.na).apply(null,arguments)},Jm=a._PadV2=function(){return(Jm=a._PadV2=a.asm.oa).apply(null,arguments)},Ip=a._Pow=function(){return(Ip=a._Pow=a.asm.pa).apply(null,arguments)},Qm=a._Prelu=function(){return(Qm=a._Prelu=a.asm.qa).apply(null,arguments)},eg=a._Prod=function(){return(eg=a._Prod=a.asm.ra).apply(null,arguments)},tg=a._RealDiv=function(){return(tg=a._RealDiv=a.asm.sa).apply(null,arguments)},ng=a._Relu=function(){return(ng=a._Relu=a.asm.ta).apply(null,arguments)},sg=a._Relu6=function(){return(sg=a._Relu6=a.asm.ua).apply(null,arguments)},Sp=a._ResizeBilinear=function(){return(Sp=a._ResizeBilinear=a.asm.va).apply(null,arguments)},ea=a._Reverse=function(){return(ea=a._Reverse=a.asm.wa).apply(null,arguments)},rg=a._RotateWithOffset=function(){return(rg=a._RotateWithOffset=a.asm.xa).apply(null,arguments)},ag=a._Round=function(){return(ag=a._Round=a.asm.ya).apply(null,arguments)},w5=a._Rsqrt=function(){return(w5=a._Rsqrt=a.asm.za).apply(null,arguments)},Cp=a._ScatterNd=function(){return(Cp=a._ScatterNd=a.asm.Aa).apply(null,arguments)},og=a._SelectV2=function(){return(og=a._SelectV2=a.asm.Ba).apply(null,arguments)},ig=a._Sigmoid=function(){return(ig=a._Sigmoid=a.asm.Ca).apply(null,arguments)},lg=a._Sin=function(){return(lg=a._Sin=a.asm.Da).apply(null,arguments)},ug=a._Softmax=function(){return(ug=a._Softmax=a.asm.Ea).apply(null,arguments)},cg=a._Sqrt=function(){return(cg=a._Sqrt=a.asm.Fa).apply(null,arguments)},dg=a._Square=function(){return(dg=a._Square=a.asm.Ga).apply(null,arguments)},pg=a._SquaredDifference=function(){return(pg=a._SquaredDifference=a.asm.Ha).apply(null,arguments)},hg=a._Step=function(){return(hg=a._Step=a.asm.Ia).apply(null,arguments)},fg=a._StridedSlice=function(){return(fg=a._StridedSlice=a.asm.Ja).apply(null,arguments)},mg=a._Sub=function(){return(mg=a._Sub=a.asm.Ka).apply(null,arguments)},gg=a._Sum=function(){return(gg=a._Sum=a.asm.La).apply(null,arguments)},Ag=a._Tan=function(){return(Ag=a._Tan=a.asm.Ma).apply(null,arguments)},yg=a._Tanh=function(){return(yg=a._Tanh=a.asm.Na).apply(null,arguments)},xg=a._Tile=function(){return(xg=a._Tile=a.asm.Oa).apply(null,arguments)},bg=a._TopK=function(){return(bg=a._TopK=a.asm.Pa).apply(null,arguments)},vg=a._Transform=function(){return(vg=a._Transform=a.asm.Qa).apply(null,arguments)},wg=a._Transpose=function(){return(wg=a._Transpose=a.asm.Ra).apply(null,arguments)},kg=a.__FusedMatMul=function(){return(kg=a.__FusedMatMul=a.asm.Sa).apply(null,arguments)},Ig=a._malloc=function(){return(Ig=a._malloc=a.asm.Ta).apply(null,arguments)},Sg=a._free=function(){return(Sg=a._free=a.asm.Ua).apply(null,arguments)},Tp=a.___errno_location=function(){return(Tp=a.___errno_location=a.asm.Va).apply(null,arguments)},Np=a.stackSave=function(){return(Np=a.stackSave=a.asm.Wa).apply(null,arguments)},Ep=a.stackRestore=function(){return(Ep=a.stackRestore=a.asm.Xa).apply(null,arguments)},rc=a.stackAlloc=function(){return(rc=a.stackAlloc=a.asm.Ya).apply(null,arguments)};a.cwrap=Q;var Wi;function Cg(re){this.name="ExitStatus",this.message="Program terminated with exit("+re+")",this.status=re}pr=function re(){Wi||ac(),Wi||(pr=re)};function ac(re){if(re=re||u,In>0||(En(),In>0))return;function ie(){Wi||(Wi=!0,a.calledRun=!0,!M&&(ss(),_s(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),xs()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=ac,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return ac(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),vT=1e-7,wT=1e-4,Op=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},mc=class{refCount(e){return $s("refCount")}incRef(e){return $s("incRef")}timerAvailable(){return!0}time(e){return $s("time")}read(e){return $s("read")}readSync(e){return $s("readSync")}numDataIds(){return $s("numDataIds")}disposeData(e,t){return $s("disposeData")}write(e,t,n){return $s("write")}move(e,t,n,s,r){return $s("move")}memory(){return $s("memory")}floatPrecision(){return $s("floatPrecision")}epsilon(){return this.floatPrecision()===32?vT:wT}dispose(){return $s("dispose")}};function $s(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function W5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Pp(e,t,n)}function kT(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Pp(e,n,s),Pp(t,n,s)}function gc(e,t,n){return Math.max(e,Math.min(t,n))}function IT(e){return e%2==0?e:e+1}function Pp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function ST(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function CT(e,t){let n=Math.random();return t*n+(1-n)*e}function TT(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Dn(e,t,n=""){O($r(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ka(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Za(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Cn(e)&&!n)for(let s=0;s<e.length;++s)Za(e[s],t,n);else t.push(e);return t}function zt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function NT(e){return e.length===0}function $r(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function un(e){return e%1==0}function ET(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function RT(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function DT(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return W5(t),t}function Ac(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function _T(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function FT(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Os(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>un(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function V5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Os(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function U5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function G5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function H5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function j5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function $T(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function _g(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function q5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function oa(e){return typeof e=="string"||e instanceof String}function X5(e){return typeof e=="boolean"}function K5(e){return typeof e=="number"}function Mp(e){return Array.isArray(e)?Mp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":K5(e)?"float32":oa(e)?"string":X5(e)?"bool":"float32"}function ia(e){return!!(e&&e.constructor&&e.call&&e.apply)}function zp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Xi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function Z5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=Z5(e+l*i,o,n,s)}return r}function Ki(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Z5(0,e,t,n)}function Fg(e,t){let n=Lp(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Lp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function OT(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Ki(e,new Float32Array(n));if(t==="int32")return Ki(e,new Int32Array(n));if(t==="bool")return Ki(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function $g(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function PT(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function MT(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Og(e){return e&&e.then&&typeof e.then=="function"}function hr(...e){ne().getBool("IS_TEST")||ne().getBool("PROD")||console.warn(...e)}function zT(...e){ne().getBool("IS_TEST")||ne().getBool("PROD")||console.log(...e)}var Y5="tfjsflags",J5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=LT,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&hr(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];hr(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Og(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Y5 in e&&e[Y5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=WT(s,r)})}};function LT(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(BT(t,s[0],s[1]),s.join("="))),t}function BT(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function WT(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ne(){return fr}var fr=null;function VT(e){fr=e}var Pg;function Q5(){if(Pg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Pg=e}return Pg}function UT(){let e=Q5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Mg(e,t){let n=UT();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Zi="Abs",Yi="Acos",Ji="Acosh",la="Add",Ya="AddN",Qi="All",el="Any",Ja="ArgMax",yc="ArgMin",tl="Asin",nl="Asinh",sl="Atan",rl="Atanh",al="Atan2",Qa="AvgPool",Bp="AvgPoolGrad",xc="AvgPool3D",Wp="AvgPool3DGrad",eo="BatchMatMul",ol="BatchToSpaceND",Vp="Bincount",eb="BroadcastTo",Up="BroadcastArgs",to="Cast",no="Ceil",ua="ClipByValue",Gp="Complex",bc="ComplexAbs",il="Concat",so="Conv2D",Hp="Conv2DBackpropFilter",ro="Conv2DBackpropInput",vc="Conv3D",jp="Conv3DBackpropFilterV2",qp="Conv3DBackpropInputV2",ao="Cos",oo="Cosh",io="Cumsum",ll="CropAndResize",Xp="DenseBincount",ul="DepthToSpace",lo="DepthwiseConv2dNative",Kp="DepthwiseConv2dNativeBackpropFilter",Zp="DepthwiseConv2dNativeBackpropInput",Yp="Diag",wc="Dilation2D",Jp="Dilation2DBackpropInput",Qp="Dilation2DBackpropFilter",uo="RealDiv",eh="Einsum",co="Elu",th="EluGrad",cl="Erf",dl="Equal",po="Exp",pl="ExpandDims",hl="Expm1",nh="FFT",kc="Fill",fl="FlipLeftRight",ho="Floor",fo="FloorDiv",mo="FusedBatchNorm",ml="GatherV2",gl="GatherNd",Al="Greater",go="GreaterEqual",Ao="Identity",sh="IFFT",rh="Imag",yl="IsFinite",xl="IsInf",bl="IsNan",yo="LeakyRelu",vl="Less",wl="LessEqual",ah="LinSpace",xo="Log",kl="Log1p",Il="LogicalAnd",Ic="LogicalNot",Sc="LogicalOr",tb="LogSoftmax",Cc="LRN",oh="LRNGrad",bo="Max",vo="Maximum",wo="MaxPool",ih="MaxPoolGrad",Tc="MaxPool3D",lh="MaxPool3DGrad",uh="MaxPoolWithArgmax",ko="Mean",Io="Min",So="Minimum",Co="MirrorPad",Sl="Mod",ch="Multinomial",To="Multiply",Cl="Neg",Tl="NotEqual",Nl="NonMaxSuppressionV3",El="NonMaxSuppressionV4",Rl="NonMaxSuppressionV5",Dl="OnesLike",No="OneHot",_l="Pack",Eo="PadV2",GT="Pool",Ro="Pow",Do="Prelu",Fl="Prod",Nc="Range",dh="Real",$l="Reciprocal",_o="Relu",Ol="Reshape",Ec="ResizeNearestNeighbor",ph="ResizeNearestNeighborGrad",Fo="ResizeBilinear",hh="ResizeBilinearGrad",$o="Relu6",Oo="Reverse",Po="Round",Mo="Rsqrt",Pl="ScatterNd",Ml="Select",zl="Selu",Ll="Slice",zo="Sin",Bl="Sinh",Wl="Sign",Lo="Sigmoid",Vl="Softplus",Bo="Sqrt",Wo="Sum",Ul="SpaceToBatchND",Gl="SplitV",Vo="Softmax",fh="SparseFillEmptyRows",mh="SparseReshape",gh="SparseSegmentMean",Ah="SparseSegmentSum",yh="SparseToDense",Uo="SquaredDifference",Rc="Square",Hl="StridedSlice",xh="StringNGrams",bh="StringSplit",vh="StringToHashBucketFast",Go="Sub",Ho="Tan",jo="Tanh",ca="Tile",jl="TopK",ql="Transform",qo="Transpose",wh="Unique",Xl="Unpack",Dc="UnsortedSegmentSum",Kl="ZerosLike",da="Step",kh="FromPixels",Zl="RotateWithOffset",Xo="_FusedMatMul",Ko="FusedConv2D",Zo="FusedDepthwiseConv2D",Yl=Mg("kernelRegistry",()=>new Map),_c=Mg("gradRegistry",()=>new Map);function Ih(e,t){let n=Lg(e,t);return Yl.get(n)}function zg(e){return _c.get(e)}function Or(e){let t=Yl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function pa(e){let{kernelName:t,backendName:n}=e,s=Lg(t,n);Yl.has(s)&&hr(`The kernel '${t}' for backend '${n}' is already registered`),Yl.set(s,e)}function nb(e){let{kernelName:t}=e;_c.has(t)&&ne().getBool("DEBUG")&&hr(`Overriding the gradient for '${t}'`),_c.set(t,e)}function HT(e,t){let n=Lg(e,t);if(!Yl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Yl.delete(n)}function jT(e){if(!_c.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);_c.delete(e)}function qT(e,t){Or(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});pa(r)})}function Lg(e,t){return`${t}_${e}`}var w={};ze(w,{arraysEqual:()=>$r,assert:()=>O,assertNonNegativeIntegerDimensions:()=>$g,assertNonNull:()=>Ka,assertShapesMatch:()=>Dn,bytesFromStringArray:()=>q5,bytesPerElement:()=>_g,checkConversionForErrors:()=>H5,clamp:()=>gc,computeStrides:()=>Xi,createScalarValue:()=>QT,createShuffledIndices:()=>DT,decodeString:()=>Th,distSquared:()=>TT,encodeString:()=>Oc,fetch:()=>t9,fingerPrint64:()=>JT,flatten:()=>Za,getArrayFromDType:()=>G5,getTypedArrayFromDType:()=>U5,hasEncodingLoss:()=>$T,hexToLong:()=>Fc,indexToLoc:()=>MT,inferDtype:()=>Mp,inferFromImplicitShape:()=>FT,isBoolean:()=>X5,isFunction:()=>ia,isInt:()=>un,isNumber:()=>K5,isPromise:()=>Og,isScalarShape:()=>NT,isString:()=>oa,isTypedArray:()=>Cn,isValidDtype:()=>j5,locToIndex:()=>PT,makeOnesTypedArray:()=>Fg,makeZerosNestedTypedArray:()=>OT,makeZerosTypedArray:()=>Lp,nearestDivisor:()=>zp,nearestLargerEven:()=>IT,now:()=>$c,parseAxisParam:()=>Os,randUniform:()=>CT,repeatedTry:()=>_T,rightPad:()=>Ac,shuffle:()=>W5,shuffleCombo:()=>kT,sizeFromShape:()=>zt,sizeToSquarishShape:()=>RT,squeezeShape:()=>V5,sum:()=>ST,swap:()=>Pp,tanh:()=>ET,toNestedArray:()=>Ki,toTypedArray:()=>Ch});var sb=Xa(tT()),Yo=sb.default||sb;function Fc(e){return Yo.fromString(e,!0,16)}var rb=Fc("c3a5c85c97cb3127"),Jo=Fc("b492b66fbe98f273"),_n=Fc("9ae16a3b2f90404f");function Bg(e){return e.xor(e.shru(47))}function ab(e,t,n){let s=e.slice(t,t+n);return Yo.fromBytes(Array.from(s),!0,!0)}function xt(e,t){return ab(e,t,8)}function ob(e,t){return ab(e,t,4)}function cn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ha(e,t,n=Fc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function XT(e,t,n,s,r,a){r=r.add(e),a=cn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(cn(r,44)),[r.add(s),a.add(o)]}function Sh(e,t,n,s){return XT(xt(e,t),xt(e,t+8),xt(e,t+16),xt(e,t+24),n,s)}function KT(e,t=e.length){if(t>=8){let n=_n.add(t*2),s=xt(e,0).add(_n),r=xt(e,t-8),a=cn(r,37).mul(n).add(s),o=cn(s,25).add(r).mul(n);return ha(a,o,n)}if(t>=4){let n=_n.add(t*2),s=ob(e,0);return ha(s.shl(3).add(t),ob(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Bg(_n.mul(a).xor(rb.mul(o))).mul(_n)}return _n}function ZT(e,t=e.length){let n=_n.add(t*2),s=xt(e,0).mul(Jo),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(_n);return ha(cn(s.add(r),43).add(cn(a,30)).add(o),s.add(cn(r.add(_n),18)).add(a),n)}function YT(e,t=e.length){let n=_n.add(t*2),s=xt(e,0).mul(_n),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(_n),i=cn(s.add(r),43).add(cn(a,30)).add(o),l=ha(i,s.add(cn(r.add(_n),18)).add(a),n),c=xt(e,16).mul(n),u=xt(e,24),d=i.add(xt(e,t-32)).mul(n),p=l.add(xt(e,t-24)).mul(n);return ha(cn(c.add(u),43).add(cn(d,30)).add(p),c.add(cn(u.add(s),18)).add(d),n)}function JT(e,t=e.length){let n=Yo.fromNumber(81,!0);if(t<=32)return t<=16?KT(e,t):ZT(e,t);if(t<=64)return YT(e,t);let s=n,r=n.mul(Jo).add(113),a=Bg(r.mul(_n).add(113)).mul(_n),o=[Yo.UZERO,Yo.UZERO],i=[Yo.UZERO,Yo.UZERO];s=s.mul(_n).add(xt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=cn(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(Jo),r=cn(r.add(o[1]).add(xt(e,l+48)),42).mul(Jo),s=s.xor(i[1]),r=r.add(o[0]).add(xt(e,l+40)),a=cn(a.add(i[0]),33).mul(Jo),o=Sh(e,l,o[1].mul(Jo),s.add(i[0])),i=Sh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Jo.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=cn(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(d),r=cn(r.add(o[1]).add(xt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(xt(e,l+40))),a=cn(a.add(i[0]),33).mul(d),o=Sh(e,l,o[1].mul(d),s.add(i[0])),i=Sh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],ha(ha(o[0],i[0],d).add(Bg(r).mul(rb)).add(a),ha(o[1],i[1],d).add(s),d)}function QT(e,t){return t==="string"?Oc(e):Ch([e],t)}function e9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ch(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Za(e)),ne().getBool("DEBUG")&&H5(e,t),e9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function $c(){return ne().platform.now()}function t9(e,t){return ne().platform.fetch(e,t)}function Oc(e,t="utf-8"){return t=t||"utf-8",ne().platform.encode(e,t)}function Th(e,t="utf-8"){return t=t||"utf-8",ne().platform.decode(e,t)}var n9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new r9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=$c();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:$c()-o})}if(ne().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{s9(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function s9(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var r9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Ac(`${s}ms`,9):s.error,i=Ac(e,25),l=t.rank,c=t.size,u=Ac(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function a9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function o9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!$r(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var ib=20,Pc=3,Wg=7;function i9(e,t,n,s){let r=Xi(t),a=l9(e,t,n,r),o=t.length,i=Nh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function l9(e,t,n,s){let r=zt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?zc(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Mc(l[u+d],0,n).length)}return o}function Mc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Wg))} + ${parseFloat(e[1].toFixed(Wg))}j`:oa(e)?s=`'${e}'`:n==="bool"?s=lb(e):s=parseFloat(e.toFixed(Wg)).toString(),Ac(s,t)}function lb(e){return e===0?"false":"true"}function Nh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=zc(e);return[Mc(m[0],0,n)]}return n==="bool"?[lb(e[0])]:[e[0].toString()]}if(l===1){if(i>ib){let g=Pc*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-Pc)*o,i*o));return n==="complex64"&&(A=zc(A),y=zc(y)),["["+A.map((x,b)=>Mc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>Mc(x,r[i-Pc+b],n)).join(", ")+"]"]}let m=n==="complex64"?zc(e):Array.from(e);return["["+m.map((g,A)=>Mc(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>ib){for(let m=0;m<Pc;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-Pc;m<i;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function zc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=zt(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||G5(t,this.size),this.strides=Xi(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return mr().makeTensor(this.values,this.shape,this.dtype)}},mr=null,Jl=null,u9=null;function c9(e){mr=e}function d9(e){Jl=e}function p9(e){u9=e}var Ge=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=zt(e),this.strides=Xi(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Jl.buffer(this.shape,this.dtype,e)}bufferSync(){return Jl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Ki(this.shape,e,this.dtype==="complex64")}arraySync(){return Ki(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=mr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Th(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=mr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Th(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await mr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(mr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jl.print(this,e)}clone(){return this.throwIfDisposed(),Jl.clone(this)}toString(e=!1){let t=this.dataSync();return i9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),mr().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ae(){return Mg("Tensor",()=>Ge)}ae();var Lc=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!$r(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);mr().disposeTensor(this),this.dataId=e.dataId,mr().incRef(this,null)}dispose(){mr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Lc,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var Xs={};ze(Xs,{assertTypesMatch:()=>ub,getTensorsInContainer:()=>qg,isTensorInList:()=>f9,makeTypesMatch:()=>_t});var Vg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Vg||(Vg={}));var Ug;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Ug||(Ug={}));var Gg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Gg||(Gg={}));var Hg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Hg||(Hg={}));var jg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(jg||(jg={}));var h9={float32:Hg,int32:Ug,bool:Gg,complex64:jg};function Ps(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return h9[e][t]}function Eh(e){return Ps(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ps(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function ub(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function f9(e,t){return t.some(n=>n.id===e.id)}function qg(e){let t=[],n=new Set;return cb(e,t,n),t}function cb(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!m9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),cb(a,t,n))}}function m9(e){return Array.isArray(e)||typeof e=="object"}function Xg(e){return e.kernelName!=null}var db=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Bc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new db}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(hr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new n9(this.backendInstance),!0}setupRegisteredKernels(){Or(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Or(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof mc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,hr(`Initialization of backend ${e} failed`),hr(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return hr(`Initialization of backend ${e} failed`),hr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Bc.nextTensorId++}nextVariableId(){return Bc.nextVariableId++}clone(e){let t=W.runKernel(Ao,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel(to,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Ih(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Xg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Xg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Ih(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:C}=b;return this.makeTensorFromDataId(v,k,C)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=Xg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=zg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&oa(e[0])&&(r=e.map(i=>Oc(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=q5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Lc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*_g(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Lc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*_g(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=zg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=Lp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=qg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=a9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?g9(r.shape):n,o9(o,a,l=>this.tidy(l),A9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(ia(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(ia(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];O(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(c.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=$c(),n=await this.backend.time(e);return n.wallMs=$c()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new db;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Bc.nextTensorId=0;Bc.nextVariableId=0;function g9(e){let t=Fg(zt(e),"float32");return W.makeTensor(t,e,"float32")}function pb(){let e=Q5();if(e._tfengine==null){let t=new J5(e);e._tfengine=new Bc(t)}return VT(e._tfengine.ENV),c9(()=>e._tfengine),e._tfengine}var W=pb();function A9(e,t){let n={a:e,b:t};return W.runKernel(la,n)}var Wc={};ze(Wc,{isBrowser:()=>hb,isMobile:()=>b9,mockIsMobile:()=>x9});function y9(){return typeof navigator!="undefined"&&navigator!=null}var Kg;function x9(e){Kg=e}function b9(e){if(Kg!==void 0)return Kg;if(e||y9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function hb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ks=ne();Ks.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ks.registerFlag("IS_BROWSER",()=>hb());Ks.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ks.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ks.registerFlag("PROD",()=>!1);Ks.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ks.getBool("DEBUG"));Ks.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ks.registerFlag("IS_TEST",()=>!1);Ks.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ks.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function gr(e,t){let n=e;if(Cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Cn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&ne().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&fb(e,s,[]),s}function fb(e,t,n){if(n=n||[],!Array.isArray(e)&&!Cn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)fb(e[r],s,n.concat(r))}function mb(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof Ge)return mb(s,e.dtype,t,n),e;let r=Mp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),mb(s,r,t,n),e==null||!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=gr(e,r);!Cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ch(e,r):Za(e,[],!0);return W.makeTensor(i,a,r)}function Vc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var gb="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+gb;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return Og(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function v9(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");Dn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(Gp,r)}var fa=V({complex_:v9});function ma(e,t,n,s){if(s==null&&(s=Mp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){$g(t);let r=zt(t),a=zt(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==zt(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Ch(e,s):Za(e,[],!0),W.makeTensor(e,t,s)}function Lt(e,t,n){let s=gr(e,n);return ma(e,t,s,n)}var Zg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Rh=4;async function w9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Rh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=Rh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:k9(a),specs:n}}function Ab(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=zt(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Zg[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=E9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=zt(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Rh))[0];r+=Rh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=Zg[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Lt(h,l,"float32"),g=Lt(f,l,"float32");n[o]=fa(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Lt(u,l,i))}return n}function k9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Yg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function yb(e){return Yg?Buffer.byteLength(e):new Blob([e]).size}function I9(e){if(Yg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function S9(e){if(Yg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Jg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function xb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function bb(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Qg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Uc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:yb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:yb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function C9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function T9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function N9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function E9(){let e=C9(),t=T9(),n=N9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Mt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Mt.instance==null&&(Mt.instance=new Mt),Mt.instance}static registerSaveRouter(e){Mt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Mt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Mt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Mt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Mt.getInstance().loadRouters:Mt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},R9=e=>Mt.registerSaveRouter(e),D9=e=>Mt.registerLoadRouter(e),_9=e=>Mt.getSaveHandlers(e),F9=(e,t)=>Mt.getLoadHandlers(e,t),eA="tensorflowjs",tA=1,Qo="models_store",ga="model_info_store";function vb(){if(!ne().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function nA(e){let t=e.result;t.createObjectStore(Qo,{keyPath:"modelPath"}),t.createObjectStore(ga,{keyPath:"modelPath"})}var ei=class{constructor(e){if(this.indexedDB=vb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(eA,tA);r.onupgradeneeded=()=>nA(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Qo,"readonly"),l=o.objectStore(Qo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Uc(t),i=a.transaction(ga,"readwrite"),l=i.objectStore(ga),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Qo,"readwrite");let p=u.objectStore(Qo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(ga);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ei.URL_SCHEME="indexeddb://";var wb=e=>ne().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ei.URL_SCHEME)?$9(e.slice(ei.URL_SCHEME.length)):null;Mt.registerSaveRouter(wb);Mt.registerLoadRouter(wb);function $9(e){return new ei(e)}function O9(e){return e.startsWith(ei.URL_SCHEME)?e.slice(ei.URL_SCHEME.length):e}var P9=class{constructor(){this.indexedDB=vb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(eA,tA);n.onupgradeneeded=()=>nA(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ga,"readonly"),o=r.objectStore(ga).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=O9(e),new Promise((t,n)=>{let s=this.indexedDB.open(eA,tA);s.onupgradeneeded=()=>nA(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ga,"readwrite"),o=a.objectStore(ga),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Qo,"readwrite");let p=l.objectStore(Qo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Pr="/",Ql="tensorflowjs_models",kb="info",M9="model_topology",z9="weight_specs",L9="weight_data",B9="model_metadata";function Ib(e){return{info:[Ql,e,kb].join(Pr),topology:[Ql,e,M9].join(Pr),weightSpecs:[Ql,e,z9].join(Pr),weightData:[Ql,e,L9].join(Pr),modelMetadata:[Ql,e,B9].join(Pr)}}function Sb(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function W9(e){let t=e.split(Pr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Pr)}function V9(e){return e.startsWith(ti.URL_SCHEME)?e.slice(ti.URL_SCHEME.length):e}var ti=class{constructor(e){if(!ne().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ib(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Uc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,I9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Sb(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=S9(a),t}};ti.URL_SCHEME="localstorage://";var Cb=e=>ne().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ti.URL_SCHEME)?U9(e.slice(ti.URL_SCHEME.length)):null;Mt.registerSaveRouter(Cb);Mt.registerLoadRouter(Cb);function U9(e){return new ti(e)}var G9=class{constructor(){O(ne().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ql+Pr,n=Pr+kb;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=W9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=V9(e);let t=Ib(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Sb(t),n}},eu="://",bs=class{constructor(){this.managers={}}static getInstance(){return bs.instance==null&&(bs.instance=new bs),bs.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(eu)&&(e=e.slice(0,e.indexOf(eu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=bs.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Dh(e){if(e.indexOf(eu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${bs.getSchemes().join(",")}`);return{scheme:e.split(eu)[0],path:e.split(eu)[1]}}async function Tb(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Mt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Mt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Dh(e).scheme,l=Dh(e).path,c=i===Dh(e).scheme,u=await r.load();n&&c&&await bs.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await bs.getManager(i).removeModel(l),d.modelArtifactsInfo}async function H9(){let e=bs.getSchemes(),t={};for(let n of e){let s=await bs.getManager(n).listModels();for(let r in s){let a=n+eu+r;t[a]=s[r]}}return t}async function j9(e){let t=Dh(e);return bs.getManager(t.scheme).removeModel(t.path)}async function q9(e,t){return Tb(e,t,!1)}async function X9(e,t){return Tb(e,t,!0)}var K9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ne().get("IS_BROWSER")){ne().setPlatform("browser",new K9);try{bs.registerManager(ti.URL_SCHEME,new G9)}catch(e){}try{bs.registerManager(ei.URL_SCHEME,new P9)}catch(e){}}var Z9={importFetch:()=>nT()},sA,Y9=class{constructor(){this.util=qi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ne().global.fetch!=null?ne().global.fetch(e,t):(sA==null&&(sA=Z9.importFetch()),sA(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ne().get("IS_NODE")&&ne().setPlatform("node",new Y9);function He(e,t="float32",n){return t=t||"float32",$g(e),new Jt(e,t,n)}function J9(e,t){let n=$(e,"x","cast");if(!j5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel(to,s,r)}var de=V({cast_:J9});function Q9(e){let n={x:$(e,"x","clone","string_or_numeric")};return W.runKernel(Ao,n)}var Zs=V({clone_:Q9});function Nb(e,t=!1){console.log(e.toString(t))}pb();var eN={buffer:He,cast:de,clone:Zs,print:Nb};d9(eN);var Xn={};ze(Xn,{browserFiles:()=>iN,browserHTTPRequest:()=>pN,concatenateArrayBuffers:()=>Jg,copyModel:()=>q9,decodeWeights:()=>Ab,encodeWeights:()=>w9,fromMemory:()=>fN,getLoadHandlers:()=>F9,getModelArtifactsForJSON:()=>Qg,getModelArtifactsInfoForJSON:()=>Uc,getSaveHandlers:()=>_9,http:()=>oA,isHTTPScheme:()=>aA,listModels:()=>H9,loadWeights:()=>lN,moveModel:()=>X9,registerLoadRouter:()=>D9,registerSaveRouter:()=>R9,removeModel:()=>j9,weightsLoaderFactory:()=>_b,withSaveHandler:()=>mN});var tN="model",nN=".json",sN=".weights.bin";function Eb(e){return new Promise(t=>setTimeout(t)).then(e)}var tu=class{constructor(e){if(!ne().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(tu.URL_SCHEME)&&(e=e.slice(tu.URL_SCHEME.length)),(e==null||e.length===0)&&(e=tN),this.modelJsonFileName=e+nN,this.weightDataFileName=e+sN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=bb(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Eb(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Eb(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Uc(e)}}}};tu.URL_SCHEME="downloads://";var rN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Qg(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Jg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>xb(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=xb(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},aN=e=>ne().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tu.URL_SCHEME)?oN(e.slice(tu.URL_SCHEME.length)):null;Mt.registerSaveRouter(aN);function oN(e="model"){return new tu(e)}function iN(e){return new rN(e)}function Rb(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),O(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function Db(e,t){t==null&&(t={});let n=t.fetchFunc==null?ne().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Rb(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await Rb(i,t.onProgress,l,c)}async function lN(e,t="",n,s){return _b(o=>Db(o,{requestInit:s}))(e,t,n)}function _b(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=Zg[A]*zt(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(u[p+b]);A.set(v,y),y+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=Ab(v,[b.manifestEntry]);for(let C in k)d[C]=k[C]}),p+=f}),d}}var uN="application/octet-stream",cN="application/json",rA=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ne().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=bb(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:cN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:uN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Uc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Qg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=dN(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await Db(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Jg(l)]}};rA.URL_SCHEME_REGEX=/^https?:\/\//;function dN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function aA(e){return e.match(rA.URL_SCHEME_REGEX)!=null}var Fb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>aA(s)):n=aA(e),n)return oA(e,t)}return null};Mt.registerSaveRouter(Fb);Mt.registerLoadRouter(Fb);function oA(e,t){return new rA(e,t)}function pN(e,t){return oA(e,t)}var iA=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},hN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function fN(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new iA(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new iA({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new iA({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function mN(e){return new hN(e)}var $b={};ze($b,{confusionMatrix:()=>bN});function gN(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=_t(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(eo,o,i)}var Ve=V({matMul_:gN});function AN(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(No,a,o)}var nu=V({oneHot_:AN});function yN(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return W.runKernel(qo,s,r)}var Ke=V({transpose_:yN});function xN(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=nu(de(s,"int32"),n),o=nu(de(r,"int32"),n),i=Ke(a),l=Ve(i,o);return de(l,"int32")}var bN=V({confusionMatrix_:xN}),Ms={};ze(Ms,{fromPixels:()=>TN,fromPixelsAsync:()=>SN,toPixels:()=>CN});function Ob(e,t,n){if(Ka(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=gr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ma(e,t,s,n)}var su;function Pb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Ih(kh,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(kh,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,c,u).data:s||n?d=e.data:(a||r||i)&&(su==null&&(su=document.createElement("canvas").getContext("2d")),su.canvas.width=c,su.canvas.height=u,su.drawImage(e,0,0,c,u),d=su.getImageData(0,0,c,u).data);let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Ob(p,[u,c,t],"int32")}function vN(e){return e!=null&&e.data instanceof Uint8Array}function wN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function kN(e){return e!=null&&e.width!==0&&e.height!==0}function IN(e){return wN()&&!(e instanceof ImageBitmap)&&kN(e)&&!vN(e)}async function SN(e,t=3){let n=null;if(ne().getBool("WRAP_TO_IMAGEBITMAP")&&IN(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Pb(n,t)}async function CN(e,t){let n=$(e,"img","toPixels");if(!(e instanceof Ge)){let c=n;n=de(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var TN=V({fromPixels_:Pb}),lA={};ze(lA,{prepareAndValidate:()=>Mb});function Mb(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(zt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...Xi(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var uA={};ze(uA,{calculateShapes:()=>zb,validateInput:()=>dA,validateUpdateShape:()=>cA});function cA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function dA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}cA(n,t,e)}function zb(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=zt(t.shape)/i,c=[...Xi(n.slice(0,r)),1],u=zt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Fn={};ze(Fn,{assertParamsValid:()=>NN,computeFlatOffset:()=>RN,computeOutShape:()=>Lb,getNormalizedAxes:()=>Ub,isSliceContinous:()=>EN,maskToAxes:()=>_h,parseSliceParams:()=>Kb,sliceInfo:()=>DN,startForAxis:()=>qb,startIndicesWithElidedDims:()=>Gb,stopForAxis:()=>Xb,stopIndicesWithElidedDims:()=>Hb,stridesForAxis:()=>jb,stridesWithElidedDims:()=>Bb});function NN(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function _h(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Lb(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function Bb(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function Wb(e,t,n){return n<=e?n:n-(t-1)}function Vb(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function Ub(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=Gb(o,h,f,s,e),d=Hb(i,h,f,r,e),p=Bb(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=qb(o,s,a,e,h,l),d[h]=Xb(i,r,a,e,h,l),p[h]=jb(a,h,l);return{begin:u,end:d,strides:p}}function Gb(e,t,n,s,r){let a=[...r],o=Vb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=Wb(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function Hb(e,t,n,s,r){let a=[...r],o=Vb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=Wb(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=gc(0,a[i],r[i])}return a}function jb(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function qb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=gc(0,o,l-1),o}function Xb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=gc(0,o,l):o=gc(-1,o,l-1),o}function EN(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function RN(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Kb(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function DN(e,t,n,s,r,a,o,i,l){let c=t.slice(),u=n.slice(),d=s;s==null&&(d=new Array(c.length));let p=_h(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,f=_h(i),m=e.slice();f.forEach(C=>{c[C]=0,u[C]=1,m.splice(C,0,1)});let{begin:g,end:A,strides:y}=Ub(m,p,h,c,u,d,r,a,o);c=g,u=A,d=y;let x=_h(l);x.forEach(C=>{u[C]=c[C]+1,d[C]=1});let b=Lb(c,u,d),v=b.filter((C,N)=>x.indexOf(N)===-1);return{nonStrided:d.every(C=>C===1),$begin:c,$end:u,$strides:d,size:b,newShape:m,outShape:v}}var ue={};ze(ue,{Serializable:()=>Zb,SerializationMap:()=>ni,registerClass:()=>Aa});var Zb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ni=class{constructor(){this.classNameMap={}}static getMap(){return ni.instance==null&&(ni.instance=new ni),ni.instance}static register(e){ni.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Aa(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ni.register(e)}var Yb={};ze(Yb,{TEST_EPSILON_FLOAT16:()=>Jb,encodeStrings:()=>Qb,expectArrayBuffersEqual:()=>zN,expectArraysClose:()=>FN,expectArraysEqual:()=>ON,expectNumbersClose:()=>PN,expectPromiseToFail:()=>$N,expectValuesInRange:()=>MN,testEpsilon:()=>pA});var _N=.001,Jb=.1;function FN(e,t,n){return n==null&&(n=pA()),hA(e,t,(s,r)=>fA(s,r,n))}function pA(){return W.backend.floatPrecision()===32?_N:Jb}function hA(e,t,n){let s=!0;if((Cn(e)||Cn(t))&&(s=!1),Cn(e)&&Cn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=gr(e),i=gr(t);if(!$r(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Cn(e)?e:Za(e),a=Cn(t)?t:Za(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function $N(e,t){e().then(()=>t.fail(),()=>t())}function ON(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return oa(e)||oa(e[0])||oa(t)||oa(t[0])?hA(e,n,(s,r)=>s==r):hA(e,t,(s,r)=>fA(s,r,0))}function PN(e,t,n){if(n==null&&(n=pA()),!fA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function fA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function MN(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function zN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Qb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Qb(n):e[t]=Oc(n)}return e}var Gc="3.10.0";function e3(){ne().set("PROD",!0)}function LN(){ne().set("DEBUG",!0)}function BN(){ne().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function mA(e){ne().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}p9(mA);function WN(){W.disposeVariables()}function as(){return W}function Fh(){return W.memory()}function VN(e){return W.profile(e)}function j(e,t){return W.tidy(e,t)}function Y(e){qg(e).forEach(n=>n.dispose())}function dn(e){return W.keep(e)}function UN(e){return W.time(e)}function t3(e){return W.setBackend(e)}function $h(){return W.ready()}function Ys(){return W.backendName}function GN(e){W.removeBackend(e)}function gA(e){return W.findBackend(e)}function HN(e){return W.findBackendFactory(e)}function ru(e,t,n=1){return W.registerBackend(e,t,n)}function Ar(){return W.backend}function jN(e,t){ne().setPlatform(e,t)}function qN(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(la,r)}var le=V({add_:qN});function XN(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(fo,r)}var Oh=V({floorDiv_:XN});function KN(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=_t(n,s),n.dtype==="int32"&&s.dtype==="int32")return Oh(n,s);let r={a:n,b:s},a={};return W.runKernel(uo,r,a)}var me=V({div_:KN});function ZN(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(To,r)}var B=V({mul_:ZN});function YN(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(bc,n)}else{let n={x:t};return W.runKernel(Zi,n)}}var Gt=V({abs_:YN});function JN(e){let n={x:$(e,"x","acos")};return W.runKernel(Yi,n)}var AA=V({acos_:JN});function QN(e){let n={x:$(e,"x","acosh")};return W.runKernel(Ji,n)}var yA=V({acosh_:QN});function eE(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!$r(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(Ya,s)}var Ph=V({addN_:eE});function tE(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(Qi,r,a)}var Mh=V({all_:tE});function nE(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(el,r,a)}var Hc=V({any_:nE});function sE(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return W.runKernel(Ja,s,r)}var vs=V({argMax_:sE});function rE(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return W.runKernel(yc,s,r)}var xA=V({argMin_:rE});function aE(e){let n={x:$(e,"x","asin")};return W.runKernel(tl,n)}var bA=V({asin_:aE});function oE(e){let n={x:$(e,"x","asinh")};return W.runKernel(nl,n)}var vA=V({asinh_:oE});function iE(e){let n={x:$(e,"x","atan")};return W.runKernel(sl,n)}var wA=V({atan_:iE});function lE(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(al,r)}var kA=V({atan2_:lE});function uE(e){let n={x:$(e,"x","atanh")};return W.runKernel(rl,n)}var IA=V({atanh_:uE});function cE(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=r3(r);return jc(e,i,n,a,s,null,null,l)}function n3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=zh(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return jc(e,c,n,s,r,a,!1,o)}function dE(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=CA(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return s3(e,u,n,s,r,!1,d,a)}function jc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=zh(n),[A,y]=zh(s),x=au(p,A),b=au(h,y),{padInfo:v,outHeight:k,outWidth:C}=fE(r,c,u,m,g,x,b,a,i),N=o?f*d:f,D;return i==="channelsFirst"?D=[l,N,k,C]:i==="channelsLast"&&(D=[l,k,C,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:C,outChannels:N,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:D,filterShape:t}}function s3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,y,x]=CA(n),[b,v,k]=CA(s),C=au(h,b),N=au(f,v),D=au(m,k),{padInfo:P,outDepth:E,outHeight:F,outWidth:T}=mE(r,c,u,d,A,y,x,C,N,D,i),M=a?g*p:g,G;return o==="channelsFirst"?G=[l,M,E,F,T]:o==="channelsLast"&&(G=[l,E,F,T,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:E,outHeight:F,outWidth:T,outChannels:M,padInfo:P,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:N,effectiveFilterWidth:D,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:G,filterShape:t}}function pE(e,t,n,s,r){s==null&&(s=SA(e,t,n));let a=e[0],o=e[1],i=si((a-t+2*s)/n+1,r),l=si((o-t+2*s)/n+1,r);return[i,l]}function hE(e,t,n,s,r,a){r==null&&(r=SA(e,t,s));let o=e[0],i=e[1],l=e[2],c=si((o-t+2*r)/s+1,a),u=si((i-t+2*r)/s+1,a),d=si((l-t+2*r)/s+1,a);return[c,u,d,n]}function SA(e,t,n,s=1){let r=au(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function zh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function CA(e){return typeof e=="number"?[e,e,e]:e}function au(e,t){return t<=1?e:e+(e-1)*(t-1)}function fE(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=pE([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=si((t-a+p+h)/s+1,i),d=si((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function mE(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=hE([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),C=A-k;d={top:b,bottom:v,left:k,right:C,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function si(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ya(e){let[t,n,s]=zh(e);return t===1&&n===1&&s===1}function yr(e,t){return ya(e)||ya(t)}function r3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function gE(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(Ol,s,r)}var U=V({reshape_:gE});function AE(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;O(yr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&O(un(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Qa,c,u);return d=de(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var qc=V({avgPool_:AE});function yE(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(un(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(xc,c,u);return d=de(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var TA=V({avgPool3d_:yE});function xE(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Vc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Zs(n[0]);let s=n,r={axis:t};return W.runKernel(il,s,r)}var gt=V({concat_:xE});function bE(e){let n={x:$(e,"x","sigmoid","float32")};return W.runKernel(Lo,n)}var Kn=V({sigmoid_:bE});function vE(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Ll,r,a)}var Fe=V({slice_:vE});function wE(e){let n={x:$(e,"x","tanh","float32")};return W.runKernel(jo,n)}var ri=V({tanh_:wE});function kE(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),c=$(s,"data","basicLSTMCell"),u=$(r,"c","basicLSTMCell"),d=$(a,"h","basicLSTMCell"),p=gt([c,d],1),h=Ve(p,i),f=le(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=Fe(f,[0,0],A),x=Fe(f,[0,g],A),b=Fe(f,[0,g*2],A),v=Fe(f,[0,g*3],A),k=le(B(Kn(y),ri(x)),B(u,Kn(le(o,b)))),C=B(ri(k),Kn(v));return[k,C]}var IE=V({basicLSTMCell_:kE});function SE(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(ol,a,o)}var Xc=V({batchToSpaceND_:SE});function CE(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function TE(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;s!=null&&(u=$(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:CE(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(mo,p,h);return U(f,o.shape)}var ai=V({batchNorm_:TE});function NE(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var a3=V({batchNorm2d_:NE});function EE(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var o3=V({batchNorm3d_:EE});function RE(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var i3=V({batchNorm4d_:RE});function DE(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(Vp,a,o)}var NA=V({bincount_:DE});function _E(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(Up,r)}var l3=V({broadcastArgs_:_E});function FE(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=U(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Zs(n);let i={x:n},l={reps:a};return W.runKernel(ca,i,l)}var ou=V({broadcastTo_:FE});function $E(e){let n={x:$(e,"x","ceil","float32")};return W.runKernel(no,n)}var EA=V({ceil_:$E});function OE(e,t,n){let s=$(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(ua,r,a)}var Zn=V({clipByValue_:OE});function PE(e){return gt(e,0)}var u3=V({concat1d_:PE});function ME(e,t){return gt(e,t)}var iu=V({concat2d_:ME});function zE(e,t){return gt(e,t)}var c3=V({concat3d_:zE});function LE(e,t){return gt(e,t)}var d3=V({concat4d_:LE});function BE(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&O(un(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];O(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),O(yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(so,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mr=V({conv2d_:BE});function WE(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1]])),O(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&O(un(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(yr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Mr(p,d,[1,n],s,"NHWC",[1,a],o);return u?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var Lh=V({conv1d_:WE});function VE(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&O(un(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(ro,p,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var RA=V({conv2DBackpropInput_:VE});function UE(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return RA(n,o,i,s,r,"NHWC",a)}var Bh=V({conv2dTranspose_:UE});function GE(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(yr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=W.runKernel(vc,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var DA=V({conv3d_:GE});function HE(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=W.runKernel(qp,u,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var p3=V({conv3DBackpropInput_:HE});function jE(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return p3(n,a,o,s,r)}var h3=V({conv3dTranspose_:jE});function qE(e){let n={x:$(e,"x","cos","float32")};return W.runKernel(ao,n)}var Kc=V({cos_:qE});function XE(e){let n={x:$(e,"x","cosh","float32")};return W.runKernel(oo,n)}var Wh=V({cosh_:XE});function KE(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(io,a,o)}var Vh=V({cumsum_:KE});function ZE(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel(Xp,o,i)}var f3=V({denseBincount_:ZE});function YE(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(ul,i,l)}var _A=V({depthToSpace_:YE});function JE(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&O(un(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=W.runKernel(lo,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var lu=V({depthwiseConv2d_:JE});function QE(e){let n={x:$(e,"x","diag")};return W.runKernel(Yp,n)}var eR=V({diag_:QE});function tR(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=W.runKernel(wc,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var FA=V({dilation2d_:tR});function nR(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Qt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function bt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function sR(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(dl,r)}var os=V({equal_:sR});function rR(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=bt(bt(a.shape,s.shape),r.shape),i=ou(a,o),l=ou(s,o),c=ou(r,o),u={condition:i,t:l,e:c};return W.runKernel(Ml,u)}var Tn=V({where_:rR});function aR(e){let n={x:$(e,"x","zerosLike")};return W.runKernel(Kl,n)}var Ze=V({zerosLike_:aR});function oR(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=_t(n,s);let r=me(n,s),a=Ze(r),o=os(s,a);return Tn(o,a,r)}var $A=V({divNoNan_:oR});function iR(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Ve(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Ve(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Ve(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Ve(n,o)}}var m3=V({dot_:iR});function lR(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(eh,n,s)}var g3=V({einsum_:lR});function uR(e){let n={x:$(e,"x","elu","float32")};return W.runKernel(co,n)}var uu=V({elu_:uR});function cR(e){let t=$(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return W.runKernel(cl,n)}var OA=V({erf_:cR});function dR(e){let n={x:$(e,"x","exp")};return W.runKernel(po,n)}var is=V({exp_:dR});function pR(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(pl,s,r)}var Bt=V({expandDims_:pR});function hR(e){let n={x:$(e,"x","expm1")};return W.runKernel(hl,n)}var PA=V({expm1_:hR});function fR(e,t){let n=$(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(ca,s,r)}var ws=V({tile_:fR});function mR(e,t,n,s="float32"){t==null&&(t=e);let r=He([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return ws(Bt(o,0),[n[0],1,1]);if(n.length===2)return ws(Bt(Bt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return ws(Bt(Bt(Bt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var MA=V({eye_:mR});function cu(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(kc,{},s)}function gR(e){let n={x:$(e,"x","floor","float32")};return W.runKernel(ho,n)}var du=V({floor_:gR});function AR(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(ml,o,i)}var oi=V({gather_:AR});function yR(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Al,r)}var Yn=V({greater_:yR});function xR(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(go,r)}var xa=V({greaterEqual_:xR});function bR(e){let n={input:$(e,"input","imag")};return W.runKernel(rh,n)}var Uh=V({imag_:bR});function vR(e){let n={x:$(e,"x","isFinite")};return W.runKernel(yl,n)}var A3=V({isFinite_:vR});function wR(e){let n={x:$(e,"x","isInf")};return W.runKernel(xl,n)}var y3=V({isInf_:wR});function kR(e){let n={x:$(e,"x","isNaN")};return W.runKernel(bl,n)}var zA=V({isNaN_:kR});function IR(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(yo,s,r)}var Zc=V({leakyRelu_:IR});function SR(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(vl,r)}var Gh=V({less_:SR});function CR(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(wl,r)}var ba=V({lessEqual_:CR});function x3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(ah,{},s)}function TR(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(un(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=W.runKernel(Cc,l,c);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var LA=V({localResponseNormalization_:TR});function NR(e){let n={x:$(e,"x","log","float32")};return W.runKernel(xo,n)}var ls=V({log_:NR});function ER(e){let n={x:$(e,"x","log1p")};return W.runKernel(kl,n)}var Yc=V({log1p_:ER});function RR(e){return O(ia(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&Dn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Hh(o),o[0]})}}function DR(e){return O(ia(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Vc(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&Dn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(o),o})}}function _R(e){return O(ia(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return Hh(s),{grad:s[0],value:r}}}function FR(e){return O(ia(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&Dn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(s.grads),s}}function b3(e,t){O(ia(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(c=>c instanceof Lc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in W.registeredVariables)t.push(W.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);O(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function xr(e){return W.customGrad(e)}function Hh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function $R(e){let n={x:$(e,"x","neg")};return W.runKernel(Cl,n)}var Tt=V({neg_:$R});function OR(e){let n={x:$(e,"x","softplus")};return W.runKernel(Vl,n)}var ii=V({softplus_:OR});function PR(e){let t=$(e,"x","logSigmoid");return xr(s=>({value:Tt(ii(Tt(s))),gradFunc:o=>B(o,Kn(Tt(s)))}))(t)}var v3=V({logSigmoid_:PR});function MR(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(bo,r,a)}var $n=V({max_:MR});function zR(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Go,r)}var be=V({sub_:zR});function LR(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Wo,r,a)}var Se=V({sum_:LR});function BR(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return xr((r,a)=>{let o=!0,i=$n(r,t,!0),l=be(r,i),c=be(de(l,"float32"),ls(Se(is(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=is(h);return be(d,B(Se(d,t,f),m))}}})(n)}var jh=V({logSoftmax_:BR});function BA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function w3(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function k3(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function li(e,t){let n=t.map(s=>1);return w3(e,n,t)}function WR(e,t,n){O(BA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function I3(e,t){if(BA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function WA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function VR(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function UR(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=Os(t,s.shape),a=$n(s,r,!0),o=be(s,a),i=is(o),l=Se(i,r),c=ls(l),u=le(U(a,c.shape),c);if(n){let d=li(u.shape,r);return U(u,d)}return u}var VA=V({logSumExp_:UR});function GR(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Il,r)}var zs=V({logicalAnd_:GR});function HR(e){let n={x:$(e,"x","logicalNot","bool")};return W.runKernel(Ic,n)}var Jc=V({logicalNot_:HR});function jR(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Sc,r)}var qh=V({logicalOr_:jR});function qR(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return bt(n.shape,s.shape),zs(qh(e,t),Jc(zs(e,t)))}var S3=V({logicalXor_:qR});function XR(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(yr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&O(un(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(wo,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Qc=V({maxPool_:XR});function KR(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(un(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(Tc,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var UA=V({maxPool3d_:KR});function ZR(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(uh,o,i);return{result:l[0],indexes:l[1]}}var C3=V({maxPoolWithArgmax_:ZR});function YR(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=_t(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(vo,r)}var br=V({maximum_:YR});function JR(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(ko,r,a)}var Ft=V({mean_:JR});function Ht(e,t="float32"){if(t==="complex64"){let s=Ht(e,"float32"),r=Ht(e,"float32");return fa(s,r)}let n=Lp(zt(e),t);return W.makeTensor(n,e,t)}function us(e,t="float32"){if(t==="complex64"){let s=us(e,"float32"),r=Ht(e,"float32");return fa(s,r)}let n=Fg(zt(e),t);return W.makeTensor(n,e,t)}function QR(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=zt(s.shape),o=zt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ve(us([o,1],s.dtype),s),Ve(r,us([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ve(s,us([1,o],s.dtype)),Ve(us([a,1],r.dtype),r)])}function eD(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(Io,r,a)}var ed=V({min_:eD});function tD(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=_t(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(So,r)}var pu=V({minimum_:tD});function nD(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(Co,o,a)}var GA=V({mirrorPad_:nD});function sD(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Sl,r)}var HA=V({mod_:sD});function rD(e){let t=$(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var ft=V({square_:rD});function aD(e,t=null,n=!1){e=$(e,"x","moments");let s=Os(t,e.shape),r=Ft(e,s,n),a=r.shape;n||(a=li(r.shape,s));let o=ft(be(de(e,"float32"),U(r,a))),i=Ft(o,s,n);return{mean:r,variance:i}}var Xh=V({moments_:aD});function oD(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=Vc(n,"c","multiRNNCell"),o=Vc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var iD=V({multiRNNCell_:oD});function lD(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=W.runKernel(ch,l,c);return o===1?U(u,[u.size]):u}var T3=V({multinomial_:lD});function uD(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Tl,r)}var ui=V({notEqual_:uD});function cD(e){let n={x:$(e,"x","onesLike")};return W.runKernel(Dl,n)}var cs=V({onesLike_:cD});function dD(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ve(r,a)}var pD=V({outerProduct_:dD});function hD(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(Eo,a,r)}var ks=V({pad_:hD});function fD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ks(e,[t],n)}var mD=V({pad1d_:fD});function gD(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var AD=V({pad2d_:gD});function yD(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var xD=V({pad3d_:yD});function bD(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var vD=V({pad4d_:bD});function wD(e,t,n){let s=$(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(Ul,r,a)}var td=V({spaceToBatchND_:wD});function kD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=$(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(yr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=n3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=SD([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=ID([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:td(i,u,h),y=(n==="avg"?()=>qc(g,t,a,m):()=>Qc(g,t,a,m))(),x=p?y:Xc(y,u,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function ID(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function SD(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var N3=V({pool_:kD});function CD(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Ro,r)}var zr=V({pow_:CD});function TD(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(Do,r)}var nd=V({prelu_:TD});function ND(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Fl,r,a)}var Kh=V({prod_:ND});function ED(e,t,n){let s=zt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var RD=V({rand_:ED}),jA=Xa(z5()),qA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=jA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},DD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=jA.alea(r.toString()),this.randn=new qA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},_D=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=jA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function FD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new DD(t,n,s,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var $D=V({randomGamma_:FD});function OD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new qA(t,n,s,!1,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var E3=V({randomNormal_:OD});function PD(e,t=0,n=1,s="float32",r){let a=He(e,s),o=new _D(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var hu=V({randomUniform_:PD});function fu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(Nc,{},r)}function MD(e){let n={input:$(e,"input","real")};return W.runKernel(dh,n)}var sd=V({real_:MD});function zD(e){let n={x:$(e,"x","reciprocal")};return W.runKernel($l,n)}var XA=V({reciprocal_:zD});function LD(e){let n={x:$(e,"x","relu")};return W.runKernel(_o,n)}var Js=V({relu_:LD});function BD(e){let n={x:$(e,"x","relu6")};return W.runKernel($o,n)}var Zh=V({relu6_:BD});function WD(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return W.runKernel(Oo,s,r)}var ds=V({reverse_:WD});function VD(e){let t=$(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ds(t,0)}var UD=V({reverse1d_:VD});function GD(e,t){let n=$(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ds(n,t)}var HD=V({reverse2d_:GD});function jD(e,t){let n=$(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ds(n,t)}var qD=V({reverse3d_:jD});function XD(e,t){let n=$(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ds(n,t)}var KD=V({reverse4d_:XD});function ZD(e){let n={x:$(e,"x","round")};return W.runKernel(Po,n)}var Yh=V({round_:ZD});function YD(e){let n={x:$(e,"x","rsqrt","float32")};return W.runKernel(Mo,n)}var Jh=V({rsqrt_:YD});function Re(e,t){if((Cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ma(e,[],[],t)}function JD(e){let n={x:$(e,"x","selu")};return W.runKernel(zl,n)}var Qh=V({selu_:JD});function QD(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),c=$(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),O(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];O(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=lu(u,l,s,r,o,a),g=Mr(f,c,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var KA=V({separableConv2d_:QD});async function e_(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new Jt([i],n.dtype),c=new Jt([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var R3=e_;function t_(e){let n={x:$(e,"x","sign")};return W.runKernel(Wl,n)}var ZA=V({sign_:t_});function n_(e){let n={x:$(e,"x","sin","float32")};return W.runKernel(zo,n)}var ef=V({sin_:n_});function s_(e){let n={x:$(e,"x","sinh")};return W.runKernel(Bl,n)}var tf=V({sinh_:s_});function r_(e,t,n){let s=$(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Fe(s,[t],[n])}var nf=V({slice1d_:r_});function a_(e,t,n){let s=$(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var YA=V({slice2d_:a_});function o_(e,t,n){let s=$(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var mu=V({slice3d_:o_});function i_(e,t,n){let s=$(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var rd=V({slice4d_:i_});function l_(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(Vo,s,r)}var ci=V({softmax_:l_});function u_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(nh,t)}var ad=V({fft_:u_});function c_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(sh,t)}var gu=V({ifft_:c_});function d_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=gu(r)}else{let r=[n,2*(t-1)],a=U(sd(e),[n,t]),o=U(Uh(e),[n,t]),i=ds(Fe(a,[0,1],[n,t-2]),1),l=B(ds(Fe(o,[0,1],[n,t-2]),1),Re(-1)),c=gt([a,i],1),u=gt([o,l],1),d=U(fa(c,u),[r[0],r[1]]);s=gu(d)}if(s=sd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var sf=V({irfft_:d_});function p_(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Gl,r,a)}var pn=V({split_:p_});function h_(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Fe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=gt([e,Ht(f)],e.shape.length-1),n=t}else r=e;let a=Ze(r),o=U(fa(r,a),[s,n]),i=ad(o),l=Math.floor(n/2)+1,c=sd(i),u=Uh(i),d=pn(c,[l,n-l],c.shape.length-1),p=pn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(fa(d[0],p[0]),h)}var od=V({rfft_:h_});function f_(e){let n={x:$(e,"x","sqrt","float32")};return W.runKernel(Bo,n)}var xn=V({sqrt_:f_});function m_(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(Uo,r,a)}var rf=V({squaredDifference_:m_});function g_(e,t){let n=$(e,"x","squeeze");return U(n,V5(n.shape,t).newShape)}var rt=V({squeeze_:g_});function A_(e,t=0){let n=Vc(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(_l,s,r)}var bn=V({stack_:A_});function y_(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return W.runKernel(da,s,r)}var Au=V({step_:y_});function x_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Hl,u,d)}var JA=V({stridedSlice_:x_});function b_(e){let n={x:$(e,"x","tan","float32")};return W.runKernel(Ho,n)}var QA=V({tan_:b_});function jt(e,t){Ka(e);let n=gr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ma(e,null,n,t)}function Qs(e,t,n){if(Ka(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=gr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ma(e,t,s,n)}function v_(e,t,n){if(Ka(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=gr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ma(e,t,s,n)}function w_(e,t,n){if(Ka(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=gr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ma(e,t,s,n)}function k_(e,t,n){if(Ka(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=gr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,ma(e,t,s,n)}function I_(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(jl,a,o);return{values:i,indices:l}}var e1=V({topk_:I_});function S_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new qA(t,n,s,!0,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var af=V({truncatedNormal_:S_});function C_(e,t=0){let n=$(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(wh,s,r);return{values:a,indices:o}}var of=V({unique_:C_});function T_(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");O(un(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(Dc,a,o)}var t1=V({unsortedSegmentSum_:T_});function N_(e,t=0){let n=$(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(Xl,s,r)}var On=V({unstack_:N_});function D3(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function _3(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=He(e,"int32"),r=He([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function E_(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=_3(t.shape,n);return e!==t&&t.dispose(),s}var n1=E_;async function R_(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),Dn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=U(s,c),d=U(r,[-1]),p=await n1(d),h=rt(p,[1]),f=oi(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var D_=R_;function __(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=F3(e,t,n),a=r.shape;if(s){let o=Os(n,e.shape);a=li(r.shape,o)}return U(r,a)}function F3(e,t,n=null){if(e.rank===0)return Gt(e);if(e.rank!==1&&n===null)return F3(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Gt(e),n);if(t===1/0)return $n(Gt(e),n);if(t===-1/0)return ed(Gt(e),n);if(t==="euclidean"||t===2)return xn(Se(zr(Gt(e),Re(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return $n(Se(Gt(e),n[0]),n[1]-1);if(t===1/0)return $n(Se(Gt(e),n[1]),n[0]);if(t===-1/0)return ed(Se(Gt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return xn(Se(ft(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var lf=V({norm_:__});function F_(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");ub(a,o),O($r(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Re(1),c=be(l,i),u=B(be(o,a),c);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let d=$(s,"step","movingAverage");u=me(u,be(l,zr(i,d)))}return le(a,u)}var $_=V({movingAverage_:F_});function O_(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");dA(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel(Pl,a,o)}var $3=V({scatterND_:O_});function P_(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function M_(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(s,"defaultValue","sparseToDense",a.dtype);P_(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(yh,i,l)}var s1=V({sparseToDense_:M_});function z_(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(gl,r)}var O3=V({gatherND_:z_});function L_(e,t){if(t==null)return e.shape.slice();if($r(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function B_(e,t,n,s){let r=$(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=L_(r,n),o=1-t,i=me(du(le(hu(a,0,1,"float32",s),o)),o);return B(r,i)}var P3=V({dropout_:B_});function M3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function r1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return jt(r,"float32")}async function W_(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Dn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=U5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Lt(u,r.shape,"bool")}var V_=W_,va={};ze(va,{conv2d:()=>H_,depthwiseConv2d:()=>K_,matMul:()=>Y_});function U_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&O(un(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(Hp,d,p)}var a1=V({conv2DBackpropFilter_:U_});function uf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Au(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function cf(e,t){let n=t,s=Qt(e.shape,t.shape);return s.length>0&&(n=Se(n,s)),U(n,e.shape)}function df(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Js(e);if(t==="elu")return uu(e);if(t==="relu6")return Zh(e);if(t==="prelu")return nd(e,n);if(t==="leakyrelu")return Zc(e,s);if(t==="sigmoid")return Kn(e);throw new Error(`Unknown fused activation ${t}.`)}var pf=(e,t)=>!(e>0)||t==="linear";function G_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",pf(W.state.gradientDepth,l)===!1){let v=Mr(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),df(v,l,c,u)}let d=$(e,"x","conv2d","float32"),p=$(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&O(un(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=jc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let A;c!=null&&(A=$(c,"prelu weights","fused conv2d"));let y=(v,k)=>{let[C,N,D,P]=k,E=uf(v,D,l);O(ya(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let F=RA(N.shape,E,C,n,s),T=a1(N,E,C.shape,n,s),M=[F,T];if(P!=null){let G=cf(P,E);M.push(G)}return M},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?xr((k,C,N)=>{let D=W.runKernel(Ko,x,b);return N([C,k,D]),f&&(D=U(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):xr((k,C,N,D)=>{let P=W.runKernel(Ko,x,b);return D([C,k,P,N]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p,g)}var H_=V({fusedConv2d_:G_});function j_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(Kp,c,u)}var z3=V({depthwiseConv2dNativeBackpropFilter_:j_});function q_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=W.runKernel(Zp,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var L3=V({depthwiseConv2dNativeBackpropInput_:q_});function X_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(pf(W.state.gradientDepth,l)===!1){let v=lu(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),df(v,l,c,u)}let d=$(e,"x","depthwiseConv2d","float32"),p=$(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(yr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&O(un(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=jc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let A;c!=null&&(A=$(c,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{O(ya(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,N,D,P]=k,E=uf(v,D,l),F=L3(N.shape,E,C,n,s,a,o),T=z3(N,E,C.shape,n,s,a,o);if(P!=null){let M=cf(g,E);return[F,T,M]}return[F,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?xr((k,C,N)=>{let D=W.runKernel(Zo,x,b);return N([C,k,D]),f&&(D=U(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):xr((k,C,N,D)=>{let P=W.runKernel(Zo,x,b);return D([C,k,P,N]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p,g)}var K_=V({fusedDepthwiseConv2d_:X_});function Z_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(pf(W.state.gradientDepth,a)===!1){let P=Ve(e,t,n,s);return r!=null&&(P=le(P,r)),df(P,a,o,i)}let l=$(e,"a","fused matMul"),c=$(t,"b","fused matMul");[l,c]=_t(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=zt(f),A=zt(m);O(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),O($r(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?U(l,[g,u,p]):U(l,[g,p,u]),b=s?U(c,[A,h,d]):U(c,[A,d,h]),v;r!=null&&(v=$(r,"bias","fused matMul"),[v]=_t(v,l),bt(y,v.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let C=(P,E)=>{let[F,T,M,G]=E,H=uf(U(P,M.shape),M,a),z,X;if(!n&&!s?(z=Ve(H,T,!1,!0),X=Ve(F,H,!0,!1)):!n&&s?(z=Ve(H,T,!1,!1),X=Ve(H,F,!0,!1)):n&&!s?(z=Ve(T,H,!1,!0),X=Ve(F,H,!1,!1)):(z=Ve(T,H,!0,!0),X=Ve(H,F,!0,!0)),r!=null){let Q=cf(G,H);return[z,X,Q]}else return[z,X]},N={a:x,b,bias:v,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?xr((E,F,T)=>{let M=W.runKernel(Xo,N,D);return T([E,F,M]),{value:U(M,y),gradFunc:C}})(x,b):xr((E,F,T,M)=>{let G=W.runKernel(Xo,N,D);return M([E,F,G,T]),{value:U(G,y),gradFunc:C}})(x,b,v)}var Y_=V({fusedMatMul_:Z_});function J_(e){return r1(e,.54,.46)}var Q_=V({hammingWindow_:J_});function eF(e){return r1(e,.5,.5)}var B3=V({hannWindow_:eF});function tF(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Fe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=gt([Fe(e,a,t-i),cu([i],r)]);o.push(l),a+=n}return o.length===0?Qs([],[0,t]):U(gt(o),[o.length,t])}var W3=V({frame_:tF});function nF(e,t,n,s,r=B3){s==null&&(s=M3(t));let a=W3(e,t,n),o=B(a,r(t));return od(o,s)}var sF=V({stft_:nF});function rF(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),c=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(ll,u,d)}var aF=V({cropAndResize_:rF});function oF(e){let t=$(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(fl,n,{})}var iF=V({flipLeftRight_:oF});function lF(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,ws(t,r)}var uF=V({grayscaleToRGB_:lF});function cF(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(Zl,a,o)}var dF=V({rotateWithOffset_:cF});function yu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function pF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=yu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Nl,{boxes:a,scores:o},l)}var hF=V({nonMaxSuppression_:pF});function fF(e,t,n){let s=mF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function mF(e,t,n){return AF(e,t,n||gF)}function gF(e,t){return e>t?1:e<t?-1:0}function AF(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function V3(e,t,n,s,r){return o1(e,t,n,s,r,0)}function U3(e,t,n,s,r,a){return o1(e,t,n,s,r,0,!1,a,!0)}function G3(e,t,n,s,r,a){return o1(e,t,n,s,r,a,!0)}function o1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(H3);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=yF(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*xF(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&fF(c,g,H3))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function yF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(h+f-x)}function xF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function H3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function bF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=yu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=V3(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),jt(d,"int32")}var vF=bF;function wF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=yu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=W.runKernel(Rl,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var kF=V({nonMaxSuppressionWithScore_:wF});async function IF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=yu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=G3(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:jt(p,"int32"),selectedScores:jt(h)}}var SF=IF;function CF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=yu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=W.runKernel(El,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var TF=V({nonMaxSuppressionPadded_:CF});async function NF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=yu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=U3(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:jt(f,"int32"),validOutputs:Re(m,"int32")}}var EF=NF;function RF(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Fo,i,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var j3=V({resizeBilinear_:RF});function DF(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Ec,i,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var q3=V({resizeNearestNeighbor_:DF});function _F(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=B(jt([s]),255),u,d,p,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=pn(r,[1,1,1],-1);let g=B(u,a),A=B(d,o),y=B(p,i);h=le(le(g,A),y)}else h=e;if(t==="otsu"){let g=NA(de(Yh(h),"int32"),Lt([]),256);c=FF(g,l)}let f=n?ba(h,c):Yn(h,c);return de(B(f,255),"int32")}function FF(e,t){let n=jt([-1]),s=jt([0]),r=jt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=Fe(e,0,d+1),o=Fe(e,d+1),c=me(Se(a),t),u=me(Se(o),t);let p=Se(B(a,fu(0,a.size)));i=me(p,Se(a));let h=cu(o.shape,a.size),f=le(fu(0,o.size),h),m=B(o,f);l=me(Se(m),Se(o));let g=be(i,l),A=be(i,l),y=B(c,u);r=B(B(y,g),A);let x=Yn(r,s);s=Tn(x,r,s),n=Tn(x,jt([d]),n)}return n}var $F=V({threshold_:_F});function OF(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(ql,l,c)}var PF=V({transform_:OF});function MF(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(fu(0,a,1,"int32"),[-1,1]),l=fu(0,o,1,"int32"),c=be(i,l),u=zs(ba(c,Re(+t,"int32")),xa(c,Re(-n,"int32"))),d=Ht([a,o],s.dtype);return U(bn(On(U(s,[-1,a,o])).map(p=>Tn(u,p,d))),r)}var zF=V({bandPart_:MF});function LF(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=pn(e,e.shape[0],0).map(r=>rt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=B(Se(B(n[o],a)),n[o]);a=be(a,i)}return me(a,lf(a,"euclidean"))}));return t?bn(n,0):n}var BF=V({gramSchmidt_:LF});function WF(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return X3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=On(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=X3(l,t);r.push(c),a.push(u)});let o=U(bn(r,0),e.shape),i=U(bn(a,0),e.shape);return[o,i]}}function X3(e,t=!1){return W.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=MA(n),a=Zs(e),o=Qs([[1]],[1,1]),i=Zs(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=W.tidy(()=>{let h=Fe(a,[c,c],[n-c,1]),f=lf(h),m=Fe(a,[c,c],[1,1]),g=Tn(Yn(m,0),Qs([[-1]]),Qs([[1]])),A=be(m,B(g,f)),y=me(h,A);y.shape[0]===1?i=Zs(o):i=gt([o,Fe(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Tt(me(Ve(g,A),f)),b=Fe(a,[c,0],[n-c,s]),v=B(x,i),k=Ke(i);if(c===0)a=be(b,Ve(v,Ve(k,b)));else{let D=be(b,Ve(v,Ve(k,b)));a=gt([Fe(a,[0,0],[c,s]),D],0)}let C=Ke(v),N=Fe(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=be(N,Ve(Ve(N,i),C));else{let D=be(N,Ve(Ve(N,i),C));r=gt([Fe(r,[0,0],[n,c]),D],1)}return[i,a,r]}),Y([u,d,p])}return!t&&n>s&&(r=Fe(r,[0,0],[n,s]),a=Fe(a,[0,0],[s,s])),[r,a]})}var VF=V({qr_:WF}),Pn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Pn||(Pn={}));function UF(e,t,n=Pn.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:B(s,r);if(n===Pn.NONE)return a;if(n===Pn.SUM)return Se(a);if(n===Pn.MEAN){if(r==null)return Ft(a);{let o=s.size/r.size,i=me(Se(a),Se(r));return o>1?me(i,Re(o)):i}}if(n===Pn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(Se(a),Re(s.size));{let o=B(r,us(s.shape)),i=de(Se(ui(o,Re(0))),"float32");return me(Se(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Lr=V({computeWeightedLoss_:UF});function GF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),Dn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Gt(be(r,a));return Lr(i,o,s)}var HF=V({absoluteDifference_:GF});function jF(e,t,n,s,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),Dn(a.shape,o.shape,"Error in cosineDistance: ");let l=Re(1),c=be(l,Se(B(a,o),n,!0));return Lr(c,i,r)}var qF=V({cosineDistance_:jF});function XF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),Dn(r.shape,a.shape,"Error in hingeLoss: ");let i=Re(1);r=be(B(Re(2),r),i);let l=Js(be(i,B(r,a)));return Lr(l,o,s)}var KF=V({hingeLoss_:XF});function ZF(e,t,n,s=1,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),Dn(a.shape,o.shape,"Error in huberLoss: ");let l=Re(s),c=Gt(be(o,a)),u=pu(c,l),d=be(c,u),p=le(B(Re(.5),ft(u)),B(l,d));return Lr(p,i,r)}var YF=V({huberLoss_:ZF});function JF(e,t,n,s=1e-7,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),Dn(a.shape,o.shape,"Error in logLoss: ");let l=Re(1),c=Re(s),u=Tt(B(a,ls(le(o,c)))),d=B(be(l,a),ls(le(be(l,o),c))),p=be(u,d);return Lr(p,i,r)}var QF=V({logLoss_:JF});function e$(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),Dn(r.shape,a.shape,"Error in meanSquaredError: ");let i=rf(r,a);return Lr(i,o,s)}var t$=V({meanSquaredError_:e$});function n$(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");Dn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Js(s),a=B(s,n),o=Yc(is(Tt(Gt(s))));return le(be(r,a),o)}function s$(e,t,n,s=0,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),Dn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(.5);a=le(B(a,be(u,c)),B(d,c))}let l=n$(a,o);return Lr(l,i,r)}var r$=V({sigmoidCrossEntropy_:s$});function a$(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return xr((r,a,o)=>{let l=VA(a,[n],!0),c=be(de(a,"float32"),l);o([r,c]);let u=Tt(B(c,r));return{value:Se(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=li(h.shape,[n]);return[B(U(h,A),be(de(m,"float32"),is(g))),B(U(h,A),be(is(g),de(m,"float32")))]}}})(e,t)}function o$(e,t,n,s=0,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),Dn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(a.shape[1]);a=le(B(a,be(u,c)),me(c,d))}let l=a$(a,o);return Lr(l,i,r)}var i$=V({softmaxCrossEntropy_:o$});function l$(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=W.runKernel(fh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var u$=V({sparseFillEmptyRows_:l$});function c$(e,t,n){let s=$(e,"inputIndices","sparseReshape"),r=$(t,"inputShape","sparseReshape"),a=$(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(mh,o);return{outputIndices:i[0],outputShape:i[1]}}var d$=V({sparseReshape_:c$});function p$(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean"),a=$(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(gh,o)}var h$=V({sparseSegmentMean_:p$});function f$(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum"),a=$(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Ah,o)}var m$=V({sparseSegmentSum_:f$});function g$(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=$(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=W.runKernel(xh,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var A$=V({stringNGrams_:g$});function y$(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(bh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var x$=V({stringSplit_:y$});function b$(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(vh,r,s)}var v$=V({stringToHashBucketFast_:b$}),w$={fft:ad,ifft:gu,rfft:od,irfft:sf},k$={hammingWindow:Q_,hannWindow:B3,frame:W3,stft:sF},_e={flipLeftRight:iF,grayscaleToRGB:uF,resizeNearestNeighbor:q3,resizeBilinear:j3,rotateWithOffset:dF,cropAndResize:aF,nonMaxSuppression:hF,nonMaxSuppressionAsync:vF,nonMaxSuppressionWithScore:kF,nonMaxSuppressionWithScoreAsync:SF,nonMaxSuppressionPadded:TF,nonMaxSuppressionPaddedAsync:EF,threshold:$F,transform:PF},K3={bandPart:zF,gramSchmidt:BF,qr:VF},I$={absoluteDifference:HF,computeWeightedLoss:Lr,cosineDistance:qF,hingeLoss:KF,huberLoss:YF,logLoss:QF,meanSquaredError:t$,sigmoidCrossEntropy:r$,softmaxCrossEntropy:i$},id={sparseFillEmptyRows:u$,sparseReshape:d$,sparseSegmentMean:h$,sparseSegmentSum:m$},hf={stringNGrams:A$,stringSplit:x$,stringToHashBucketFast:v$},Br=class extends Zb{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Y(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return b3(e,t)}dispose(){this.iterations_!=null&&Y(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Re(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ff=class extends Br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;j(()=>{let c=le(B(i,this.rho),B(ft(o),1-this.rho)),u=B(me(xn(le(l,this.epsilon)),xn(le(i,this.epsilon))),o),d=le(B(l,this.rho),B(ft(u),1-this.rho));i.assign(c),l.assign(d);let p=le(B(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Y(this.accumulatedGrads.map(e=>e.variable)),Y(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ff.className="Adadelta";Aa(ff);var mf=class extends Br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>cu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;j(()=>{let i=le(o,ft(a));o.assign(i);let l=le(B(me(a,xn(le(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Y(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};mf.className="Adagrad";Aa(mf);var gf=class extends Br{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Re(t).variable(),this.accBeta2=Re(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=be(1,this.accBeta1),s=be(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>Ze(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>Ze(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=le(B(c,this.beta1),B(l,1-this.beta1)),p=le(B(u,this.beta2),B(ft(l),1-this.beta2)),h=me(d,n),f=me(p,s);c.assign(d),u.assign(p);let m=le(B(me(h,le(xn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Y(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};gf.className="Adam";Aa(gf);var Af=class extends Br{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Re(0).variable(),this.accBeta1=Re(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=be(1,this.accBeta1),s=me(-this.learningRate,le(B(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ze(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ze(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=le(B(c,this.beta1),B(l,1-this.beta1)),p=B(u,this.beta2),h=Gt(l),f=br(p,h);c.assign(d),u.assign(f);let m=le(B(me(s,n),me(d,le(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Y(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Af.className="Adamax";Aa(Af);var ld=class extends Br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];j(()=>{let o=le(B(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=dn(Re(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ld.className="SGD";Aa(ld);var yf=class extends ld{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Re(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>Ze(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&j(()=>{let i,l=le(B(this.m,a),o);this.useNesterov?i=le(B(this.c,le(o,B(l,this.m))),r):i=le(B(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Y(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};yf.className="Momentum";Aa(yf);var xf=class extends Br{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;j(()=>{let c=le(B(i,this.decay),B(ft(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=le(B(u,this.decay),B(o,1-this.decay)),p=me(B(o,this.learningRate),xn(be(c,le(ft(d),this.epsilon)))),h=le(B(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=be(r,h);r.assign(f)}else{let u=le(B(i,this.decay),B(ft(o),1-this.decay)),d=le(B(l,this.momentum),me(B(o,this.learningRate),xn(le(u,this.epsilon))));i.assign(u),l.assign(d);let p=be(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Y(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Y(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Y(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xf.className="RMSProp";Aa(xf);var di=class{static sgd(e){return new ld(e)}static momentum(e,t,n=!1){return new yf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new xf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new gf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Af(e,t,n,s,r)}static adagrad(e,t=.1){return new mf(e,t)}},pi={sgd:di.sgd,momentum:di.momentum,adadelta:di.adadelta,adagrad:di.adagrad,rmsprop:di.rmsprop,adamax:di.adamax,adam:di.adam},S$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Z3(){return new Promise(e=>S$(()=>e()))}var R={};ze(R,{ERF_A1:()=>P$,ERF_A2:()=>M$,ERF_A3:()=>z$,ERF_A4:()=>L$,ERF_A5:()=>B$,ERF_P:()=>O$,PARALLELIZE_THRESHOLD:()=>i1,SELU_SCALE:()=>J3,SELU_SCALEALPHA:()=>Y3,applyActivation:()=>df,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>WR,assertParamsConsistent:()=>C$,assignToTypedArray:()=>j$,axesAreInnerMostDims:()=>BA,calculateShapes:()=>zb,checkEinsumDimSizes:()=>J$,combineLocations:()=>w3,complexWithEvenIndex:()=>U$,complexWithOddIndex:()=>G$,computeConv2DInfo:()=>jc,computeConv3DInfo:()=>s3,computeDefaultPad:()=>SA,computeDilation2DInfo:()=>cE,computeOptimalWindowSize:()=>N$,computeOutAndReduceShapes:()=>k3,computeOutShape:()=>T$,computePool2DInfo:()=>n3,computePool3DInfo:()=>dE,convertConv2DDataFormat:()=>r3,decodeEinsumEquation:()=>Z$,eitherStridesOrDilationsAreOne:()=>yr,expandShapeToKeepDim:()=>li,exponent:()=>X$,exponents:()=>q$,fromStringArrayToUint8:()=>iO,fromUint8ToStringArray:()=>oO,getAxesPermutation:()=>I3,getBroadcastDims:()=>nR,getComplexWithIndex:()=>H$,getEinsumComputePath:()=>Q$,getEinsumPermutation:()=>Y$,getFusedBiasGradient:()=>cf,getFusedDyActivation:()=>uf,getImageCenter:()=>E$,getInnerMostAxes:()=>VR,getPermuted:()=>D$,getReductionAxes:()=>Qt,getReshaped:()=>R$,getReshapedPermuted:()=>_$,getSliceBeginCoords:()=>F$,getSliceSize:()=>$$,getUndoAxesPermutation:()=>WA,isIdentityPermutation:()=>eO,log:()=>zT,mergeRealAndImagArrays:()=>W$,prepareAndValidate:()=>Mb,prepareSplitSize:()=>nO,segment_util:()=>tv,shouldFuse:()=>pf,slice_util:()=>Fn,splitRealAndImagArrays:()=>V$,tupleValuesAreOne:()=>ya,upcastType:()=>Ps,validateInput:()=>dA,validateUpdateShape:()=>cA,warn:()=>hr});function C$(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function T$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var i1=30;function N$(e){return e<=i1?e:zp(e,Math.floor(Math.sqrt(e)))}function E$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function R$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function D$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function _$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function F$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function $$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Y3=1.7580993408473768,J3=1.0507009873554805,O$=.3275911,P$=.254829592,M$=-.284496736,z$=1.421413741,L$=-1.453152027,B$=1.061405429;function W$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function V$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function U$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function G$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function H$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function j$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function q$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function X$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var l1="->",K$=/->/g,Q3=",",ev="...";function Z$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(K$,"").length)/l1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${l1}").`);let[s,r]=e.split(l1);O(s.indexOf(ev)===-1,()=>`The ellipsis notation ("${ev}") is not supported yet.`);let a=s.split(Q3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Q3&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function Y$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function J$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function Q$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=tO(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function eO(e){return e.every((t,n)=>t===n)}function tO(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function nO(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var tv={};ze(tv,{collectGatherOpShapeInfo:()=>aO,computeOutShape:()=>rO,segOpComputeOptimalWindowSize:()=>sO});function sO(e,t){let n=!1,s;for(e<=i1?(s=e,n=!0):s=zp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=zp(e,s+1);return s}function rO(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function aO(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function oO(e){try{return e.map(t=>Th(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function iO(e){return e.map(t=>Oc(t))}var vr={};ze(vr,{nonMaxSuppressionV3Impl:()=>V3,nonMaxSuppressionV4Impl:()=>U3,nonMaxSuppressionV5Impl:()=>G3,whereImpl:()=>_3});var nv={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Au(de(n,"float32"),-1))}}},lO={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ft(de(n,"float32")),r=xn(be(Re(1),s));return Tt(me(e,r))}}}},uO={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xn(be(ft(de(n,"float32")),1));return me(e,s)}}}},cO={kernelName:la,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Qt(n.shape,r);return l.length>0&&(i=Se(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Qt(s.shape,r);return l.length>0&&(i=Se(i,l)),U(i,s.shape)}}}},dO={kernelName:Ya,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},pO={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},hO={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},fO={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,xn(be(Re(1),ft(de(n,"float32")))))}}},mO={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xn(le(Re(1),ft(de(n,"float32"))));return me(e,s)}}}},gO={kernelName:al,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=le(ft(n),ft(s)),l=B(e,me(s,i)),c=Qt(n.shape,r);return c.length>0&&(l=Se(l,c)),U(l,n.shape)},b:()=>{let i=le(ft(n),ft(s)),l=Tt(B(e,me(n,i))),c=Qt(s.shape,r);return c.length>0&&(l=Se(l,c)),U(l,s.shape)}}}},AO={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,le(ft(de(n,"float32")),1))}}},yO={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,be(Re(1),ft(de(n,"float32"))))}}};function xO(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&O(un(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(Wp,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var bO=V({avgPool3dGrad_:xO}),vO={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>bO(e,s,r,a,o,i)}}};function wO(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=W.runKernel(Bp,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var kO=V({avgPoolGrad_:wO}),IO={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>kO(e,s,r,a,o)}}},SO={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&o?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!o?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},CO={kernelName:ol,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>td(e,s,r)}}},TO={kernelName:eb,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Se(e,i,!0)}}},NO={kernelName:to,gradFunc:e=>({x:()=>e.clone()})},EO={kernelName:no,gradFunc:e=>({x:()=>Ze(e)})},RO={kernelName:ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Tn(zs(xa(s,r),ba(s,a)),e,Ze(e))}}},DO={kernelName:bc,inputsToSave:["x"],gradFunc:nv.gradFunc},_O={kernelName:il,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Os(r,t[0].shape)[0],o=s.map(l=>l[a]);return pn(e,o,a).map(l=>()=>l)}},FO={kernelName:so,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(ya(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>RA(s.shape,e,r,o,i,l),filter:()=>a1(s,e,r.shape,o,i,l)}}},$O={kernelName:ro,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Mr(e,r,a,o,i,1,l),filter:()=>a1(e,s,r.shape,a,o,i,l)}}};function OO(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(jp,i,l)}var PO=V({conv3DBackpropFilter_:OO}),MO={kernelName:vc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(ya(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>p3(o.shape,e,i,r,a),filter:()=>PO(o,e,i.shape,r,a)}}},zO={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Tt(ef(de(n,"float32"))),e)}}},LO={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(tf(de(n,"float32")),e)}}},BO={kernelName:io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=I3([r],s.rank),l=Vh(e,r,a,!o);return i!=null&&(l=Ke(l,i)),l}}}},WO={kernelName:lo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(ya(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),O(yr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&O(un(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>L3(l.shape,e,c,r,a,i,o),filter:()=>z3(l,e,c.shape,r,a,i,o)}}},VO={kernelName:wc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(Jp,a,n),filter:()=>W.runKernel(Qp,o,n)}}},UO={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(th,s)}}},GO={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(is(Tt(ft(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,s)}}},HO={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},jO={kernelName:pl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},qO={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,is(n))}}},XO={kernelName:ho,gradFunc:e=>({x:()=>Ze(e)})},KO={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=me(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Se(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);l.length>0&&(i=U(Se(i,l),s.shape));let c=ft(s);return Tt(me(i,de(c,"float32")))}}}},ZO={kernelName:mo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Re(1):i,c=Qt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=be(r,a),p=B(e,l),h=Jh(le(o,Re(s))),f=B(B(B(h,h),h),Re(-.5));return{x:()=>a.rank===1?U(B(B(e,ws(U(h,[1,1,1,a.shape[0]]),u)),l),r.shape):U(B(B(e,h),l),r.shape),mean:()=>{let b=B(B(h,Re(-1)),p);return a.rank===1&&(b=Se(b,c)),U(b,a.shape)},variance:()=>{let b=B(B(f,d),p);return a.rank===1&&(b=Se(b,c)),U(b,a.shape)},scale:()=>{let b=B(d,h),v=B(e,b);return a.rank===1&&(v=Se(v,c)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Se(b,c)),U(b,a.shape)}}}},YO={kernelName:ml,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Os(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=sv(0,d),m=sv(d+1,d+1+h),g=rv([u,[c],p]),A=U(e,g),y=U(r,[c]),x=rv([[d],f,m]),b=Ke(A,x),v=t1(b,y,s.shape[o]),k=WA(x);return v=Ke(v,k),v},indices:()=>r}}};function sv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function rv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var JO={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ze(n),b:()=>Ze(s)}}},QO={kernelName:Ao,gradFunc:e=>({x:()=>de(e,"float32")})},eP={kernelName:yl,gradFunc:e=>({x:()=>Ze(e)})},tP={kernelName:xl,gradFunc:e=>({x:()=>Ze(e)})},nP={kernelName:bl,gradFunc:e=>({x:()=>Ze(e)})},sP={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Yn(s,0);return{x:()=>Tn(a,e,B(e,r))}}},rP={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,le(n,1))}}},aP={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,de(n,"float32"))}}},oP={kernelName:tb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=is(s);return be(e,B(Se(e,r,a),o))}}}};function iP(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(oh,i,l)}var lP=V({localResponseNormalizationBackprop_:iP}),uP={kernelName:Cc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>lP(s,r,e,a,o,i,l)}}};function av(e,t,n,s){return t.rank<n.rank&&(t=U(t,li(t.shape,s))),e.rank<n.rank&&(e=U(e,li(e.shape,s))),{x:()=>B(e,de(os(n,t),e.dtype))}}var ov={kernelName:bo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Os(r,a.shape),l=av(e,o,a,i);return{x:()=>l.x()}}},cP={kernelName:vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,de(xa(n,s),"float32")),b:()=>B(e,de(Gh(n,s),"float32"))}}};function dP(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),c=$(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&O(un(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(lh,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var pP=V({maxPool3dGrad_:dP}),hP={kernelName:Tc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>pP(e,s,r,a,o,i,l)}}};function fP(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),c=$(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&O(un(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(ih,u,d)}var mP=V({maxPoolGrad_:fP}),gP={kernelName:wo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>mP(e,s,r,a,o,i)}}},AP={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Os(r,s.shape),i=k3(s.shape,a)[1],l=zt(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=U(e,u);return me(B(d,us(s.shape,"float32")),l)}}}},yP={kernelName:Io,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Os(r,a.shape),l=av(e,o,a,i);return{x:()=>l.x()}}},xP={kernelName:So,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,de(ba(n,s),"float32")),b:()=>B(e,de(Yn(n,s),"float32"))}}},bP={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},vP={kernelName:Sl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=Qt(n.shape,r);return i.length>0?U(Se(e,i),n.shape):e},b:()=>{let i=B(e,Tt(du(me(n,s)))),l=Qt(s.shape,r);return l.length>0?U(Se(i,l),s.shape):i}}}},wP={kernelName:To,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=B(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Se(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);return l.length>0?U(Se(i,l),s.shape):i}}}},kP={kernelName:Cl,gradFunc:e=>({x:()=>Tt(e)})},IP={kernelName:No,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ht(n.shape,"float32")}}},SP={kernelName:Dl,gradFunc:e=>({x:()=>Ze(e)})},CP={kernelName:_l,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},iv={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},TP={kernelName:Ro,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=bt(a.shape,o.shape);return{a:()=>{let u=de(o,"float32"),d=B(e,B(u,zr(a,be(u,Re(1))))),p=Qt(a.shape,i);return p.length>0&&(d=Se(d,p)),U(d,a.shape)},b:()=>{let u=Yn(a,0),d=Tn(u,ls(a),Ze(a)),p=B(e,B(r,d)),h=Qt(o.shape,i);return h.length>0&&(p=Se(p,h)),U(p,o.shape)}}}},NP={kernelName:Do,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Yn(n,0);return{x:()=>Tn(r,e,B(e,s)),alpha:()=>{let a=Tn(r,Ze(e),B(e,n)),o=Qt(s.shape,e.shape);return o.length>0&&(a=Se(a,o)),U(a,s.shape)}}}},EP={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=me(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Se(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);l.length>0&&(i=U(Se(i,l),s.shape));let c=ft(s);return Tt(me(i,de(c,"float32")))}}}},RP={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Tt(ft(n)))}}},DP={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(ba(n,6),Au(n));return{x:()=>B(e,de(s,"float32"))}}},_P={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,de(Au(n),"float32"))}}},FP={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},$P={kernelName:Fo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(hh,r,n)}}},OP={kernelName:Ec,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(ph,r,n)}}},PP={kernelName:Oo,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Os(s,e.shape);return{x:()=>ds(e,r)}}},MP={kernelName:Po,gradFunc:e=>({x:()=>Ze(e)})},zP={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(me(e,B(zr(n,1.5),2)))}}},LP={kernelName:Ml,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(Ze(n),"float32"),t:()=>B(e,de(n,e.dtype)),e:()=>B(e,de(Jc(n),e.dtype))}}},BP={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Yn(n,Re(0)),r=Re(Y3),a=Re(J3),o=B(e,a),i=B(B(e,r),is(de(n,"float32")));return Tn(s,o,i)}}}},WP={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,be(Re(1),n)))}}},VP={kernelName:Wl,gradFunc:e=>({x:()=>Ze(e)})},UP={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Kc(de(n,"float32")),e)}}},GP={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Wh(de(n,"float32")),e)}}},HP={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=Kb(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>ks(e,c)}}},jP={kernelName:Vo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=B(e,s);return{logits:()=>be(o,B(Se(o,[r],a),s))}}},qP={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Kn(n))}}},lv={kernelName:Ul,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Xc(e,s,r)}}},uv={kernelName:Gl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>gt(e,s)}}},XP={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,B(xn(de(n,"float32")),2))}}},KP={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(de(n,"float32"),2))}}},ZP={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Re(2);return{a:()=>B(e,B(r,be(n,s))),b:()=>B(e,B(r,be(s,n)))}}},YP={kernelName:da,gradFunc:e=>({x:()=>Ze(e)})},JP={kernelName:Go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Qt(n.shape,r);return l.length>0&&(i=Se(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Qt(s.shape,r);return l.length>0&&(i=Se(i,l)),U(Tt(i),s.shape)}}}},QP={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Os(a,s.shape).forEach(c=>{r[c]=1});let i=U(e,r),l=B(i,us(s.shape,"float32"));return{x:()=>l}}},eM={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ft(Kc(n)))}}},tM={kernelName:jo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(be(Re(1),ft(n)),e)}}},nM={kernelName:ca,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ze(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,Fe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},sM={kernelName:qo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=WA(r);return{x:()=>Ke(e,a)}}},rM={kernelName:Xl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>bn(e,r)}}},aM={kernelName:Dc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>oM(e,n)}}};function oM(e,t){let n=br(t,Ze(t)),s=oi(e,n),r=xa(t,Re(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Bt(r,i+1);r=zs(r,us(s.shape,"bool"));let o=Ze(s);return Tn(r,s,o)}var iM={kernelName:Kl,gradFunc:e=>({x:()=>Ze(e)})},lM=[nv,lO,uO,cO,dO,pO,hO,fO,mO,gO,AO,yO,vO,IO,SO,CO,TO,NO,EO,RO,DO,_O,$O,FO,MO,zO,LO,BO,WO,VO,EP,UO,GO,HO,jO,qO,KO,XO,ZO,YO,JO,QO,eP,tP,nP,sP,rP,aP,oP,uP,ov,ov,cP,hP,gP,AP,yP,xP,bP,vP,wP,kP,IP,SP,CP,iv,iv,TP,NP,RP,DP,_P,FP,$P,OP,PP,MP,zP,LP,BP,WP,VP,UP,GP,HP,jP,qP,lv,lv,uv,uv,XP,ZP,KP,YP,JP,QP,eM,tM,nM,sM,rM,aM,iM];for(let e of lM)nb(e);ae().prototype.abs=function(){return this.throwIfDisposed(),Gt(this)};ae().prototype.acos=function(){return this.throwIfDisposed(),AA(this)};ae().prototype.acosh=function(){return this.throwIfDisposed(),yA(this)};ae().prototype.add=function(e){return this.throwIfDisposed(),le(this,e)};ae().prototype.all=function(e,t){return this.throwIfDisposed(),Mh(this,e,t)};ae().prototype.any=function(e,t){return this.throwIfDisposed(),Hc(this,e,t)};ae().prototype.argMax=function(e){return this.throwIfDisposed(),vs(this,e)};ae().prototype.argMin=function(e){return this.throwIfDisposed(),xA(this,e)};ae().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),U(this,[])};ae().prototype.asType=function(e){return this.throwIfDisposed(),de(this,e)};ae().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};ae().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};ae().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};ae().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),U(this,[e,t,n,s])};ae().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),U(this,[e,t,n,s,r])};ae().prototype.asin=function(){return this.throwIfDisposed(),bA(this)};ae().prototype.asinh=function(){return this.throwIfDisposed(),vA(this)};ae().prototype.atan=function(){return this.throwIfDisposed(),wA(this)};ae().prototype.atan2=function(e){return this.throwIfDisposed(),kA(this,e)};ae().prototype.atanh=function(){return this.throwIfDisposed(),IA(this)};ae().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),qc(this,e,t,n,s)};ae().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Xc(this,e,t)};ae().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),ai(this,e,t,n,s,r)};ae().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ou(this,e)};ae().prototype.cast=function(e){return this.throwIfDisposed(),de(this,e)};ae().prototype.ceil=function(){return this.throwIfDisposed(),EA(this)};ae().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};ae().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ge&&(e=[e]),gt([this,...e],t)};ae().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Lh(this,e,t,n,s,r,a)};ae().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),Bh(this,e,t,n,s,r)};ae().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Mr(this,e,t,n,s,r,a)};ae().prototype.cos=function(){return this.throwIfDisposed(),Kc(this)};ae().prototype.cosh=function(){return this.throwIfDisposed(),Wh(this)};ae().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Vh(this,e,t,n)};ae().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_A(this,e,t)};ae().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),lu(this,e,t,n,s,r,a)};ae().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),FA(this,e,t,n,s,r)};ae().prototype.divNoNan=function(e){return this.throwIfDisposed(),$A(this,e)};ae().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};ae().prototype.dot=function(e){return this.throwIfDisposed(),m3(this,e)};ae().prototype.elu=function(){return this.throwIfDisposed(),uu(this)};ae().prototype.equal=function(e){return this.throwIfDisposed(),os(this,e)};ae().prototype.erf=function(){return this.throwIfDisposed(),OA(this)};ae().prototype.exp=function(){return this.throwIfDisposed(),is(this)};ae().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};ae().prototype.expm1=function(){return this.throwIfDisposed(),PA(this)};ae().prototype.fft=function(){return this.throwIfDisposed(),ad(this)};ae().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};ae().prototype.floor=function(){return this.throwIfDisposed(),du(this)};ae().prototype.floorDiv=function(e){return this.throwIfDisposed(),Oh(this,e)};ae().prototype.gather=function(e,t){return this.throwIfDisposed(),oi(this,e,t)};ae().prototype.greaterEqual=function(e){return this.throwIfDisposed(),xa(this,e)};ae().prototype.greater=function(e){return this.throwIfDisposed(),Yn(this,e)};ae().prototype.ifft=function(){return this.throwIfDisposed(),gu(this)};ae().prototype.irfft=function(){return this.throwIfDisposed(),sf(this)};ae().prototype.isFinite=function(){return this.throwIfDisposed(),A3(this)};ae().prototype.isInf=function(){return this.throwIfDisposed(),y3(this)};ae().prototype.isNaN=function(){return this.throwIfDisposed(),zA(this)};ae().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Zc(this,e)};ae().prototype.lessEqual=function(e){return this.throwIfDisposed(),ba(this,e)};ae().prototype.less=function(e){return this.throwIfDisposed(),Gh(this,e)};ae().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),LA(this,e,t,n,s)};ae().prototype.logSigmoid=function(){return this.throwIfDisposed(),v3(this)};ae().prototype.logSoftmax=function(e){return this.throwIfDisposed(),jh(this,e)};ae().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),VA(this,e,t)};ae().prototype.log=function(){return this.throwIfDisposed(),ls(this)};ae().prototype.log1p=function(){return this.throwIfDisposed(),Yc(this)};ae().prototype.logicalAnd=function(e){return this.throwIfDisposed(),zs(this,e)};ae().prototype.logicalNot=function(){return this.throwIfDisposed(),Jc(this)};ae().prototype.logicalOr=function(e){return this.throwIfDisposed(),qh(this,e)};ae().prototype.logicalXor=function(e){return this.throwIfDisposed(),S3(this,e)};ae().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};ae().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Qc(this,e,t,n,s)};ae().prototype.max=function(e,t){return this.throwIfDisposed(),$n(this,e,t)};ae().prototype.maximum=function(e){return this.throwIfDisposed(),br(this,e)};ae().prototype.mean=function(e,t){return this.throwIfDisposed(),Ft(this,e,t)};ae().prototype.min=function(e,t){return this.throwIfDisposed(),ed(this,e,t)};ae().prototype.minimum=function(e){return this.throwIfDisposed(),pu(this,e)};ae().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),GA(this,e,t)};ae().prototype.mod=function(e){return this.throwIfDisposed(),HA(this,e)};ae().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ae().prototype.neg=function(){return this.throwIfDisposed(),Tt(this)};ae().prototype.norm=function(e,t,n){return this.throwIfDisposed(),lf(this,e,t,n)};ae().prototype.notEqual=function(e){return this.throwIfDisposed(),ui(this,e)};ae().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),nu(this,e,t,n)};ae().prototype.onesLike=function(){return this.throwIfDisposed(),cs(this)};ae().prototype.pad=function(e,t){return this.throwIfDisposed(),ks(this,e,t)};ae().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),N3(this,e,t,n,s,r)};ae().prototype.pow=function(e){return this.throwIfDisposed(),zr(this,e)};ae().prototype.prelu=function(e){return this.throwIfDisposed(),nd(this,e)};ae().prototype.prod=function(e,t){return this.throwIfDisposed(),Kh(this,e,t)};ae().prototype.reciprocal=function(){return this.throwIfDisposed(),XA(this)};ae().prototype.relu=function(){return this.throwIfDisposed(),Js(this)};ae().prototype.relu6=function(){return this.throwIfDisposed(),Zh(this)};ae().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};ae().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};ae().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),j3(this,e,t,n)};ae().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),q3(this,e,t,n)};ae().prototype.reverse=function(e){return this.throwIfDisposed(),ds(this,e)};ae().prototype.rfft=function(){return this.throwIfDisposed(),od(this)};ae().prototype.round=function(){return this.throwIfDisposed(),Yh(this)};ae().prototype.rsqrt=function(){return this.throwIfDisposed(),Jh(this)};ae().prototype.selu=function(){return this.throwIfDisposed(),Qh(this)};ae().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),KA(this,e,t,n,s,r,a)};ae().prototype.sigmoid=function(){return this.throwIfDisposed(),Kn(this)};ae().prototype.sign=function(){return this.throwIfDisposed(),ZA(this)};ae().prototype.sin=function(){return this.throwIfDisposed(),ef(this)};ae().prototype.sinh=function(){return this.throwIfDisposed(),tf(this)};ae().prototype.slice=function(e,t){return this.throwIfDisposed(),Fe(this,e,t)};ae().prototype.softmax=function(e){return this.throwIfDisposed(),ci(this,e)};ae().prototype.softplus=function(){return this.throwIfDisposed(),ii(this)};ae().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),td(this,e,t)};ae().prototype.split=function(e,t){return this.throwIfDisposed(),pn(this,e,t)};ae().prototype.sqrt=function(){return this.throwIfDisposed(),xn(this)};ae().prototype.square=function(){return this.throwIfDisposed(),ft(this)};ae().prototype.squaredDifference=function(e){return this.throwIfDisposed(),rf(this,e)};ae().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};ae().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ge?[this,e]:[this,...e];return bn(n,t)};ae().prototype.step=function(e){return this.throwIfDisposed(),Au(this,e)};ae().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),JA(this,e,t,n,s,r,a,o,i)};ae().prototype.sub=function(e){return this.throwIfDisposed(),be(this,e)};ae().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};ae().prototype.tan=function(){return this.throwIfDisposed(),QA(this)};ae().prototype.tanh=function(){return this.throwIfDisposed(),ri(this)};ae().prototype.tile=function(e){return this.throwIfDisposed(),ws(this,e)};ae().prototype.toBool=function(){return this.throwIfDisposed(),de(this,"bool")};ae().prototype.toFloat=function(){return this.throwIfDisposed(),de(this,"float32")};ae().prototype.toInt=function(){return this.throwIfDisposed(),de(this,"int32")};ae().prototype.topk=function(e,t){return this.throwIfDisposed(),e1(this,e,t)};ae().prototype.transpose=function(e){return this.throwIfDisposed(),Ke(this,e)};ae().prototype.unique=function(e){return this.throwIfDisposed(),of(this,e)};ae().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),t1(this,e,t)};ae().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};ae().prototype.where=function(e,t){return this.throwIfDisposed(),Tn(e,this,t)};ae().prototype.zerosLike=function(){return this.throwIfDisposed(),Ze(this)};var cv={};ze(cv,{maxNorm:()=>pM,minMaxNorm:()=>mM,nonNeg:()=>fM,unitNorm:()=>hM});var u1;function en(){return u1==null&&(u1=Ar().epsilon()),u1}function er(){return"channelsLast"}var Wr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Wr.prototype)}},tr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,tr.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Me=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Me.prototype)}},dv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dv.prototype)}};function hi(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function wr(e,t){if(!e)throw new dv(t)}function pv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Jn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Vr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function fi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ls={};function c1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function d1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>d1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:d1(s))}}}function ud(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ls)o=Ls[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ls?[i,l]=Ls.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Ls))c[h]=Ls[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d=Object.assign({},Ls);for(let h of Object.keys(n))Ls[h]=n[h];d1(a.config);let p=l(i,a.config,n,r);return Ls=Object.assign({},d),p}else{let c=Object.assign({},Ls);for(let d of Object.keys(n))Ls[d]=n[d];let u=new i(a.config);return Ls=Object.assign({},c),u}}}function uM(e,t){return e<t?-1:e>t?1:0}function bf(e,t){return-1*uM(e,t)}function wa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function cM(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function mi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function p1(e,t,n=0,s=1/0){return wr(n>=0),wr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function hn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>hn(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${hv(e)}.`)}function hv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>hv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function dM(e,t,n){let s=n!=null?n():w.now(),r;return(...o)=>{let i=n!=null?n():w.now();return i-s<t||(s=i,r=e(...o)),r}}function fv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function h1(e,t){return j(()=>xn(Se(B(e,e),t,!0)))}var cd=class extends ue.Serializable{getConfig(){return{}}},f1=class extends cd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=h1(e,this.axis),n=Zn(t,0,this.maxValue);return B(e,me(n,le(en(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};f1.className="MaxNorm";ue.registerClass(f1);var m1=class extends cd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>me(e,le(en(),h1(e,this.axis))))}getConfig(){return{axis:this.axis}}};m1.className="UnitNorm";ue.registerClass(m1);var g1=class extends cd{apply(e){return Js(e)}};g1.className="NonNeg";ue.registerClass(g1);var A1=class extends cd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=h1(e,this.axis),n=le(B(this.rate,Zn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,me(n,le(en(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};A1.className="MinMaxNorm";ue.registerClass(A1);var mv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function tn(e){return c1(e)}function gv(e,t={}){return ud(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function nn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in mv?mv[e]:e,config:{}};return gv(n)}else return e instanceof cd?e:gv(e)}function pM(e){return new f1(e)}function hM(e){return new m1(e)}function fM(){return new g1}function mM(e){return new A1(e)}var Av={};ze(Av,{constant:()=>zM,glorotNormal:()=>HM,glorotUniform:()=>GM,heNormal:()=>jM,heUniform:()=>qM,identity:()=>VM,leCunNormal:()=>XM,leCunUniform:()=>KM,ones:()=>MM,orthogonal:()=>ZM,randomNormal:()=>BM,randomUniform:()=>LM,truncatedNormal:()=>WM,varianceScaling:()=>UM,zeros:()=>PM});var gM=["channelsFirst","channelsLast"],AM=["nearest","bilinear"],yM=["valid","same","causal"],xM=["max","avg"],bM=["sum","mul","concat","ave"],xu=new Map;function Wt(e){mi(gM,"DataFormat",e)}function vM(e){mi(AM,"InterpolationFormat",e)}function Is(e){mi(yM,"PaddingMode",e)}function yv(e){mi(xM,"PoolMode",e)}var dd=[],xv="/";function gi(e,t){dd.push(e);try{let n=t();return dd.pop(),n}catch(n){throw dd.pop(),n}}function wM(){return dd.length===0?"":dd.join(xv)+xv}function bv(e){if(!wv(e))throw new Error("Not a valid tensor name: '"+e+"'");return wM()+e}function vv(e){if(!wv(e))throw new Error("Not a valid tensor name: '"+e+"'");xu.has(e)||xu.set(e,0);let t=xu.get(e);if(xu.set(e,xu.get(e)+1),t>0){let n=`${e}_${t}`;return xu.set(n,1),n}else return e}var kM=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function wv(e){return!!e.match(kM)}function IM(e){return e===parseInt(e.toString(),10)}function ka(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function bu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Ia(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function nr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function vf(e,t){return de(e,t)}function pd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function SM(e,t){return j(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=pd(e,1);return b1(n,[1,t,1])})}function CM(e){let t=[ka(e.shape)];return U(e,t)}function TM(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ka(e.shape,1)];return U(e,t)}function Ai(e,t,n){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return YA(e,[t,0],[n,e.shape[1]]);case 3:return mu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return rd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Fe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Fe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function y1(e,t,n){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return YA(e,[0,t],[e.shape[0],n]);case 3:return mu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return rd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wf(e,t,n,s){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:switch(s){case 1:return Ai(e,t,n);case 2:return y1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Ai(e,t,n);case 2:return mu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return y1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Ai(e,t,n);case 2:return rd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return rd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return y1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function x1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),gt(e,t)}function kv(e,t){switch(e.rank){case 1:return u3([e,t]);case 2:return iu([e,t],0);case 3:return c3([e,t],0);case 4:return d3([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function b1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ws(e,t)}function kf(e,t=0,n=1,s,r){return E3(e,t,n,s,r)}function kr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return va.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?v1(e.rank,s,er()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Ke(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return U(va.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?v1(e.rank,s,er()):null,activation:n}),d)}}function Iv(e,t,n){return j(()=>(Array.isArray(t)?t=jt(t,"int32"):t=de(t,"int32"),oi(e,t,n)))}function hd(e){return B(e,e)}function v1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function sr(e,t,n){return j(()=>(n==null&&(n=er()),Wt(n),le(e,v1(e.rank,t,n))))}function NM(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return uu(e)}function EM(e){return j(()=>me(e,le(Gt(e),1)))}function Sv(e,t,n,s){return j(()=>P3(e,t,n,s))}function RM(e){return j(()=>{let t=le(.5,B(.2,e));return Zn(t,0,1)})}function fd(e,t,n=!1){return n?e():t()}var DM=["fanIn","fanOut","fanAvg"],_M=["normal","uniform","truncatedNormal"];function FM(e){mi(DM,"FanMode",e)}function $M(e){mi(_M,"Distribution",e)}var Bs=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},w1=class extends Bs{apply(e,t){return Ht(e,t)}};w1.className="Zeros";ue.registerClass(w1);var If=class extends Bs{apply(e,t){return us(e,t)}};If.className="Ones";ue.registerClass(If);var k1=class extends Bs{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>B(Re(this.value),us(e,t)))}getConfig(){return{value:this.value}}};k1.className="Constant";ue.registerClass(k1);var I1=class extends Bs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return hu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};I1.className="RandomUniform";ue.registerClass(I1);var S1=class extends Bs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};S1.className="RandomNormal";ue.registerClass(S1);var C1=class extends Bs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return af(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};C1.className="TruncatedNormal";ue.registerClass(C1);var T1=class extends Bs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,MA(e[0]))})}getConfig(){return{gain:this.gain}}};T1.className="Identity";ue.registerClass(T1);function OM(e,t="channelsLast"){let n,s;if(Wt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ka(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=ka(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=ka(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Qn=class extends Bs{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,FM(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,$M(this.distribution),this.seed=e.seed}apply(e,t){let n=OM(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return af(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return hu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Qn.className="VarianceScaling";ue.registerClass(Qn);var Sf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Sf.className="GlorotUniform";ue.registerClass(Sf);var Cf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Cf.className="GlorotNormal";ue.registerClass(Cf);var Tf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Tf.className="HeNormal";ue.registerClass(Tf);var Nf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Nf.className="HeUniform";ue.registerClass(Nf);var Ef=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Ef.className="LeCunNormal";ue.registerClass(Ef);var Rf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Rf.className="LeCunNormal";ue.registerClass(Rf);var N1=class extends Bs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=kf(n,0,1,"float32"),r=K3.gramSchmidt(s);return e[0]>e[1]&&(r=Ke(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};N1.className="Orthogonal";ue.registerClass(N1);var Cv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Tv(e,t={}){return ud(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function $t(e){return c1(e)}function Nt(e){if(typeof e=="string"){let t=e in Cv?Cv[e]:e;if(t==="GlorotNormal")return new Cf;if(t==="GlorotUniform")return new Sf;if(t==="HeNormal")return new Tf;if(t==="HeUniform")return new Nf;if(t==="LeCunNormal")return new Ef;if(t==="LeCunUniform")return new Rf;{let n={};return n.className=t,n.config={},Tv(n)}}else return e instanceof Bs?e:Tv(e)}function PM(){return new w1}function MM(){return new If}function zM(e){return new k1(e)}function LM(e){return new I1(e)}function BM(e){return new S1(e)}function WM(e){return new C1(e)}function VM(e){return new T1(e)}function UM(e){return new Qn(e)}function GM(e){return new Sf(e)}function HM(e){return new Cf(e)}function jM(e){return new Tf(e)}function qM(e){return new Nf(e)}function XM(e){return new Ef(e)}function KM(e){return new Rf(e)}function ZM(e){return new N1(e)}var Nv={};ze(Nv,{Layer:()=>Je,RNN:()=>Cr,RNNCell:()=>kd,activation:()=>_L,add:()=>WL,alphaDropout:()=>IB,average:()=>VL,averagePooling1d:()=>jy,averagePooling2d:()=>qy,averagePooling3d:()=>Xy,avgPool1d:()=>YL,avgPool2d:()=>QL,avgPool3d:()=>tB,avgPooling1d:()=>JL,avgPooling2d:()=>eB,avgPooling3d:()=>nB,batchNormalization:()=>XL,bidirectional:()=>gB,concatenate:()=>UL,conv1d:()=>kL,conv2d:()=>IL,conv2dTranspose:()=>SL,conv3d:()=>CL,conv3dTranspose:()=>TL,convLstm2d:()=>pB,convLstm2dCell:()=>hB,cropping2D:()=>EL,dense:()=>FL,depthwiseConv2d:()=>DL,dot:()=>qL,dropout:()=>$L,elu:()=>AL,embedding:()=>BL,flatten:()=>PL,gaussianDropout:()=>kB,gaussianNoise:()=>wB,globalAveragePooling1d:()=>sB,globalAveragePooling2d:()=>rB,globalMaxPool1d:()=>yB,globalMaxPool2d:()=>xB,globalMaxPooling1d:()=>Mw,globalMaxPooling2d:()=>zw,gru:()=>oB,gruCell:()=>iB,input:()=>iw,inputLayer:()=>gL,layerNormalization:()=>KL,leakyReLU:()=>xL,lstm:()=>lB,lstmCell:()=>uB,masking:()=>SB,maxPool1d:()=>bB,maxPool2d:()=>vB,maxPooling1d:()=>Lw,maxPooling2d:()=>Bw,maxPooling3d:()=>aB,maximum:()=>GL,minimum:()=>HL,multiply:()=>jL,permute:()=>LL,prelu:()=>bL,reLU:()=>yL,repeatVector:()=>ML,reshape:()=>zL,rnn:()=>fB,separableConv2d:()=>NL,simpleRNN:()=>cB,simpleRNNCell:()=>dB,softmax:()=>vL,spatialDropout1d:()=>OL,stackedRNNCells:()=>mB,thresholdedReLU:()=>wL,timeDistributed:()=>AB,upSampling2d:()=>RL,zeroPadding2d:()=>ZL});var YM=0;function Ev(){return YM++}var Df={};function _f(e=""){return e in Df||(Df[e]=0),Df[e]+=1,e+Df[e].toString()}function E1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ff(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function dt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function $f(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Rv="Variable",Dv=class{constructor(e,t="float32",n=Rv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ev(),n=n==null?Rv:n,this.originalName=bv(n),this.name=vv(this.originalName),this.trainable_=s,this.constraint=r,this.val=D3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),JM(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function JM(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function R1(e){return e.map(t=>t.read())}function D1(e){e.forEach(t=>{t[0].write(t[1])})}var qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},rr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Ev(),a!=null&&(this.originalName=bv(a),this.name=vv(this.originalName)),this.rank=t.length}},QM=0,Of=class{constructor(e,t){this.callArgs=t,this.id=QM++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},ez=0,Je=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=ez++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Vr(n)+"_"+_f(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new tr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} is not connected, no input to return.`);return Jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),s=!0;for(let a of n)if(!(a instanceof rr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof rr){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return gi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of vt(e))a.push(o.shape);this.build(Jn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=vt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Jn(i),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=tz(e),o=this.computeOutputShape(a),i,l=nz(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new rr(l,c,this,vt(e),t,this.name,u)):i=new rr(l,o,this,vt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Wr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Wr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new tr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return $f(this.weights)}build(e){this.built=!0}getWeights(e=!1){return R1(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=R1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}D1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Nt("zeros"));let l=s.apply(t,n),c=new Dv(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=vt(e);t=vt(t),n=vt(n),s=vt(s),r=Ff(r),a=Ff(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Of({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function tz(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return Jn(t)}function nz(e){return"float32"}function _v(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=_v(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var vu=class extends Je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:_f("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new rr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};vu.className="InputLayer";ue.registerClass(vu);function Fv(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new vu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Sa(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Y(s)}}function $v(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Ov;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Ov||(Ov={}));var sz=125,wu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Pv=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},rz=class extends wu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=j(()=>le(this.totals[s],B(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=B(me(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),dn(t[n])}))}},Mv=class extends wu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},zv=class extends wu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Z3,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=sz),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=dM(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Sa(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Sa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Sa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Sa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Sa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Sa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Sa(e),await this.trainEnd(e))}};function Lv(e,t){return e==null&&(e={}),e instanceof wu?[e]:Array.isArray(e)&&e[0]instanceof wu?e:vt(e).map(s=>new zv(s,t))}var Ws=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ws.checkForDuplicate(t),Ws.constructors[e]==null&&(Ws.constructors[e]=[]),Ws.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ws.constructors)Ws.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){Ws.constructors={}}static createCallbacks(e){let t=[];for(let n in Ws.constructors){let s=+n;e>=s&&t.push(...Ws.constructors[s])}return t.map(n=>new n)}};Ws.constructors={};function Bv(e,t,n,s,r,a,o,i,l){let c=new Mv,u=[new rz,...Ws.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Pv(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function ar(e,t={},n=!1){return ud(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Pf(e,t){return j(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=Se(hd(e),t,!0),s=cu(n.shape,en()),r=xn(br(n,s));return me(e,r)})}function yi(e,t){return j(()=>Ft(hd(be(t,e)),-1))}function Mf(e,t){return j(()=>Ft(Gt(be(t,e)),-1))}function ku(e,t){return j(()=>{let n=be(e,t),s=Zn(Gt(e),en(),Number.MAX_VALUE),r=Gt(me(n,s));return B(100,Ft(r,-1))})}function az(e,t){return j(()=>{let n=Zn(t,en(),Number.MAX_VALUE),s=ls(le(1,n)),r=Zn(e,en(),Number.MAX_VALUE),a=ls(le(1,r));return Ft(hd(be(s,a)),-1)})}function oz(e,t){return j(()=>{let n=br(0,be(1,B(e,t)));return Ft(hd(n),-1)})}function iz(e,t){return j(()=>{let n=br(0,be(1,B(e,t)));return Ft(n,-1)})}function lz(e,t){return j(()=>{let n=Se(B(e,t),-1),s=$n(B(be(1,e),t),-1);return br(0,le(1,be(s,n)))})}function uz(e,t){return j(()=>{let n=Math.log(2),s=be(t,e),r=be(le(s,ii(B(-2,s))),n);return Ft(r,-1)})}function md(e,t,n=!1){return j(()=>{if(n)t=ci(t);else{let s=Se(t,t.shape.length-1,!0);t=me(t,s)}return t=Zn(t,en(),1-en()),Tt(Se(B(de(e,"float32"),ls(t)),t.shape.length-1))})}function zf(e,t,n=!1){return j(()=>{let s=de(du(CM(e)),"int32");t=Zn(t,en(),1-en());let r=t.shape,a=U(nu(s,r[r.length-1]),r);return md(a,t,n)})}function cz(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=Js(t),s=Tt(Gt(t));return le(be(n,B(t,e)),Yc(is(s)))})}function Lf(e,t){return j(()=>{let n;return n=Zn(t,en(),1-en()),n=ls(me(n,be(1,n))),Ft(cz(e,n),-1)})}function dz(e,t){return j(()=>{let n=Zn(e,en(),1),s=Zn(t,en(),1);return Se(B(e,ls(me(n,s))),-1)})}function pz(e,t){return j(()=>{let n=ls(le(en(),t));return Ft(be(t,B(e,n)),-1)})}function _1(e,t){return j(()=>{let n=Pf(e,-1),s=Pf(t,-1),r=B(n,s);return Tt(Se(r,-1))})}var Bf={meanSquaredError:yi,meanAbsoluteError:Mf,meanAbsolutePercentageError:ku,meanSquaredLogarithmicError:az,squaredHinge:oz,hinge:iz,categoricalHinge:lz,logcosh:uz,categoricalCrossentropy:md,sparseCategoricalCrossentropy:zf,binaryCrossentropy:Lf,kullbackLeiblerDivergence:dz,poisson:pz,cosineProximity:_1};function F1(e){if(typeof e=="string"){if(e in Bf)return Bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function $1(e,t){return j(()=>{let n=B(.5,cs(t)),s=vf(Yn(t,n),e.dtype);return Ft(os(e,s),-1)})}function O1(e,t){return j(()=>vf(os(vs(e,-1),vs(t,-1)),"float32"))}function Wv(e,t){return j(()=>de(Se(zs(os(e,1),os(t,1))),"float32"))}function hz(e,t){return j(()=>de(Se(zs(os(e,1),os(t,0))),"float32"))}function fz(e,t){return j(()=>de(Se(zs(os(e,0),os(t,1))),"float32"))}function Vv(e,t){return j(()=>{let n=Wv(e,t),s=fz(e,t),r=le(n,s);return de(Tn(Yn(r,0),me(n,r),0),"float32")})}function mz(e,t){return j(()=>{let n=Wv(e,t),s=hz(e,t),r=le(n,s);return de(Tn(Yn(r,0),me(n,r),0),"float32")})}function Uv(e,t){return Lf(e,t)}function Gv(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=vs(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(os(e,t),"float32")}var gz=yi,Az=yi,yz=Mf,xz=Mf,bz=ku,vz=ku,P1=md,wz=_1,Hv=zf,Wf={binaryAccuracy:$1,categoricalAccuracy:O1,precision:Vv,categoricalCrossentropy:P1,sparseCategoricalCrossentropy:Hv,mse:gz,MSE:Az,mae:yz,MAE:xz,mape:bz,MAPE:vz,cosine:wz};function kz(e){if(typeof e=="string"&&e in Wf)return Wf[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Vf(e){if(wr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Bf))if(Bf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wf))if(Wf[n]===e){t=n;break}return t!==void 0?t:e.name}}function Iz(e){let t={Adagrad:()=>pi.adagrad(.01),Adadelta:()=>pi.adadelta(1,.95,en()),Adam:()=>pi.adam(.001,.9,.999,en()),Adamax:()=>pi.adamax(.002,.9,.999,en(),0),RMSProp:()=>pi.rmsprop(.001,.9,0,en()),SGD:()=>pi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var jv=1*1024*1024;function qv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!M1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>jv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${jv}.`)}}function M1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!M1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!M1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Sz(e,t,n,s=console.log){let r=Tz(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),Uf(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?Nz(i[u],n,s):Ez(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Cz(e),c=$f(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function Cz(e){let t;return e.collectedTrainableWeights!=null?t=$f(e.collectedTrainableWeights):t=$f(e.trainableWeights),t}function Tz(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Uf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function Nz(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Uf(o,t,n)}function Ez(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];Uf(c,t,s);for(let u=1;u<a.length;++u)Uf(["","","",a[u]],t,s)}function Xv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function gd(e,t){if(e===null)return null;if(typeof e=="string")return fi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xv(t,r,a)?n.push(a):n.push(gd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=fi(s);n[a]=gd(r,a)}}return n}}function z1(e,t){if(e==null)return null;if(typeof e=="string")return Vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xv(t,r,a)?n.push(a):n.push(z1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Vr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=z1(r,s)}return n}}var L1="3.10.0";function Rz(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var xi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof xi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Rz(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof rr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof rr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Y(this.id2Mask)}},B1={},Kv={};function Ad(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(B1[u]==null){let f=Dz(o,t);d=f.sorted,p=f.recipientCounts,B1[u]=d,Kv[u]=p}d=B1[u],p={},r||Object.assign(p,Kv[u]);let h=new xi(t);for(let f=0;f<d.length;++f){if(s!=null){let D=Fh().numTensors;D>s.maxNumTensors&&(s.maxNumTensors=D),D<s.minNumTensors&&(s.minNumTensors=D)}let m=d[f],g=m.sourceLayer;if(g instanceof vu)continue;let A=[],y=[],x=[],b=!1;for(let D of m.inputs){let P=h.getValue(D),E=h.getMask(D);A.push(P),y.push(E),E!=null&&(b=!0),r||(p[D.name]--,p[D.name]===0&&!t.hasKey(D)&&i.indexOf(D.name)===-1&&!P.isDisposed&&D.sourceLayer.stateful!==!0&&x.push(P))}b&&(n=n||{},n.mask=y[0]);let v=vt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let C=Fz(m),N=Array.isArray(C)?C:[C];for(let D=0;D<N.length;++D){h.hasKey(N[D])||h.add(N[D],v[D],Array.isArray(k)?k[0]:k);let P=i.indexOf(N[D].name);P!==-1&&(l[P]=v[D])}r||Y(x)}return h.disposeMasks(),a?l:l[0]}function Dz(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Zv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Zv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:_z(s)}}function _z(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Zv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function Fz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ir=class extends Je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=_f(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],wa(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);wa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;wr(x===0,"input layer has >1 nodes"),wr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof vu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let C=b.inboundNodes[v];if(x.indexOf(C)!==-1)throw new tr(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(Ir.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(C)===-1&&x.push(C);let N=C.inboundLayers.length;for(let D=0;D<N;D++){let P=C.inputTensors[D],E=C.inboundLayers[D],F=C.nodeIndices[D],T=C.tensorIndices[D];i(P,y,x,E,F,T)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);o.push(C)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],k=A.nodeIndices[b],C=v.inboundNodes[k],N=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,N),n[C.id]=C}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(bf);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof Ir&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(bf);let f=this.inputs.slice(),m=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new tr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new tr(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}D1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${L1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=z1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=vt(e);let n=new xi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Ad(this.outputs,n,t)})}computeMask(e,t){return j(()=>{e=vt(e);let n;return t==null?n=hi(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ff(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(bf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];u.push(x)}let d=c.computeOutputShape(Jn(u)),p=Ff(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];wr(i in n),r.push(n[i])}return Jn(r)}runInternalGraph(e,t){t==null&&(t=hi(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(bf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,y;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),A=vt(u.call(x,f)),y=vt(u.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),A=vt(u.call(m,f)),y=vt(u.computeMask(m,g));if(u.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=A[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){wr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Ir?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Ir.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return j(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Ir.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Ir.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=Ir.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let C=r[b];if(C.inboundNodes.length<=v){o(m,g);return}let N=C.inboundNodes[v];A.push(N.outputTensors[k])}A.length>0&&m.apply(Jn(A),y)}function l(m){let g=m.name,A=ar(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!cM(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],y=m[2];wr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];wr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function $z(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Yv(e,t){return $z(e,t,"classWeight")}async function Jv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return Zs(e);if(e.shape.length===2){if(e.shape[1]>1)return vs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Y(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),jt(o,"float32")}else return null}function Oz(e,t){return B(e,t)}var Pz=32;function Qv(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=ew("input",e.inputNames,n),o=ew("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function ew(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function Mz(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function zz(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(tw(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Mz(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Lv(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=Bv(u,d,n.epochs,null,null,Lz(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=Qv(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await p.onBatchBegin(y,k);let C=[];if(n.classWeight!=null){let P=Yv(n.classWeight,e.outputNames);for(let E=0;E<P.length;++E)C.push(await Jv(v[E],null,P[E]))}let N=b.concat(v).concat(C),D=i(N);Y(N);for(let P=0;P<l.length;++P){let E=l[P],F=D[P];k[E]=F,dn(F)}await p.onBatchEnd(y,k),$v(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;tw(n.validationData)?b=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=vt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?Pz:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Lz(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function tw(e){return typeof e.iterator=="function"}function Bz(e){return typeof e.next=="function"}async function Wz(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=Bz(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=j(()=>{if(c.value){let{xs:u,ys:d}=Qv(e,c.value),p=u.concat(d),h=j(()=>r(p));if(Y(p),l===0)for(let m=0;m<h.length;++m)a.push(Re(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=j(()=>le(a[m],B(f,g))),l>0&&Y(A)}Y(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=me(a[c],i),Y(u)}return Jn(a)}function W1(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function yd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Ai(s,t,n-t)):Ai(e,t,n-t)}function V1(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>V1(n,t)):Iv(e,t.dtype==="int32"?t:de(t,"int32")))}function U1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function Vz(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=nr(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=Bv(i,o,a,p,g,h,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let v={};if(h!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Me("batch shuffling is not implemneted yet");u&&w.shuffle(A);let k=jt(A),C=U1(g,r);for(let N=0;N<C.length;++N){let D={};if(await y.onBatchBegin(N,D),j(()=>{let P=C[N][0],E=C[N][1],F=Ai(k,P,E-P);D.batch=N,D.size=E-P;let T=V1(n,F),M=t(T);for(let G=0;G<s.length;++G){let H=s[G],z=M[G];D[H]=z,dn(z)}if(N===C.length-1&&m){let G=e.testLoop(l,c,r);for(let H=0;H<s.length;++H){let z=s[H],X=G[H];dn(X),v["val_"+z]=X}}}),await y.onBatchEnd(N,D),$v(D),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function Uz(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;W1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let C=!0,N=await e.standardizeUserData(o,i,null,null,C,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let C=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=yd(r,C,N),r=yd(r,0,C),c=yd(a,C,N),a=yd(a,0,C),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(C=>"val_"+C))):(x=null,m=[],b=y.slice());let v=Lv(s.callbacks,s.yieldEvery);return await Vz(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,bi(r,t),bi(a,n),bi(l,o),bi(c,i),u!=null&&Y(u)}}function nw(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(pd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function bi(e,t){if(e==null)return;let n=[];if(t instanceof Ge)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function Gz(e){return e instanceof Ge}function G1(e){return Array.isArray(e)}function sw(e){return!Gz(e)&&!G1(e)}function rw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(G1(e)&&e.length>0)o=!0;else if(sw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(sw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(G1(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=nw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function Hz(e,t,n){let s=wa(e.map(a=>a.shape[0]));s.sort();let r=wa(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function jz(e,t,n){let s=[yi,Lf,md];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===md&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function aw(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function qz(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var Xz="layers-model",Ur=class extends Ir{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Sz(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Iz(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Br))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(F1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>F1(o))}else{let a=F1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],gi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=qz(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};gi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Lf?["accuracy","acc"].indexOf(h)!==-1?d=$1:["crossentropy","ce"].indexOf(h)!==-1&&(d=Uv):this.lossFunctions[a]===zf?["accuracy","acc"].indexOf(h)!==-1?d=Gv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Hv):["accuracy","acc"].indexOf(h)!==-1?d=O1:["crossentropy","ce"].indexOf(h)!==-1&&(d=P1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=kz(h),u=c+Vf(h);let f;gi(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;W1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Jn(l)}finally{bi(a[0],e),bi(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Wz(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new xi;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Ad(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=hi(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let r=U1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)j(()=>{let l=r[o][0],c=r[o][1],u=yd(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new xi(d);return Ad(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return Jn(a.map(o=>gt(o,0)))})}predict(e,t={}){let n=nw(e);aw(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return W1(s),this.predictLoop(n,s)}finally{bi(n,e)}}predictOnBatch(e){aw(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new tr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===zf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=rw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rw(t,this.feedOutputNames,r,!1,"target"),Hz(e,t,null),jz(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Yv(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Jv(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return j(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Me("Verbose mode is not implemented yet.");if(r!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let i=U1(a,n),l=jt(nr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=Ai(l,u,d-u),h=V1(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Re(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=le(o[m],B(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=me(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;pv(e,s)>1&&(r+=`_${pv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new xi(u),p=Ad(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=Oz(g,r[f]));let A=Ft(g);t.push(A),f===0?h=g:h=le(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Ft(g(s[A],p[A]))}dn(m),a.push(m)}return h=Ft(h),this.calculateLosses().forEach(f=>{h=le(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new xi(a),i=Ad(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Ft(c(r[l],i[l]));l===0?n=u:n=le(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Ft(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return Uz(this,e,t,n)}async fitDataset(e,t){return zz(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return Y(o),Jn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Fh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Fh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Vr(Vf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Vr(Vf(e)));{let e={};for(let t in this.metrics)e[t]=Vr(Vf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=gd(e.optimizer_config),n=ar(t),s;if(typeof e.loss=="string")s=fi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>fi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=fi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>fi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=fi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Xn.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Xn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:Xz,generatedBy:`TensorFlow.js tfjs-layers v${L1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await Xn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=Xn.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;qv(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){qv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ur.className="Model";ue.registerClass(Ur);var ow=class extends Ur{};ow.className="Functional";ue.registerClass(ow);async function Kz(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=gd(n),r=ar(s,t);if(e.weightsManifest!=null){let a=await Xn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Y(a)}return r}async function Zz(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Xn.getLoadHandlers(e,t);if(n.length===0)n.push(Xn.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Yz(e,void 0,t)}async function Yz(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=ar(gd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Jz(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),Y(c),Y(u.map(d=>d.tensor))}return i}function Jz(e,t){let n=Xn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Iu=class extends Ur{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_f("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Iu||e instanceof Ur,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Fv({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=_v(this.outputs[0])}this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:hi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(dt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ur({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Iu))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=ar(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Iu.className="Sequential";ue.registerClass(Iu);function Qz(e){return new Ur(e)}function eL(e){return new Iu(e)}function tL(e,t){return t==null&&(t={}),Zz(e,t)}function iw(e){return Fv(e)}function nL(e,t){Ws.registerCallbackConstructor(e,t)}var es=class extends ue.Serializable{getConfig(){return{}}},lw=class extends es{apply(e,t=1){return NM(e,t)}};lw.className="elu";ue.registerClass(lw);var uw=class extends es{apply(e){return Qh(e)}};uw.className="selu";ue.registerClass(uw);var cw=class extends es{apply(e){return Js(e)}};cw.className="relu";ue.registerClass(cw);var dw=class extends es{apply(e){return j(()=>pu(6,Js(e)))}};dw.className="relu6";ue.registerClass(dw);var pw=class extends es{apply(e){return e}};pw.className="linear";ue.registerClass(pw);var hw=class extends es{apply(e){return Kn(e)}};hw.className="sigmoid";ue.registerClass(hw);var fw=class extends es{apply(e){return RM(e)}};fw.className="hardSigmoid";ue.registerClass(fw);var mw=class extends es{apply(e){return ii(e)}};mw.className="softplus";ue.registerClass(mw);var gw=class extends es{apply(e){return EM(e)}};gw.className="softsign";ue.registerClass(gw);var Aw=class extends es{apply(e){return ri(e)}};Aw.className="tanh";ue.registerClass(Aw);var H1=class extends es{apply(e,t=-1){return ci(e,t)}};H1.className="softmax";ue.registerClass(H1);var yw=class extends es{apply(e,t=-1){return jh(e,t)}};yw.className="logSoftmax";ue.registerClass(yw);var xw=class extends es{apply(e,t=1){return j(()=>B(Kn(B(e,t)),e))}};xw.className="swish";ue.registerClass(xw);var bw=class extends es{apply(e){return j(()=>B(e,ri(ii(e))))}};bw.className="mish";ue.registerClass(bw);function Ca(e){return e.getClassName()}function j1(e,t={}){return ud(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Ta(e){if(e==null){let t={};return t.className="linear",t.config={},j1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},j1(t)}else return e instanceof es?e:j1(e)}function q1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var vw=class extends ue.Serializable{},xd=class extends vw{constructor(e){super();q1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Ht([1]);return this.hasL1&&(t=le(t,Se(B(this.l1,Gt(e))))),this.hasL2&&(t=le(t,Se(B(this.l2,hd(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};xd.className="L1L2";ue.registerClass(xd);function sL(e){return q1(e),new xd({l1:e!=null?e.l1:null,l2:0})}function rL(e){return q1(e),new xd({l2:e!=null?e.l2:null,l1:0})}var ww={l1l2:"L1L2"};function At(e){return c1(e)}function kw(e,t={}){return ud(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Et(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ww?ww[e]:e,config:{}};return kw(n)}else return e instanceof vw?e:kw(e)}var X1=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Js(e);return this.maxValue!=null&&(n=Zn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};X1.className="ReLU";ue.registerClass(X1);var K1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Zc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};K1.className="LeakyReLU";ue.registerClass(K1);var Z1=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Et(e.alphaRegularizer),this.alphaConstraint=nn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=dt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new qt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),nd(e,this.alpha.read())}getConfig(){let e={alphaInitializer:$t(this.alphaInitializer),alphaRegularizer:At(this.alphaRegularizer),alphaConstraint:tn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Z1.className="PReLU";ue.registerClass(Z1);var Y1=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return uu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Y1.className="ELU";ue.registerClass(Y1);var J1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return B(n,de(Yn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};J1.className="ThresholdedReLU";ue.registerClass(J1);var Q1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new H1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Q1.className="Softmax";ue.registerClass(Q1);function Su(e,t,n){if(typeof e=="number")return hi(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!IM(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function or(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Sr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Ia([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function ey(e,t){return j(()=>(Wt(t),t==="channelsFirst"?Ke(e,[0,2,3,1]):e))}function Iw(e,t){return j(()=>(Wt(t),t==="channelsFirst"?Ke(e,[0,2,3,4,1]):e))}function aL(e,t,n,s=1,r="valid",a,o=1){return j(()=>{if(a==null&&(a=er()),Wt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ke(e,[0,2,1])),r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Lh(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=sr(i,n)),i})}function Sw(e,t,n,s=[1,1],r="valid",a,o,i=null){return j(()=>{if(a==null&&(a=er()),Wt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=ey(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=va.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ke(l,[0,3,1,2])),l})}function oL(e,t,n,s=[1,1,1],r="valid",a,o){return j(()=>{if(a==null&&(a=er()),Wt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Iw(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=DA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=sr(i,n)),a==="channelsFirst"&&(i=Ke(i,[0,4,1,2,3])),i})}var ty=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ty.verifyArgs(t),this.rank=e,hn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Su(t.kernelSize,e,"kernelSize"),this.strides=Su(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Is(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Wt(this.dataFormat),this.activation=Ta(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=nn(t.biasConstraint),this.biasRegularizer=Et(t.biasRegularizer),this.activityRegularizer=Et(t.activityRegularizer),this.dilationRate=Su(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(wr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!p1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ca(this.activation),useBias:this.useBias,biasInitializer:$t(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:tn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},bd=class extends ty{constructor(e,t){super(e,t);this.kernel=null,bd.verifyArgs(t),this.filters=t.filters,hn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=nn(t.kernelConstraint),this.kernelRegularizer=Et(t.kernelRegularizer)}build(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n,s=this.bias==null?null:this.bias.read(),r=fv(this.activation.getClassName());if(r!=null&&this.rank===2)n=Sw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=aL(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Sw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=oL(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=dt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=or(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:$t(this.kernelInitializer),kernelRegularizer:At(this.kernelRegularizer),kernelConstraint:tn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},vd=class extends bd{constructor(e){super(2,e);vd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};vd.className="Conv2D";ue.registerClass(vd);var wd=class extends bd{constructor(e){super(3,e);wd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};wd.className="Conv3D";ue.registerClass(wd);var ny=class extends vd{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Sr(i,d,c,this.padding),f=Sr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,1]));let g=Bh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ke(g,[0,3,1,2])),this.bias!=null&&(g=sr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Sr(t[s],i,a,this.padding),t[r]=Sr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ny.className="Conv2DTranspose";ue.registerClass(ny);var sy=class extends wd{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Sr(l,f,d,this.padding),y=Sr(c,m,p,this.padding),x=Sr(u,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,4,1]));let v=h3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ke(v,[0,4,1,2,3])),this.bias!==null&&(v=sr(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Sr(t[s],c,o,this.padding),t[r]=Sr(t[r],u,i,this.padding),t[a]=Sr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};sy.className="Conv3DTranspose";ue.registerClass(sy);var Cw=class extends bd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Et(t.depthwiseRegularizer),this.depthwiseConstraint=nn(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Et(t.pointwiseRegularizer),this.pointwiseConstraint=nn(t.pointwiseConstraint)}build(e){if(e=dt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new qt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ke(e,[0,2,3,1])),n=KA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ke(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=$t(this.depthwiseInitializer),e.pointwiseInitializer=$t(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=tn(this.depthwiseConstraint),e.pointwiseConstraint=tn(this.pointwiseConstraint),e}};Cw.className="SeparableConv";var ry=class extends Cw{constructor(e){super(2,e)}};ry.className="SeparableConv2D";ue.registerClass(ry);var Gf=class extends bd{constructor(e){super(1,e);Gf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Gf.className="Conv1D";ue.registerClass(Gf);var ay=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ay.className="Cropping2D";ue.registerClass(ay);var oy=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,vM(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Le(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ke(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return Ke(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};oy.className="UpSampling2D";ue.registerClass(oy);function iL(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=er()),Wt(r);let o=ey(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=lu(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}var iy=class extends ty{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=nn(e.depthwiseConstraint),this.depthwiseRegularizer=Et(e.depthwiseRegularizer)}build(e){if(e=dt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Le(e);let n=iL(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=or(t,this.kernelSize[0],this.padding,this.strides[0]),a=or(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=$t(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=tn(this.depthwiseRegularizer),e}};iy.className="DepthwiseConv2D";ue.registerClass(iy);function Tw(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Nw(e,t,n,s=!1,r,a,o=!1,i=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(nr(2,l));if(t=Ke(t,c),a!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=Ke(r,c)),s&&(t=ds(t,0),r!=null&&(r=ds(r,0)));let u=[],d,p=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let A=0;A<h;++A){let y=f[A],x=j(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=j(()=>{let v=m[A],k=be(cs(v),v),C=le(B(x[0],v),B(p[0],k)),N=p.map((D,P)=>le(B(x[1][P],v),B(D,k)));return{output:C,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=bn(u,1)),[d,g,p]})}var Cr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new qf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return nr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){E1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");E1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new qt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Me("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new qt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_=[Ht([n,this.cell.stateSize])];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_[0]=Ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>dn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Tw(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new qt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof rr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Nw((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return j(()=>{let t=Ht(e.shape);return t=Se(t,[1,2]),t=pd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?b1(t,[1,n]):t):this.cell.stateSize>1?[b1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Cr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=ar(s,n);return new e(Object.assign(t,{cell:r}))}};Cr.className="RNN";ue.registerClass(Cr);var kd=class extends Je{},Hf=class extends kd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=bu([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=kr(B(e,a),this.kernel.read()):r=kr(e,this.kernel.read()),this.bias!=null&&(r=sr(r,this.bias.read())),o!=null&&(n=B(n,o));let i=le(r,kr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Hf.className="SimpleRNNCell";ue.registerClass(Hf);var ly=class extends Cr{constructor(e){e.cell=new Hf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};ly.className="SimpleRNN";ue.registerClass(ly);var jf=class extends kd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=bu([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let c=kr(e,this.kernel.read());this.useBias&&(c=sr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=pn(u,[2*this.units,this.units],u.rank-1),h=kr(s,d),[f,m,g]=pn(c,3,c.rank-1),[A,y]=pn(h,2,h.rank-1);o=this.recurrentActivation.apply(le(f,A)),i=this.recurrentActivation.apply(le(m,y));let x=kr(B(i,s),p);l=this.activation.apply(le(g,x));let b=le(B(o,s),B(le(1,Tt(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),recurrentActivation:Ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};jf.className="GRUCell";ue.registerClass(jf);var uy=class extends Cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new jf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};uy.className="GRU";ue.registerClass(uy);var Id=class extends kd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=bu([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=dt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Bs{apply(i,l){let c=r.apply([a]),u=new If().apply([a]),d=r.apply([a*2]);return kv(kv(c,u),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=B(e,a[0]));let d=kr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,o[0])),d=le(d,kr(s,this.recurrentKernel.read())),this.useBias&&(d=sr(d,this.bias.read()));let[p,h,f,m]=pn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=le(B(l,r),B(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=B(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),recurrentActivation:Ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Id.className="LSTMCell";ue.registerClass(Id);var cy=class extends Cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Id(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};cy.className="LSTM";ue.registerClass(cy);var qf=class extends kd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){E1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{gi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(ar(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return R1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}D1(t)}};qf.className="StackedRNNCells";ue.registerClass(qf);function Na(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Sv(t(),n),i=()=>fd(o,t,s);return!r||r<=1?dn(i().clone()):Array(r).fill(void 0).map(i).map(c=>dn(c.clone()))}var lL=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},Ew=class extends Cr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new qt({ndim:5})]}call(e,t){return j(()=>{if(this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ht(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_=[Ht(r)];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_[0]=Ht(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>dn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=or(l,s[0],r,a[0],o[0]),d=or(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};Ew.className="ConvRNN2D";var Xf=class extends Id{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,hn(this.filters,"filters"),this.kernelSize=Su(n,2,"kernelSize"),this.kernelSize.forEach(i=>hn(i,"kernelSize")),this.strides=Su(s||1,2,"strides"),this.strides.forEach(i=>hn(i,"strides")),this.padding=r||"valid",Is(this.padding),this.dataFormat=a||"channelsLast",Wt(this.dataFormat),this.dilationRate=Su(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>hn(i,"dilationRate"))}build(e){var t;e=dt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Bs{apply(d,p){let h=l.apply([c]),f=us([c]),m=l.apply([c*2]);return x1([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Q,Z,te)=>!Z||!Z[te]?Q:B(Z[te],Q),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,v,k]=pn(this.kernel.read(),o,y),[C,N,D,P]=this.useBias?pn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,C,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,v,D,this.padding),p=this.inputConv(p,k,P,this.padding);let[E,F,T,M]=pn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,F),g=this.recurrentConv(g,T),A=this.recurrentConv(A,M);let G=this.recurrentActivation.apply(le(c,f)),H=this.recurrentActivation.apply(le(u,m)),z=le(B(H,a),B(G,this.activation.apply(le(d,g)))),X=B(this.recurrentActivation.apply(le(p,A)),this.activation.apply(z));return[X,X,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=lL(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Mr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?sr(r,n,this.dataFormat):r}recurrentConv(e,t){return Mr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Xf.className="ConvLSTM2DCell";ue.registerClass(Xf);var dy=class extends Ew{constructor(e){let t=new Xf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};dy.className="ConvLSTM2D";ue.registerClass(dy);var Kf=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return fd(()=>Sv(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Kf.className="Dropout";ue.registerClass(Kf);var py=class extends Kf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};py.className="SpatialDropout1D";ue.registerClass(py);var hy=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=nn(e.kernelConstraint),this.biasConstraint=nn(e.biasConstraint),this.kernelRegularizer=Et(e.kernelRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=dt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=dt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=fv(this.activation.getClassName()),r;return s!=null?r=kr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=kr(n,this.kernel.read()),this.bias!=null&&(r=sr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Ca(this.activation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),biasConstraint:tn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hy.className="Dense";ue.registerClass(hy);var fy=class extends Je{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=dt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ka(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ke(n,s)}return TM(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};fy.className="Flatten";ue.registerClass(fy);var my=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ta(e.activation)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ca(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};my.className="Activation";ue.registerClass(my);var gy=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Le(e),SM(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};gy.className="RepeatVector";ue.registerClass(gy);var Ay=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=ka(e);if(a!==null){if(r===0||o%r!=0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Ay.className="Reshape";ue.registerClass(Ay);var yy=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=nr(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=dt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ke(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};yy.className="Permute";ue.registerClass(yy);var xy=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),s=-1;return Hc(ui(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=-1,r=!0,a=Hc(ui(n,this.maskValue),s,r);return B(n,de(a,n.dtype))})}};xy.className="Masking";ue.registerClass(xy);var by=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,hn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,hn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Et(e.embeddingsRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.embeddingsConstraint=nn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Le(e),ui(e,Ze(e))):null)}computeOutputShape(e){if(e=dt(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);n.dtype!=="int32"&&(n=vf(n,"int32"));let s=Iv(this.embeddings.read(),U(n,[n.size]));return U(s,dt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:$t(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:tn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};by.className="Embedding";ue.registerClass(by);var vi=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[dt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=wa(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&wa(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Ia(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=pd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=U(i,[u].concat(ka(c.slice(1))));p=Ke(p,[1,0]),p=U(p,d),n.push(p),r=!0}else if(l>1){let c=nr(1,l).concat([0]);n.push(Ke(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=U(Ke(U(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(nr(0,o-1));a=Ke(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=wa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return j(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=zs(n,t[s]);return n})}},vy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};vy.className="Add";ue.registerClass(vy);var wy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};wy.className="Multiply";ue.registerClass(wy);var ky=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return B(1/e.length,t)})}};ky.className="Average";ue.registerClass(ky);var Iy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=br(t,e[n]);return t})}};Iy.className="Maximum";ue.registerClass(Iy);var Sy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=pu(t,e[n]);return t})}};Sy.className="Minimum";ue.registerClass(Sy);var Cy=class extends vi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>x1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(de(cs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Bt(t[a],-1)):s.push(t[a]);let r=gt(s,this.axis);return Mh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Concatenate";ue.registerClass(Cy);function Sd(e,t){for(;e<0;)e+=t;return e}function uL(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Se(B(e,t),a[0]):i=Se(B(Ke(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Ve(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=rt(i,c)}return i.shape.length===1&&(i=Bt(i,1)),i})}var Ty=class extends vi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Sd(r,e[a].shape.length)):s=[Sd(this.axes,t.shape.length),Sd(this.axes,n.shape.length)],this.normalize&&(t=Pf(t,s[0]),n=Pf(n,s[1])),uL(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Sd(this.axes,e.length),Sd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Dot";ue.registerClass(Ty);var Ny=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return fd(()=>le(kf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Ny.className="GaussianNoise";ue.registerClass(Ny);var Ey=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?fd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return B(n,kf(n.shape,1,r))},()=>n,t.training||!1):n})}};Ey.className="GaussianDropout";ue.registerClass(Ey);var Ry=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return fd(()=>{let r=Le(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=xa(hu(n),this.rate);l=vf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=le(B(r,l),B(le(l,-1),i));return le(B(d,c),u)},()=>Le(e),t.training||!1)}return e})}};Ry.className="AlphaDropout";ue.registerClass(Ry);function Cd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=a3(e,t,n,s,r,a);else if(e.rank===3)o=o3(e,t,n,s,r,a);else if(e.rank===4)o=i3(e,t,n,s,r,a);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function cL(e,t,n,s,r=.001){return j(()=>{let a=Xh(e,s),o=a.mean,i=a.variance;return[Cd(e,o,i,n,t,r),o,i]})}function dL(e,t,n,s,r=.001){return j(()=>{let a=Xh(e,s),o=a.mean,i=a.variance,l=[];for(let f of nr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=U(o,l),u=U(i,l),d=t==null?null:U(t,l),p=n==null?null:U(n,l);return[Cd(e,c,u,p,d,r),o,i]})}function pL(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),nr(0,e.rank-1))?cL(e,t,n,s,r):dL(e,t,n,s,r)}var Dy=class extends Je{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=nn(e.betaConstraint),this.gammaConstraint=nn(e.gammaConstraint),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer)}build(e){e=dt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new qt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=Le(e),r=s.shape,a=r.length,o=nr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=hi(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!w.arraysEqual(c,nr(0,a).slice(0,a-1)),d=()=>{if(u){let A=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Cd(s,A,y,x,b,this.epsilon)}else return Cd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=pL(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{j(()=>{let b=1-x,v=A.read(),k=B(be(v,y),b);A.write(be(v,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:$t(this.betaInitializer),gammaInitializer:$t(this.gammaInitializer),movingMeanInitializer:$t(this.movingMeanInitializer),movingVarianceInitializer:$t(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:tn(this.betaConstraint),gammaConstraint:tn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="BatchNormalization";ue.registerClass(Dy);var _y=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=dt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==wa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Le(e),s=n.shape,r=s.length;return j(()=>{let a=!0,{mean:o,variance:i}=Xh(n,this.axis,a),l=hi(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?U(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=ws(o,p),i=ws(i,p),u=ws(u,h),d=ws(d,h),Cd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:$t(this.betaInitializer),gammaInitializer:$t(this.gammaInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};_y.className="LayerNormalization";ue.registerClass(_y);function hL(e,t,n){return j(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=er()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],ks(e,s)})}var Fy=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=dt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>hL(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="ZeroPadding2D";ue.registerClass(Fy);function Zf(e,t,n,s,r,a){return j(()=>{Wt(r),yv(a),Is(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=er()),a==null&&(a="max"),e=ey(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Qc(e,t,n,i):o=qc(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}function Rw(e,t,n,s,r,a){return j(()=>{Wt(r),yv(a),Is(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=er()),a==null&&(a="max"),e=Iw(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=UA(e,t,n,i):o=TA(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,4,1,2,3])),o})}var Dw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(hn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Is(this.padding),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){e=dt(e);let t=or(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=pd(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},$y=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"max")}};$y.className="MaxPooling1D";ue.registerClass($y);var Oy=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"avg")}};Oy.className="AveragePooling1D";ue.registerClass(Oy);var _w=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];hn(this.poolSize,"poolSize"),hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),Is(this.padding),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=or(t,this.poolSize[0],this.padding,this.strides[0]),n=or(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Py=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"max")}};Py.className="MaxPooling2D";ue.registerClass(Py);var My=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"avg")}};My.className="AveragePooling2D";ue.registerClass(My);var Fw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];hn(this.poolSize,"poolSize"),hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),Is(this.padding),this.inputSpec=[new qt({ndim:5})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=or(t,this.poolSize[0],this.padding,this.strides[0]),n=or(n,this.poolSize[1],this.padding,this.strides[1]),s=or(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},zy=class extends Fw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Rw(e,t,n,s,r,"max")}};zy.className="MaxPooling3D";ue.registerClass(zy);var Ly=class extends Fw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Rw(e,t,n,s,r,"avg")}};Ly.className="AveragePooling3D";ue.registerClass(Ly);var $w=class extends Je{constructor(e){super(e);this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},By=class extends $w{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return Ft(n,1)})}};By.className="GlobalAveragePooling1D";ue.registerClass(By);var Wy=class extends $w{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return $n(n,1)})}};Wy.className="GlobalMaxPooling1D";ue.registerClass(Wy);var Ow=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Vy=class extends Ow{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Ft(n,[1,2]):Ft(n,[2,3])})}};Vy.className="GlobalAveragePooling2D";ue.registerClass(Vy);var Uy=class extends Ow{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?$n(n,[1,2]):$n(n,[2,3])})}};Uy.className="GlobalMaxPooling2D";ue.registerClass(Uy);var Pw=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=ar(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Gy=class extends Pw{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=dt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=dt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=Le(e),Nw((a,o)=>[Le(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Gy.className="TimeDistributed";ue.registerClass(Gy);function fL(e){mi(bM,"BidirectionalMergeMode",e)}var mL="concat",Hy=class extends Pw{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ar(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=ar(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?mL:e.mergeMode,fL(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Jn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Tw(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new qt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof rr;for(let l of a)if(l instanceof rr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=ds(r,1));let o;return this.mergeMode==="concat"?o=x1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=B(.5,le(s,r)):this.mergeMode==="mul"?o=B(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){gi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),gi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ar(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Hy.className="Bidirectional";ue.registerClass(Hy);function gL(e){return new vu(e)}function AL(e){return new Y1(e)}function yL(e){return new X1(e)}function xL(e){return new K1(e)}function bL(e){return new Z1(e)}function vL(e){return new Q1(e)}function wL(e){return new J1(e)}function kL(e){return new Gf(e)}function IL(e){return new vd(e)}function SL(e){return new ny(e)}function CL(e){return new wd(e)}function TL(e){return new sy(e)}function NL(e){return new ry(e)}function EL(e){return new ay(e)}function RL(e){return new oy(e)}function DL(e){return new iy(e)}function _L(e){return new my(e)}function FL(e){return new hy(e)}function $L(e){return new Kf(e)}function OL(e){return new py(e)}function PL(e){return new fy(e)}function ML(e){return new gy(e)}function zL(e){return new Ay(e)}function LL(e){return new yy(e)}function BL(e){return new by(e)}function WL(e){return new vy(e)}function VL(e){return new ky(e)}function UL(e){return new Cy(e)}function GL(e){return new Iy(e)}function HL(e){return new Sy(e)}function jL(e){return new wy(e)}function qL(e){return new Ty(e)}function XL(e){return new Dy(e)}function KL(e){return new _y(e)}function ZL(e){return new Fy(e)}function jy(e){return new Oy(e)}function YL(e){return jy(e)}function JL(e){return jy(e)}function qy(e){return new My(e)}function QL(e){return qy(e)}function eB(e){return qy(e)}function Xy(e){return new Ly(e)}function tB(e){return Xy(e)}function nB(e){return Xy(e)}function sB(e){return new By(e)}function rB(e){return new Vy(e)}function Mw(e){return new Wy(e)}function zw(e){return new Uy(e)}function Lw(e){return new $y(e)}function Bw(e){return new Py(e)}function aB(e){return new zy(e)}function oB(e){return new uy(e)}function iB(e){return new jf(e)}function lB(e){return new cy(e)}function uB(e){return new Id(e)}function cB(e){return new ly(e)}function dB(e){return new Hf(e)}function pB(e){return new dy(e)}function hB(e){return new Xf(e)}function fB(e){return new Cr(e)}function mB(e){return new qf(e)}function gB(e){return new Hy(e)}function AB(e){return new Gy(e)}var yB=Mw,xB=zw,bB=Lw,vB=Bw;function wB(e){return new Ny(e)}function kB(e){return new Ey(e)}function IB(e){return new Ry(e)}function SB(e){return new xy(e)}var Ww={};ze(Ww,{MAPE:()=>PB,MSE:()=>LB,binaryAccuracy:()=>CB,binaryCrossentropy:()=>TB,categoricalAccuracy:()=>EB,categoricalCrossentropy:()=>RB,cosineProximity:()=>FB,mape:()=>MB,meanAbsoluteError:()=>$B,meanAbsolutePercentageError:()=>OB,meanSquaredError:()=>zB,mse:()=>BB,precision:()=>DB,recall:()=>_B,sparseCategoricalAccuracy:()=>NB});function CB(e,t){return $1(e,t)}function TB(e,t){return Uv(e,t)}function NB(e,t){return Gv(e,t)}function EB(e,t){return O1(e,t)}function RB(e,t){return P1(e,t)}function DB(e,t){return Vv(e,t)}function _B(e,t){return mz(e,t)}function FB(e,t){return _1(e,t)}function $B(e,t){return Mf(e,t)}function OB(e,t){return ku(e,t)}function PB(e,t){return ku(e,t)}function MB(e,t){return ku(e,t)}function zB(e,t){return yi(e,t)}function LB(e,t){return yi(e,t)}function BB(e,t){return yi(e,t)}var Vw={};ze(Vw,{modelFromJSON:()=>Kz});var Uw={};ze(Uw,{l1:()=>VB,l1l2:()=>WB,l2:()=>UB});function WB(e){return new xd(e)}function VB(e){return sL(e)}function UB(e){return rL(e)}var Gw=class extends wu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ur))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yf(e,t){return e<t}function Hw(e,t){return e>t}var jw=class extends Gw{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yf:this.mode==="max"?this.monitorFunc=Hw:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Hw:this.monitorFunc=Yf,this.monitorFunc===Yf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yf?1/0:-1/0}async onEpochEnd(e,t){await Sa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function GB(e){return new jw(e)}var HB={earlyStopping:GB},ir;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ir||(ir={}));var qw;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(qw||(qw={}));var Ky={};function jB(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ky[e]=n}function Xw(e){return Ky[e]}function qB(e){delete Ky[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Mn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Mn(p,n,s,r));let c=Mn(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Mn(e,t,n,s){let[r,a]=ps(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Jf(r,i)]);return o!==void 0?t[Jf(r,o)][a]:void 0}function XB(e,t,n){return t[Jf(e,n.currentContextId)]}function Gr(e,t){let[n,s,r]=ps(e);return[Jf(n,t&&t.currentContextId),s,r]}function Jf(e,t){return t?`${e}-${t}`:e}function ps(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Qf(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Hr(e){return e.kept?e:Zs(e)}var Kw={};ze(Kw,{json:()=>KB});var KB=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Zw={};ze(Zw,{json:()=>ZB});var ZB=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Yw={};ze(Yw,{json:()=>YB});var YB=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Jw={};ze(Jw,{json:()=>JB});var JB=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Qw={};ze(Qw,{json:()=>QB});var QB=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],e7={};ze(e7,{json:()=>eW});var eW=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],t7={};ze(t7,{json:()=>tW});var tW=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],n7={};ze(n7,{json:()=>nW});var nW=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],s7={};ze(s7,{json:()=>sW});var sW=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],r7={};ze(r7,{json:()=>rW});var rW=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],a7={};ze(a7,{json:()=>aW});var aW=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o7={};ze(o7,{json:()=>oW});var oW=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],i7={};ze(i7,{json:()=>iW});var iW=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],l7={};ze(l7,{json:()=>lW});var lW=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],u7={};ze(u7,{json:()=>uW});var uW=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],c7={};ze(c7,{json:()=>cW});var cW=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],d7={};ze(d7,{json:()=>dW});var dW=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],p7={};ze(p7,{json:()=>pW});var pW=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],h7={};ze(h7,{json:()=>hW});var hW=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],f7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Kw,Zw,Yw,Jw,Qw,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Gr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=Gr(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=Gr(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Xw(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Zy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Zy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=r2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=r2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Jy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Jy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=s2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Yy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=o2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=o2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=n2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=a2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=a2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=e2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=t2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=g7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=g7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Gr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Qy(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Gr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Gr(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function fW(e){let t=ne().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function m7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):fW(e);return t?n:n.toLowerCase()}function Zy(e,t,n,s=!1){let r=e[t];return r!=null?m7(r.s,s):n}function Yy(e,t,n){let s=e[t];return s?s.b:n}function Jy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Qy(e){switch(typeof e=="string"&&(e=ir[e]),e){case ir.DT_FLOAT:return"float32";case ir.DT_INT32:case ir.DT_INT64:case ir.DT_INT8:case ir.DT_UINT8:return"int32";case ir.DT_BOOL:return"bool";case ir.DT_DOUBLE:return"float32";case ir.DT_STRING:return"string";default:return null}}function g7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function e2(e,t,n){let s=e[t];return s&&s.type?Qy(s.type):n}function t2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Qy(r)):n}function A7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function n2(e,t,n){let s=e[t];return s&&s.shape?A7(s.shape):n}function s2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function r2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>m7(a,s)):n}function a2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>A7(r)):n}function o2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var mW=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Jy(this.node.rawAttrs,e,t);if(n.s!=null)return Zy(this.node.rawAttrs,e,t);if(n.b!=null)return Yy(this.node.rawAttrs,e,t);if(n.shape!=null)return n2(this.node.rawAttrs,e,t);if(n.type!=null)return e2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return s2(this.node.rawAttrs,e,t);if(n.list.s!=null)return r2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return a2(this.node.rawAttrs,e,t);if(n.list.b!=null)return o2(this.node.rawAttrs,e,t);if(n.list.type!=null)return t2(this.node.rawAttrs,e,t)}return t}},gW=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Ph(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[HA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[$A(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Oh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[be(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[pu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[br(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[zr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[rf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},AW=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Gt(I("x",e,t,n))];case"Acos":return[AA(I("x",e,t,n))];case"Acosh":return[yA(I("x",e,t,n))];case"Asin":return[bA(I("x",e,t,n))];case"Asinh":return[vA(I("x",e,t,n))];case"Atan":return[wA(I("x",e,t,n))];case"Atan2":return[kA(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[IA(I("x",e,t,n))];case"Ceil":return[EA(I("x",e,t,n))];case"Complex":return[fa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Kc(I("x",e,t,n))];case"Cosh":return[Wh(I("x",e,t,n))];case"Elu":return[uu(I("x",e,t,n))];case"Erf":return[OA(I("x",e,t,n))];case"Exp":return[is(I("x",e,t,n))];case"Expm1":return[PA(I("x",e,t,n))];case"Floor":return[du(I("x",e,t,n))];case"Log":return[ls(I("x",e,t,n))];case"Log1p":return[Yc(I("x",e,t,n))];case"Imag":return[Uh(I("x",e,t,n))];case"Neg":return[Tt(I("x",e,t,n))];case"Reciprocal":return[XA(I("x",e,t,n))];case"Real":return[sd(I("x",e,t,n))];case"Relu":return[Js(I("x",e,t,n))];case"Round":return[Yh(I("x",e,t,n))];case"Selu":return[Qh(I("x",e,t,n))];case"Sigmoid":return[Kn(I("x",e,t,n))];case"Sin":return[ef(I("x",e,t,n))];case"Sign":return[ZA(I("x",e,t,n))];case"Sinh":return[tf(I("x",e,t,n))];case"Softplus":return[ii(I("x",e,t,n))];case"Sqrt":return[xn(I("x",e,t,n))];case"Square":return[ft(I("x",e,t,n))];case"Tanh":return[ri(I("x",e,t,n))];case"Tan":return[QA(I("x",e,t,n))];case"ClipByValue":return[Zn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Zh(I("x",e,t,n))];case"Rsqrt":return[Jh(Mn(e.inputNames[0],t,n))];case"Prod":return[Kh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Zc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[nd(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[zA(Mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Vs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function y7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Td(e,t,n){let s=i2(e,n),r=!y7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=i2(a.shape,s)}),!y7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function i2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var yW=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Re(0),dn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Vs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,dn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Lt([],[0].concat(this.elementShape));let n=this.readMany(e);return Vs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),bn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Lt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Vs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),gt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=U(Fe(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Nd=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Vs(t,r.shape,"TensorList shape mismatch: "),dn(r)}),this.idTensor=Re(0),this.maxNumElements=s,dn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Nd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Vs(e,this.elementShape,"TensorList shape mismatch: ");let s=Td(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>U(a,s));return bn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Td(this.elementShape,this.tensors,e),s=this.tensors.pop();return Vs(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Vs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");dn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Vs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Td(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Vs(this.elementShape,t.shape,"TensorList shape mismatch: "),dn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Vs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Td(this.elementShape,this.tensors,n);return e.length===0?Lt([],[0].concat(s)):j(()=>{let r=e.map(a=>U(this.tensors[a],s));return bn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Vs(this.elementShape,t,"TensorList shape mismatch: ");let n=Td(this.elementShape,this.tensors,t);return this.size()===0?Lt([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>U(r,n));return gt(s,0)})}};function xW(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Vs(r,t,"TensorList shape mismatch: ");let a=On(e);return new Nd(a,t,s)}function bW(e,t,n){return new Nd([],e,t,n)}function vW(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Nd([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function wW(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=i2(a,n),i=s===0?0:e.size/s,l=j(()=>{let u=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=U(Fe(e,h,f),o)}return e.dispose(),u}),c=new Nd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var kW=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=I("pred",e,t,n);return[Hr(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Hr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Mn(r,t,n)!==void 0);if(s){let r=Mn(s,t,n);return[Hr(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Hr(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Hr(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Hr(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new yW(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Re(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Re(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=vW(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=bW(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=xW(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=wW(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function x7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=I("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=Qf(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var IW=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Lh(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Qf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Mr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=x7(e,t,n);return[va.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=x7(e,t,n);return[va.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Qf(e,t,n);return[Bh(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Qf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[lu(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[DA(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[qc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Qc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=C3(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[TA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[UA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[FA(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},SW=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[cu(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[x3(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[T3(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[nu(s,r,a,o)]}case"Ones":return[us(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[cs(I("x",e,t,n))];case"RandomUniform":return[hu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[fu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[af(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Ht(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ze(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function l2(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var CW=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=l2(e,t,n),c=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=l2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=l2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=de(I("condition",e,t,n),"bool"),r=[await n1(s)];return s.dispose(),r}case"ListDiff":return R3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},TW=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=e1(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=of(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=of(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},NW=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Mn(e.name,t,n)||s];case"Placeholder":return[Mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Hr(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Hr(c));case"Snapshot":let r=I("x",e,t,n);return[Hr(r)];case"Shape":return[jt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>jt(c.shape));case"Size":return[Re(I("x",e,t,n).size,"int32")];case"Rank":return[Re(I("x",e,t,n).rank,"int32")];case"NoOp":return[Re(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},EW=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Re(0),this.tensorMap=new Map,dn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Re(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=On(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];dn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return j(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return bn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},RW=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new EW(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DW=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_W=(e,t,n)=>{switch(e.op){case"Equal":return[os(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ui(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Yn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[xa(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Gh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[ba(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[zs(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Jc(I("a",e,t,n))];case"LogicalOr":return[qh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Tn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FW=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[g3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ke(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[va.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$W=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ai(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[ai(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[LA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[ci(I("x",e,t,n))];case"LogSoftmax":return[jh(I("x",e,t,n))];case"SparseToDense":return[s1(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},OW=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[$n(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Ft(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ed(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Se(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Mh(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Hc(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[vs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[xA(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Kh(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Vh(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[NA(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[f3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},PW=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[gt(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[oi(s,de(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[oi(a,de(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[ds(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[ds(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[Fe(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[JA(d,s,r,a,o,i,l,c,u)]}case"Pack":return j(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=rt(r[0]).shape,i=r.map(l=>{let c=w.arraysEqual(l.shape,a);if(!c&&!w.arraysEqual(rt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:U(l,a)});return[bn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return On(r,s)}case"Tile":{let s=I("reps",e,t,n);return[ws(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return pn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[$3(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[O3(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[s1(s,a,r,a.dtype===o.dtype?o:de(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},MW=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=id.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=id.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[id.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[id.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zW=(e,t,n)=>{switch(e.op){case"FFT":return[ad(I("x",e,t,n))];case"IFFT":return[gu(I("x",e,t,n))];case"RFFT":return[od(I("x",e,t,n))];case"IRFFT":return[sf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LW=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=hf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=hf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[hf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BW=(e,t,n)=>{switch(e.op){case"Cast":return[de(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Bt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[rt(I("x",e,t,n),s)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[GA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ks(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[td(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Xc(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[_A(I("x",e,t,n),s,r)]}case"BroadcastTo":return[ou(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[l3(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function b7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return j(()=>gW(a,o,i));case"basic_math":return j(()=>AW(a,o,i));case"control":return kW(a,o,i);case"convolution":return j(()=>IW(a,o,i));case"creation":return j(()=>SW(a,o,i));case"dynamic":return CW(a,o,i);case"evaluation":return j(()=>TW(a,o,i));case"image":return j(()=>DW(a,o,i));case"graph":return j(()=>NW(a,o,i));case"logical":return j(()=>_W(a,o,i));case"matrices":return j(()=>FW(a,o,i));case"normalization":return j(()=>$W(a,o,i));case"reduction":return j(()=>OW(a,o,i));case"slice_join":return j(()=>PW(a,o,i));case"sparse":return j(()=>MW(a,o,i));case"spectral":return j(()=>zW(a,o,i));case"string":return j(()=>LW(a,o,i));case"transformation":return j(()=>BW(a,o,i));case"hash_table":return RW(a,o,i,s);case"custom":let l=Xw(a.op);if(l&&l.customExecutor)return l.customExecutor(new mW(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var v7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function w7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ps(p)[0]),u=[];s!=null&&(u=s.map(p=>ps(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((k7(p)||HW(p)||jW(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function WW(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ps(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var VW=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],UW=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],GW=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function k7(e){return VW.indexOf(e.op)>=0}function HW(e){return UW.indexOf(e.op)>=0}function jW(e){return GW.indexOf(e.op)>=0}var u2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new u2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=w7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return WW(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ps(u)[0]]),r=t.map(u=>ps(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return j(()=>{let u=new v7(this.weightMap,l,c,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ps(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=b7(m,d,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Mn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=XB(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new v7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Mn(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[ps(y)[0]]),o=n.map(y=>ps(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=w7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=ps(y),v=[];v[b]=e[y],h[x]=v});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(y)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!k7(y)&&!Mn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw u!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,s,n)&&([d]=Gr(u.node.name,n)),s[u.node.name]==null){let p=b7(u.node,s,n,this._resourceManager);d||([d]=Gr(u.node.name,n));let h=n.currentContext;w.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Gr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Mn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Mn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ps(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ps(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ps(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},qW=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},XW="?tfjs-format=file",KW="model.json",I7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new qW}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Xn.browserHTTPRequest(e,this.loadOptions);else{let t=Xn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Xn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Xn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new u2(f7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=f7.Instance.transformGraph(e.modelInitializer);this.initializer=new u2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Xn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Qe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${KW}${XW}`);let n=new I7(e,t);return await n.load(),n}var ZW="3.10.0",S7={};ze(S7,{CSVDataset:()=>M7,Dataset:()=>Tu,FileDataSource:()=>G7,TextLineDataset:()=>$7,URLDataSource:()=>H7,array:()=>xV,csv:()=>RV,func:()=>DV,generator:()=>_V,microphone:()=>$V,version_data:()=>OV,webcam:()=>FV,zip:()=>bV});var YW=Xa(L5()),JW=Xa(L5());function QW(e,t){return e0(e,t)}function e0(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Cu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=e0(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function eV(e,t=T7){return C7(e,t)}function C7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Cu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=C7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function T7(e){return e===null?null:Cu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function N7(e,t){let n=new Map;e0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return e0(e,t,n)}function Cu(e){let t=!1;if(ne().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=B5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge)&&!(e instanceof Promise)&&!t)}function tV(e){return e==null||nV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||w.isTypedArray(e)}function nV(e){return e===null||typeof e!="object"&&typeof e!="function"}function sV(e){return QW(e,rV)}function rV(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:Cu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var E7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},c2=class extends E7{constructor(){super(c2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};c2.INITIAL_CAPACITY=32;function R7(e){return new iV(e)}function d2(e){return new lV(e)}function aV(e,t){return new _7(e,t)}function oV(e,t=Ea.FAIL){return new AV(e,t)}var fn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new mV(this,e)}filter(e){return new hV(this,e)}map(e){return new fV(this,e)}mapAsync(e){return new D7(this,e)}serialMapAsync(e){return new D7(this,e).serial()}flatmap(e){return new gV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new pV(this,e,t)}columnMajorBatch(e,t=!0,n=T7){return this.rowMajorBatch(e,t).map(r=>eV(r,n))}concatenate(e,t){return new _7(R7([this,e]),t)}take(e){return e<0||e==null?this:new dV(this,e)}skip(e){return e<0||e==null?this:new cV(this,e)}prefetch(e){return new F7(this,e)}shuffle(e,t){return new yV(this,e,t)}serial(){return new uV(this)}},iV=class extends fn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:sV(e),done:!1}}},lV=class extends fn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},uV=class extends fn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},cV=class extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Y(e.value)}return this.upstream.next()}},dV=class extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},pV=class extends fn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},hV=class extends fn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Y(e.value)}}},fV=class extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Xs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Xs.getTensorsInContainer(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},mV=class extends fn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},D7=class extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Xs.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Xs.getTensorsInContainer(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},p2=class extends fn{constructor(){super();this.outputQueue=new c2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},gV=class extends p2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Xs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Xs.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return!0}},_7=class extends fn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ea;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ea||(Ea={}));var AV=class extends fn{constructor(e,t=Ea.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof fn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await N7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ea.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ea.SHORTEST:return{value:null,done:!0};case Ea.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},F7=class extends fn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new E7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},yV=class extends F7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=JW.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Tu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),hs(async()=>(await n.iterator()).columnMajorBatch(e,t,vV),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,hs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,hs(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return hs(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return hs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return hs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,hs(async()=>{let s=d2(async()=>({value:await t.iterator(),done:!1}));return aV(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,hs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=YW.alea(t||w.now().toString());return hs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,hs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Tu.MAX_BUFFER_SIZE=1e4;function hs(e,t=null){return new class extends Tu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function xV(e){return hs(async()=>R7(e),e.length)}function bV(e){if(!Cu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return hs(async()=>{let n=await N7(e,s=>{if(s instanceof Tu)return{value:s.iterator(),recurse:!1};if(Cu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return oV(n,Ea.SHORTEST)},t)}function vV(e){if(e===null)return null;let t=e[0];return tV(t)?{value:wV(e),recurse:!1}:{value:null,recurse:!0}}function wV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?bn(e):Lt(e)}var $7=class extends Tu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},t0='"',Ed=Symbol("out"),O7=Symbol("field"),n0=Symbol("quote"),h2=Symbol("quoteafterquote"),P7=Symbol("quoteinquote"),M7=class extends Tu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Ed;for(let o=0;o<r;o++)switch(a){case Ed:switch(e.charAt(o)){case t0:s=o+1,a=n0;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Ed;break;default:a=O7,s=o;break}break;case O7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Ed,s=o+1;break;default:}break;case n0:switch(e.charAt(o)){case t0:a=h2;break;default:}break;case h2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Ed,s=o+1;break;case t0:a=n0;break;default:a=P7;break}break;case P7:switch(e.charAt(o)){case t0:a=n0;break;default:}break;default:}if(a===h2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},z7=class extends fn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ne().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new z7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Lt(n,t)}},L7=class extends fn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=jt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Qs([a,r,i,o],[1,4])}else this.cropBox=Qs([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ne().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new L7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ms.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=Bt(de(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},B7=class{},W7=class extends fn{split(e){return new kV(this,e)}},kV=class extends W7{constructor(e,t){super();this.upstream=e,this.impl=new IV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},IV=class extends p2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},SV=class extends fn{decodeUTF8(){return new CV(this)}},CV=class extends W7{constructor(e){super();this.upstream=e,this.impl=new TV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},TV=class extends p2{constructor(e){super();if(this.upstream=e,ne().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=B5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ne().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},V7=class extends SV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(ne().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function NV(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=EV(e));let a=await(n||w.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new V7(o,t)}else throw new Error(a.statusText)}var EV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function U7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var G7=class extends B7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(U7(this.input)&&ne().get("IS_NODE")){let e=qi("fs");this.input=e.readFileSync(this.input.substr(7))}return new V7(this.input,this.options)}},H7=class extends B7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return U7(this.url)?new G7(this.url,this.fileOptions).iterator():NV(this.url,this.fileOptions)}};function RV(e,t={}){return new M7(new H7(e),t)}function DV(e){let t=d2(e);return hs(async()=>t)}function _V(e){return hs(async()=>{let t=await e();return d2(()=>t.next())})}async function FV(e,t){return L7.create(e,t)}async function $V(e){return z7.create(e)}var OV="3.10.0";function Ee(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var PV=vr.whereImpl,f2=class extends mc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Op(this,as())}nextDataId(){return f2.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ne().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return as().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ee([e],"where");let t=this.readSync(e.dataId);return PV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};f2.nextDataId=0;var j7={};ze(j7,{addImpl:()=>X7,bincountImpl:()=>g2,bincountReduceImpl:()=>K7,ceilImpl:()=>Z7,concatImpl:()=>A2,equalImpl:()=>Y7,expImpl:()=>Q7,expm1Impl:()=>t6,floorImpl:()=>n6,gatherNdImpl:()=>s6,gatherV2Impl:()=>r6,greaterEqualImpl:()=>o6,greaterImpl:()=>a6,lessEqualImpl:()=>l6,lessImpl:()=>i6,linSpaceImpl:()=>u6,logImpl:()=>c6,maxImpl:()=>d6,maximumImpl:()=>p6,minimumImpl:()=>h6,multiplyImpl:()=>y2,negImpl:()=>f6,notEqualImpl:()=>m6,prodImpl:()=>g6,rangeImpl:()=>b2,rsqrtImpl:()=>A6,sigmoidImpl:()=>IU,simpleAbsImpl:()=>q7,sliceImpl:()=>a0,sparseFillEmptyRowsImpl:()=>x6,sparseReshapeImpl:()=>b6,sparseSegmentReductionImpl:()=>v2,sqrtImpl:()=>TU,squaredDifferenceImpl:()=>v6,stridedSliceImpl:()=>w6,stringNGramsImpl:()=>k6,stringSplitImpl:()=>I6,stringToHashBucketFastImpl:()=>S6,subImpl:()=>C6,tileImpl:()=>T6,topKImpl:()=>E6,transposeImpl:()=>x2,uniqueImpl:()=>R6});function q7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var MV=e=>{let{x:t}=e.inputs,n=e.backend;Ee(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=q7(r),n.makeOutput(s,t.shape,t.dtype)},zV={kernelName:Zi,backendName:"cpu",kernelFunc:MV};function Xt(e){return(t,n,s,r,a)=>{let o=R.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),c=w.sizeFromShape(o),u=w.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=R.getBroadcastDims(t,o),g=R.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(C=>x[C]=0);let b=w.locToIndex(x,d,h),v=y.slice(-p);g.forEach(C=>v[C]=0);let k=w.locToIndex(v,p,f);u[A]=e(s[b],r[k])}return[u,o]}}function fs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var LV={kernelName:Gp,backendName:"cpu",kernelFunc:fs};function s0(e,t,n="float32"){if(n==="complex64"){let r=s0(e,t,"float32"),a=s0(e,t,"float32");return fs({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Tr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var BV={kernelName:Ao,backendName:"cpu",kernelFunc:Tr};function wi(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var WV={kernelName:dh,backendName:"cpu",kernelFunc:wi};function Ra(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Tr({inputs:{x:r},backend:n});let o=s0(n,r.shape,r.dtype),i=Ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=wi({inputs:{input:r},backend:n}),i=Ra({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=Tr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,c]=Xt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var VV={kernelName:to,backendName:"cpu",kernelFunc:Ra};function mn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ee([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?R.fromUint8ToStringArray(c):c,p=o.dtype==="string"?R.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Ra({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Ra({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,C]=n(o.shape,i.shape,h,f,x,b),N=l.makeTensorInfo(C,"float32",v),D=l.makeTensorInfo(C,"float32",k),P=fs({inputs:{real:N,imag:D},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(D),P}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function m2(e){return(t,n,s,r,a,o)=>{let i=R.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),c=i.length,u=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=R.getBroadcastDims(t,i),f=R.getBroadcastDims(n,i),m=R.mergeRealAndImagArrays(s,r),g=R.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(h.length+f.length===0)for(let v=0;v<d.length;v++){let k=v%m.length,C=v%g.length,N=e(m[k*2],m[k*2+1],g[C*2],g[C*2+1]);d[v]=N.real,p[v]=N.imag}else for(let v=0;v<d.length;v++){let k=w.indexToLoc(v,c,u),C=k.slice(-A);h.forEach(F=>C[F]=0);let N=w.locToIndex(C,A,y),D=k.slice(-x);f.forEach(F=>D[F]=0);let P=w.locToIndex(D,x,b),E=e(m[N*2],m[N*2+1],g[P*2],g[P*2+1]);d[v]=E.real,p[v]=E.imag}return[d,p,i]}}var X7=Xt((e,t)=>e+t),UV=m2((e,t,n,s)=>({real:e+n,imag:t+s})),Rd=mn(la,X7,UV),GV={kernelName:la,backendName:"cpu",kernelFunc:Rd};function g2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function K7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=He([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Da(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function pt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ee(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=w.sizeFromShape(o.shape),u=n||o.dtype,d=w.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Nu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ee(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var Z7=Da(e=>Math.ceil(e)),HV=Nu(no,Z7),jV={kernelName:no,backendName:"cpu",kernelFunc:HV};function A2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?R.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var Y7=Xt((e,t)=>e===t?1:0),J7=mn(dl,Y7,null,"bool"),qV={kernelName:dl,backendName:"cpu",kernelFunc:J7},Q7=Da(e=>Math.exp(e)),e6=Nu(po,Q7,"float32"),XV={kernelName:po,backendName:"cpu",kernelFunc:e6},t6=Da(e=>Math.expm1(e)),KV=Nu(hl,t6),ZV={kernelName:hl,backendName:"cpu",kernelFunc:KV},n6=Da(e=>Math.floor(e)),YV=Nu(ho,n6),JV={kernelName:ho,backendName:"cpu",kernelFunc:YV};function s6(e,t,n,s,r,a,o,i,l){let c=He([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function r6(e,t,n){let s=He(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var a6=Xt((e,t)=>e>t?1:0),QV=mn(Al,a6,null,"bool"),eU={kernelName:Al,backendName:"cpu",kernelFunc:QV},o6=Xt((e,t)=>e>=t?1:0),tU=mn(go,o6,null,"bool"),nU={kernelName:go,backendName:"cpu",kernelFunc:tU},i6=Xt((e,t)=>e<t?1:0),sU=mn(vl,i6,null,"bool"),rU={kernelName:vl,backendName:"cpu",kernelFunc:sU},l6=Xt((e,t)=>e<=t?1:0),aU=mn(wl,l6,null,"bool"),oU={kernelName:wl,backendName:"cpu",kernelFunc:aU};function u6(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var c6=Da(e=>Math.log(e)),iU=Nu(xo,c6),lU={kernelName:xo,backendName:"cpu",kernelFunc:iU};function d6(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var p6=Xt((e,t)=>Math.max(e,t)),uU=mn(vo,p6),cU={kernelName:vo,backendName:"cpu",kernelFunc:uU},h6=Xt((e,t)=>Math.min(e,t)),dU=mn(So,h6),pU={kernelName:So,backendName:"cpu",kernelFunc:dU},y2=Xt((e,t)=>e*t),hU=m2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),r0=mn(To,y2,hU),fU={kernelName:To,backendName:"cpu",kernelFunc:r0};function f6(e,t,n){let s=w.createScalarValue(-1,n);return y2([],t,s,e,n)}function mU(e){let{inputs:t,backend:n}=e,{x:s}=t;Ee(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=f6(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var gU={kernelName:Cl,backendName:"cpu",kernelFunc:mU},m6=Xt((e,t)=>e!==t?1:0),AU=mn(Tl,m6,null,"bool"),yU={kernelName:Tl,backendName:"cpu",kernelFunc:AU};function x2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<o;++u){let d=w.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=w.locToIndex(p,a,l);c[h]=e[u]}return c}function Ss(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ee(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=x2(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var xU={kernelName:qo,backendName:"cpu",kernelFunc:Ss};function g6(e,t,n,s){let[r,a]=R.computeOutAndReduceShapes(e,s),o=Ps(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function bU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=R.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=R.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=g6(d.shape,d.dtype,h,u),A=m;return o&&(A=R.expandShapeToKeepDim(m,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var vU={kernelName:Fl,backendName:"cpu",kernelFunc:bU};function b2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var A6=Da(e=>1/Math.sqrt(e)),wU=Nu(Mo,A6),kU={kernelName:Mo,backendName:"cpu",kernelFunc:wU},IU=Da(e=>1/(1+Math.exp(-e))),y6=pt(Lo,e=>1/(1+Math.exp(-e))),SU={kernelName:Lo,backendName:"cpu",kernelFunc:y6};function a0(e,t,n,s,r){let a=Fn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=Fn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?R.fromUint8ToStringArray(e):e,c=He(s,r,l),u=He(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?R.fromStringArrayToUint8(u.values):u.values}function ki(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ee(r,"slice");let[i,l]=Fn.parseSliceParams(r,a,o);Fn.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=a0(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var CU={kernelName:Ll,backendName:"cpu",kernelFunc:ki};function x6(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let y=0;y<i;++y)u[y]=y;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],C=(v===0?0:f[v-1])+k;x[v]++;for(let N=0;N<d;++N)A[C*d+N]=e[b*d+N];y[C]=s[b],u[b]=C}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let C=1;C<d;++C)A[k*d+C]=0;y[k]=o}return[A,[g,d],y,c,u]}}function b6(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function v2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*c,y*c);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[y*c+k]+=e[v*c+k]}if(a)for(let b=0;b<c;b++)f[y*c+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var TU=Da(e=>Math.sqrt(e)),NU=pt(Bo,e=>Math.sqrt(e)),EU={kernelName:Bo,backendName:"cpu",kernelFunc:NU},v6=Xt((e,t)=>{let n=e-t;return n*n}),RU=mn(Uo,v6),DU={kernelName:Uo,backendName:"cpu",kernelFunc:RU};function w6(e,t,n,s){let r=He(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var _U=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function k6(e,t,n,s,r,a,o,i){return new _U(n,s,r,a,o,i).compute(e,t)}function FU(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function I6(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;FU(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function S6(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var C6=Xt((e,t)=>e-t),$U=m2((e,t,n,s)=>({real:e-n,imag:t-s})),w2=mn(Go,C6,$U),OU={kernelName:Go,backendName:"cpu",kernelFunc:w2};function T6(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=He(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Dd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function N6(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));N6(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),Dd(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;Dd(e[a],r)<0;)a=a+1;for(;Dd(e[o],r)>0;)o=o-1}Dd(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function E6(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),c=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(N6(f,s),f=f.slice(0,s)),r&&f.sort(Dd);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let u=t.slice();return u[u.length-1]=s,[He(u,n,l),He(u,"int32",c)]}function R6(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Jt(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Jt(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}ru("cpu",()=>new f2,1);var D6=pt(co,e=>e>=0?e:Math.exp(e)-1),PU={kernelName:co,backendName:"cpu",kernelFunc:D6};function _6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ee([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var MU={kernelName:yo,backendName:"cpu",kernelFunc:_6},zU=Xt((e,t)=>e<0?t*e:e);function F6(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ee([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=zU(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var LU={kernelName:Do,backendName:"cpu",kernelFunc:F6},$6=pt(_o,e=>Math.max(0,e)),BU={kernelName:_o,backendName:"cpu",kernelFunc:$6},O6=pt($o,e=>Math.min(Math.max(0,e),6)),WU={kernelName:$o,backendName:"cpu",kernelFunc:O6};function k2(e,t,n,s,r){if(n==="linear")return Tr({inputs:{x:t},backend:e});if(n==="relu")return $6({inputs:{x:t},backend:e});if(n==="elu")return D6({inputs:{x:t},backend:e});if(n==="relu6")return O6({inputs:{x:t},backend:e});if(n==="prelu")return F6({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return _6({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return y6({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var VU={kernelName:Ol,backendName:"cpu",kernelFunc:wt};function P6(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ee([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],k=i?[A,h,d]:[A,d,h],C=wt({inputs:{x:r},backend:n,attrs:{shape:v}}),N=wt({inputs:{x:a},backend:n,attrs:{shape:k}}),D=o?C.shape[1]:C.shape[2],P=o?C.shape[2]:C.shape[1],E=i?N.shape[1]:N.shape[2],F=Math.max(g,A),T=n.data.get(C.dataId).values,M=n.data.get(N.dataId).values,G=w.computeStrides(C.shape),H=w.computeStrides(N.shape),[z,X,Q]=o?[G[0],1,G[1]]:[G[0],G[1],1],[Z,te,se]=i?[1,H[1],H[0]]:[H[1],1,H[0]],J=P*E,ee=He([F,P,E],C.dtype),ce=ee.values,pe=n.blockSize;for(let ve=0;ve<F;ve++)for(let ke=0;ke<P;ke+=pe)for(let Te=0;Te<E;Te+=pe)for(let Pe=0;Pe<D;Pe+=pe){let Be=Math.min(ke+pe,P),Ue=Math.min(Te+pe,E),et=Math.min(Pe+pe,D);for(let ct=ke;ct<Be;ct++)for(let ot=Te;ot<Ue;ot++){let it=0;for(let ht=Pe;ht<et;ht++){let mt=Math.min(ve,g-1)*z,It=Math.min(ve,A-1)*se,Dt=T[mt+ct*X+ht*Q],Hn=M[ht*Z+ot*te+It];it+=Dt*Hn}ce[ve*J+(ct*E+ot)]+=it}}return n.disposeIntermediateTensorInfo(C),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,ee.dtype,ee.values)}var UU={kernelName:eo,backendName:"cpu",kernelFunc:P6};function GU(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=P6({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=Rd({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=k2(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var HU={kernelName:Xo,backendName:"cpu",kernelFunc:GU},jU=pt(Yi,e=>Math.acos(e)),qU={kernelName:Yi,backendName:"cpu",kernelFunc:jU},XU=pt(Ji,e=>Math.acosh(e)),KU={kernelName:Ji,backendName:"cpu",kernelFunc:XU};function ZU(e){let{inputs:t,backend:n}=e,s=t;Ee(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=He(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var YU={kernelName:Ya,backendName:"cpu",kernelFunc:ZU};function JU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x&&v}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var QU={kernelName:Qi,backendName:"cpu",kernelFunc:JU};function eG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x||v}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var tG={kernelName:el,backendName:"cpu",kernelFunc:eG};function nG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ee(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ss({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=R.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v>y&&(y=v,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var sG={kernelName:Ja,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ee(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ss({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=R.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v<y&&(y=v,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var aG={kernelName:yc,backendName:"cpu",kernelFunc:rG},oG=pt(tl,e=>Math.asin(e)),iG={kernelName:tl,backendName:"cpu",kernelFunc:oG},lG=pt(nl,e=>Math.asinh(e)),uG={kernelName:nl,backendName:"cpu",kernelFunc:lG},cG=pt(sl,e=>Math.atan(e)),dG={kernelName:sl,backendName:"cpu",kernelFunc:cG},pG=Xt((e,t)=>Math.atan2(e,t)),hG=mn(al,pG),fG={kernelName:al,backendName:"cpu",kernelFunc:hG},mG=pt(rl,e=>Math.atanh(e)),gG={kernelName:rl,backendName:"cpu",kernelFunc:mG};function I2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=He(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,k=b*s[0];for(let C=0;C<r.inChannels;++C)for(let N=0;N<r.outHeight;++N){let D=N*o-p,P=Math.max(0,D),E=Math.min(r.inHeight,u+D),F=v+N*y;for(let T=0;T<r.outWidth;++T){let M=T*i-h,G=Math.max(0,M),H=Math.min(r.inWidth,d+M),z=f,X=0,Q=0;for(let te=P;te<E;te+=l){let se=k+te*s[1];for(let J=G;J<H;J+=c){let ee=se+J*s[2],ce=e[ee+C];a==="max"&&ce>z?z=ce:a==="avg"&&(X+=ce,Q++)}if(isNaN(z))break}let Z=F+T*x+C;g[Z]=a==="avg"?X/Q:z}}}return m}function M6(e,t,n,s,r=!1,a=!1){let o=He(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=He(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=c;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let C=k*l-f,N=C;for(;N<0;)N+=u;let D=Math.min(s.inWidth,p+C),P=Number.NEGATIVE_INFINITY,E=-1;for(let F=b;F<v;F+=c){let T=F-x;for(let M=N;M<D;M+=u){let G=M-C,H=m.get(g,F,M,A);H>P&&(P=H,r?E=a?((g*s.inHeight+F)*s.inWidth+M)*s.inChannels+A:(F*s.inWidth+M)*s.inChannels+A:E=T*p+G)}}o.set(E,g,y,k,A)}}return o}function z6(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=He(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let D=0;D<r.batchSize;++D){let P=D*v,E=D*s[0];for(let F=0;F<r.inChannels;++F)for(let T=0;T<r.outDepth;++T){let M=T*o-m,G=M;for(;G<0;)G+=c;let H=Math.min(r.inDepth,p+M),z=P+T*k;for(let X=0;X<r.outHeight;++X){let Q=X*i-g,Z=Q;for(;Z<0;)Z+=u;let te=Math.min(r.inHeight,h+Q),se=z+X*C;for(let J=0;J<r.outWidth;++J){let ee=J*l-A,ce=ee;for(;ce<0;)ce+=d;let pe=Math.min(r.inWidth,f+ee),ve=se+J*N,ke=y,Te=0,Pe=0;for(let Ue=G;Ue<H;Ue+=c){let et=E+Ue*s[1];for(let ct=Z;ct<te;ct+=u){let ot=et+ct*s[2];for(let it=ce;it<pe;it+=d){let ht=ot+it*s[3],mt=e[ht+F];if(a==="max"&&mt>ke?ke=mt:a==="avg"&&(Te+=mt,Pe++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Be=ve+F;b[Be]=a==="avg"?Te/Pe:ke}}}}return x}function AG(e,t){let n=He(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,c+y);for(let v=0;v<t.outHeight;++v){let k=v*r-h,C=k;for(;C<0;)C+=i;let N=Math.min(t.inHeight,u+k);for(let D=0;D<t.outWidth;++D){let P=D*a-f,E=P;for(;E<0;)E+=l;let F=Math.min(t.inWidth,d+P),T=Number.NEGATIVE_INFINITY,M=-1;for(let G=x;G<b;G+=o){let H=G-y;for(let z=C;z<N;z+=i){let X=z-k;for(let Q=E;Q<F;Q+=l){let Z=Q-P,te=e.get(m,G,z,Q,g);te>=T&&(T=te,M=H*u*d+X*u+Z)}}}n.set(M,m,A,v,D,g)}}}return n}function yG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ee(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Tr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=I2(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var xG={kernelName:Qa,backendName:"cpu",kernelFunc:yG};function bG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ee(r,"avgPool3d");let u=R.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=z6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var vG={kernelName:xc,backendName:"cpu",kernelFunc:bG};function wG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ee([r,a],"avgPool3DGrad");let u=R.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,y=u.dilationHeight,x=u.dilationWidth,b=u.effectiveFilterDepth,v=u.effectiveFilterHeight,k=u.effectiveFilterWidth,C=b-1-u.padInfo.front,N=k-1-u.padInfo.left,D=v-1-u.padInfo.top,P=He(a.shape,"float32"),E=1/(f*m*g),F=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let M=0;M<u.inChannels;++M)for(let G=0;G<u.inDepth;++G)for(let H=0;H<u.inHeight;++H)for(let z=0;z<u.inWidth;++z){let X=G-C,Q=H-D,Z=z-N,te=0;for(let se=0;se<b;se+=A){let J=(X+se)/d;if(!(J<0||J>=u.outDepth||Math.floor(J)!==J))for(let ee=0;ee<v;ee+=y){let ce=(Q+ee)/p;if(!(ce<0||ce>=u.outHeight||Math.floor(ce)!==ce))for(let pe=0;pe<k;pe+=x){let ve=(Z+pe)/h;if(ve<0||ve>=u.outWidth||Math.floor(ve)!==ve)continue;te+=F.get(T,J,ce,ve,M)}}}P.set(te*E,T,G,H,z,M)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var kG={kernelName:Wp,backendName:"cpu",kernelFunc:wG};function IG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ee([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=R.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,y=u.effectiveFilterWidth,x=y-1-u.padInfo.left,b=A-1-u.padInfo.top,v=He(o.shape,"float32"),k=1/(h*f),C=n.data.get(r.dataId).values,N=He(r.shape,"float32",C);for(let D=0;D<u.batchSize;++D)for(let P=0;P<u.inChannels;++P)for(let E=0;E<u.inHeight;++E)for(let F=0;F<u.inWidth;++F){let T=E-b,M=F-x,G=0;for(let H=0;H<A;H+=m){let z=(T+H)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<y;X+=g){let Q=(M+X)/p;if(Q<0||Q>=u.outWidth||Math.floor(Q)!==Q)continue;G+=N.get(D,z,Q,P)}}v.set(G*k,D,E,F,P)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var SG={kernelName:Bp,backendName:"cpu",kernelFunc:IG};function CG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ee([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,y=p.length,x=d.length,b=0,v=0,k=0,C=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[v++])*h[k++]/Math.sqrt(p[C++]+c),b>=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var TG={kernelName:mo,backendName:"cpu",kernelFunc:CG};function NG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ee([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=wt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ss({inputs:{x:h},backend:n,attrs:{perm:c}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=ki({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var EG={kernelName:ol,backendName:"cpu",kernelFunc:NG};function RG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=g2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var DG={kernelName:Vp,backendName:"cpu",kernelFunc:RG};function _G(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=R.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var FG={kernelName:Up,backendName:"cpu",kernelFunc:_G},$G=pt(ua,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),OG={kernelName:ua,backendName:"cpu",kernelFunc:$G},PG=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},MG={kernelName:bc,backendName:"cpu",kernelFunc:PG};function Eu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var zG={kernelName:rh,backendName:"cpu",kernelFunc:Eu};function Ru(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=R.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return Tr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(R.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>wi({inputs:{input:b},backend:n})),g=i.map(b=>Eu({inputs:{input:b},backend:n})),A=Ru({inputs:m,backend:n,attrs:{axis:a}}),y=Ru({inputs:g,backend:n,attrs:{axis:a}}),x=fs({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let c=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=R.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=A2(u,o,t[0].dtype,d),h=R.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var LG={kernelName:il,backendName:"cpu",kernelFunc:Ru};function L6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ee([r,a],"conv2d");let d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new Jt(p.outShape,r.dtype),v=w.computeStrides(r.shape),k=w.computeStrides(a.shape),C=v[0],N=x?v[1]:v[2],D=x?v[2]:1,P=x?1:v[1],E=b.strides[0],F=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,M=x?1:b.strides[1],G=n.data.get(r.dataId).values,H=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let Q=X*C,Z=X*E;for(let te=0;te<p.outHeight;++te){let se=Z+te*F,J=te*p.strideHeight-y;for(let ee=0;ee<h;++ee){let ce=J+ee*m;if(ce<0||ce>=p.inHeight)continue;let pe=ee*k[0],ve=Q+ce*N;for(let ke=0;ke<p.outWidth;++ke){let Te=se+ke*T,Pe=ke*p.strideWidth-A;for(let Be=0;Be<f;++Be){let Ue=Pe+Be*g;if(Ue<0||Ue>=p.inWidth)continue;let et=pe+Be*k[1],ct=ve+Ue*D,ot=et;for(let it=0;it<p.inChannels;++it){let ht=G[ct+it*P];for(let mt=0;mt<p.outChannels;++mt)z[Te+mt*M]+=ht*H[ot+mt];ot+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var BG={kernelName:so,backendName:"cpu",kernelFunc:L6};function WG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ee([r,a],"conv2dBackpropFilter");let d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new Jt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=new Jt(r.shape,r.dtype,v),N=new Jt(a.shape,a.dtype,k);for(let D=0;D<m;++D){let P=Math.max(0,Math.ceil((b-D)/h)),E=Math.min(p.outHeight,(p.inHeight+b-D)/h);for(let F=0;F<g;++F){let T=Math.max(0,Math.ceil((x-F)/f)),M=Math.min(p.outWidth,(p.inWidth+x-F)/f);for(let G=0;G<p.inChannels;++G)for(let H=0;H<p.outChannels;++H){let z=0;for(let X=0;X<p.batchSize;++X)for(let Q=P;Q<E;++Q){let Z=D+Q*h-b;for(let te=T;te<M;++te){let se=F+te*f-x;A?z+=C.get(X,Z,se,G)*N.get(X,Q,te,H):z+=C.get(X,G,Z,se)*N.get(X,H,Q,te)}}y.set(z,D,F,G,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var VG={kernelName:Hp,backendName:"cpu",kernelFunc:WG};function UG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ee([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=R.convertConv2DDataFormat(c),f=R.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new Jt(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:C,filterWidth:N,inChannels:D,inHeight:P,inWidth:E,outChannels:F,outHeight:T,outWidth:M,strideHeight:G,strideWidth:H}=f;h=f.dataFormat;let z=C-1-f.padInfo.top,X=N-1-f.padInfo.left,Q=h==="channelsLast",Z=m.strides[0],te=Q?m.strides[1]:m.strides[2],se=Q?m.strides[2]:1,J=Q?1:m.strides[1],ee=p[0],ce=Q?p[1]:p[2],pe=Q?p[2]:1,ve=Q?1:p[1];for(let ke=0;ke<k;++ke)for(let Te=0;Te<D;++Te)for(let Pe=0;Pe<P;++Pe){let Be=Pe-z,Ue=Math.max(0,Math.ceil(Be/G)),et=Math.min(T,(C+Be)/G);for(let ct=0;ct<E;++ct){let ot=ct-X,it=Math.max(0,Math.ceil(ot/H)),ht=Math.min(M,(N+ot)/H),mt=0;for(let Dt=Ue;Dt<et;++Dt){let Hn=Dt*G-Be;for(let gn=it;gn<ht;++gn){let js=gn*H-ot,En=ee*ke+ce*Dt+pe*gn,ss=x*(C-1-Hn)+b*(N-1-js)+v*Te;for(let _s=0;_s<F;++_s){let xs=A[En+ve*_s],An=y[ss+_s];mt+=xs*An}}}let It=Z*ke+te*Pe+se*ct+J*Te;g[It]=mt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var GG={kernelName:ro,backendName:"cpu",kernelFunc:UG};function HG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ee([r,a],"conv3d");let c=R.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,y=g.left,x=g.top,b=new Jt(c.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=b.values,N=w.computeStrides(r.shape),D=w.computeStrides(a.shape);for(let P=0;P<c.batchSize;++P){let E=P*N[0],F=P*b.strides[0];for(let T=0;T<c.outDepth;++T){let M=F+T*b.strides[1],G=T*c.strideDepth-A;for(let H=0;H<u;++H){let z=G+H*h;if(z<0||z>=c.inDepth)continue;let X=H*D[0],Q=E+z*N[1];for(let Z=0;Z<c.outHeight;++Z){let te=M+Z*b.strides[2],se=Z*c.strideHeight-x;for(let J=0;J<d;++J){let ee=se+J*f;if(ee<0||ee>=c.inHeight)continue;let ce=X+J*D[1],pe=Q+ee*N[2];for(let ve=0;ve<c.outWidth;++ve){let ke=te+ve*c.outChannels,Te=ve*c.strideWidth-y;for(let Pe=0;Pe<p;++Pe){let Be=Te+Pe*m;if(Be<0||Be>=c.inWidth)continue;let Ue=ce+Pe*D[2],et=pe+Be*c.inChannels,ct=Ue;for(let ot=0;ot<c.inChannels;++ot){let it=v[et+ot];for(let ht=0;ht<c.outChannels;++ht)C[ke+ht]+=it*k[ct+ht];ct+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var jG={kernelName:vc,backendName:"cpu",kernelFunc:HG};function qG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ee([r,a],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=R.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Jt(d.filterShape,"float32"),x=y.values,[b,v,k,C]=y.strides,N=n.data.get(a.dataId).values,[D,P,E,F]=u,T=n.data.get(r.dataId).values,[M,G,H,z]=c,X=d.padInfo.front,Q=d.padInfo.left,Z=d.padInfo.top;for(let te=0;te<m;++te){let se=Math.max(0,Math.ceil((X-te)/p)),J=Math.min(d.outDepth,(d.inDepth+X-te)/p),ee=te*b;for(let ce=0;ce<g;++ce){let pe=Math.max(0,Math.ceil((Z-ce)/h)),ve=Math.min(d.outHeight,(d.inHeight+Z-ce)/h),ke=ce*v+ee;for(let Te=0;Te<A;++Te){let Pe=Math.max(0,Math.ceil((Q-Te)/f)),Be=Math.min(d.outWidth,(d.inWidth+Q-Te)/f),Ue=Te*k+ke;for(let et=0;et<d.inChannels;++et){let ct=et*C+Ue;for(let ot=0;ot<d.outChannels;++ot){let it=0;for(let ht=0;ht<d.batchSize;++ht){let mt=ht*M,It=ht*D;for(let Dt=se;Dt<J;++Dt){let gn=(te+Dt*p-X)*G+mt,js=Dt*P+It;for(let En=pe;En<ve;++En){let _s=(ce+En*h-Z)*H+gn,xs=En*E+js;for(let An=Pe;An<Be;++An){let In=(Te+An*f-Q)*z+_s,dr=An*F+xs;it+=T[In+et]*N[dr+ot]}}}}x[ct+ot]=it}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var XG={kernelName:jp,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ee([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=R.computeConv3DInfo(l,a.shape,i,1,o),p=new Jt(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=c,C=n.data.get(a.dataId).values,[N,D,P,E]=u,{batchSize:F,filterDepth:T,filterHeight:M,filterWidth:G,inChannels:H,inDepth:z,inHeight:X,inWidth:Q,outChannels:Z,outDepth:te,outHeight:se,outWidth:J,strideDepth:ee,strideHeight:ce,strideWidth:pe}=d,ve=T-1-d.padInfo.front,ke=M-1-d.padInfo.top,Te=G-1-d.padInfo.left;for(let Pe=0;Pe<F;++Pe)for(let Be=0;Be<H;++Be)for(let Ue=0;Ue<z;++Ue){let et=Ue-ve,ct=Math.max(0,Math.ceil(et/ee)),ot=Math.min(te,(T+et)/ee);for(let it=0;it<X;++it){let ht=it-ke,mt=Math.max(0,Math.ceil(ht/ce)),It=Math.min(se,(M+ht)/ce);for(let Dt=0;Dt<Q;++Dt){let Hn=Dt-Te,gn=Math.max(0,Math.ceil(Hn/pe)),js=Math.min(J,(G+Hn)/pe),En=0;for(let ss=ct;ss<ot;++ss){let _s=ss*ee-et;for(let xs=mt;xs<It;++xs){let An=xs*ce-ht;for(let cr=gn;cr<js;++cr){let In=cr*pe-Hn,dr=x*Pe+b*ss+v*xs+k*cr,pr=N*(T-1-_s)+D*(M-1-An)+P*(G-1-In)+E*Be;for(let Yr=0;Yr<Z;++Yr){let Ju=y[dr+Yr],qs=C[pr+Yr];En+=Ju*qs}}}}h[f*Pe+m*Ue+g*it+A*Dt+Be]=En}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var ZG={kernelName:qp,backendName:"cpu",kernelFunc:KG},YG=pt(ao,e=>Math.cos(e)),JG={kernelName:ao,backendName:"cpu",kernelFunc:YG},QG=pt(oo,e=>Math.cosh(e)),eH={kernelName:oo,backendName:"cpu",kernelFunc:QG};function tH(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=He([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let C=0;C<f;C++){let N=C*4,D=y[N],P=y[N+1],E=y[N+2],F=y[N+3],T=x[C];if(T>=u)continue;let M=m>1?(E-D)*(d-1)/(m-1):0,G=g>1?(F-P)*(p-1)/(g-1):0;for(let H=0;H<m;H++){let z=m>1?D*(d-1)+H*M:.5*(D+E)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let Q=0;Q<h;Q++){let Z=Q+X*k[2]+H*k[1]+C*k[0];A.values[Z]=c}continue}if(l==="bilinear"){let X=Math.floor(z),Q=Math.ceil(z),Z=z-X;for(let te=0;te<g;te++){let se=g>1?P*(p-1)+te*G:.5*(P+F)*(p-1);if(se<0||se>p-1){for(let pe=0;pe<h;pe++){let ve=pe+te*k[2]+H*k[1]+C*k[0];A.values[ve]=c}continue}let J=Math.floor(se),ee=Math.ceil(se),ce=se-J;for(let pe=0;pe<h;pe++){let ve=pe+J*v[2]+X*v[1]+T*v[0],ke=b[ve];ve=pe+ee*v[2]+X*v[1]+T*v[0];let Te=b[ve];ve=pe+J*v[2]+Q*v[1]+T*v[0];let Pe=b[ve];ve=pe+ee*v[2]+Q*v[1]+T*v[0];let Be=b[ve],Ue=ke+(Te-ke)*ce,et=Pe+(Be-Pe)*ce;ve=pe+te*k[2]+H*k[1]+C*k[0],A.values[ve]=Ue+(et-Ue)*Z}}}else for(let X=0;X<g;++X){let Q=g>1?P*(p-1)+X*G:.5*(P+F)*(p-1);if(Q<0||Q>p-1){for(let se=0;se<h;se++){let J=se+X*k[2]+H*k[1]+C*k[0];A.values[J]=c}continue}let Z=Math.round(Q),te=Math.round(z);for(let se=0;se<h;se++){let J=se+Z*v[2]+te*v[1]+T*v[0],ee=se+X*k[2]+H*k[1]+C*k[0];A.values[ee]=b[J]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var nH={kernelName:ll,backendName:"cpu",kernelFunc:tH};function sH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ee(r,"cumsum");let l=R.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ss({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=R.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Ps(c.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)p[x]=o?0:h[x];else{let b=m(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=R.getUndoAxesPermutation(l),y=Ss({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),y}return g}var rH={kernelName:io,backendName:"cpu",kernelFunc:sH};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=g2(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=K7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var oH={kernelName:Xp,backendName:"cpu",kernelFunc:aH};function iH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<p;++v){let k=Math.floor(v/a),C=v%a,N=(b*a+C)*h;for(let D=0;D<h;++D){let E=D+N+u*(k+c*(x+l*A));m[g++]=f[E]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var lH={kernelName:ul,backendName:"cpu",kernelFunc:iH};function B6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ee([r,a],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=R.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,v=h.outChannels/h.inChannels,k=new Jt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,D=k.values;for(let P=0;P<h.batchSize;++P){let E=P*u[0],F=P*k.strides[0];for(let T=0;T<h.outHeight;++T){let M=F+T*k.strides[1],G=T*h.strideHeight-b;for(let H=0;H<f;++H){let z=G+H*g;if(z<0||z>=h.inHeight)continue;let X=H*d[0],Q=E+z*u[1];for(let Z=0;Z<h.outWidth;++Z){let te=M+Z*k.strides[2],se=Z*h.strideWidth-x;for(let J=0;J<m;++J){let ee=se+J*A;if(ee<0||ee>=h.inWidth)continue;let ce=X+J*d[1],pe=Q+ee*h.inChannels,ve=te,ke=ce;for(let Te=0;Te<h.inChannels;++Te){let Pe=C[pe+Te];for(let Be=0;Be<v;++Be)D[ve+Be]+=Pe*N[ke+Be];ve+=v,ke+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var uH={kernelName:lo,backendName:"cpu",kernelFunc:B6};function cH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ee([r,a],"depthwiseConv2dNativeBackpropFilter");let d=R.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Jt(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Jt(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,C=new Jt(a.shape,a.dtype,k);for(let N=0;N<f;++N){let D=Math.max(0,Math.ceil((y-N)/p)),P=Math.min(d.outHeight,(d.inHeight+y-N)/p);for(let E=0;E<m;++E){let F=Math.max(0,Math.ceil((A-E)/h)),T=Math.min(d.outWidth,(d.inWidth+A-E)/h);for(let M=0;M<d.outChannels;++M){let G=Math.trunc(M/x),H=M%x,z=0;for(let X=0;X<d.batchSize;++X)for(let Q=D;Q<P;++Q){let Z=N+Q*p-y;for(let te=F;te<T;++te){let se=E+te*h-A;z+=v.get(X,Z,se,G)*C.get(X,Q,te,M)}}g.set(z,N,E,G,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var dH={kernelName:Kp,backendName:"cpu",kernelFunc:cH};function pH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ee([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=R.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new Jt(h.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,C=n.data.get(a.dataId).values,[N,D,P]=p,{batchSize:E,filterHeight:F,filterWidth:T,inChannels:M,inHeight:G,inWidth:H,outChannels:z,outHeight:X,outWidth:Q,strideHeight:Z,strideWidth:te}=h,se=F-1-h.padInfo.top,J=T-1-h.padInfo.left,ee=z/M;for(let ce=0;ce<E;++ce)for(let pe=0;pe<M;++pe)for(let ve=0;ve<G;++ve){let ke=ve-se,Te=Math.max(0,Math.ceil(ke/Z)),Pe=Math.min(X,(F+ke)/Z);for(let Be=0;Be<H;++Be){let Ue=Be-J,et=Math.max(0,Math.ceil(Ue/te)),ct=Math.min(Q,(T+Ue)/te),ot=0;for(let it=Te;it<Pe;++it){let ht=it*Z-ke;for(let mt=et;mt<ct;++mt){let It=mt*te-Ue,Dt=b*ce+v*it+k*mt,Hn=N*(F-1-ht)+D*(T-1-It)+P*pe;for(let gn=0;gn<ee;++gn){let js=pe*ee+gn,En=x[Dt+js],ss=C[Hn+gn];ot+=En*ss}}}m[g*ce+A*ve+y*Be+pe]=ot}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var hH={kernelName:Zp,backendName:"cpu",kernelFunc:pH};function fH(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=He([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var mH={kernelName:Yp,backendName:"cpu",kernelFunc:fH},gH={kernelName:wc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:D,outShape:P}=R.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(P),F=P.length,T=w.getArrayFromDType(s.dtype,E);for(let G=0;G<h;++G)for(let H=0;H<A;++H){let z=H*b-x.top;for(let X=0;X<y;++X){let Q=X*v-x.left;for(let Z=0;Z<g;++Z){let te=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let ee=z+J*N;if(ee>=0&&ee<f)for(let ce=0;ce<C;++ce){let pe=Q+ce*D;if(pe>=0&&pe<m){let ve=w.locToIndex([G,ee,pe,Z],u,w.computeStrides(s.shape)),ke=w.locToIndex([J,ce,Z],p,w.computeStrides(r.shape)),Te=c[ve]+d[ke];Te>te&&(te=Te)}}}let se=w.locToIndex([G,H,X,Z],F,w.computeStrides(P));T[se]=te}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},AH={kernelName:Qp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:C,dilationWidth:N,outShape:D}=R.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Qp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let P=w.toNestedArray(D,c.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let G=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,Z=0,te=0;for(let se=0;se<v;++se){let J=G+se*C;if(J>=0&&J<h)for(let ee=0;ee<k;++ee){let ce=z+ee*N;if(ce>=0&&ce<f){let pe=u[T][J][ce][X]+d[se][ee][X];pe>Q&&(Q=pe,Z=se,te=ee)}}}E[Z][te][X]+=P[T][M][H][X]}}}return{dataId:c.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},yH={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:C,dilationWidth:N,outShape:D}=R.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Jp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let P=w.toNestedArray(D,c.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let G=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,Z=G<0?0:G,te=z<0?0:z;for(let se=0;se<v;++se){let J=G+se*C;if(J>=0&&J<h)for(let ee=0;ee<k;++ee){let ce=z+ee*N;if(ce>=0&&ce<f){let pe=u[T][J][ce][X]+d[se][ee][X];pe>Q&&(Q=pe,Z=J,te=ce)}}}E[T][Z][te][X]+=P[T][M][H][X]}}}return{dataId:c.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function _d(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"sum");let i;r.dtype==="bool"?i=Ra({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Tr({inputs:{x:r},backend:n});let l=i.shape.length,c=w.parseAxisParam(a,i.shape),u=R.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ss({inputs:{x:i},backend:n,attrs:{perm:u}}),d=R.getInnerMostAxes(d.length,l)),R.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=R.computeOutAndReduceShapes(p.shape,d),m=R.upcastType(p.dtype,"int32"),g=s0(n,h,m),A=w.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,k=0;for(let C=0;C<A;++C)k+=x[v+C];y[b]=k}if(o){let b=R.expandShapeToKeepDim(g.shape,c),v=g;g=wt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var xH={kernelName:Wo,backendName:"cpu",kernelFunc:_d};function bH(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(r,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=R.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=a[g]:(x=Ss({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=wt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=r0({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=_d({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var vH={kernelName:eh,backendName:"cpu",kernelFunc:bH};function wH(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ee([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var kH={kernelName:th,backendName:"cpu",kernelFunc:wH},IH=R.ERF_P,SH=R.ERF_A1,CH=R.ERF_A2,TH=R.ERF_A3,NH=R.ERF_A4,EH=R.ERF_A5,RH=pt(cl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+IH*n);return t*(1-((((EH*s+NH)*s+TH)*s+CH)*s+SH)*s*Math.exp(-n*n))}),DH={kernelName:cl,backendName:"cpu",kernelFunc:RH};function o0(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),wt({inputs:{x:r},backend:n,attrs:{shape:i}})}var _H={kernelName:pl,backendName:"cpu",kernelFunc:o0},FH=Xt((e,t)=>e/t),S2=mn(uo,FH),C2={kernelName:uo,backendName:"cpu",kernelFunc:S2};function W6(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=w.sizeFromShape(c),d=w.getTypedArrayFromDType("float32",u),p=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=ki({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ki({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=fs({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=$H(x,t,n),k=R.mergeRealAndImagArrays(b,v);for(let C=0;C<a;C++){let N=R.getComplexWithIndex(k,C);d[g*a+C]=N.real,p[g*a+C]=N.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=fs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function $H(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(OH(s)){let i=T2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=Tr({inputs:{x:d},backend:n}),h=C2.kernelFunc({inputs:{a:c,b:d},backend:n}),f=C2.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=R.mergeRealAndImagArrays(a,o),l=PH(i,s,t);return R.splitRealAndImagArrays(l)}}function OH(e){return(e&e-1)==0}function T2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=R.mergeRealAndImagArrays(e,t),o=n/2,i=R.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=fs({inputs:{real:d,imag:p},backend:r}),f=R.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=fs({inputs:{real:y,imag:x},backend:r}),v=T2(l,c,o,s,r),k=v.real,C=v.imag,N=[k.length],D=r.makeTensorInfo(N,"float32",k),P=r.makeTensorInfo(N,"float32",C),E=fs({inputs:{real:D,imag:P},backend:r}),F=T2(m,g,o,s,r),T=F.real,M=F.imag,G=[T.length],H=r.makeTensorInfo(G,"float32",T),z=r.makeTensorInfo(G,"float32",M),X=fs({inputs:{real:H,imag:z},backend:r}),Q=R.exponents(n,s),Z=[Q.real.length],te=r.makeTensorInfo(Z,"float32",Q.real),se=r.makeTensorInfo(Z,"float32",Q.imag),J=fs({inputs:{real:te,imag:se},backend:r}),ee=r0({inputs:{a:J,b:X},backend:r}),ce=Rd({inputs:{a:E,b:ee},backend:r}),pe=w2({inputs:{a:E,b:ee},backend:r}),ve=wi({inputs:{input:ce},backend:r}),ke=wi({inputs:{input:pe},backend:r}),Te=Eu({inputs:{input:ce},backend:r}),Pe=Eu({inputs:{input:pe},backend:r}),Be=Ru({inputs:[ve,ke],backend:r,attrs:{axis:0}}),Ue=Ru({inputs:[Te,Pe],backend:r,attrs:{axis:0}}),et=r.data.get(Be.dataId).values,ct=r.data.get(Ue.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(ve),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Ue),{real:et,imag:ct}}function PH(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=R.exponent(r*i,t,n),c=R.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),R.assignToTypedArray(s,a,o,r)}return s}function MH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=W6(i,!1,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var zH={kernelName:nh,backendName:"cpu",kernelFunc:MH};function N2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return BH(i,r,o),t.makeTensorInfo(s,o,i)}var LH={kernelName:kc,backendName:"cpu",kernelFunc:N2};function BH(e,t,n){e.fill(t)}var WH={kernelName:fl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let y=0;y<c;y++){let x=Math.round(l-g-1),b=h+m+A+y,v=u[b];if(x>=0&&x<l){let k=x*c,C=h+m+k+y;v=u[C]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},VH=Xt((e,t)=>Math.floor(e/t)),UH=mn(fo,VH,null,"int32"),GH={kernelName:fo,backendName:"cpu",kernelFunc:UH};function HH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=L6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Rd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=k2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var jH={kernelName:Ko,backendName:"cpu",kernelFunc:HH};function qH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=B6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Rd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=k2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var XH={kernelName:Zo,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=R.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=s6(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var ZH={kernelName:gl,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ee([r,a],"gatherV2");let l=w.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=w.sizeFromShape(a.shape),h=R.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=wt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=wt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),y=n.bufferSync(f),x=r6(y,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var JH={kernelName:ml,backendName:"cpu",kernelFunc:YH};function QH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=W6(i,!0,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var ej={kernelName:sh,backendName:"cpu",kernelFunc:QH},tj=pt(yl,e=>Number.isFinite(e)?1:0,"bool"),nj={kernelName:yl,backendName:"cpu",kernelFunc:tj},sj=pt(xl,e=>Math.abs(e)===1/0?1:0,"bool"),rj={kernelName:xl,backendName:"cpu",kernelFunc:sj},aj=pt(bl,e=>Number.isNaN(e)?1:0,"bool"),oj={kernelName:bl,backendName:"cpu",kernelFunc:aj};function ij(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=u6(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var lj={kernelName:ah,backendName:"cpu",kernelFunc:ij},uj=pt(kl,e=>Math.log1p(e)),cj={kernelName:kl,backendName:"cpu",kernelFunc:uj},dj=Xt((e,t)=>e&&t),pj=mn(Il,dj,null,"bool"),hj={kernelName:Il,backendName:"cpu",kernelFunc:pj},fj=pt(Ic,e=>e?0:1,"bool"),mj={kernelName:Ic,backendName:"cpu",kernelFunc:fj},gj=Xt((e,t)=>e||t),Aj=mn(Sc,gj,null,"bool"),yj={kernelName:Sc,backendName:"cpu",kernelFunc:Aj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ee(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,u),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var bj={kernelName:Cc,backendName:"cpu",kernelFunc:xj};function vj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ee(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),v=y-x+Math.min(p,x+i+1),k=0;for(let C=b;C<v;C++)k+=Math.pow(f[C],2);k=c*k+l;for(let C=b;C<v;C++){let N=-2*c*u*f[C]*m[y]/k;y===C&&(N+=Math.pow(k,-u)),N*=h[y],g[C]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var wj={kernelName:oh,backendName:"cpu",kernelFunc:vj};function V6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=w.parseAxisParam(a,l),d=u,p=R.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=x2(h,l,r.dtype,p,b),d=R.getInnerMostAxes(d.length,c),l=b}Ee(r,"max"),R.assertAxesAreInnerMostDims("max",d,c);let[f,m]=R.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=d6(h,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=R.expandShapeToKeepDim(f,u)),{dataId:y,shape:x,dtype:r.dtype}}var kj={kernelName:bo,backendName:"cpu",kernelFunc:V6};function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ee(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Tr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=I2(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Sj={kernelName:wo,backendName:"cpu",kernelFunc:Ij};function Cj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ee(r,"maxPool3d");let u=R.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=z6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Tj={kernelName:Tc,backendName:"cpu",kernelFunc:Cj};function Nj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ee([r,a],"maxPool3DGrad");let u=R.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=AG(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,y=u.dilationWidth,x=u.effectiveFilterDepth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,k=x-1-u.padInfo.front,C=v-1-u.padInfo.left,N=b-1-u.padInfo.top,D=He(a.shape,"float32"),P=n.bufferSync(r);for(let E=0;E<u.batchSize;++E)for(let F=0;F<u.inChannels;++F)for(let T=0;T<u.inDepth;++T)for(let M=0;M<u.inHeight;++M)for(let G=0;G<u.inWidth;++G){let H=T-k,z=M-N,X=G-C,Q=0;for(let Z=0;Z<x;Z+=g){let te=(H+Z)/h;if(!(te<0||te>=u.outDepth||Math.floor(te)!==te))for(let se=0;se<b;se+=A){let J=(z+se)/f;if(!(J<0||J>=u.outHeight||Math.floor(J)!==J))for(let ee=0;ee<v;ee+=y){let ce=(X+ee)/m;if(ce<0||ce>=u.outWidth||Math.floor(ce)!==ce)continue;let pe=x*b*v-1-p.get(E,te,J,ce,F),ve=Z*b*v+se*v+ee,ke=pe===ve?1:0;if(ke===0)continue;Q+=P.get(E,te,J,ce,F)*ke}}}D.set(Q,E,T,M,G,F)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var Ej={kernelName:lh,backendName:"cpu",kernelFunc:Nj};function Rj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ee([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=R.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=He(p.outShape,i.dtype,M6(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,k=x-1-p.padInfo.top,C=He(i.shape,"float32"),N=n.data.get(r.dataId).values,D=He(r.shape,"float32",N);for(let P=0;P<p.batchSize;++P)for(let E=0;E<p.inChannels;++E)for(let F=0;F<p.inHeight;++F)for(let T=0;T<p.inWidth;++T){let M=F-k,G=T-v,H=0;for(let z=0;z<x;z+=A){let X=(M+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let Q=0;Q<b;Q+=y){let Z=(G+Q)/g;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let te=x*b-1-f.get(P,X,Z,E),se=z*b+Q,J=te===se?1:0;if(J===0)continue;H+=D.get(P,X,Z,E)*J}}C.set(H,P,F,T,E)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var Dj={kernelName:ih,backendName:"cpu",kernelFunc:Rj};function _j(e,t,n,s,r){let a=w.computeStrides(t),o=I2(e,t,n,a,r,"max"),i=M6(e,t,n,r,!0,s);return[o.values,i.values]}var Fj={kernelName:uh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ee(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=R.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=_j(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),c=R.computeOutAndReduceShapes(r.shape,i)[1],u=w.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=S2({inputs:{a:h,b:p},backend:n});d.push(f);let m=_d({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Oj={kernelName:ko,backendName:"cpu",kernelFunc:$j};function Pj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var Mj={kernelName:Io,backendName:"cpu",kernelFunc:Pj};function zj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ee(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),c=a.map((x,b)=>x[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=w.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,C)=>k-l[C]);let v=w.locToIndex(b,p,h);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var Lj={kernelName:Co,backendName:"cpu",kernelFunc:zj},Bj=Xt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Wj=mn(Sl,Bj),Vj={kernelName:Sl,backendName:"cpu",kernelFunc:Wj},Uj=Xa(z5());function U6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),c=V6({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=R.expandShapeToKeepDim(c.shape,l),d=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=w2({inputs:{a:r,b:d},backend:n}),h=e6({inputs:{x:p},backend:n}),f=_d({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=S2({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Gj={kernelName:Vo,backendName:"cpu",kernelFunc:U6};function Hj(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ee(r,"multinomial");let l=i?r:U6({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=Uj.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var jj={kernelName:ch,backendName:"cpu",kernelFunc:Hj},qj=vr.nonMaxSuppressionV3Impl;function Xj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ee(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=qj(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Kj={kernelName:Nl,backendName:"cpu",kernelFunc:Xj},Zj=vr.nonMaxSuppressionV4Impl;function Yj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ee(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=Zj(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Jj={kernelName:El,backendName:"cpu",kernelFunc:Yj},Qj=vr.nonMaxSuppressionV5Impl;function eq(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ee(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Qj(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var tq={kernelName:Rl,backendName:"cpu",kernelFunc:eq};function nq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ee(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var sq={kernelName:No,backendName:"cpu",kernelFunc:nq};function i0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=wi({inputs:{input:s},backend:n}),a=i0({inputs:{x:r},backend:n}),o=Eu({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return N2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var rq={kernelName:Kl,backendName:"cpu",kernelFunc:i0};function G6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=wi({inputs:{input:s},backend:n}),a=G6({inputs:{x:r},backend:n}),o=Eu({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return N2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var aq={kernelName:Dl,backendName:"cpu",kernelFunc:G6};function H6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return o0({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=o0({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Ru({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var oq={kernelName:_l,backendName:"cpu",kernelFunc:H6};function iq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ee(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<u;y++){let b=w.indexToLoc(y,d,p).map((k,C)=>k+l[C]),v=w.locToIndex(b,f,m);g[v]=c[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var j6={kernelName:Eo,backendName:"cpu",kernelFunc:iq},lq=Xt((e,t)=>Math.pow(e,t)),uq=mn(Ro,lq),cq={kernelName:Ro,backendName:"cpu",kernelFunc:uq};function dq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=b2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var pq={kernelName:Nc,backendName:"cpu",kernelFunc:dq},hq=pt($l,e=>1/e),fq={kernelName:$l,backendName:"cpu",kernelFunc:hq};function mq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ee(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k<d;k++)for(let C=0;C<c;C++){let N;o?N=b*(C+.5)-.5:N=b*C;let D=Math.max(0,Math.floor(N)),P=N-D,E=Math.min(p-1,Math.ceil(N)),F=k*l[0]+D*l[1],T=k*l[0]+E*l[1];for(let M=0;M<u;M++){let G;o?G=v*(M+.5)-.5:G=v*M;let H=Math.max(0,Math.floor(G)),z=G-H,X=Math.min(h-1,Math.ceil(G)),Q=F+H*l[2],Z=T+H*l[2],te=F+X*l[2],se=T+X*l[2];for(let J=0;J<f;J++){let ee=m[Q+J],ce=m[Z+J],pe=m[te+J],ve=m[se+J],ke=ee+(pe-ee)*z,Te=ce+(ve-ce)*z,Pe=ke+(Te-ke)*P;g[x++]=Pe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var gq={kernelName:Fo,backendName:"cpu",kernelFunc:mq};function Aq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ee([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let C=0;C<p;C++){let N=C*A,D=Math.floor(N),P=Math.min(Math.ceil(N),c-1),E=k+D*i[1],F=k+P*i[1],T=N-D,M=1-T;for(let G=0;G<h;G++){let H=G*y,z=Math.floor(H),X=Math.min(Math.ceil(H),u-1),Q=H-z,Z=1-Q,te=E+z*i[2],se=E+X*i[2],J=F+z*i[2],ee=F+X*i[2],ce=M*Z,pe=M*Q,ve=T*Z,ke=T*Q;for(let Te=0;Te<d;Te++){let Pe=x[b++];f[te+Te]+=Pe*ce,f[se+Te]+=Pe*pe,f[J+Te]+=Pe*ve,f[ee+Te]+=Pe*ke}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var yq={kernelName:hh,backendName:"cpu",kernelFunc:Aq};function xq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ee(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k<d;k++){let C=k*l[0];for(let N=0;N<c;N++){let D=o?x*(N+.5):x*N,P=Math.min(p-1,a?Math.round(D):Math.floor(D));o&&(P=Math.max(0,P));let E=C+P*l[1];for(let F=0;F<u;F++){let T=o?b*(F+.5):b*F,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let G=E+M*l[2];for(let H=0;H<f;H++){let z=m[G+H];g[v++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var bq={kernelName:Ec,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ee([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,C=Math.ceil(v)*2+2,N=Math.ceil(k)*2+2;for(let D=0;D<c;D++){let P=D*i[0];for(let E=0;E<u;E++){let F=P+E*i[1],T=Math.floor(E*v),M=Math.floor(T-C/2);for(let G=0;G<d;G++){let H=F+G*i[2],z=Math.floor(G*k),X=Math.floor(z-N/2);for(let Q=0;Q<p;Q++){let Z=0;for(let te=0;te<C;te++){let se=te+M;if(se<0||se>=h)continue;let J=P+se*l[1],ee=se*x,ce=Math.min(u-1,o?Math.round(ee):Math.floor(ee));if(E===ce)for(let pe=0;pe<N;pe++){let ve=pe+X;if(ve<0||ve>=f)continue;let ke=J+ve*l[2],Te=ve*b,Pe=Math.min(d-1,o?Math.round(Te):Math.floor(Te));G===Pe&&(Z+=g[ke+Q])}}m[H+Q]=Z}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var wq={kernelName:ph,backendName:"cpu",kernelFunc:vq};function kq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ee(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return Tr({inputs:{x:r},backend:n});let l=new Jt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Iq={kernelName:Oo,backendName:"cpu",kernelFunc:kq},Sq={kernelName:Zl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=R.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let v=b*d*u*p;for(let k=0;k<u;k++){let C=k*(d*p);for(let N=0;N<d;N++){let D=N*p;for(let P=0;P<p;P++){let E=[c,k,N,P],F=E[2],T=E[1],M=(F-h)*A-(T-f)*g,G=(F-h)*g+(T-f)*A;M=Math.round(M+h),G=Math.round(G+f);let H=a;if(typeof a!="number"&&(P===3?H=m:H=a[P]),M>=0&&M<d&&G>=0&&G<u){let X=G*(d*p),Q=M*p,Z=v+X+Q+P;H=y[Z]}let z=v+C+D+P;l[z]=H}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Cq=pt(Po,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Tq={kernelName:Po,backendName:"cpu",kernelFunc:Cq};function q6(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return He(n,t.dtype);let h=He(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function Nq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=R.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=q6(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var Eq={kernelName:Pl,backendName:"cpu",kernelFunc:Nq};function Rq(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ee([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Ps(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var Dq={kernelName:Ml,backendName:"cpu",kernelFunc:Rq},_q=R.SELU_SCALEALPHA,Fq=R.SELU_SCALE,$q=pt(zl,e=>e>=0?Fq*e:_q*(Math.exp(e)-1)),Oq={kernelName:zl,backendName:"cpu",kernelFunc:$q},Pq=pt(Wl,e=>e<0?-1:e>0?1:0),Mq={kernelName:Wl,backendName:"cpu",kernelFunc:Pq},zq=pt(zo,e=>Math.sin(e)),Lq={kernelName:zo,backendName:"cpu",kernelFunc:zq},Bq=pt(Bl,e=>Math.sinh(e)),Wq={kernelName:Bl,backendName:"cpu",kernelFunc:Bq},Vq=11920928955078125e-23,X6=Math.log(Vq)+2,Uq=pt(Vl,e=>{let t=e>-X6,n=e<X6,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),Gq={kernelName:Vl,backendName:"cpu",kernelFunc:Uq};function Hq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ee([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=j6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,a,i,!1),d=R.getPermuted(u.length,a.length,!1),p=R.getReshapedPermuted(c.shape,a,i,!1),m=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Ss({inputs:{x:m},backend:n,attrs:{perm:d}}),v=wt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var jq={kernelName:Ul,backendName:"cpu",kernelFunc:Hq};function qq(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=x6(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Xq={kernelName:fh,backendName:"cpu",kernelFunc:qq};function Kq(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=b6(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Zq={kernelName:mh,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=v2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Jq={kernelName:gh,backendName:"cpu",kernelFunc:Yq};function Qq(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=v2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var eX={kernelName:Ah,backendName:"cpu",kernelFunc:Qq};function tX(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=q6(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var nX={kernelName:yh,backendName:"cpu",kernelFunc:tX};function sX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=ki({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var rX={kernelName:Gl,backendName:"cpu",kernelFunc:sX},aX={kernelName:Rc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ee(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},oX=pt(da,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),iX={kernelName:da,backendName:"cpu",kernelFunc:oX};function lX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ee(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=Fn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=wt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=ki({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=wt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),C=w6(y,k,m,f);b=n.makeTensorInfo(C.shape,C.dtype,C.values)}let v=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var uX={kernelName:Hl,backendName:"cpu",kernelFunc:lX};function cX(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=k6(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var dX={kernelName:xh,backendName:"cpu",kernelFunc:cX};function pX(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=I6(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var hX={kernelName:bh,backendName:"cpu",kernelFunc:pX};function fX(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=S6(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var mX={kernelName:vh,backendName:"cpu",kernelFunc:fX},gX=pt(Ho,e=>Math.tan(e)),AX={kernelName:Ho,backendName:"cpu",kernelFunc:gX},yX=pt(jo,e=>Math.tanh(e)),xX={kernelName:jo,backendName:"cpu",kernelFunc:yX};function bX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ee(r,"tile");let o=T6(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var vX={kernelName:ca,backendName:"cpu",kernelFunc:bX};function wX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ee(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=E6(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var kX={kernelName:jl,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,C=s.data.get(a.dataId).values;for(let D=0;D<u;++D){let P=a.shape[0]===1?C:C.subarray(D*8,D*8+8);for(let E=0;E<f;++E)for(let F=0;F<m;++F)for(let T=0;T<h;++T){let M,G=P[6]*F+P[7]*E+1;if(G===0)continue;let H=(P[0]*F+P[1]*E+P[2])/G,z=(P[3]*F+P[4]*E+P[5])/G,X=K6(H,p,i),Q=K6(z,d,i);switch(o){case"nearest":M=RX(k,d,p,y,x,b,D,Q,X,T,l);break;case"bilinear":M=DX(k,d,p,y,x,b,D,Q,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let Z=D*y+E*x+F*b+T;v[Z]=M}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var SX={kernelName:ql,backendName:"cpu",kernelFunc:IX};function K6(e,t,n){switch(n){case"reflect":return CX(e,t);case"wrap":return TX(e,t);case"nearest":return EX(e,t);case"constant":default:return NX(e,t)}}function CX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function TX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function NX(e,t){return e}function EX(e,t){return w.clamp(0,e,t-1)}function Fd(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function RX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return Fd(e,t,n,s,r,a,o,d,p,c,u)}function DX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*Fd(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*Fd(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*Fd(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*Fd(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function _X(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ee(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=R6(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var FX={kernelName:wh,backendName:"cpu",kernelFunc:_X};function $X(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=ki({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=wt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var OX={kernelName:Xl,backendName:"cpu",kernelFunc:$X};function PX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ee(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=o0({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=J7({inputs:{a:g,b:p},backend:n}),y=Ra({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=r0({inputs:{a:y,b:r},backend:n}),b=_d({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(y),u.push(x),u.push(b)}let h=H6({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var MX={kernelName:Dc,backendName:"cpu",kernelFunc:PX},zX=[HU,zV,qU,KU,GV,YU,QU,tG,sG,aG,iG,uG,dG,fG,gG,xG,vG,kG,SG,UU,TG,EG,DG,FG,VV,jV,OG,LV,MG,LG,VG,GG,BG,XG,ZG,jG,JG,eH,nH,rH,oH,lH,uH,dH,hH,mH,gH,yH,AH,C2,vH,PU,kH,qV,DH,XV,_H,ZV,zH,LH,WH,JV,GH,jH,XH,ZH,JH,eU,nU,BV,ej,zG,nj,rj,oj,MU,rU,oU,lj,lU,cj,hj,mj,yj,bj,wj,cU,Sj,Tj,Ej,Dj,Fj,kj,Oj,Mj,pU,Lj,Vj,jj,fU,gU,Kj,Jj,tq,yU,sq,aq,oq,j6,cq,LU,vU,pq,WV,fq,BU,WU,VU,gq,yq,bq,wq,Iq,Sq,Tq,kU,Eq,Dq,Oq,SU,Mq,Lq,Wq,CU,Gj,Gq,jq,Xq,Zq,Jq,eX,nX,rX,EU,aX,DU,iX,uX,dX,hX,mX,OU,xH,AX,xX,vX,kX,xU,SX,FX,OX,MX,rq];for(let e of zX)pa(e);var Z6={};ze(Z6,{assertNotComplex:()=>_u,bindCanvasToFramebuffer:()=>ZX,bindColorTextureToFramebuffer:()=>d0,bindTextureToProgramUniformSampler:()=>d4,bindTextureUnit:()=>l4,bindVertexBufferToProgramAttribute:()=>D2,callAndCheck:()=>Ce,canBeRepresented:()=>Y6,createFragmentShader:()=>e4,createFramebuffer:()=>i4,createProgram:()=>t4,createStaticIndexBuffer:()=>r4,createStaticVertexBuffer:()=>s4,createTexture:()=>a4,createVertexShader:()=>Q6,getBatchDim:()=>Si,getExtensionOrThrow:()=>Pd,getFramebufferErrorMessage:()=>p4,getMaxTexturesInShader:()=>g4,getNumChannels:()=>XX,getProgramUniformLocation:()=>c4,getProgramUniformLocationOrThrow:()=>u4,getRowsCols:()=>Ci,getShapeAs3D:()=>p0,getTextureShapeFromLogicalShape:()=>f4,getWebGLDisjointQueryTimerVersion:()=>A4,getWebGLErrorMessage:()=>J6,getWebGLMaxTextureSize:()=>m4,hasExtension:()=>Ts,isCapableOfRenderingToFloatTexture:()=>y4,isDownloadFloatTextureEnabled:()=>x4,isReshapeFree:()=>zd,isWebGLFenceEnabled:()=>b4,isWebGLVersionEnabled:()=>F2,linkProgram:()=>n4,resetMaxTextureSize:()=>YX,resetMaxTexturesInShader:()=>JX,unbindColorTextureFromFramebuffer:()=>_2,unbindTextureUnit:()=>KX,validateFramebuffer:()=>Md,validateProgram:()=>c0,validateTextureSize:()=>o4});var Ii={},E2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function l0(e,t){Ii[e]=t}function Nr(e){if(!(e in Ii)){let n=BX(e);if(n!==null)Ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ii[e];return t.isContextLost()?(delete Ii[e],Nr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ii[e])}function LX(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function BX(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=LX(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ii[e]},!1),e===1?t.getContext("webgl",E2)||t.getContext("experimental-webgl",E2):t.getContext("webgl2",E2)}var $d;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})($d||($d={}));var Cs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Cs||(Cs={}));var vn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(vn||(vn={}));function Od(e,t){return[t,e]}function WX(e,t){return e*t}function u0(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Du(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function VX(e,t){let[n,s]=Du(e,t);return n*s*4}function R2(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return ne().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Ce(e,t){let n=t();return ne().getBool("DEBUG")&&UX(e),n}function UX(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+J6(e,t))}var GX=596e-10,HX=65504;function Y6(e){return!!(ne().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||GX<Math.abs(e)&&Math.abs(e)<HX)}function J6(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Pd(e,t){return jr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Q6(e,t){let n=jr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ce(e,()=>e.shaderSource(n,t)),Ce(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function e4(e,t){let n=jr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ce(e,()=>e.shaderSource(n,t)),Ce(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw qX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var jX=/ERROR: [0-9]+:([0-9]+):/g;function qX(e,t){let n=jX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function t4(e){return jr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function n4(e,t){if(Ce(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function c0(e,t){if(Ce(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function s4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ce(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function r4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ce(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function XX(){return ne().getNumber("WEBGL_VERSION")===2?1:4}function a4(e){return jr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function o4(e,t){let n=ne().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function i4(e){return jr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function D2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ce(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ce(e,()=>e.enableVertexAttribArray(i)),!0)}function l4(e,t,n){h4(e,n),Ce(e,()=>e.activeTexture(e.TEXTURE0+n)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function KX(e,t){h4(e,t),Ce(e,()=>e.activeTexture(e.TEXTURE0+t)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u4(e,t,n){return jr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function c4(e,t,n){return e.getUniformLocation(t,n)}function d4(e,t,n,s){Ce(e,()=>l4(e,t,s)),Ce(e,()=>e.uniform1i(n,s))}function ZX(e){Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ce(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ce(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function d0(e,t,n){Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ce(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function _2(e,t){Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ce(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Md(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+p4(e,t))}function p4(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function jr(e,t,n){let s=Ce(e,()=>t());if(s==null)throw new Error(n);return s}function h4(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Si(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function p0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Si(e),...Ci(e)]),t}function f4(e,t=!1){let n=ne().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Si(e),a=2,o=2;return e.length&&([a,o]=Ci(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function h0(e){return e%2==0}function zd(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||h0(n)&&h0(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&h0(e[0])&&h0(t[0])}var f0,m0;function m4(e){if(f0==null){let t=Nr(e);f0=t.getParameter(t.MAX_TEXTURE_SIZE)}return f0}function YX(){f0=null}function JX(){m0=null}function g4(e){if(m0==null){let t=Nr(e);m0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,m0)}function A4(e){if(e===0)return 0;let t,n=Nr(e);return Ts(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ts(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ts(e,t){return e.getExtension(t)!=null}function F2(e){try{if(Nr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function y4(e){if(e===0)return!1;let t=Nr(e);if(e===1){if(!Ts(t,"OES_texture_float"))return!1}else if(!Ts(t,"EXT_color_buffer_float"))return!1;return $2(t)}function x4(e){if(e===0)return!1;let t=Nr(e);if(e===1){if(!Ts(t,"OES_texture_float")||!Ts(t,"WEBGL_color_buffer_float"))return!1}else{if(Ts(t,"EXT_color_buffer_float"))return $2(t);let s="EXT_color_buffer_half_float";if(Ts(t,s)){let r=t.getExtension(s);return QX(t,r)}return!1}return $2(t)}function $2(e){let t=R2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function QX(e,t){let n=R2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function b4(e){return e!==2?!1:Nr(e).fenceSync!=null}function _u(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=ne();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>F2(2)?2:F2(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>m4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>g4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:A4(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Wc.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>y4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>x4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>b4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Wc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function zn(){let e,t,n,s,r,a,o,i,l,c;return ne().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Ti(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function g0(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function eK(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function tK(e,t,n="index"){let s=e.map((a,o)=>o),r=eK(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function O2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function P2(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var v4=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:w4}=R;function nK(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=M2(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>sK(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=zn(),l=oK(i),c,u,d=uK(i);return t.isPacked?(c=rK(t.logicalShape,o,n.enableShapeUniforms),u=lK(i)):(c=aK(t.logicalShape,o,n.enableShapeUniforms),u=iK(i)),n.packedInputs&&(d+=hK),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function Fu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return SK(e,t);case 1:return TK(e,t);case 2:return EK(e,t);case 3:return DK(e,t);case 4:return FK(e,t);case 5:return $K(e);case 6:return OK(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function k4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return IK(e);case 1:return CK(e,t);case 2:return NK(e,t);case 3:return RK(e,t);default:return _K(e,t)}}function sK(e,t,n=!1,s){let r="";n?r+=k4(e,s):r+=Fu(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=PK(e,t):r+=MK(e,t)),r}function rK(e,t,n){switch(e.length){case 0:return I4();case 1:return fK(e,t,n);case 2:return wK(e,t,n);case 3:return gK(e,t,n);default:return yK(e,t,n)}}function aK(e,t,n){switch(e.length){case 0:return I4();case 1:return mK(e,t,n);case 2:return kK(e,t,n);case 3:return AK(e,t,n);case 4:return xK(e,t,n);case 5:return bK(e,t);case 6:return vK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function oK(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function iK(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function lK(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function uK(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${cK}
|
|
${dK}
|
|
${pK}
|
|
`}var cK=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,dK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,pK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,hK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function I4(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function fK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function mK(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function gK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function AK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Ti(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function yK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function xK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Ti(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function bK(e,t){let n=Ti(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function vK(e,t){let n=Ti(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function wK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function kK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ni(e){return`offset${e}`}function IK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=zn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function SK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Ni(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function CK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=zn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function TK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${$u(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Ni(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function NK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=zn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function EK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=Ou(e,l),h=["row","col"];return`
|
|
${Fu(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Pu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=Ni(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function RK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=Ou(e,p),m=["b","row","col"];return`
|
|
${k4(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Pu(m,h)});
|
|
}
|
|
`}let i=zn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function DK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),c=i;if(c.length<n.length){let m=Ou(e,c),g=["row","col","depth"];return`
|
|
${Fu(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Pu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=Ni(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function _K(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=zn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function FK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(n);if(l.length<n.length){let y=Ou(e,l),x=["row","col","depth","depth2"];return`
|
|
${Fu(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Pu(x,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=Ni(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function $K(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let m=Ou(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Fu(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Pu(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${$u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ni(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function OK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=Ou(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Fu(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Pu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ni(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function $u(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function PK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=w4(e.shapeInfo.logicalShape,t.logicalShape),l=yt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(y=>`coords.${d[y+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function MK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=yt(l),u=w4(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function M2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function Ou(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Pu(e,t){return t.map(n=>e[n]).join(", ")}function zK(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=nK(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);ne().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function S4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function LK(e,t,n,s,r){t.program.enableShapeUniforms||(S4(t.inShapeInfos,n),S4([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ne().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=M2(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function BK(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=M2(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let v=w.computeStrides(u);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=R.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${c?d:""}_${u.length}_${A}_${y}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${ne().getNumber("WEBGL_VERSION")}`,a}function Ns(e){return ne().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var WK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=$d.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},VK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=$d.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},UK=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Cs.DOWNLOAD;let t=zn();this.outputShape=e,this.userCode=`
|
|
${v4}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},GK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Cs.DOWNLOAD;let t=zn();this.outputShape=e,this.userCode=`
|
|
${v4}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},HK=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?P2():O2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},jK=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?P2():O2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},C4={};ze(C4,{bindVertexProgramAttributeStreams:()=>O4,createBufferFromOutputTexture:()=>z4,createFloat16MatrixTexture:()=>D4,createFloat16PackedMatrixTexture:()=>$4,createFloat32MatrixTexture:()=>R4,createIndexBuffer:()=>E4,createPackedMatrixTexture:()=>F4,createUnsignedBytesMatrixTexture:()=>_4,createVertexBuffer:()=>N4,createVertexShader:()=>T4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>B4,downloadFloat32MatrixFromBuffer:()=>L4,downloadMatrixFromPackedOutputTexture:()=>V4,downloadPackedMatrixFromBuffer:()=>W4,getInternalFormatForFloat16MatrixTexture:()=>L2,getInternalFormatForFloat16PackedMatrixTexture:()=>V2,getInternalFormatForFloat32MatrixTexture:()=>z2,getInternalFormatForPackedMatrixTexture:()=>W2,getInternalFormatForUnsignedBytesMatrixTexture:()=>B2,uploadDenseMatrixToTexture:()=>P4,uploadPixelDataToTexture:()=>M4});function T4(e){let t=zn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Q6(e,n)}function N4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return s4(e,t)}function E4(e){let t=new Uint16Array([0,1,2,2,1,3]);return r4(e,t)}function Ld(e,t,n,s,r,a){o4(t,n);let o=a4(e),i=e.TEXTURE_2D;return Ce(e,()=>e.bindTexture(i,o)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ce(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function z2(e){return e.internalFormatFloat}function R4(e,t,n,s){let[r,a]=Od(t,n);return Ld(e,r,a,z2(s),s.textureFormatFloat,e.FLOAT)}function L2(e){return e.internalFormatHalfFloat}function D4(e,t,n,s){let[r,a]=Od(t,n);return Ld(e,r,a,L2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function B2(e){return e.downloadTextureFormat}function _4(e,t,n,s){let[r,a]=Od(t,n);return Ld(e,r,a,B2(s),e.RGBA,e.UNSIGNED_BYTE)}function W2(e){return e.internalFormatPackedFloat}function F4(e,t,n,s){let[r,a]=Du(t,n);return Ld(e,r,a,W2(s),e.RGBA,e.FLOAT)}function V2(e){return e.internalFormatPackedHalfFloat}function $4(e,t,n,s){let[r,a]=Du(t,n);return Ld(e,r,a,V2(s),e.RGBA,s.textureTypeHalfFloat)}function O4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),D2(e,t,"clipSpacePos",n,3,a,s)&&D2(e,t,"uv",n,2,a,r)}function P4(e,t,n,s,r,a){Ce(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M4(e,t,n){Ce(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function z4(e,t,n,s){let r=e.createBuffer();Ce(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ce(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ce(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ce(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function L4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function B4(e,t,n,s){let[r,a]=Od(t,n),o=4,i=new Uint8Array(WX(t*n,o));return Ce(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function W4(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(VX(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function V4(e,t,n){let s=new Float32Array(t*n*4);return Ce(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var A0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ne().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,l0(t,e)):this.gl=Nr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(ne().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Pd(this.gl,r),Ts(this.gl,a))this.textureHalfFloatExtension=Pd(this.gl,a);else if(ne().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ts(this.gl,s))this.colorBufferHalfFloatExtension=Pd(this.gl,s);else if(ne().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ts(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ts(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=N4(this.gl),this.indexBuffer=E4(this.gl),this.framebuffer=i4(this.gl),this.textureConfig=R2(this.gl,this.textureHalfFloatExtension)}get debug(){return ne().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ce(e,()=>e.finish()),Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ce(e,()=>e.deleteFramebuffer(this.framebuffer)),Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ce(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),R4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),D4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),_4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),M4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),P4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),F4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(_2(this.gl,this.framebuffer),this.outputTexture=null),Ce(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>B4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return W4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return L4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=z4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ne().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>V4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=e4(t,e);this.vertexShader==null&&(this.vertexShader=T4(t));let s=t4(t);return Ce(t,()=>t.attachShader(s,this.vertexShader)),Ce(t,()=>t.attachShader(s,n)),n4(t,s),this.debug&&c0(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=O4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ce(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&c0(this.gl,this.program),Ce(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?u4(this.gl,e,t):c4(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ce(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),d4(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Du(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&c0(this.gl,this.program),Md(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ce(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ce(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Pd(this.gl,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=qK(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),d0(this.gl,e,this.framebuffer),this.debug&&Md(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(d0(this.gl,this.outputTexture,this.framebuffer),this.debug&&Md(this.gl)):_2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;d0(s,e,this.framebuffer),this.debug&&Md(s),this.outputTexture=e,Ce(s,()=>s.viewport(0,0,t,n)),Ce(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ce(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function qK(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:XK,bincountImpl:U4,bincountReduceImpl:KK,ceilImpl:ZK,concatImpl:YK,equalImpl:JK,expImpl:QK,expm1Impl:eZ,floorImpl:tZ,gatherNdImpl:nZ,gatherV2Impl:sZ,greaterImpl:rZ,greaterEqualImpl:aZ,lessImpl:oZ,lessEqualImpl:iZ,linSpaceImpl:lZ,logImpl:uZ,maxImpl:cZ,maximumImpl:dZ,minimumImpl:pZ,multiplyImpl:hZ,negImpl:fZ,notEqualImpl:mZ,prodImpl:gZ,rangeImpl:AZ,rsqrtImpl:yZ,sigmoidImpl:xZ,simpleAbsImpl:G4,sliceImpl:bZ,sparseFillEmptyRowsImpl:vZ,sparseReshapeImpl:wZ,sparseSegmentReductionImpl:H4,sqrtImpl:kZ,stridedSliceImpl:IZ,stringNGramsImpl:SZ,stringSplitImpl:CZ,stringToHashBucketFastImpl:TZ,subImpl:NZ,tileImpl:EZ,topKImpl:RZ,transposeImpl:U2,uniqueImpl:DZ}=j7;function j4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Ln(e,t){return t===1?[e]:j4(e,t)}function _Z(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var FZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Ln("rc",t),s=yt(t),r=OZ(t,e,n),a=PZ(t,e[e.length-1],e[e.length-2],n),o=MZ(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function $Z(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function OZ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function PZ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function MZ(e,t){let n=e.length,s=$Z(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var q4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${zZ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?P2():O2(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function zZ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?tK(["r","c","d"],"inputShape"):Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var LZ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=K4(t,n),r=Z4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=X4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===vn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===vn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===vn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===vn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===vn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=K4(n,s),a=Z4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=X4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=ne().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function BZ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function X4(e,t,n,s,r){let a=WZ(t,s),o;if(r){let[l,c]=Du(e[0],e[1]);o=l*c}else{let[l,c]=Od(e[0],e[1]);o=l*c}let i=BZ(n,a);return o*i}function WZ(e,t){switch(e){case vn.PACKED_2X2_FLOAT32:return W2(t);case vn.PACKED_2X2_FLOAT16:return V2(t);case vn.UNPACKED_FLOAT32:return z2(t);case vn.UNPACKED_FLOAT16:return L2(t);case vn.PACKED_4X1_UNSIGNED_BYTE:return B2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function VZ(e){return ne().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?vn.PACKED_2X2_FLOAT32:vn.UNPACKED_FLOAT32:e?vn.PACKED_2X2_FLOAT16:vn.UNPACKED_FLOAT16}function K4(e,t){if(e===Cs.UPLOAD)return vn.PACKED_2X2_FLOAT32;if(e===Cs.RENDER||e==null)return VZ(t);if(e===Cs.DOWNLOAD||e===Cs.PIXELS)return vn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Z4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var _a=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},lr="if (isnan(x)) return x;",UZ="return x;",Y4="return abs(x);",GZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",HZ=lr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,jZ=lr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,y0="return x;",qZ="return 1.0 / (1.0 + exp(-1.0 * x));",XZ="return x;",KZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,ZZ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,YZ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,JZ="return 1.0 / (1.0 + exp(-1.0 * x));",Mu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},QZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Ln("rc",t),s=yt(t),r=_Z(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},eY=vr.whereImpl,tY=1e-7,nY=1e-4,x0={};function sY(e){return e in x0||(x0[e]={}),x0[e]}var rY=ne().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),aY=600;function oY(){return ne().global.screen==null?1024:ne().global.screen.height*ne().global.screen.width*window.devicePixelRatio*aY/1024/1024}var zu=class extends mc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ne().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Nr(ne().getNumber("WEBGL_VERSION"));this.binaryCache=sY(ne().getNumber("WEBGL_VERSION")),this.gpgpu=new A0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new LZ(this.gpgpu),this.numMBBeforeWarning=oY(),this.texData=new Op(this,as())}nextDataId(){return zu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ne().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ne().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Cs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(ne().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Cs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Mu(o,y0):d=new _a(o,y0);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=R.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Mu(s,y0):h=new _a(s,y0);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ne().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ne().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&ne().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...u0(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=R.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Ce(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&as().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Y6(n))throw ne().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(ne().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...u0(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=ne().getBool("WEBGL_PACK")&&s===!0,o=a?p0(t):t,i=a?new GK(o):new UK(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=rY){return ne().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return eY(e.shape,t)}packedUnaryOp(e,t,n){let s=new Mu(e.shape,t),r=this.compileAndRun(s,[e],n);return as().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=G4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(ne().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Y4,e.dtype);let t=new _a(e.shape,Y4),n=this.compileAndRun(t,[e]);return as().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return as().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new QZ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new FZ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Si(e.shape),...Ci(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Si(t),...Ci(t)],a=new q4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=p0(s),o,i=u0(a);n?o=new VK(a):o=new WK(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===$d.DENSE){let m=u0(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=ne().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!zd(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=BK(e,l,c),d=this.getAndSaveBinary(u,()=>zK(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),LK(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=ne().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!ne().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ne().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!ne().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ne().getBool("DEBUG");ne().set("DEBUG",!1);let t=this.abs(Re(1e-8)).dataSync()[0];if(ne().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?tY:nY}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=f4(n,i),t.texShape=u),r!=null){let d=p0(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=Du(u[0],u[1]),p=new jK(d,m)):p=new HK(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Cs.PIXELS:this.texData.get(g.dataId).usage=Cs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=iY(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};zu.nextDataId=0;function iY(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var lY="3.10.0";function J4(){ne().set("WEBGL_FORCE_F16_TEXTURES",!0)}Wc.isBrowser()&&ru("webgl",()=>new zu,2);var uY={forceHalfFloat:J4},Q4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Lu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},b0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Bd=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Ns(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${yt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Ln("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ms(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var cY={kernelName:Ao,backendName:"webgl",kernelFunc:ms};function Fa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ms({inputs:{x:s},backend:n}),l=ms({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var dY={kernelName:Gp,backendName:"webgl",kernelFunc:Fa},ek="return (a < 0.) ? b * a : a;",tk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function pY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Bd(tk,r.shape,o.shape):new Lu(ek,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var hY={kernelName:yo,backendName:"webgl",kernelFunc:pY},nk="return (a < 0.) ? b * a : a;",sk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function fY(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Bd(sk,s.shape,r.shape):new Lu(nk,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var mY={kernelName:Do,backendName:"webgl",kernelFunc:fY},rk="if (isnan(x)) return x;",gY=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,AY=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function nt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=ne().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Mu(o.shape,t):u=new _a(o.shape,e),i.runWebGLProgram(u,[o],l)}}function wn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:v.dataId,dtype:v.dtype,shape:c.shape},N=new Lu(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,C],Ps(b.dtype,v.dtype))}),y=Fa({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),y}let d=a||Ps(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?R.fromUint8ToStringArray(f):f,A=l.dtype==="string"?R.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(x,d),v=u.texData.get(b.dataId);return v.values=y,b}let p=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Bd(t,l.shape,c.shape,n):h=new Lu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function v0(e,t=!1){if(e==="linear")return t?XZ:UZ;if(e==="relu")return t?ZZ:HZ;if(e==="elu")return t?KZ:GZ;if(e==="relu6")return t?YZ:jZ;if(e==="prelu")return t?sk:nk;if(e==="leakyrelu")return t?tk:ek;if(e==="sigmoid")return t?JZ:qZ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var ak=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Ns(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},ok={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},ik=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},lk="return a * b;";function G2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=R.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new ik(ok.REAL,s.shape,r.shape),u=new ik(ok.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Fa({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=hZ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Bd(lk,s.shape,r.shape):o=new Lu(lk,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var yY={kernelName:To,backendName:"webgl",kernelFunc:G2};function xY(e,t,n){let s=[Si(e.shape),...Ci(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Si(t),...Ci(t)],o=new q4(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function we(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),c=w.sizeFromShape(l);w.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!zd(r.shape,l)&&!(u.texture!==null&&zd(u.shape,l))?xY(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var bY={kernelName:Ol,backendName:"webgl",kernelFunc:we},uk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},vY=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function wY(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Ei(e,t,n,s){let r=wY(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new uk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new uk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new vY({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var kY=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=IY(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function IY(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var SY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=yt(this.rank),r=j4("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function w0(e,t,n){let s=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SY(e.shape,t):new kY(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function CY(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=R.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=w0(e,l,s),i=R.getInnerMostAxes(i.length,a)),R.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=R.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=R.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,A=we({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),y=Eh(e.dtype),x=Ei(A,y,"sum",s),b=we({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),c&&s.disposeIntermediateTensorInfo(u),b}function k0(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return CY(r,a,o,n)}var TY={kernelName:Wo,backendName:"webgl",kernelFunc:k0};function Bn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=U2(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=w0(r,a,o);return c}var NY={kernelName:qo,backendName:"webgl",kernelFunc:Bn},ck=1e3;function I0({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],C=s?[y,f,p]:[y,p,f],N=we({inputs:{x:e},backend:r,attrs:{shape:k}}),D=we({inputs:{x:t},backend:r,attrs:{shape:C}}),P=[N,D],E=Math.max(A,y),F=n?N.shape[1]:N.shape[2],T=a!=null,M=o!=null,G=l==="leakyrelu",H=l!=null?v0(l,!0):null,z=T||M||G||H!=null,X;if((h===1||f===1)&&F>ck&&z===!1){let Z=N,te=D;n&&(Z=Bn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),P.push(Z)),s&&(te=Bn({inputs:{x:D},backend:r,attrs:{perm:[0,2,1]}}),P.push(te));let se=f!==1,J=f===1,ee=Z;se&&(ee=we({inputs:{x:Z},backend:r,attrs:{shape:[E,F,1]}}),P.push(ee));let ce=f===1?2:1,pe=te;J&&(pe=we({inputs:{x:te},backend:r,attrs:{shape:[E,1,F]}}),P.push(pe));let ve=G2({inputs:{a:ee,b:pe},backend:r});X=k0({inputs:{x:ve},backend:r,attrs:{axis:ce,keepDims:!0}}),P.push(ve)}else{let Z=Ps(e.dtype,t.dtype),te=new ak(k,C,[E,h,f],n,s,T,H,M,G),se=[N,D];if(a!=null&&se.push(a),M&&se.push(o),G){let J=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));se.push(J),P.push(J)}X=r.runWebGLProgram(te,se,Z)}let Q=we({inputs:{x:X},backend:r,attrs:{shape:v}});P.push(X);for(let Z of P)r.disposeIntermediateTensorInfo(Z);return Q}function EY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return I0({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var RY={kernelName:Xo,backendName:"webgl",kernelFunc:EY},dk="return abs(x);";function DY(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=G4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return ne().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Mu(s.shape,dk):r=new _a(s.shape,dk),n.runWebGLProgram(r,[s],s.dtype)}var _Y={kernelName:Zi,backendName:"webgl",kernelFunc:DY},FY=lr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,$Y=nt({opSnippet:FY}),OY={kernelName:Yi,backendName:"webgl",kernelFunc:$Y},PY=lr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,MY=nt({opSnippet:PY}),zY={kernelName:Ji,backendName:"webgl",kernelFunc:MY},pk="return a + b;",LY=wn({opSnippet:pk,packedOpSnippet:pk,supportsComplex:!0,cpuKernelImpl:XK}),BY={kernelName:la,backendName:"webgl",kernelFunc:LY},WY=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},VY=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function S0(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ms({inputs:{x:s[0]},backend:n});if(s.length>ne().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=S0({inputs:s.slice(0,l),backend:n}),u=S0({inputs:s.slice(l),backend:n});return S0({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Ps(l,c)),a=s.map(l=>l.shape),i=ne().getBool("WEBGL_PACK")?new VY(s[0].shape,a):new WY(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var UY={kernelName:Ya,backendName:"webgl",kernelFunc:S0};function GY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,i)),R.assertAxesAreInnerMostDims("all",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ei(m,m.dtype,"all",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var HY={kernelName:Qi,backendName:"webgl",kernelFunc:GY};function jY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,i)),R.assertAxesAreInnerMostDims("any",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ei(m,m.dtype,"any",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var qY={kernelName:el,backendName:"webgl",kernelFunc:jY},XY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},KY=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=yt(i),c=Ln("coords",i),u,d;if(a===1){d=i+1;let C=yt(d);u=`
|
|
${C} sourceLocR = ${C}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${C} sourceLocG = ${C}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${C} sourceLocA = ${C}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${C} sourceLocB = ${C}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(C=>"int "+C),m=Ln("sourceLocR",d-1).concat("inIdx.r"),g=Ln("sourceLocG",d-1).concat("inIdx.g"),A=Ln("sourceLocB",d-1).concat("inIdx.b"),y=Ln("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function hk(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=R.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new XY(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=hk(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function fk(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=R.computeOptimalWindowSize(a),i=new KY(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=fk(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function mk(e,t,n,s){let r=[n];if(R.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!ne().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=R.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(u),p=we({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=hk(e,p,s);a.push(h);let f=we({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return fk(e,t,s)}function ZY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Bn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=mk(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var YY={kernelName:Ja,backendName:"webgl",kernelFunc:ZY};function JY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Bn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=mk(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var QY={kernelName:yc,backendName:"webgl",kernelFunc:JY},eJ=lr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,tJ=nt({opSnippet:eJ}),nJ={kernelName:tl,backendName:"webgl",kernelFunc:tJ},sJ=lr+"return log(x + sqrt(x * x + 1.0));",rJ=nt({opSnippet:sJ}),aJ={kernelName:nl,backendName:"webgl",kernelFunc:rJ},oJ=lr+`
|
|
return atan(x);
|
|
`,iJ=nt({opSnippet:oJ}),lJ={kernelName:sl,backendName:"webgl",kernelFunc:iJ},uJ=gY+`
|
|
return atan(a, b);
|
|
`,cJ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+AY+`
|
|
return result;
|
|
`,dJ=wn({opSnippet:uJ,packedOpSnippet:cJ}),pJ={kernelName:al,backendName:"webgl",kernelFunc:dJ},hJ=lr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fJ=nt({opSnippet:hJ}),mJ={kernelName:rl,backendName:"webgl",kernelFunc:fJ},Wd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},H2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,C=a%4,N=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${N}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function gJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;_u(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Wd(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var AJ={kernelName:Qa,backendName:"webgl",kernelFunc:gJ};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=R.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new H2(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var xJ={kernelName:xc,backendName:"webgl",kernelFunc:yJ},bJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function wJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=R.computePool3DInfo(o.shape,i,l,d,c,u),h=new vJ(p);return n.runWebGLProgram(h,[r],o.dtype)}var kJ={kernelName:Wp,backendName:"webgl",kernelFunc:wJ};function IJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;_u([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=R.computePool2DInfo(o.shape,i,l,1,c),d=new bJ(u);return n.runWebGLProgram(d,[r],o.dtype)}var SJ={kernelName:Bp,backendName:"webgl",kernelFunc:IJ};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return I0({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var TJ={kernelName:eo,backendName:"webgl",kernelFunc:CJ},NJ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},EJ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},RJ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=ne().getBool("WEBGL_PACK_NORMALIZATION")?new EJ(s.shape,r.shape,a.shape,u,d,l):new NJ(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},DJ={kernelName:mo,backendName:"webgl",kernelFunc:RJ},_J=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=FJ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${j2[o]} = start[${o}] + coords.${j2[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},j2=["x","y","z","w","u","v"];function FJ(e){if(e===1)return"sourceLoc";if(e<=6)return j2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var $J=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),n=Ln("coords",this.rank),s=Ln("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function OJ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Fn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function Bu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Fn.parseSliceParams(r,a,o);if(Fn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=bZ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Fn.isSliceContinous(r.shape,i,l);if(c||!u){let d=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $J(l):new _J(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),OJ(r,i,l,n)}var PJ={kernelName:Ll,backendName:"webgl",kernelFunc:Bu},MJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=[],f=we({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Bn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=we({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Bu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},zJ={kernelName:ol,backendName:"webgl",kernelFunc:MJ};function LJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=U4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var BJ={kernelName:Vp,backendName:"webgl",kernelFunc:LJ};function WJ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=R.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var VJ={kernelName:Up,backendName:"webgl",kernelFunc:WJ},UJ="return float(a != b);",gk=wn({opSnippet:UJ,cpuKernelImpl:mZ,dtype:"bool"}),GJ={kernelName:Tl,backendName:"webgl",kernelFunc:gk};function Vd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.real},backend:n})}var HJ={kernelName:dh,backendName:"webgl",kernelFunc:Vd},jJ="return float(int(x));";function qJ(e,t){let n=new _a(e.shape,jJ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function q2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ms({inputs:{x:r},backend:n});let o=Ht(r.shape),i=q2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Fa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Vd({inputs:{input:r},backend:n}),i=q2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=ms({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return qJ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=gk({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var XJ={kernelName:to,backendName:"webgl",kernelFunc:q2},Ak="return ceil(x);",KJ=nt({opSnippet:Ak,packedOpSnippet:Ak,cpuKernelImpl:ZK}),ZJ={kernelName:no,backendName:"webgl",kernelFunc:KJ},YJ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},JJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function QJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;ne().getBool("WEBGL_PACK_CLIP")?i=new JJ(r.shape):i=new YJ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var eQ={kernelName:ua,backendName:"webgl",kernelFunc:QJ},tQ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function yk(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function nQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new tQ(s.shape),o=[yk(s,r.complexTensorInfos.real),yk(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var sQ={kernelName:bc,backendName:"webgl",kernelFunc:nQ},rQ=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},aQ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=yt(s),a=Ln("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${C0(o,l,m)}),
|
|
vec2(${C0(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${C0(o,l,h)}),
|
|
vec2(${C0(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function C0(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function T0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.imag},backend:n})}var oQ={kernelName:rh,backendName:"webgl",kernelFunc:T0};function Wu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Vd({inputs:{input:m},backend:n})),d=e.map(m=>T0({inputs:{input:m},backend:n})),p=Wu(u,t,n),h=Wu(d,t,n),f=Fa({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return we({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=R.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=YK(d,p,s,h),m=R.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>ne().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Wu(e.slice(0,u),t,n),p=Wu(e.slice(u),t,n),h=Wu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new aQ(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=iQ(e,t,n),i=new rQ(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=we({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function iQ(e,t,n){let s=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>we({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function xk(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=R.computeOutShape(t.map(c=>c.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>w.sizeFromShape(c.shape)>0);if(i.length===1)return ms({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return R.assertParamsConsistent(l,a),Wu(i,a,n)}var lQ={kernelName:il,backendName:"webgl",kernelFunc:xk},bk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},uQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let{dataFormat:n}=t,s=zn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function vk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>ck)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&w.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(zd(c.shape,v.shape),()=>`packed reshape ${c.shape} to ${v.shape} isn't free`);let C=we({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(C);let N=I0({a:v,b:C,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),D=s.texData.get(N.dataId);w.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,D.shape=n.outShape,g=ms({inputs:{x:N},backend:s}),g.shape=n.outShape,A.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=we({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=we({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=I0({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=we({inputs:{x:C},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(C)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function wk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],y=!0,x=!1,b=[],v=we({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=we({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let C=new cQ(A,n),N=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],D=s.runWebGLProgram(C,[v],"float32",N),P=we({inputs:{x:D},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(D),b.push(P);let E=r!=null,F=a!=null,T=i==="leakyrelu",M=i?v0(i,!0):null,G=new ak(P.shape,k.shape,[1,g,n.outChannels],y,x,E,M,F,T),H=[P,k];if(r&&H.push(r),F&&H.push(a),T){let Z=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));H.push(Z),b.push(Z)}let z=s.runWebGLProgram(G,H,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Q=we({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let Z of b)s.disposeIntermediateTensorInfo(Z);return Q}function dQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=vk({x:r,filter:a,convInfo:p,backend:n});else if(ne().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=wk({x:r,filter:a,convInfo:p,backend:n});else{let m=new bk(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=we({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var pQ={kernelName:so,backendName:"webgl",kernelFunc:dQ},hQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},gQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function AQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new hQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var yQ={kernelName:Hp,backendName:"webgl",kernelFunc:AQ};function xQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=R.convertConv2DDataFormat(c),p=R.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new fQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var bQ={kernelName:ro,backendName:"webgl",kernelFunc:xQ};function vQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=R.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new uQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var wQ={kernelName:vc,backendName:"webgl",kernelFunc:vQ};function kQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=R.computeConv3DInfo(r.shape,l,o,1,i),u=new mQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var IQ={kernelName:jp,backendName:"webgl",kernelFunc:kQ};function SQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=R.computeConv3DInfo(l,a.shape,i,1,o),u=new gQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var CQ={kernelName:qp,backendName:"webgl",kernelFunc:SQ},TQ=rk+`
|
|
return cos(x);
|
|
`,NQ=nt({opSnippet:TQ}),EQ={kernelName:ao,backendName:"webgl",kernelFunc:NQ},RQ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,DQ=nt({opSnippet:RQ}),_Q={kernelName:oo,backendName:"webgl",kernelFunc:DQ},FQ=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},$Q=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new FQ(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},OQ={kernelName:ll,backendName:"webgl",kernelFunc:$Q},kk=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${Ik(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${yt(s)} coords = getOutputCoords();
|
|
int end = ${Sk(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${Sk(s,"coords")} = idx;
|
|
val += getX(${Ik(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Ik(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Sk(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function PQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=R.getAxesPermutation([a],l),u=r;c!=null&&(u=Bn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=R.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ms({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new kk(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new kk(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=R.getUndoAxesPermutation(c),m=Bn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var MQ={kernelName:io,backendName:"webgl",kernelFunc:PQ};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=U4(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=KK(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var LQ={kernelName:Xp,backendName:"webgl",kernelFunc:zQ},BQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function WQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new BQ(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var VQ={kernelName:ul,backendName:"webgl",kernelFunc:WQ},Ck=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Ns(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},Tk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Ns(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let y=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):y===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(r, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(r, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function UQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=R.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;ne().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new Tk(d):p=new Ck(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var GQ={kernelName:lo,backendName:"webgl",kernelFunc:UQ},HQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function qQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=R.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new HQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var XQ={kernelName:Kp,backendName:"webgl",kernelFunc:qQ};function KQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=R.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new jQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var ZQ={kernelName:Zp,backendName:"webgl",kernelFunc:KQ},YQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function JQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=we({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new YQ(a),l=n.runWebGLProgram(i,[o],o.dtype),c=we({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var QQ={kernelName:Yp,backendName:"webgl",kernelFunc:JQ},eee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function tee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=R.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new eee(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=we({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var nee={kernelName:wc,backendName:"webgl",kernelFunc:tee};function see(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(r,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=R.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=a[g]:(x=Bn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=we({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=G2({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=k0({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var ree={kernelName:eh,backendName:"webgl",kernelFunc:see},aee="return (x >= 0.0) ? x : (exp(x) - 1.0);",oee=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,iee=nt({opSnippet:aee,packedOpSnippet:oee}),lee={kernelName:co,backendName:"webgl",kernelFunc:iee},uee="return (b >= 1.0) ? a : a * (b + 1.0);",cee=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,dee=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Bd(cee,s.shape,r.shape):new Lu(uee,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},pee={kernelName:th,backendName:"webgl",kernelFunc:dee},hee=`
|
|
return vec4(equal(a, b));
|
|
`,fee="return float(a == b);",mee=wn({opSnippet:fee,packedOpSnippet:hee,dtype:"bool",cpuKernelImpl:JK}),gee={kernelName:dl,backendName:"webgl",kernelFunc:mee},Aee=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,yee=nt({opSnippet:Aee}),xee={kernelName:cl,backendName:"webgl",kernelFunc:yee},Nk="return exp(x);",Ek=nt({opSnippet:Nk,packedOpSnippet:Nk,cpuKernelImpl:QK,dtype:"float32"}),bee={kernelName:po,backendName:"webgl",kernelFunc:Ek};function X2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),we({inputs:{x:a},backend:s,attrs:{shape:i}})}var vee={kernelName:pl,backendName:"webgl",kernelFunc:X2},Rk="return exp(x) - 1.0;",wee=nt({opSnippet:Rk,packedOpSnippet:Rk,cpuKernelImpl:eZ}),kee={kernelName:hl,backendName:"webgl",kernelFunc:wee},Dk=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function _k(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=we({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new Dk("real",l,t),u=new Dk("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Fa({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=we({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Iee(e){let{inputs:t,backend:n}=e,{input:s}=t;return _k(s,!1,n)}var See={kernelName:nh,backendName:"webgl",kernelFunc:Iee},Cee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Ud(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Cee(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Tee={kernelName:kc,backendName:"webgl",kernelFunc:Ud},Nee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Eee={kernelName:fl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Nee(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Fk="return floor(x);",Ree=nt({opSnippet:Fk,packedOpSnippet:Fk,cpuKernelImpl:tZ}),Dee={kernelName:ho,backendName:"webgl",kernelFunc:Ree},_ee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Fee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,$ee=wn({opSnippet:_ee,packedOpSnippet:Fee,dtype:"int32"}),Oee={kernelName:fo,backendName:"webgl",kernelFunc:$ee},Pee=class{constructor(e){this.variableNames=["A"];let t=zn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Mee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=zn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},zee={kernelName:kh,backendName:"webgl",kernelFunc:Lee},Vu;function Lee(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(Vu==null&&(Vu=document.createElement("canvas").getContext("2d")),Vu.canvas.width=l,Vu.canvas.height=c,Vu.drawImage(r,0,0,l,c),r=Vu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Cs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=ne().getBool("WEBGL_PACK")?new Mee(d):new Pee(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Bee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=R.convertConv2DDataFormat(u),g=R.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=vk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(ne().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=wk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=h==="leakyrelu",C=h?v0(h,!1):null,N=new bk(g,b,C,v,k),D=[r,a];if(o&&D.push(o),i&&D.push(i),k){let P=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));D.push(P),y.push(P)}A=n.runWebGLProgram(N,D,"float32")}let x=we({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Wee={kernelName:Ko,backendName:"webgl",kernelFunc:Bee};function Vee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=R.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=ne().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?v0(p,A):null,x=[r,a],b=o!=null,v=i!=null,k=p==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(P),f.push(P)}let C;A?C=new Tk(g,b,y,v,k):C=new Ck(g,b,y,v,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=n.runWebGLProgram(C,x,"float32",N);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),D}var Uee={kernelName:Zo,backendName:"webgl",kernelFunc:Vee},Gee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=yt(t.length),r=yt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Hee(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,c,u,d]=R.prepareAndValidate(s,r),p=we({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=we({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=nZ(A,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new Gee(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=we({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var jee={kernelName:gl,backendName:"webgl",kernelFunc:Hee},qee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=yt(this.rank),s=Xee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Xee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function $k(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=R.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=w.sizeFromShape(a.shape),h=[],f=we({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=we({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),v=n.bufferSync(f),k=sZ(v,b,g);return h.forEach(C=>n.disposeIntermediateTensorInfo(C)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let A=new qee(f.shape,g),y=n.runWebGLProgram(A,[f,m],f.dtype);h.push(y);let x=we({inputs:{x:y},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Kee={kernelName:ml,backendName:"webgl",kernelFunc:$k},Zee="return float(a > b);",Yee=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Jee=wn({opSnippet:Zee,packedOpSnippet:Yee,cpuKernelImpl:rZ,dtype:"bool"}),Qee={kernelName:Al,backendName:"webgl",kernelFunc:Jee},ete="return float(a >= b);",tte=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,nte=wn({opSnippet:ete,packedOpSnippet:tte,dtype:"bool",cpuKernelImpl:aZ}),ste={kernelName:go,backendName:"webgl",kernelFunc:nte};function rte(e){let{inputs:t,backend:n}=e,{input:s}=t;return _k(s,!0,n)}var ate={kernelName:sh,backendName:"webgl",kernelFunc:rte},ote="return float(!isnan(x) && !isinf(x));",ite=nt({opSnippet:ote,dtype:"bool"}),lte={kernelName:yl,backendName:"webgl",kernelFunc:ite},ute="return float(isinf(x));",cte=nt({opSnippet:ute,dtype:"bool"}),dte={kernelName:xl,backendName:"webgl",kernelFunc:cte},pte="return float(isnan(x));",hte=nt({opSnippet:pte,dtype:"bool"}),fte={kernelName:bl,backendName:"webgl",kernelFunc:hte},mte="return float(a < b);",gte=`
|
|
return vec4(lessThan(a, b));
|
|
`,Ate=wn({opSnippet:mte,packedOpSnippet:gte,cpuKernelImpl:oZ,dtype:"bool"}),yte={kernelName:vl,backendName:"webgl",kernelFunc:Ate},xte="return float(a <= b);",bte=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,vte=wn({opSnippet:xte,packedOpSnippet:bte,cpuKernelImpl:iZ,dtype:"bool"}),wte={kernelName:wl,backendName:"webgl",kernelFunc:vte};function kte(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=lZ(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Ite={kernelName:ah,backendName:"webgl",kernelFunc:kte},Ste=`if (x < 0.0) return NAN;
|
|
return log(x);`,Cte=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,Tte=nt({opSnippet:Ste,packedOpSnippet:Cte,cpuKernelImpl:uZ}),Nte={kernelName:xo,backendName:"webgl",kernelFunc:Tte},Ete="return log(1.0 + x);",Rte=nt({opSnippet:Ete}),Dte={kernelName:kl,backendName:"webgl",kernelFunc:Rte},_te="return float(a >= 1.0 && b >= 1.0);",Fte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,$te=wn({opSnippet:_te,packedOpSnippet:Fte,dtype:"bool"}),Ote={kernelName:Il,backendName:"webgl",kernelFunc:$te},Pte="return float(!(x >= 1.0));",Mte=nt({opSnippet:Pte}),zte={kernelName:Ic,backendName:"webgl",kernelFunc:Mte},Lte="return float(a >= 1.0 || b >= 1.0);",Bte=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Wte=wn({opSnippet:Lte,packedOpSnippet:Bte,dtype:"bool"}),Vte={kernelName:Sc,backendName:"webgl",kernelFunc:Wte},Ute=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Gte=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Hte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=ne().getBool("WEBGL_PACK_NORMALIZATION")?new Gte(r.shape,a,o,i,l):new Ute(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},jte={kernelName:Cc,backendName:"webgl",kernelFunc:Hte},qte=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Xte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new qte(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Kte={kernelName:oh,backendName:"webgl",kernelFunc:Xte};function Zte(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=we({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ei(i,e.dtype,"max",s),c=we({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function Ok(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let C=0;C<b.length;C++)b[C]=r.shape[u[C]];let v=U2(x,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=w0(r,u,n);c=R.getInnerMostAxes(c.length,i)}R.assertAxesAreInnerMostDims("max",c,i);let[f,m]=R.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=R.expandShapeToKeepDim(f,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=cZ(x,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=Zte(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Yte={kernelName:bo,backendName:"webgl",kernelFunc:Ok},Jte=Q4+`
|
|
return max(a, b);
|
|
`,Qte=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+b0+`
|
|
return result;
|
|
`,ene=wn({opSnippet:Jte,packedOpSnippet:Qte,cpuKernelImpl:dZ}),tne={kernelName:vo,backendName:"webgl",kernelFunc:ene};function nne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;_u(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Wd(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var sne={kernelName:wo,backendName:"webgl",kernelFunc:nne};function rne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=R.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new H2(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var ane={kernelName:Tc,backendName:"webgl",kernelFunc:rne},one=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ine=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function lne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=R.computePool3DInfo(o.shape,i,l,d,c,u),h=new H2(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new ine(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var une={kernelName:lh,backendName:"webgl",kernelFunc:lne};function cne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;_u([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=R.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new Wd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new one(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var dne={kernelName:ih,backendName:"webgl",kernelFunc:cne};function pne(e,t,n,s){let r=new Wd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Wd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var hne={kernelName:uh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];w.assert(R.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=R.computePool2DInfo(s.shape,r,a,c,o),[d,p]=pne(s,i,u,l);return[d,p]}};function fne(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=we({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ei(i,"float32","mean",s),c=we({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var mne={kernelName:ko,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),c=l,u=R.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let N=0;N<v.length;N++)v[N]=s.shape[u[N]];let k=U2(b,s.shape,s.dtype,u,v);f=o.makeTensorInfo(v,s.dtype);let C=o.texData.get(f.dataId);C.values=k}else f=w0(s,u,o);h.push(f),c=R.getInnerMostAxes(c.length,i)}R.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=R.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=R.expandShapeToKeepDim(m,l));let y=fne(f,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function gne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ei(m,m.dtype,"min",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var Ane={kernelName:Io,backendName:"webgl",kernelFunc:gne},yne=Q4+`
|
|
return min(a, b);
|
|
`,xne=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+b0+`
|
|
return result;
|
|
`,bne=wn({opSnippet:yne,packedOpSnippet:xne,cpuKernelImpl:pZ}),vne={kernelName:So,backendName:"webgl",kernelFunc:bne},wne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=yt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},kne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=yt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Ln("rc",s),l=Ln("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},Ine=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kne(s.shape,r,a):new wne(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Sne={kernelName:Co,backendName:"webgl",kernelFunc:Ine},Cne=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Tne=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+b0+`
|
|
return result;
|
|
`,Nne=wn({opSnippet:Cne,packedOpSnippet:Tne}),Ene={kernelName:Sl,backendName:"webgl",kernelFunc:Nne},Rne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Dne=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,_ne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Pk=wn({opSnippet:Dne,packedOpSnippet:_ne,checkOutOfBounds:!0}),Fne={kernelName:uo,backendName:"webgl",kernelFunc:Pk},Mk="return a - b;",zk=wn({opSnippet:Mk,packedOpSnippet:Mk,supportsComplex:!0,cpuKernelImpl:NZ}),$ne={kernelName:Go,backendName:"webgl",kernelFunc:zk};function Lk(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=Ok({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=R.expandShapeToKeepDim(i.shape,o),c=we({inputs:{x:i},backend:n,attrs:{shape:l}}),u=zk({inputs:{a:r,b:c},backend:n}),d=Ek({inputs:{x:u},backend:n}),p=k0({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=we({inputs:{x:p},backend:n,attrs:{shape:l}}),f=Pk({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var One={kernelName:Vo,backendName:"webgl",kernelFunc:Lk};function Pne(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:Lk({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new Rne(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Mne={kernelName:ch,backendName:"webgl",kernelFunc:Pne},Bk="return -x;";function zne(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=fZ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return ne().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Mu(s.shape,Bk):r=new _a(s.shape,Bk),n.runWebGLProgram(r,[s],s.dtype)}var Lne={kernelName:Cl,backendName:"webgl",kernelFunc:zne},Bne=vr.nonMaxSuppressionV3Impl;function Wne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Bne(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Vne={kernelName:Nl,backendName:"webgl",kernelFunc:Wne},Une=vr.nonMaxSuppressionV4Impl;function Gne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Une(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Hne={kernelName:El,backendName:"webgl",kernelFunc:Gne},jne=vr.nonMaxSuppressionV5Impl;function qne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=jne(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Xne={kernelName:Rl,backendName:"webgl",kernelFunc:qne},Kne=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Zne=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),c=new Kne(l,a,o,i),u=we({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=we({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Yne={kernelName:No,backendName:"webgl",kernelFunc:Zne};function N0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Vd({inputs:{input:s},backend:n}),a=N0({inputs:{x:r},backend:n}),o=T0({inputs:{input:s},backend:n}),i=N0({inputs:{x:o},backend:n}),l=Fa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Ud({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Jne={kernelName:Kl,backendName:"webgl",kernelFunc:N0};function Wk(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Vd({inputs:{input:s},backend:n}),a=Wk({inputs:{x:r},backend:n}),o=T0({inputs:{input:s},backend:n}),i=N0({inputs:{x:o},backend:n}),l=Fa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Ud({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Qne={kernelName:Dl,backendName:"webgl",kernelFunc:Wk};function ese(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return X2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=X2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=xk({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var tse={kernelName:_l,backendName:"webgl",kernelFunc:ese},nse=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=yt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},sse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=yt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Ln("rc",s),l=Ln("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},Vk=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return Ud({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sse(r.shape,a,o):new nse(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},rse={kernelName:Eo,backendName:"webgl",kernelFunc:Vk},ase=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,ose=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+b0+`
|
|
return result;
|
|
`,ise=wn({opSnippet:ase,packedOpSnippet:ose}),lse={kernelName:Ro,backendName:"webgl",kernelFunc:ise};function use(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=w.parseAxisParam(a,r.shape),u=c,d=R.getAxesPermutation(u,i),p=r;d!=null&&(p=Bn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,i),l.push(p)),R.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=gZ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=R.computeOutAndReduceShapes(p.shape,u),g=w.sizeFromShape(m),A=we({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=Eh(r.dtype),x=Ei(A,y,"prod",n);h=we({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(h);let f=R.expandShapeToKeepDim(h.shape,c);h=we({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var cse={kernelName:Fl,backendName:"webgl",kernelFunc:use},Uk=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=AZ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},dse={kernelName:Nc,backendName:"webgl",kernelFunc:Uk},pse="return 1.0 / x;",hse=nt({opSnippet:pse}),fse={kernelName:$l,backendName:"webgl",kernelFunc:hse},mse=lr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,gse=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ase=nt({opSnippet:mse,packedOpSnippet:gse}),yse={kernelName:_o,backendName:"webgl",kernelFunc:Ase},xse=lr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,bse=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,vse=nt({opSnippet:xse,packedOpSnippet:bse}),wse={kernelName:$o,backendName:"webgl",kernelFunc:vse},kse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ise=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Sse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=ne().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ise(r.shape,l,c,a,o):new kse(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Cse={kernelName:Fo,backendName:"webgl",kernelFunc:Sse},Tse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Nse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Tse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ese={kernelName:hh,backendName:"webgl",kernelFunc:Nse},Rse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Dse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function _se(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=ne().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Dse(r.shape,l,c,a,o):new Rse(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var Fse={kernelName:Ec,backendName:"webgl",kernelFunc:_se},$se=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Ose(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new $se(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Pse={kernelName:ph,backendName:"webgl",kernelFunc:Ose},Mse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=yt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},zse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Ln("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=yt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Lse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return ms({inputs:{x:r},backend:n});let l=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zse(r.shape,i):new Mse(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Bse={kernelName:Oo,backendName:"webgl",kernelFunc:Lse},Wse=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Vse={kernelName:Zl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Wse(s.shape,a),[c,u]=R.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Use=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Gse=nt({opSnippet:Use}),Hse={kernelName:Po,backendName:"webgl",kernelFunc:Gse},jse="return inversesqrt(x);",qse=nt({opSnippet:jse,cpuKernelImpl:yZ}),Xse={kernelName:Mo,backendName:"webgl",kernelFunc:qse},Gk=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=yt(r.length),l=yt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Kse(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=R.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=we({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=we({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new Gk(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),y=we({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var Zse={kernelName:Pl,backendName:"webgl",kernelFunc:Kse},Yse=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=yt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Jse(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Yse(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ps(r.dtype,a.dtype))}var Qse={kernelName:Ml,backendName:"webgl",kernelFunc:Jse},ere=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,tre=nt({opSnippet:ere}),nre={kernelName:zl,backendName:"webgl",kernelFunc:tre},Hk="return 1.0 / (1.0 + exp(-1.0 * x));",sre=nt({opSnippet:Hk,packedOpSnippet:Hk,cpuKernelImpl:xZ}),rre={kernelName:Lo,backendName:"webgl",kernelFunc:sre},are=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,ore=nt({opSnippet:are}),ire={kernelName:Wl,backendName:"webgl",kernelFunc:ore},lre=rk+`
|
|
return sin(x);
|
|
`,ure=nt({opSnippet:lre}),cre={kernelName:zo,backendName:"webgl",kernelFunc:ure},dre=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,pre=nt({opSnippet:dre}),hre={kernelName:Bl,backendName:"webgl",kernelFunc:pre},fre=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,mre=nt({opSnippet:fre}),gre={kernelName:Vl,backendName:"webgl",kernelFunc:mre},Are=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=Vk({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=R.getReshaped(u.shape,a,i,!1),p=R.getPermuted(d.length,a.length,!1),h=R.getReshapedPermuted(u.shape,a,i,!1),f=we({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Bn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=we({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},yre={kernelName:Ul,backendName:"webgl",kernelFunc:Are};function xre(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=vZ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var bre={kernelName:fh,backendName:"webgl",kernelFunc:xre};function vre(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=wZ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var wre={kernelName:mh,backendName:"webgl",kernelFunc:vre};function kre(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=H4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Ire={kernelName:gh,backendName:"webgl",kernelFunc:kre};function Sre(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=H4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Cre={kernelName:Ah,backendName:"webgl",kernelFunc:Sre};function Tre(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=R.calculateShapes(a,r,i),p=!1,h=new Gk(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Nre={kernelName:yh,backendName:"webgl",kernelFunc:Tre};function Ere(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Bu({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Rre={kernelName:Gl,backendName:"webgl",kernelFunc:Ere},jk="return sqrt(x);",Dre=nt({opSnippet:jk,packedOpSnippet:jk,cpuKernelImpl:kZ}),_re={kernelName:Bo,backendName:"webgl",kernelFunc:Dre},Fre="return x * x;",$re=nt({opSnippet:Fre}),Ore={kernelName:Rc,backendName:"webgl",kernelFunc:$re},qk="return (a - b) * (a - b);",Pre=wn({opSnippet:qk,packedOpSnippet:qk}),Mre={kernelName:Uo,backendName:"webgl",kernelFunc:Pre};function zre({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=lr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new _a(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Lre={kernelName:da,backendName:"webgl",kernelFunc:zre},Bre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=yt(n.length),a=yt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Wre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=Fn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=we({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=Bu({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=we({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.texData.get(x.dataId).values,D=He(x.shape,x.dtype,N),P=IZ(y,D,m,f);b=n.makeTensorInfo(y,x.dtype,P.values)}else{let C=new Bre(f,m,y);b=n.runWebGLProgram(C,[x],x.dtype)}let v=we({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Vre={kernelName:Hl,backendName:"webgl",kernelFunc:Wre};function Ure(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=SZ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Gre={kernelName:xh,backendName:"webgl",kernelFunc:Ure};function Hre(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=CZ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var jre={kernelName:bh,backendName:"webgl",kernelFunc:Hre};function qre(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=TZ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Xre={kernelName:vh,backendName:"webgl",kernelFunc:qre},Kre="return tan(x);",Zre=nt({opSnippet:Kre}),Yre={kernelName:Ho,backendName:"webgl",kernelFunc:Zre},Jre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Qre=nt({opSnippet:Jre}),eae={kernelName:jo,backendName:"webgl",kernelFunc:Qre},tae=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=nae(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function nae(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function Xk(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,u=He(r.shape,r.dtype,c),d=EZ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new tae(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var sae={kernelName:ca,backendName:"webgl",kernelFunc:Xk},rae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},aae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Ri(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Kk(e){let t=1;for(;t<e;)t*=2;return t}function oae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=ne().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=ne().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let P=n.readSync(r.dataId),[E,F]=RZ(P,c,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,Ud({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=w.sizeFromShape(c)/u,g=we({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&Ri(n,h);let A=Kk(a),y=Kk(u),x=null,b=()=>x===null?[g,g]:[g,x],v=(P,E,F)=>{let T=b(),M=new rae(F),H=[[u],[x===null?1:0],[Number.NEGATIVE_INFINITY],[P],[E]],z=x;x=n.runWebGLProgram(M,T,"int32",H),Ri(n,z)};for(let P=1;P<A;P*=2){let E=P*2;for(let F=P;F>=1;F/=2)v(E,F,[m,y])}for(let P=y;P>A;P/=2){let E=b(),F=new aae([m,P/2]),M=[[u],[x===null?1:0],[A]],G=x;x=n.runWebGLProgram(F,E,"int32",M),Ri(n,G);let H=A/2,z=H*2;for(let X=H;X>=1;X/=2)v(z,X,x.shape)}let k=x;x=Bu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),Ri(n,k);let C=$k({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});Ri(n,g);let N=c.slice(0,-1);N.push(a),k=x,x=we({inputs:{x},attrs:{shape:N},backend:n}),Ri(n,k);let D=C;return C=we({inputs:{x:C},attrs:{shape:N},backend:n}),Ri(n,D),[C,x]}var iae={kernelName:jl,backendName:"webgl",kernelFunc:oae},lae=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function uae(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new lae(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var cae={kernelName:ql,backendName:"webgl",kernelFunc:uae};function dae(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;_u(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=DZ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var pae={kernelName:wh,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Bu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=we({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var fae={kernelName:Xl,backendName:"webgl",kernelFunc:hae},mae=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function gae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=R.getAxesPermutation([c],i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=R.getInnerMostAxes(1,i)[0]);let p=R.segment_util.computeOutShape(d.shape,c,o),h=w.sizeFromShape([d.shape[c]]),f=we({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=Eh(r.dtype),g=(b,v,k,C,N)=>{let D=b.shape[0],P=b.shape[1],E=R.segment_util.segOpComputeOptimalWindowSize(P,N),F={windowSize:E,inSize:P,batchSize:D,numSegments:N},T=new mae(F,v),M=n.compileAndRun(T,[b,k],C);if(l.push(M),M.shape[1]===N)return M;let G=Uk({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),H=Xk({inputs:{x:G},backend:n,attrs:{reps:[P/E]}});return l.push(G),l.push(H),g(M,v,H,C,N)},A=g(f,"unsortedSegmentSum",a,m,o),y=we({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(u!=null){l.push(y);let b=R.getUndoAxesPermutation(u);x=Bn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Aae={kernelName:Dc,backendName:"webgl",kernelFunc:gae},yae=[jte,Kte,RY,_Y,OY,zY,BY,UY,HY,qY,YY,QY,nJ,aJ,pJ,lJ,mJ,xJ,AJ,kJ,SJ,TJ,DJ,zJ,BJ,VJ,XJ,ZJ,eQ,sQ,dY,lQ,yQ,bQ,pQ,IQ,CQ,wQ,EQ,_Q,OQ,MQ,LQ,VQ,XQ,ZQ,GQ,QQ,nee,ree,lee,pee,gee,xee,bee,vee,kee,See,Tee,Eee,Dee,Oee,zee,Wee,Uee,jee,Kee,Qee,ste,cY,ate,oQ,lte,dte,fte,hY,yte,wte,Ite,Dte,Nte,Ote,zte,Vte,Yte,ane,sne,une,dne,hne,tne,mne,Ane,vne,Sne,Ene,Mne,yY,Lne,Vne,Hne,Xne,GJ,Yne,Qne,tse,rse,lse,mY,cse,dse,HJ,Fne,fse,wse,yse,bY,Cse,Ese,Fse,Pse,Bse,Vse,Hse,Xse,Zse,Qse,nre,rre,ire,cre,hre,PJ,One,gre,yre,bre,wre,Ire,Cre,Nre,Rre,_re,Ore,Mre,Lre,Vre,Gre,jre,Xre,$ne,TY,Yre,eae,sae,iae,cae,NY,pae,fae,Aae,Jne];for(let e of yae)pa(e);var Kt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Kt||(Kt={}));var Gd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Gd||(Gd={}));var Zk;function xae(e){Zk=e.wasm.cwrap(Xo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function bae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Gd[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=c?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return Zk(p,k,r.shape.length,h,C,a.shape.length,l,c,g,f,m,d||0,v),b}var vae={kernelName:Xo,backendName:"wasm",setupFunc:xae,kernelFunc:bae};function kn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return w.sizeFromShape(c.shape)===0||n(l,Kt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var wae=kn(Zi);function Wn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=R.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,c.shape.length,p,A,u.shape.length,Kt[c.dtype],y);if(t&&c.dtype==="float32")return x(),m;let b=R.getBroadcastDims(c.shape,f),v=R.getBroadcastDims(u.shape,f),k=b.every((N,D)=>N===D),C=v.every((N,D)=>N===D);if(k&&C)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var kae=!0,Iae=Wn(la,kae),Yk;function Sae(e){Yk=e.wasm.cwrap(Ya,null,["array","number","number","number"])}function Cae(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return Yk(a,r.length,Kt[s.dtype],o),s}var Tae={kernelName:Ya,backendName:"wasm",setupFunc:Sae,kernelFunc:Cae};function E0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Nae={kernelName:Ao,backendName:"wasm",kernelFunc:E0},Jk;function Eae(e){Jk=e.wasm.cwrap(qo,null,["number","array","number","number","number","array","number"])}function Uu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Dae(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Rae(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=E0({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Jk(u,h,l.shape.length,Kt[l.dtype],d,p,a.length),c}function Rae(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Dae(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var _ae={kernelName:qo,backendName:"wasm",kernelFunc:Uu,setupFunc:Eae};function $a(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=R.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=R.getInnerMostAxes(o.length,r),l=Uu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var Qk;function Fae(e){Qk=e.wasm.cwrap(Qi,null,["number, number, number"])}function $ae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("all",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Qk(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Oae={kernelName:Qi,backendName:"wasm",setupFunc:Fae,kernelFunc:$ae},e8;function Pae(e){e8=e.wasm.cwrap(el,null,["number, number, number"])}function Mae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("any",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;e8(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var zae={kernelName:el,backendName:"wasm",setupFunc:Pae,kernelFunc:Mae},t8;function Lae(e){t8=e.wasm.cwrap(Ja,null,["number","number","number","number","number"])}function Bae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=$a(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=l.shape[u[0]];return t8(i,Kt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var Wae={kernelName:Ja,backendName:"wasm",kernelFunc:Bae,setupFunc:Lae},n8;function Vae(e){n8=e.wasm.cwrap(Qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Uae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,y=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return n8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,v),b}var Gae={kernelName:Qa,backendName:"wasm",setupFunc:Vae,kernelFunc:Uae};function ts(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Hae={kernelName:Ol,backendName:"wasm",kernelFunc:ts},s8;function jae(e){s8=e.wasm.cwrap(eo,null,["number","array","number","number","array","number","number","number","number"])}function qae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],k=i?[A,h,d]:[A,d,h],C=ts({inputs:{x:r},backend:n,attrs:{shape:v}}),N=ts({inputs:{x:a},backend:n,attrs:{shape:k}}),D=n.dataIdMap.get(C.dataId).id,P=n.dataIdMap.get(N.dataId).id,E=o?C.shape[2]:C.shape[1],F=i?N.shape[1]:N.shape[2],T=Math.max(g,A),M=n.makeOutput([T,E,F],C.dtype),G=n.dataIdMap.get(M.dataId).id,H=new Uint8Array(new Int32Array(C.shape).buffer),z=new Uint8Array(new Int32Array(N.shape).buffer);return s8(D,H,C.shape.length,P,z,N.shape.length,o,i,G),n.disposeData(C.dataId),n.disposeData(N.dataId),M.shape=b,M}var Xae={kernelName:eo,backendName:"wasm",setupFunc:jae,kernelFunc:qae};function Hd(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Fn.parseSliceParams(t,n,s),i=Fn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=w.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Fn.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+w.sizeFromShape(o))),c}if(t.dtype==="string"){let f=a0(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Kae(l,u[0],p,a,o);else if(h===3)Zae(l,u[0],u[1],p,a,o);else if(h===4)Yae(l,u[0],u[1],u[2],p,a,o);else{let f=a0(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Kae(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function Zae(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Yae(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var Jae={kernelName:Ll,backendName:"wasm",kernelFunc:Hd};function Qae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=ts({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Uu({inputs:{x:h},backend:n,attrs:{perm:c}}),m=ts({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Hd({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var eoe={kernelName:ol,backendName:"wasm",kernelFunc:Qae};function jd(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var toe={kernelName:to,backendName:"wasm",kernelFunc:jd},noe=kn(no),r8;function soe(e){r8=e.wasm.cwrap(ua,null,["number","number","number","number"])}function roe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return r8(i,a,o,c),l}var aoe={kernelName:ua,backendName:"wasm",setupFunc:soe,kernelFunc:roe};function a8(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=R.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return E0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(R.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return ts({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=R.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=A2(f,r,t[0].dtype,m),A=R.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=R.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,y=d[m].subarray(A,A+g);p.set(y,f),f+=g}}return o}var ooe={kernelName:il,backendName:"wasm",kernelFunc:a8},o8;function ioe(e){o8=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function loe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=R.convertConv2DDataFormat(p),f=R.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,C=f.strideHeight,N=f.strideWidth,D=f.inChannels,P=f.outChannels,E=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let F=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(F.dataId).id;return o8(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,E,v,k,C,N,D,P,T),F}var uoe={kernelName:so,backendName:"wasm",setupFunc:ioe,kernelFunc:loe},i8;function coe(e){i8=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function doe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:C,strideWidth:N}=h,D=m-1-h.padInfo.top,P=g-1-h.padInfo.left,E=h.dataFormat==="channelsLast",F=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[M,G,H]=w.computeStrides(a.shape),z=F[0],X=E?F[1]:F[2],Q=E?F[2]:1,Z=E?1:F[1],te=T[0],se=E?T[1]:T[2],J=E?T[2]:1,ee=E?1:T[1],ce=t.makeOutput(h.inShape,"float32"),pe=t.dataIdMap.get(ce.dataId).id,ve=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(a.dataId).id;return i8(ve,ke,f,m,g,y,x,A,v,k,b,C,N,D,P,M,G,H,z,X,Q,Z,te,se,J,ee,pe),ce}var poe={kernelName:ro,backendName:"wasm",setupFunc:coe,kernelFunc:doe},hoe=kn(ao),foe=kn(oo),K2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(K2||(K2={}));var l8;function moe(e){l8=e.wasm.cwrap(ll,null,["number","number","number","number","array","number","number","number","number","number"])}function goe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=jd({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return l8(g,A,y,u,v,d,p,K2[r],a,b),m!=null&&t.disposeData(m.dataId),x}var Aoe={kernelName:ll,backendName:"wasm",setupFunc:moe,kernelFunc:goe},u8;function yoe(e){u8=e.wasm.cwrap(io,null,["number","number","number","number","number","number"])}function xoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=R.getAxesPermutation([a],l),u=r;c!==null&&(u=Uu({inputs:{x:r},attrs:{perm:c},backend:n}));let d=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;u8(f,o?1:0,i?1:0,h,m,Kt[r.dtype]);let g=p;if(c!==null){let A=R.getUndoAxesPermutation(c);g=Uu({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var boe={kernelName:io,backendName:"wasm",setupFunc:yoe,kernelFunc:xoe},c8;function voe(e){c8=e.wasm.cwrap(ul,null,["number","number","number","array","number","array","array","number","number"])}function woe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return c8(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var koe={kernelName:ul,backendName:"wasm",setupFunc:voe,kernelFunc:woe},d8;function Ioe(e){d8=e.wasm.cwrap(lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Soe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=R.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,k=h.strideHeight,C=h.strideWidth,N=h.inChannels,D=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(h.outShape,"float32"),F=s.dataIdMap.get(E.dataId).id;return d8(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,P,b,v,k,C,N,D,F),E}var Coe={kernelName:lo,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe},Toe=kn(co),Noe=!1,Eoe=Wn(dl,Noe,"bool"),Roe=kn(po,"float32");function Z2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ts({inputs:{x:r},backend:s,attrs:{shape:i}})}var Doe={kernelName:pl,backendName:"wasm",kernelFunc:Z2};function p8(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var _oe={kernelName:kc,backendName:"wasm",kernelFunc:p8},h8;function Foe(e){h8=e.wasm.cwrap(fl,null,["number","number","number","number","number","number"])}function $oe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return h8(a,i,l,c,u,o),r}var Ooe={kernelName:fl,backendName:"wasm",kernelFunc:$oe,setupFunc:Foe},Poe=kn(ho),Moe=!1,zoe=Wn(fo,Moe),f8;function Loe(e){f8=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number"])}function Boe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return f8(u,d,p,h,f,r,g),m}var Woe={kernelName:mo,backendName:"wasm",setupFunc:Loe,kernelFunc:Boe},m8;function Voe(e){m8=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Uoe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=Gd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,D=m.padInfo.bottom,P=m.padInfo.left,E=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,G=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Z=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(Z.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return m8(A,z,X,Q,y,v,k,b,C,N,D,P,H,E,F,T,M,G,x,g,se,f||0,te),Z}var Goe={kernelName:Ko,backendName:"wasm",setupFunc:Voe,kernelFunc:Uoe},g8;function Hoe(e){g8=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function joe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=Gd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,D=m.padInfo.bottom,P=m.padInfo.left,E=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,G=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Z=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(Z.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return g8(A,z,X,Q,y,v,k,b,C,N,D,P,H,E,F,T,M,G,x,g,se,f||0,te),Z}var qoe={kernelName:Zo,backendName:"wasm",setupFunc:Hoe,kernelFunc:joe},A8;function Xoe(e){A8=e.wasm.cwrap(gl,null,["number","number","number","number","number","number","array","number"])}function Koe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=lA.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return A8(h,Kt[s.dtype],m,o,d,i,g,A),c}var Zoe={kernelName:gl,backendName:"wasm",setupFunc:Xoe,kernelFunc:Koe},y8;function Yoe(e){y8=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Joe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let D=0;D<c.length;++D){let P=c[D];w.assert(P<=u-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${u-1}]`)}let d=R.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=ts({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=ts({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,x=t.dataIdMap.get(p.dataId).id,v=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),N=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return y8(x,Kt[r.dtype],C,A,v,d.batchSize,N,k),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Qoe={kernelName:ml,backendName:"wasm",setupFunc:Yoe,kernelFunc:Joe},eie=!1,tie=Wn(Al,eie,"bool"),nie=!1,sie=Wn(go,nie,"bool"),x8;function rie(e){x8=e.wasm.cwrap(yo,null,["number","number","number","number"])}function aie(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;x8(r,Kt[t.dtype],n,o)}return a}var oie={kernelName:yo,backendName:"wasm",setupFunc:rie,kernelFunc:aie},iie=!1,lie=Wn(vl,iie,"bool"),uie=!1,cie=Wn(wl,uie,"bool"),die=kn(xo),pie=!1,hie=Wn(Il,pie,"bool"),b8;function fie(e){b8=e.wasm.cwrap(bo,null,["number","number","number","number"])}function mie(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("max",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;b8(l,Kt[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var gie={kernelName:bo,backendName:"wasm",setupFunc:fie,kernelFunc:mie},Aie=!1,yie=Wn(vo,Aie),v8;function xie(e){v8=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bie(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,y=u.dilationWidth,x=u.strideHeight,b=u.strideWidth,v=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(C.dataId).id;return v8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,b,v,k,N),C}var vie={kernelName:wo,backendName:"wasm",setupFunc:xie,kernelFunc:bie},w8;function wie(e){w8=e.wasm.cwrap(ko,null,["number, number, number"])}function kie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=c;c.dtype!=="float32"&&(y=jd({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;w8(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=R.expandShapeToKeepDim(x.shape,p);x.shape=b}return c.dtype!=="float32"&&t.disposeData(y.dataId),x}var Iie={kernelName:ko,backendName:"wasm",setupFunc:wie,kernelFunc:kie},k8;function Sie(e){k8=e.wasm.cwrap(Io,null,["number","number","number","number"])}function Cie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x)}let f=c.shape.length;R.assertAxesAreInnerMostDims("min",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;k8(l,Kt[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Tie={kernelName:Io,backendName:"wasm",setupFunc:Sie,kernelFunc:Cie},Nie=!1,Eie=Wn(So,Nie),Y2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Y2||(Y2={}));var I8;function Rie(e){I8=e.wasm.cwrap(Co,null,["number","array","number","number","array","array","number","number"])}function Die(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return I8(o,c,t.shape.length,Kt[t.dtype],p,h,Y2[r],l),i}var _ie={kernelName:Co,backendName:"wasm",kernelFunc:Die,setupFunc:Rie},Fie=!0,$ie=Wn(To,Fie),Oie=kn(Cl);function J2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var S8;function Pie(e){S8=e.wasm.cwrap(Nl,"number",["number","number","number","number","number"])}function Mie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=S8(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=J2(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var zie={kernelName:Nl,backendName:"wasm",setupFunc:Pie,kernelFunc:Mie},C8;function Lie(e){C8=e.wasm.cwrap(El,"number",["number","number","number","number","number","bool"])}function Bie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=C8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=J2(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var Wie={kernelName:El,backendName:"wasm",setupFunc:Lie,kernelFunc:Bie},T8;function Vie(e){T8=e.wasm.cwrap(Rl,"number",["number","number","number","number","number","number"])}function Uie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=T8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=J2(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[A,y]}var Gie={kernelName:Rl,backendName:"wasm",setupFunc:Vie,kernelFunc:Uie},Hie=!1,jie=Wn(Tl,Hie,"bool"),N8;function qie(e){N8=e.wasm.cwrap(No,null,["number","number","number","number","number"])}function Xie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return N8(d,a,o,i,c),l}var Kie={kernelName:No,backendName:"wasm",setupFunc:qie,kernelFunc:Xie};function Zie(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Yie={kernelName:Dl,backendName:"wasm",kernelFunc:Zie};function Jie(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Z2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Z2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=a8({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Qie={kernelName:_l,backendName:"wasm",kernelFunc:Jie},E8;function ele(e){E8=e.wasm.cwrap(Eo,null,["number","array","number","number","array","array","number","number"])}function tle(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return p8({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return E8(o,u,t.shape.length,Kt[t.dtype],h,f,r,c),i}var R8={kernelName:Eo,backendName:"wasm",kernelFunc:tle,setupFunc:ele},nle=!1,sle=Wn(Ro,nle),D8;function rle(e){D8=e.wasm.cwrap(Do,null,["number","number","number"])}function ale(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=jd({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return D8(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var ole={kernelName:Do,backendName:"wasm",setupFunc:rle,kernelFunc:ale},_8;function ile(e){_8=e.wasm.cwrap(Fl,null,["number","number","number","number"])}function lle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;_8(l,A,Kt[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var ule={kernelName:Fl,backendName:"wasm",setupFunc:ile,kernelFunc:lle},cle=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=b2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},dle={kernelName:Nc,backendName:"wasm",kernelFunc:cle},ple=!0,hle=Wn(uo,ple),fle=kn(_o),mle=kn($o),F8;function gle(e){F8=e.wasm.cwrap(Fo,null,["number","number","number","number","number","number","number","number","number","number"])}function Ale(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=jd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return F8(A,u,d,p,h,l,c,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var yle={kernelName:Fo,backendName:"wasm",setupFunc:gle,kernelFunc:Ale},$8;function xle(e){$8=e.wasm.cwrap(Oo,null,["number","array","number","array","number","number"])}function ble(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return E0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);$8(l,u,o.length,d,r.shape.length,c);let p=ts({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var vle={kernelName:Oo,backendName:"wasm",kernelFunc:ble,setupFunc:xle},O8;function wle(e){O8=e.wasm.cwrap(Zl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function kle(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=R.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return O8(c,d,p,h,f,a,m,g,b,x.length,u),l}var Ile={kernelName:Zl,backendName:"wasm",kernelFunc:kle,setupFunc:wle},Sle=kn(Po),Cle=kn(Mo),P8;function Tle(e){P8=e.wasm.cwrap(Pl,null,["number","number","number","number","number","number","array","number","number"])}function Nle(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=uA.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return P8(f,g,Kt[a.dtype],l,c,u,A,p,y),i}var Ele={kernelName:Pl,backendName:"wasm",setupFunc:Tle,kernelFunc:Nle},M8;function Rle(e){M8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Dle(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return M8(o,i,l,h,u),c}var _le={kernelName:Ml,backendName:"wasm",kernelFunc:Dle,setupFunc:Rle},z8;function Fle(e){z8=e.wasm.cwrap(Lo,null,["number","number"])}function $le(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||z8(s,a),r}var Ole={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Fle,kernelFunc:$le},Ple=kn(zo),L8;function Mle(e){L8=e.wasm.cwrap(Vo,null,["number","number","number","number"])}function zle(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||L8(r,o,i,l),a}var Lle={kernelName:Vo,backendName:"wasm",setupFunc:Mle,kernelFunc:zle};function Ble(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=R8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,a,i,!1),d=R.getPermuted(u.length,a.length,!1),p=R.getReshapedPermuted(c.shape,a,i,!1),m=ts({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Uu({inputs:{x:m},backend:n,attrs:{perm:d}}),v=ts({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var Wle={kernelName:Ul,backendName:"wasm",kernelFunc:Ble};function Vle(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Hd({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var Ule={kernelName:Gl,backendName:"wasm",kernelFunc:Vle},Gle=kn(Bo),Hle=kn(Rc),jle=!0,qle=Wn(Uo,jle),B8;function Xle(e){B8=e.wasm.cwrap(da,null,["number","number","number","number"])}function Kle(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return B8(o,r,Kt[a.dtype],l),i}var Zle={kernelName:da,backendName:"wasm",setupFunc:Xle,kernelFunc:Kle},W8;function Yle(e){W8=e.wasm.cwrap(Hl,null,["number","array","number","array","array","array","array","array","number","number"])}function Jle(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,h=R.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=R.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=ts({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=R.slice_util.getNormalizedAxes(A.shape,h,f,a,o,i,l,c,u);a=y,o=x,i=b;let v=R.slice_util.maskToAxes(p);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=R.slice_util.computeOutShape(a,o,i),C=k.filter((E,F)=>v.indexOf(F)===-1);if(i.every(E=>E===1)){let E=Hd({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let F=ts({inputs:{x:E},attrs:{shape:C},backend:t});return t.disposeData(E.dataId),F}let D=t.makeOutput(C,"float32");if(!C.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,F=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),M=new Uint8Array(new Int32Array(o).buffer),G=new Uint8Array(new Int32Array(i).buffer),H=new Uint8Array(new Int32Array(C).buffer),z=new Uint8Array(new Int32Array(w.computeStrides(C)).buffer),X=t.dataIdMap.get(D.dataId).id;W8(E,F,A.shape.length,T,M,G,H,z,C.length,X)}t.disposeData(A.dataId);let P=ts({inputs:{x:D},attrs:{shape:C},backend:t});return t.disposeData(D.dataId),P}var Qle={kernelName:Hl,backendName:"wasm",setupFunc:Yle,kernelFunc:Jle},eue=!0,tue=Wn(Go,eue),V8;function nue(e){V8=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function sue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;V8(l,A,Kt[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var rue={kernelName:Wo,backendName:"wasm",setupFunc:nue,kernelFunc:sue},aue=kn(Ho),oue=kn(jo),U8;function iue(e){U8=e.wasm.cwrap(ca,null,["number","array","number","array","number","number"])}function lue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return U8(a,l,r.shape.length,c,i.length,Kt[u.dtype],d),u}var uue={kernelName:ca,backendName:"wasm",setupFunc:iue,kernelFunc:lue},G8;function cue(e){G8=e.wasm.cwrap(jl,null,["number","array","number","number","number","bool","number","number"])}var due=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return G8(o,i,s.shape.length,Kt[s.dtype],r,a,u,p),[c,d]},pue={kernelName:jl,backendName:"wasm",setupFunc:cue,kernelFunc:due},H8;function hue(e){H8=e.wasm.cwrap(ql,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function fue(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,C=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return H8(v,C,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,N,D,l,x),y}var mue={kernelName:ql,backendName:"wasm",setupFunc:hue,kernelFunc:fue};function gue(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=Hd({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Aue={kernelName:Xl,backendName:"wasm",kernelFunc:gue};function yue(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var xue={kernelName:Kl,backendName:"wasm",kernelFunc:yue},bue=[wae,Iae,Tae,Oae,zae,Wae,Gae,Xae,eoe,toe,noe,aoe,ooe,uoe,poe,hoe,foe,Aoe,boe,koe,Coe,Toe,Eoe,Roe,Doe,_oe,Ooe,Poe,zoe,vae,Woe,Goe,qoe,Zoe,Qoe,tie,sie,Nae,oie,lie,cie,die,hie,gie,yie,vie,Iie,Tie,Eie,_ie,$ie,Oie,zie,Wie,Gie,jie,Kie,Yie,Qie,R8,sle,ole,ule,dle,hle,fle,mle,Hae,yle,vle,Ile,Cle,Sle,Ele,_le,Ole,Ple,Jae,Lle,Wle,Ule,Gle,Hle,qle,Zle,Qle,tue,rue,aue,oue,uue,pue,mue,_ae,Aue,xue];for(let e of bue)pa(e);var Q2=ne();Q2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Q2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Q2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var j8=Xa(xT()),vue='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',wue=Xa(bT()),q8=class extends mc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(Z8),tx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Op(this,as())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return Sue(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function kue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function X8(e,t,n){if(R0!=null)return R0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Xd!=null&&Xd[s]!=null?Xd[s]:n+s}async function Iue(){let[e,t]=await Promise.all([ne().getAsync("WASM_HAS_SIMD_SUPPORT"),ne().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=vue,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?X8(e,t,qd!=null?qd:l):l+i},ex&&(r.instantiateWasm=kue(X8(e,t,qd!=null?qd:"")));let a=!1;r.onAbort=()=>{if(a||Kd)return;Kd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&R0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+j8.default.toString()],{type:"text/javascript"}),o=(0,j8.default)(r)):o=(0,wue.default)(r),o.then(i=>{a=!0,Kd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Sue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Cue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],R0=null,qd=null,Xd={},Kd=!1,ex=!1;function Tue(e,t=!1){if(mA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Kd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");R0=e,ex=t}function K8(e,t=!1){if(Kd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")qd=e;else{Xd=e;let n=Cue.filter(s=>Xd[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}ex=t}var Z8=-1,tx=-1;function Nue(e){Z8=e}function Eue(){if(tx===-1)throw new Error("WASM backend not initialized.");return tx}var Rue="3.10.0",Due=2;ru("wasm",async()=>{let{wasm:e}=await Iue();return new q8(e)},Due);var _ue="3.10.0",Fue="3.10.0",$ue="3.10.0",Oue="3.10.0",Pue="3.10.0",Mue="3.10.0",zue="3.10.0",Lue="3.10.0",Bue={tfjs:_ue,"tfjs-core":Fue,"tfjs-data":$ue,"tfjs-layers":Oue,"tfjs-converter":Pue,"tfjs-backend-cpu":Mue,"tfjs-backend-webgl":zue,"tfjs-backend-wasm":Lue};var Y8=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var J8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,Q8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,eI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,tI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,nI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var nx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},sI=class{constructor(t,n,s){he(this,"uniform",{});he(this,"attribute",{});he(this,"gl");he(this,"id");he(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),nx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);nx(n,"uniform",this.uniform),nx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function rI(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Vn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(y,x){if(!(y===l.width&&x===l.height)){if(l.width=y,l.height=x,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(y,x){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let v=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,v);let k=d.createTexture();return d.bindTexture(d.TEXTURE_2D,k),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,y,x,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,k,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(y){return r[y]=r[y]||h(l.width,l.height),r[y]}function m(y=0){var k,C;if(!i)return;let x=null,b=null,v=!1;e===0?x=t:x=((k=f(s))==null?void 0:k.texture)||null,e++,n&&!(y&u.INTERMEDIATE)?(b=null,v=e%2==0):(s=(s+1)%2,b=((C=f(s))==null?void 0:C.fbo)||null),d.bindTexture(d.TEXTURE_2D,x),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,v?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(y){if(c[y])return i=c[y],d.useProgram((i==null?void 0:i.id)||null),i;i=new sI(d,Y8,y);let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*x),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*x),c[y]=i,i}let A={colorMatrix:y=>{let x=new Float32Array(y);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?Q8:J8,v=g(b);d.uniform1fv(v==null?void 0:v.uniform.m,x),m()},brightness:y=>{let x=(y||0)+1;A.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:y=>{let x=(y||0)*2/3+1,b=(x-1)*-.5;A.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:y=>{let x=(y||0)+1,b=-128*(x-1);A.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:y=>{y=(y||0)/180*Math.PI;let x=Math.cos(y),b=Math.sin(y),v=.213,k=.715,C=.072;A.colorMatrix([v+x*(1-v)+b*-v,k+x*-k+b*-k,C+x*-C+b*(1-C),0,0,v+x*-v+b*.143,k+x*(1-k)+b*.14,C+x*-C+b*-.283,0,0,v+x*-v+b*-(1-v),k+x*-k+b*k,C+x*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:y=>{let x=new Float32Array(y),b=1/l.width,v=1/l.height,k=g(nI);d.uniform1fv(k==null?void 0:k.uniform.m,x),d.uniform2f(k==null?void 0:k.uniform.px,b,v),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:y=>{let x=y||1;A.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:y=>{let x=y||1;A.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:y=>{let x=y/7/l.width,b=y/7/l.height,v=g(tI);d.uniform2f(v==null?void 0:v.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(v==null?void 0:v.uniform.px,x,0),m()},pixelate:y=>{let x=y/l.width,b=y/l.height,v=g(eI);d.uniform2f(v==null?void 0:v.uniform.size,x,b),m()}};this.add=function(y){let x=Array.prototype.slice.call(arguments,1),b=A[y];a.push({func:b,args:x})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(y){p(y.width,y.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,y);for(let x=0;x<a.length;x++){n=x===a.length-1;let b=a[x];b.func.apply(this,b.args||[])}return l},this.draw=function(y){return this.add("brightness",0),this.apply(y)}}var D0=2048,at=null,Vt=null,Oa=null,Rt;function Vn(e,t){let n;if(xe.browser)if(xe.worker)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof xe.Canvas!="undefined"?n=new xe.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function sx(e,t){let n=t||Vn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function Gu(e,t,n=!0){if(!e)return t.debug&&oe("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof xe.Canvas!="undefined"&&e instanceof xe.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ge){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:Zs(e),canvas:t.filter.return?Vt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&oe("input stream is not ready"),{tensor:null,canvas:at};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&oe("cannot determine input dimensions"),{tensor:null,canvas:at};let a=s,o=r;if(a>D0&&(a=D0,o=Math.trunc(a*r/s)),o>D0&&(o=D0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!at||(at==null?void 0:at.width)!==a||(at==null?void 0:at.height)!==o)&&(at=Vn(a,o));let i=at.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,at==null?void 0:at.width,at==null?void 0:at.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,at==null?void 0:at.width,at==null?void 0:at.height),(!Vt||at.width!==Vt.width||(at==null?void 0:at.height)!==(Vt==null?void 0:Vt.height))&&(Vt=Vn(at.width,at.height)),t.filter.enabled&&xe.webgl.supported){if(Rt||(Rt=xe.browser?new rI:null),xe.filter=!!Rt,!Rt)return{tensor:null,canvas:at};Rt.reset(),t.filter.brightness!==0&&Rt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Rt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Rt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Rt.add("blur",t.filter.blur),t.filter.saturation!==0&&Rt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Rt.add("hue",t.filter.hue),t.filter.negative&&Rt.add("negative"),t.filter.sepia&&Rt.add("sepia"),t.filter.vintage&&Rt.add("brownie"),t.filter.sepia&&Rt.add("sepia"),t.filter.kodachrome&&Rt.add("kodachrome"),t.filter.technicolor&&Rt.add("technicolor"),t.filter.polaroid&&Rt.add("polaroid"),t.filter.pixelate!==0&&Rt.add("pixelate",t.filter.pixelate),Rt.get()>0?Vt=Rt.apply(at):Vt=Rt.draw(at)}else sx(at,Vt),Rt&&(Rt=null),xe.filter=!!Rt;if(!n)return{tensor:null,canvas:Vt};if(!Vt)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(xe.browser&&Ms)l=Ms?Ms.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Lt(p,[e.height,e.width,c],"int32")}else if((!Oa||Vt.width!==Oa.width||(Vt==null?void 0:Vt.height)!==(Oa==null?void 0:Oa.height))&&(Oa=Vn(Vt.width,Vt.height)),Ms&&xe.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ms.fromPixels(Vt):(Oa=sx(Vt),l=Ms.fromPixels(Oa));else{let f=sx(Vt).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Lt(m,[a,o,c])}if(c===4){let p=mu(l,[0,0,0],[-1,-1,3]);Y(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=de(l,"float32"),d=Bt(u,0);return Y([l,u]),{tensor:d,canvas:t.filter.return?Vt:null}}}var rx=0,ax=1,ox=0,Wue=async e=>{let t=48,n=_e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=Se(n),i=await o.data();return Y(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(ox===0){let o=fe();await r();let i=fe();await s();let l=fe();ox=i-o<l-i?1:2}let a=ox===1?await r():await s();return Y(n),a};async function aI(e,t){if(e.cacheSensitivity===0)return!1;let n=await Wue(t),s=100*(Math.max(n,rx)/Math.min(n,rx)-1);rx=n;let r=s<Math.max(e.cacheSensitivity,ax);return ax=s>10*e.cacheSensitivity?0:s,r=r&&ax>0,r}var oI=class{constructor(){he(this,"browser");he(this,"node");he(this,"worker");he(this,"platform","");he(this,"agent","");he(this,"backends",[]);he(this,"initial");he(this,"filter");he(this,"tfjs");he(this,"offscreen");he(this,"perfadd",!1);he(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});he(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});he(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});he(this,"cpu",{model:void 0,flags:[]});he(this,"kernels",[]);he(this,"Canvas");he(this,"Image");he(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:Gc},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){var s;this.backends=Object.keys(as().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Ys()==="wasm"&&(this.wasm.simd=await ne().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await ne().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Vn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Ys()==="webgl"||Ys()==="humangl")){let r=Ar().gpgpu!=="undefined"?await Ar().getGPGPUContext().gl:null;r&&(this.webgl.version=r.getParameter(r.VERSION),this.webgl.renderer=r.getParameter(r.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(s=await navigator.gpu.requestAdapter())==null?void 0:s.name),this.kernels=Or(Ys()).map(r=>r.kernelName.toLowerCase())}async updateCPU(){var n;let t={model:"",flags:[]};if(this.node&&((n=this.platform)==null?void 0:n.startsWith("linux"))){let s=ra("fs");try{let r=s.readFileSync("/proc/cpuinfo").toString();for(let a of r.split(`
|
|
`))a.startsWith("model name")&&(t.model=a.match(/:(.*)/g)[0].replace(":","").trim()),a.startsWith("flags")&&(t.flags=a.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch(r){}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},xe=new oI;var ix="2.4.1";var Pa;var ide=Number.MAX_SAFE_INTEGER;async function iI(e){return xe.initial&&(Pa=null),Pa?e.debug&&oe("cached model:",Pa.modelUrl):(Pa=await Qe(tt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Pa||!Pa.modelUrl?oe("load model failed:",e.face.agegenderrace.modelPath):e.debug&&oe("load model:",Pa.modelUrl)),Pa}var sn,_0=[],lx=Number.MAX_SAFE_INTEGER,lI=0,uI=0;async function cI(e){var t,n;return xe.initial&&(sn=null),sn?e.debug&&oe("cached model:",sn.modelUrl):(sn=await Qe(tt(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!sn||!sn.modelUrl?oe("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&oe("load model:",sn.modelUrl)),sn}async function ux(e,t,n,s){var o,i;if(!sn)return null;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>fe()-uI,a=lx<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&lI===s&&_0[n]?(lx++,_0[n]):(lx=0,new Promise(async l=>{let c=_e.resizeBilinear(e,[(sn==null?void 0:sn.inputs[0].shape)?sn.inputs[0].shape[2]:0,(sn==null?void 0:sn.inputs[0].shape)?sn.inputs[0].shape[1]:0],!1),u=sn==null?void 0:sn.predict(c),d=(await u.data())[0];_0[n]=Math.round(100*d)/100,lI=s,uI=fe(),Y([c,u]),l(_0[n])}))}var Er={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},cx={count:468,mouth:13,symmetryLine:[13,Er.midwayBetweenEyes[0]]},Zd={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},dx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Yd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],_i=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Uue=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Gue=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Hue=[33,133,362,263,1,78,308],hde=Uue.map(e=>Yd[e]),fde=Gue.map(e=>Yd[e]),mde=Hue.map(e=>Yd[e]);var dI=e=>({startPoint:Fe(e,[0,0],[-1,2]),endPoint:Fe(e,[0,2],[-1,2])});var Jd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],F0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],px=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],hx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],pI=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},fx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return _e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Qd=(e,t=1.5)=>{let n=F0(e),s=Jd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},ep=e=>{let t=F0(e),n=Jd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},$0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},O0=[[1,0,0],[0,1,0],[0,0,1]],jue=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),que=(e,t)=>jue(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var hI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Fi=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},Xue=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},fI=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Fi(e[r],Xue(t,a)))}return n},mI=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=hI(t[0],t[1]),o=fI(a,r),i=hI(-t[0],-t[1]);return fI(o,i)},Kue=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Fi(t[0],n),-Fi(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Zue=(e,t)=>[Fi(e,t[0]),Fi(e,t[1])];function gI(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function AI(e,t,n,s,r){let a=Jd({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?mI(n,[0,0]):O0,l=n!==0?o.map(d=>[...Zue(d,i),d[2]]):o,c=n!==0?Kue(s):O0,u=[...F0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Fi(u,c[0])),Math.round(d[1]+Fi(u,c[1])),Math.round(d[2]||0)])}function mx(e,t,n){let s=e.landmarks.length>=cx.count?cx.symmetryLine:Zd.symmetryLine,r=que(e.landmarks[s[0]],e.landmarks[s[1]]),a=F0({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=_e.rotateWithOffset(t,r,0,o),l=mI(-r,a),c=fx({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=me(c,255);return Y(c),Y(i),[r,l,u]}var yI=6,Es,gx=[],xI=null,Rs=0,tp=()=>Rs;async function bI(e){var t,n;return xe.initial&&(Es=null),Es?e.debug&&oe("cached model:",Es.modelUrl):(Es=await Qe(tt(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Es||!Es.modelUrl?oe("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&oe("load model:",Es.modelUrl)),Rs=Es.inputs[0].shape?Es.inputs[0].shape[2]:0,Rs===-1&&(Rs=64),gx=gI(Rs),xI=Qs(gx),Es}function Yue(e){let t=Fe(e,[0,1],[-1,2]),n=le(t,xI),s=Fe(e,[0,3],[-1,2]),r=me(s,Rs),a=me(n,Rs),o=me(r,2),i=be(a,o),l=le(a,o),c=B(i,Rs),u=B(l,Rs);return iu([c,u],1)}async function vI(e,t){var c,u,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=j(()=>{let h=_e.resizeBilinear(e,[Rs,Rs]),f=be(me(h,127.5),.5),m=Es==null?void 0:Es.execute(f),g;if(Array.isArray(m)){let b=m.sort((N,D)=>N.size-D.size),v=gt([b[0],b[2]],2),k=gt([b[1],b[3]],2),C=gt([k,v],1);g=rt(C,0)}else g=rt(m);let A=Yue(g),y=Fe(g,[0,0],[-1,1]),x=rt(Kn(y));return[g,A,x]}),a=await _e.nonMaxSuppressionAsync(s,r,((c=t.face.detector)==null?void 0:c.maxDetected)||0,((u=t.face.detector)==null?void 0:u.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();Y(a);let i=[],l=await r.data();for(let h=0;h<o.length;h++){let f=l[o[h]];if(f>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let m=Fe(s,[o[h],0],[1,-1]),g=j(()=>U(rt(Fe(n,[o[h],yI-1],[1,-1])),[yI,-1]));i.push({box:dI(m),landmarks:g,anchor:gx[o[h]],confidence:f}),Y(m)}}return Y(n),Y(s),Y(r),{boxes:i,scaleFactor:[e.shape[2]/Rs,e.shape[1]/Rs]}}var xx={};cc(xx,{connected:()=>yx,kpt:()=>Ax});var Ax=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],yx={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var wI={initial:!0},rn=[null,null],Ma=[[0,0],[0,0]],bx=Number.MAX_SAFE_INTEGER,vx,P0=null,za=[[0,0],[0,0],[0,0],[0,0]],kI=0;async function II(e){var t,n,s;if(wI.initial&&(rn[0]=null),!rn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){rn[0]=await Qe(tt(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(rn[0].modelSignature.inputs);Ma[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Ma[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!rn[0]||!rn[0].modelUrl?oe("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&oe("load model:",rn[0].modelUrl)}else e.debug&&rn[0]&&oe("cached model:",rn[0].modelUrl);return rn[0]}async function SI(e){var t;if(wI.initial&&(rn[1]=null),rn[1])e.debug&&oe("cached model:",rn[1].modelUrl);else{rn[1]=await Qe(tt(e.modelBasePath,e.body.modelPath||""));let n=Object.values(rn[1].modelSignature.inputs);Ma[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ma[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?vx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:vx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!rn[1]||!rn[1].modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",rn[1].modelUrl)}return rn[1]}function Jue(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function Que(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;za=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=ks(e,za),t.resize=_e.resizeBilinear(t.pad,[Ma[1][0],Ma[1][1]]);let n=me(t.resize,255);return Object.keys(t).forEach(s=>Y(t[s])),n}function ece(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+za[2][0]+za[2][1])/t[0]-za[2][0],n.position[1]*(t[1]+za[1][0]+za[1][1])/t[1]-za[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var CI=e=>1-1/(1+Math.exp(e));async function tce(e,t,n){var h;let s={};s.input=await Que(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await((h=rn[1])==null?void 0:h.execute(s.input,vx));let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=CI(o[l*f+3]),g=CI(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,y=[o[l*f+0]/Ma[1][0],o[l*f+1]/Ma[1][1],o[l*f+2]+0],x=[Math.trunc(n[0]*y[0]),Math.trunc(n[1]*y[1]),y[2]];i.push({part:Ax[f],positionRaw:y,position:x,score:A})}if(a<(t.body.minConfidence||0))return null;let c=ece(i,n),u=Jue(c,[n[0],n[1]]);Object.keys(s).forEach(f=>Y(s[f]));let d={};for(let[f,m]of Object.entries(yx)){let g=[];for(let A=0;A<m.length-1;A++){let y=c.find(b=>b.part===m[A]),x=c.find(b=>b.part===m[A+1]);y&&x&&y.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&g.push([y.position,x.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function wx(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>fe()-kI,r=bx<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&P0!==null?bx++:(P0=await tce(e,t,n),kI=fe(),bx=0),P0?[P0]:[]}var Hu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Us,$i=0,M0=[],TI=0,kx=Number.MAX_SAFE_INTEGER;async function NI(e){if(xe.initial&&(Us=null),Us)e.debug&&oe("cached model:",Us.modelUrl);else{ju(["floormod"],e),Us=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Us.modelSignature.inputs);$i=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Us||!Us.modelUrl?oe("load model failed:",e.object.modelPath):e.debug&&oe("load model:",Us.modelUrl)}return Us}async function nce(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=rt(e);Y(e);let o=pn(a,6,1);Y(a);let i=bn([o[1],o[0],o[3],o[2]],1),l=rt(i);Y(i);let c=rt(o[4]),u=rt(o[5]);o.forEach(f=>Y(f));let d=await _e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Y(l),Y(c),Y(u);let p=await d.data();Y(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=Hu[g].label,[y,x]=[r[0][f][0]/$i,r[0][f][1]/$i],b=[y,x,r[0][f][2]/$i-y,r[0][f][3]/$i-x],v=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:v,boxRaw:b})}return s}async function Ix(e,t){let n=(t.object.skipTime||0)>fe()-TI,s=kx<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&M0.length>0?(kx++,M0):(kx=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?M0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=_e.resizeBilinear(e,[$i,$i]),i=t.object.enabled?Us==null?void 0:Us.execute(o,["tower_0/detections"]):null;TI=fe(),Y(o);let l=await nce(i,a,t);M0=l,r(l)}))}var Tx={};cc(Tx,{connected:()=>Cx,kpt:()=>Sx});var Sx=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Cx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var an,EI=0,Un={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Nx=Number.MAX_SAFE_INTEGER;async function Ex(e){return xe.initial&&(an=null),an?e.debug&&oe("cached model:",an.modelUrl):(an=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!an||!an.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",an.modelUrl)),an}function sce(e,t){let[n,s]=e.shape;return j(()=>{let r=(i,l)=>be(i,B(me(i,Re(l,"int32")),Re(l,"int32"))),a=U(e,[s*n]),o=$n(a,0).dataSync()[0];if(o>t){let i=vs(a,0),l=r(i,n).dataSync()[0],c=me(i,Re(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function Rx(e,t){let n=(t.body.skipTime||0)>fe()-EI,s=Nx<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Un.keypoints).length>0?(Nx++,[Un]):(Nx=0,new Promise(async r=>{var d;let a=j(()=>{if(!(an==null?void 0:an.inputs[0].shape))return null;let p=_e.resizeBilinear(e,[an.inputs[0].shape[2],an.inputs[0].shape[1]],!1);return B(p,2).sub(1)}),o;if(t.body.enabled&&(o=await(an==null?void 0:an.predict(a))),EI=fe(),Y(a),o){Un.keypoints.length=0;let p=o.squeeze();Y(o);let h=p.unstack(2);Y(p);for(let f=0;f<h.length;f++){let[m,g,A]=sce(h[f],t.body.minConfidence);A>(((d=t.body)==null?void 0:d.minConfidence)||0)&&Un.keypoints.push({score:Math.round(100*A)/100,part:Sx[f],positionRaw:[m/an.inputs[0].shape[2],g/an.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/an.inputs[0].shape[2]),Math.round(e.shape[1]*g/an.inputs[0].shape[1])]})}h.forEach(f=>Y(f))}Un.score=Un.keypoints.reduce((p,h)=>h.score>p?h.score:p,0);let i=Un.keypoints.map(p=>p.position[0]),l=Un.keypoints.map(p=>p.position[1]);Un.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=Un.keypoints.map(p=>p.positionRaw[0]),u=Un.keypoints.map(p=>p.positionRaw[1]);Un.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[p,h]of Object.entries(Cx)){let f=[];for(let m=0;m<h.length-1;m++){let g=Un.keypoints.find(y=>y.part===h[m]),A=Un.keypoints.find(y=>y.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}Un.annotations[p]=f}r([Un])}))}var rce=["angry","disgust","fear","happy","sad","surprise","neutral"],on,z0=[],RI=0,DI=0,Dx=Number.MAX_SAFE_INTEGER,_x=[.2989,.587,.114];async function _I(e){var t,n;return xe.initial&&(on=null),on?e.debug&&oe("cached model:",on.modelUrl):(on=await Qe(tt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!on||!on.modelUrl?oe("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&oe("load model:",on.modelUrl)),on}async function Fx(e,t,n,s){var o,i;if(!on)return null;let r=Dx<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>fe()-DI;return t.skipAllowed&&a&&r&&RI===s&&z0[n]&&z0[n].length>0?(Dx++,z0[n]):(Dx=0,new Promise(async l=>{var u,d;let c=[];if((u=t.face.emotion)==null?void 0:u.enabled){let p=_e.resizeBilinear(e,[(on==null?void 0:on.inputs[0].shape)?on.inputs[0].shape[2]:0,(on==null?void 0:on.inputs[0].shape)?on.inputs[0].shape[1]:0],!1),[h,f,m]=pn(p,3,3);Y(p);let g=B(h,_x[0]),A=B(f,_x[1]),y=B(m,_x[2]);Y(h),Y(f),Y(m);let x=Ph([g,A,y]);Y(g),Y(A),Y(y);let b=j(()=>B(be(x,.5),2));Y(x);let v=await(on==null?void 0:on.predict(b));DI=fe();let k=await v.data();Y(v);for(let C=0;C<k.length;C++)k[C]>(((d=t.face.emotion)==null?void 0:d.minConfidence)||0)&&c.push({score:Math.min(.99,Math.trunc(100*k[C])/100),emotion:rce[C]});c.sort((C,N)=>N.score-C.score),Y(b)}z0[n]=c,RI=s,l(c)}))}var Gs,La=0,ace=2.3,$x=Er.leftEyeLower0,Ox=Er.rightEyeLower0,qu={leftBounds:[$x[0],$x[$x.length-1]],rightBounds:[Ox[0],Ox[Ox.length-1]]},Xu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function FI(e){var t,n;return xe.initial&&(Gs=null),Gs?e.debug&&oe("cached model:",Gs.modelUrl):(Gs=await Qe(tt(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!Gs||!Gs.modelUrl?oe("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&oe("load model:",Gs.modelUrl)),La=Gs.inputs[0].shape?Gs.inputs[0].shape[2]:0,La===-1&&(La=64),Gs}function L0(e,t,n,s){for(let r=0;r<dx.length;r++){let{key:a,indices:o}=dx[r],i=Er[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var oce=e=>{let t=e[qu.leftBounds[0]][2],n=e[qu.rightBounds[0]][2];return t-n},$I=(e,t,n,s,r=!1,a)=>{let o=ep(Qd($0([e[n],e[s]]),ace)),i=Jd(o),l=_e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[La,La]);if(r&&xe.kernels.includes("flipleftright")){let c=_e.flipLeftRight(l);Y(l),l=c}return{box:o,boxSize:i,crop:l}},OI=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Xu.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/La:o/La)*n[0]+t.startPoint[0],i/La*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Xu.index)}},PI=(e,t,n)=>{let s=e[Er[`${n}EyeUpper0`][Xu.upperCenter]][2],r=e[Er[`${n}EyeLower0`][Xu.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function MI(e,t,n,s){if(!Gs)return n.debug&&oe("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=$I(e,t,qu.leftBounds[0],qu.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=$I(e,t,qu.rightBounds[0],qu.rightBounds[1],!0,s),u=gt([o,c]);Y(o),Y(c);let d=Gs.predict(u);Y(u);let p=await d.data();Y(d);let h=p.slice(0,Xu.numCoordinates*3),{rawCoords:f,iris:m}=OI(h,r,a,!0),g=p.slice(Xu.numCoordinates*3),{rawCoords:A,iris:y}=OI(g,i,l),x=oce(e);Math.abs(x)<30?(L0(e,f,"left",null),L0(e,A,"right",null)):x<1?L0(e,f,"left",["EyeUpper0","EyeLower0"]):L0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=PI(e,m,"left"),v=PI(e,y,"right");return e.concat(b).concat(v)}var Rr=[],Hs=null,ur=0,Px=Number.MAX_SAFE_INTEGER,zI=0,LI=0;async function BI(e,t){var i,l,c,u,d,p,h,f,m,g,A;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>fe()-zI,s=Px<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);if(!t.skipAllowed||!n||!s||LI===0){let y=await vI(e,t);zI=fe(),Rr=[];for(let x of y.boxes){let b=await x.box.startPoint.data(),v=await x.box.endPoint.data(),k=await x.landmarks.array();Rr.push({startPoint:b,endPoint:v,landmarks:k,confidence:x.confidence})}y.boxes.forEach(x=>Y([x.box.startPoint,x.box.endPoint,x.landmarks]));for(let x=0;x<Rr.length;x++){let b=pI({startPoint:Rr[x].startPoint,endPoint:Rr[x].endPoint},y.scaleFactor),v=Qd(b),k=ep(v);Rr[x]={...k,confidence:Rr[x].confidence,landmarks:Rr[x].landmarks}}Px=0}else Px++;let r=[],a=[],o=0;for(let y of Rr){let x=0,b,v={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(((c=t.face.detector)==null?void 0:c.rotation)&&((u=t.face.mesh)==null?void 0:u.enabled)&&xe.kernels.includes("rotatewithoffset"))[x,b,v.tensor]=mx(y,e,ur);else{b=O0;let k=fx({startPoint:y.startPoint,endPoint:y.endPoint},e,((d=t.face.mesh)==null?void 0:d.enabled)?[ur,ur]:[tp(),tp()]);v.tensor=me(k,255),Y(k)}if(v.boxScore=Math.round(100*y.confidence)/100,(p=t.face.mesh)==null?void 0:p.enabled)if(!Hs)t.debug&&oe("face mesh detection requested, but model is not loaded");else{let[k,C,N]=Hs.execute(v.tensor);Y(k);let D=(await C.data())[0];Y(C);let P=U(N,[-1,3]),E=await P.array();if(Y(N),Y(P),D<(((h=t.face.detector)==null?void 0:h.minConfidence)||1))y.confidence=D;else{((f=t.face.iris)==null?void 0:f.enabled)&&(E=await MI(E,v.tensor,t,ur)),v.mesh=AI(E,y,x,b,ur),v.meshRaw=v.mesh.map(F=>[F[0]/(e.shape[2]||0),F[1]/(e.shape[1]||0),(F[2]||0)/ur]),y={...Qd($0(v.mesh),1.5),confidence:y.confidence};for(let F of Object.keys(Er))v.annotations[F]=Er[F].map(T=>v.mesh[T]);((m=t.face.detector)==null?void 0:m.rotation)&&t.face.mesh.enabled&&((g=t.face.description)==null?void 0:g.enabled)&&xe.kernels.includes("rotatewithoffset")&&(Y(v.tensor),[x,b,v.tensor]=mx(y,e,ur)),v.box=px(y,e),v.boxRaw=hx(y,e),v.score=Math.round(100*D||100*y.confidence||0)/100,v.faceScore=Math.round(100*D)/100,y={...ep(y),confidence:y.confidence,faceConfidence:D}}}else{v.box=px(y,e),v.boxRaw=hx(y,e),v.score=Math.round(100*y.confidence||0)/100,v.mesh=y.landmarks.map(k=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*k[0]/tp(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*k[1]/tp()]),v.meshRaw=v.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/ur]);for(let k of Object.keys(Zd))v.annotations[k]=[v.mesh[Zd[k]]]}r.push(v),a.push(y)}return((A=t.face.mesh)==null?void 0:A.enabled)&&(Rr=a.filter(y=>{var x;return y.confidence>(((x=t.face.detector)==null?void 0:x.minConfidence)||0)})),LI=r.length,r}async function WI(e){var t,n;return xe.initial&&(Hs=null),Hs?e.debug&&oe("cached model:",Hs.modelUrl):(Hs=await Qe(tt(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!Hs||!Hs.modelUrl?oe("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&oe("load model:",Hs.modelUrl)),ur=Hs.inputs[0].shape?Hs.inputs[0].shape[2]:0,ur===-1&&(ur=64),Hs}var VI=_i,UI=Yd;var Gn,B0=[],GI=0,HI=0,Mx=Number.MAX_SAFE_INTEGER;async function jI(e){var n,s;let t=tt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return xe.initial&&(Gn=null),Gn?e.debug&&oe("cached model:",t):(Gn=await Qe(t),Gn?e.debug&&oe("load model:",t):oe("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Gn}function zx(e){return j(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!(Gn==null?void 0:Gn.inputs[0].shape))return null;let r=n.shape.length===3?_e.cropAndResize(Bt(n,0),s,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]);return B(r,255)})}async function Lx(e,t,n,s){var o,i,l,c;if(!Gn)return null;let r=Mx<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>fe()-GI;return t.skipAllowed&&r&&a&&HI===s&&((l=B0[n])==null?void 0:l.age)&&((c=B0[n])==null?void 0:c.age)>0?(Mx++,B0[n]):(Mx=0,new Promise(async u=>{var p,h;let d={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)==null?void 0:p.enabled){let f=zx(e),m=await(Gn==null?void 0:Gn.predict(f));GI=fe(),Y(f);let A=await(await m.find(D=>D.shape[1]===1)).data(),y=Math.trunc(200*Math.abs(A[0]-.5))/100;y>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(d.gender=A[0]<=.5?"female":"male",d.genderScore=Math.min(.99,y));let x=vs(m.find(D=>D.shape[1]===100),1),b=(await x.data())[0];Y(x);let k=await m.find(D=>D.shape[1]===100).data();d.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let C=m.find(D=>D.shape[1]===1024),N=C?await C.data():[];d.descriptor=Array.from(N),m.forEach(D=>Y(D))}B0[n]=d,HI=s,u(d)}))}function W0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function np(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function qI(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function XI(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function V0(e,t=1.5){let n=np(e),s=W0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function U0(e){let t=np(e),n=W0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function ice(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function KI(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return ice(n)}var ZI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ba(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function lce(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function YI(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ba(e[r],lce(t,a)))}return n}function Bx(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=ZI(t[0],t[1]),o=YI(a,r),i=ZI(-t[0],-t[1]);return YI(o,i)}function JI(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ba(t[0],n),-Ba(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Wx(e,t){return[Ba(e,t[0]),Ba(e,t[1])]}var QI=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Vx=class{constructor(t){he(this,"model");he(this,"anchors");he(this,"anchorsTensor");he(this,"inputSize");he(this,"inputSizeTensor");he(this,"doubleInputSizeTensor");this.model=t,this.anchors=QI.map(n=>[n.x,n.y]),this.anchorsTensor=Qs(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=jt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=jt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return j(()=>{let n=Fe(t,[0,0],[-1,2]),s=Fe(t,[0,2],[-1,2]),r=le(me(n,this.inputSizeTensor),this.anchorsTensor),a=me(s,this.doubleInputSizeTensor),o=B(be(r,a),this.inputSizeTensor),i=B(le(r,a),this.inputSizeTensor);return iu([o,i],1)})}normalizeLandmarks(t,n){return j(()=>{let s=le(me(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=rt(s.batched),s.scores=j(()=>rt(Kn(Fe(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=Fe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await _e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=Fe(s.norm,[i,0],[1,-1]),c=j(()=>U(this.normalizeLandmarks(Fe(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))Y(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=j(()=>be(me(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Y(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();Y(l.box),Y(l.palmLandmarks),i.push(XI({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};var uce=5,eS=1.65,tS=[0,5,9,13,17,1,2],cce=0,dce=2,nS=0,Ux=class{constructor(t,n){he(this,"handDetector");he(this,"handPoseModel");he(this,"inputSize");he(this,"storedBoxes");he(this,"skipped");he(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Wx([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return V0(U0(r),uce)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=V0(U0(n),eS);s.palmLandmarks=[];for(let r=0;r<tS.length;r++)s.palmLandmarks.push(t[tS[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=W0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Bx(s,[0,0]),c=i.map(h=>[...Wx(h,l),h[2]]),u=JI(r),d=[...np(n),1],p=[Ba(d,u[0]),Ba(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>fe()-nS,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?KI(c.palmLandmarks[cce],c.palmLandmarks[dce]):0,d=np(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&xe.kernels.includes("rotatewithoffset")?_e.rotateWithOffset(t,u,0,p):t.clone(),f=Bx(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=qI(m,h,[this.inputSize,this.inputSize]),A=me(g,255);Y(g),Y(h);let[y,x]=await this.handPoseModel.predict(A);nS=fe(),Y(A);let b=(await y.data())[0];if(Y(y),b>=n.hand.minConfidence/4){let v=U(x,[-1,3]),k=await v.array();Y(x),Y(v);let C=this.transformRawCoords(k,m,u,f),N=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...N,confidence:b};let D={landmarks:C,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:N.startPoint,bottomRight:N.endPoint}};i.push(D)}else this.storedBoxes[l]=null;Y(x)}else{let u=V0(U0(c),eS),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var qe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>qe.nameMapping[e],getPoints:e=>qe.pointsMapping[e]},ns={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ns.nameMapping[e]},je={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>je.nameMapping[e]},G0=class{constructor(t){he(this,"name");he(this,"curls");he(this,"directions");he(this,"weights");he(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var Wa=new G0("thumbs up");Wa.addCurl(qe.thumb,ns.none,1);Wa.addDirection(qe.thumb,je.verticalUp,1);Wa.addDirection(qe.thumb,je.diagonalUpLeft,.25);Wa.addDirection(qe.thumb,je.diagonalUpRight,.25);for(let e of[qe.index,qe.middle,qe.ring,qe.pinky])Wa.addCurl(e,ns.full,1),Wa.addDirection(e,je.horizontalLeft,1),Wa.addDirection(e,je.horizontalRight,1);var Zt=new G0("victory");Zt.addCurl(qe.thumb,ns.half,.5);Zt.addCurl(qe.thumb,ns.none,.5);Zt.addDirection(qe.thumb,je.verticalUp,1);Zt.addDirection(qe.thumb,je.diagonalUpLeft,1);Zt.addCurl(qe.index,ns.none,1);Zt.addDirection(qe.index,je.verticalUp,.75);Zt.addDirection(qe.index,je.diagonalUpLeft,1);Zt.addCurl(qe.middle,ns.none,1);Zt.addDirection(qe.middle,je.verticalUp,1);Zt.addDirection(qe.middle,je.diagonalUpLeft,.75);Zt.addCurl(qe.ring,ns.full,1);Zt.addDirection(qe.ring,je.verticalUp,.2);Zt.addDirection(qe.ring,je.diagonalUpLeft,1);Zt.addDirection(qe.ring,je.horizontalLeft,.2);Zt.addCurl(qe.pinky,ns.full,1);Zt.addDirection(qe.pinky,je.verticalUp,.2);Zt.addDirection(qe.pinky,je.diagonalUpLeft,1);Zt.addDirection(qe.pinky,je.horizontalLeft,.2);Zt.setWeight(qe.index,2);Zt.setWeight(qe.middle,2);var sS=[Wa,Zt];var pce=.7,Oi={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function rS(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function aS(e,t){if(!e||!t)return[0,0];let n=rS(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=rS(e[1],e[2],t[1],t[2]);return[n,s]}function oS(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function hce(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Oi.NO_CURL_START_LIMIT?A=ns.none:g>Oi.HALF_CURL_START_LIMIT?A=ns.half:A=ns.full,A}function iS(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=je.horizontalLeft:r=je.horizontalRight:s===Math.abs(t)?t>0?r=je.horizontalLeft:r=je.horizontalRight:n>0?r=je.horizontalLeft:r=je.horizontalRight,r}function lS(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=je.verticalDown:r=je.verticalUp:s===Math.abs(t)?t<0?r=je.verticalDown:r=je.verticalUp:n<0?r=je.verticalDown:r=je.verticalUp,r}function fce(e,t,n,s,r,a,o,i){let l,c=lS(e,t,n,s),u=iS(r,a,o,i);return c===je.verticalUp?u===je.horizontalLeft?l=je.diagonalUpLeft:l=je.diagonalUpRight:u===je.horizontalLeft?l=je.diagonalDownLeft:l=je.diagonalDownRight,l}function mce(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Oi.DISTANCE_VOTE_POWER:m>.66?h+=Oi.DISTANCE_VOTE_POWER:f+=Oi.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+c*c),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],C=n[1];x===g?(k=n[0],C=n[1]):x===y&&(b=t[0],v=t[1]);let P=aS([b,v],[k,C]),E=oS(P,Oi.TOTAL_ANGLE_VOTE_POWER);p+=E[0],h+=E[1],f+=E[2];for(let T of s){let M=oS(T,Oi.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let F;return p===Math.max(p,h,f)?F=lS(l,i,c,d):f===Math.max(h,f)?F=iS(a,r,o,u):F=fce(l,i,c,d,a,r,o,u),F}function uS(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of qe.all){let o=qe.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=aS(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of qe.all){let o=a===qe.thumb?1:0,i=qe.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=hce(l,c,u),p=mce(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function H0(e){if(!e||e.length===0)return null;let t=uS(e),n={};for(let s of qe.all)n[qe.getName(s)]={curl:ns.getName(t.curls[s]),direction:je.getName(t.directions[s])};return n}function cS(e){let t=[];if(!e||e.length===0)return t;let n=uS(e);for(let s of sS){let r=s.matchAgainst(n.curls,n.directions);r>=pce&&t.push({name:s.name,confidence:r})}return t}var dS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},qr,Xr,pS;async function Gx(e,t){let n=await pS.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(dS))a[u]=dS[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=H0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function Hx(e){var n,s,r,a,o,i;xe.initial&&(qr=null,Xr=null),!qr||!Xr?([qr,Xr]=await Promise.all([e.hand.enabled?Qe(tt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?Qe(tt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!qr||!qr.modelUrl?oe("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&oe("load model:",qr.modelUrl),!Xr||!Xr.modelUrl?oe("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&oe("load model:",Xr.modelUrl))):(e.debug&&oe("cached model:",qr.modelUrl),e.debug&&oe("cached model:",Xr.modelUrl));let t=new Vx(qr);return pS=new Ux(t,Xr),[qr,Xr]}function Pi(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function hS(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function j0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function jx(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var kt=[null,null],gce=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Va=[[0,0],[0,0]],Ace=["hand","fist","pinch","point","face","tip","pinchtip"],fS=4,mS=1.6,yce=512,xce=1.4,q0=Number.MAX_SAFE_INTEGER,qx=0,Kr=[0,0],Ut={boxes:[],hands:[]},gS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function AS(e){var t,n;if(xe.initial&&(kt[0]=null),kt[0])e.debug&&oe("cached model:",kt[0].modelUrl);else{ju(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),kt[0]=await Qe(tt(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(kt[0].modelSignature.inputs);Va[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,Va[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!kt[0]||!kt[0].modelUrl?oe("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&oe("load model:",kt[0].modelUrl)}return kt[0]}async function yS(e){var t,n;if(xe.initial&&(kt[1]=null),kt[1])e.debug&&oe("cached model:",kt[1].modelUrl);else{kt[1]=await Qe(tt(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(kt[1].modelSignature.inputs);Va[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,Va[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!kt[1]||!kt[1].modelUrl?oe("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&oe("load model:",kt[1].modelUrl)}return kt[1]}async function bce(e,t){let n=[];if(!e||!kt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,yce),o=Math.round(a*r/8)*8;s.resize=_e.resizeBilinear(e,[a,o]),s.cast=de(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await kt[0].executeAsync(s.cast,gce),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=On(s.scores,1);Y(i[fS]),i.splice(fS,1),s.filtered=bn(i,1),Y(i),s.max=$n(s.filtered,1),s.argmax=vs(s.filtered,1);let l=0;s.nms=await _e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=Fe(s.boxes,p,1),f=await h.data();Y(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=j0(m,xce),A=jx(g),y=[Math.trunc(m[0]*Kr[0]),Math.trunc(m[1]*Kr[1]),Math.trunc(m[2]*Kr[0]),Math.trunc(m[3]*Kr[1])],x=u[p],b=Ace[d[p]],v={id:l++,score:x,box:y,boxRaw:g,boxCrop:A,label:b};n.push(v)}return Object.keys(s).forEach(p=>Y(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Xx(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&kt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=_e.cropAndResize(e,[t.boxCrop],[0],[Va[1][0],Va[1][1]],"bilinear"),r.cast=de(r.crop,"float32"),r.div=me(r.cast,255),[r.score,r.keypoints]=kt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=U(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/Va[1][1],u[1]/Va[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[Kr[0]*(u[0]+t.boxRaw[0]),Kr[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=H0(s.keypoints);for(let u of Object.keys(gS))s.annotations[u]=gS[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>Y(r[i]))}return s}async function Kx(e,t){var r,a;if(!kt[0]||!kt[1]||!((r=kt[0])==null?void 0:r.inputs[0].shape)||!((a=kt[1])==null?void 0:a.inputs[0].shape))return[];Kr=[e.shape[2]||0,e.shape[1]||0],q0++;let n=(t.hand.skipTime||0)>fe()-qx,s=q0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Ut.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>fe()-qx,l=q0<3*(t.hand.skipFrames||0);t.skipAllowed&&Ut.hands.length===t.hand.maxDetected?Ut.hands=await Promise.all(Ut.boxes.map(u=>Xx(e,u,t))):t.skipAllowed&&i&&l&&Ut.hands.length>0?Ut.hands=await Promise.all(Ut.boxes.map(u=>Xx(e,u,t))):(Ut.boxes=await bce(e,t),qx=fe(),Ut.hands=await Promise.all(Ut.boxes.map(u=>Xx(e,u,t))),q0=0);let c=[...Ut.boxes];if(Ut.boxes.length=0,t.cacheSensitivity>0)for(let u=0;u<Ut.hands.length;u++){let d=hS(Ut.hands[u].keypoints,Kr);if(d.box[2]/(e.shape[2]||1)>.05&&d.box[3]/(e.shape[1]||1)>.05&&Ut.hands[u].fingerScore&&Ut.hands[u].fingerScore>(t.hand.minConfidence||0)){let p=j0(d.box,mS),h=j0(d.boxRaw,mS),f=jx(h);Ut.boxes.push({...c[u],box:p,boxRaw:h,boxCrop:f})}}for(let u=0;u<Ut.hands.length;u++){let d=Pi(Ut.hands[u].keypoints,Kr);Ut.hands[u].box=d.box,Ut.hands[u].boxRaw=d.boxRaw}o(Ut.hands)})}var Qx={};cc(Qx,{connected:()=>K0,horizontal:()=>Zx,kpt:()=>X0,relative:()=>Jx,vertical:()=>Yx});var X0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Zx=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Yx=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Jx=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],K0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xS=.005,gs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function e5(e){for(let t of Zx){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Yx){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Jx){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function bS(e){for(let t=0;t<e.length;t++)if(e[t]&&gs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-gs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-gs.keypoints[t].positionRaw[1])];n[0]<xS&&n[1]<xS?e[t]=gs.keypoints[t]:gs.keypoints[t]=e[t]}else gs.keypoints[t]=e[t];return e}function vS(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;gs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=ks(e,gs.padding),n.resize=_e.resizeBilinear(n.pad,[t,t]);let s=de(n.resize,"int32");return Object.keys(n).forEach(r=>Y(n[r])),s}function wS(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+gs.padding[2][0]+gs.padding[2][1])/t[0]-gs.padding[2][0],s.position[1]*(t[1]+gs.padding[1][0]+gs.padding[1][1])/t[1]-gs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Pi(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Nn,Z0=0,t5=Number.MAX_SAFE_INTEGER,Mi={boxes:[],bodies:[],last:0};async function kS(e){return xe.initial&&(Nn=null),Nn?e.debug&&oe("cached model:",Nn.modelUrl):(ju(["size"],e),Nn=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!Nn||!Nn.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",Nn.modelUrl)),Z0=Nn.inputs[0].shape?Nn.inputs[0].shape[2]:0,Z0===-1&&(Z0=256),Nn}async function vce(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:X0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Pi(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(K0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return e5(u),i.push(u),i}async function wce(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:X0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Pi(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(K0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(y=>y.part===h[m]),A=l.find(y=>y.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};e5(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function n5(e,t){if(!Nn||!(Nn==null?void 0:Nn.inputs[0].shape))return[];t.skipAllowed||(Mi.boxes.length=0),t5++;let n=(t.body.skipTime||0)>fe()-Mi.last,s=t5<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Mi.bodies:new Promise(async r=>{let a={};t5=0,a.input=vS(e,Z0),a.res=await(Nn==null?void 0:Nn.predict(a.input)),Mi.last=fe();let o=await a.res.array();Mi.bodies=a.res.shape[2]===17?await vce(o,t,e,[0,0,1,1]):await wce(o,t,e,[0,0,1,1]);for(let i of Mi.bodies)wS(i,[e.shape[2]||1,e.shape[1]||1]),bS(i.keypoints);Object.keys(a).forEach(i=>Y(a[i])),r(Mi.bodies)})}var As,Y0=[],IS=0,s5=Number.MAX_SAFE_INTEGER,J0=2.5;async function SS(e){if(!As||xe.initial){As=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(As.modelSignature.inputs);if(As.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!As.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!As||!As.modelUrl?oe("load model failed:",e.object.modelPath):e.debug&&oe("load model:",As.modelUrl)}else e.debug&&oe("cached model:",As.modelUrl);return As}async function kce(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])j(async()=>{var g,A;let u=c*13,d=(g=e.find(y=>y.shape[1]===u**2&&y.shape[2]===Hu.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===u**2&&y.shape[2]<Hu.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%u))/u,k=(.5+Math.trunc(y/u))/u,C=f[y].map(G=>G*(u/c/t)),[N,D]=[v-J0/c*C[0],k-J0/c*C[1]],[P,E]=[v+J0/c*C[2]-N,k+J0/c*C[3]-D],F=[N,D,P,E];F=F.map(G=>Math.max(0,Math.min(G,1)));let T=[F[0]*n[0],F[1]*n[1],F[2]*n[0],F[3]*n[1]],M={id:r++,score:Math.round(100*b)/100,class:x+1,label:Hu[x].label,box:T.map(G=>Math.trunc(G)),boxRaw:F};a.push(M)}}});e.forEach(c=>Y(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),Y(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function r5(e,t){let n=(t.object.skipTime||0)>fe()-IS,s=s5<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Y0.length>0?(s5++,Y0):(s5=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?Y0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=_e.resizeBilinear(e,[As.inputSize,As.inputSize],!1),i=me(o,255),l=i.transpose([0,3,1,2]);Y(i),Y(o);let c;t.object.enabled&&(c=await As.predict(l)),IS=fe(),Y(l);let u=await kce(c,As.inputSize,a,t);Y0=u,r(u)}))}var sp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Ice=sp.length,rp=sp.reduce((e,t,n)=>(e[t]=n,e),{}),Sce=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],ahe=Sce.map(([e,t])=>[rp[e],rp[t]]),CS=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function TS(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function NS(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var a5=class{constructor(t,n){he(this,"priorityQueue");he(this,"numberOfElements");he(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function o5(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+Ice)}}function i5(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=o5(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function l5(e,t,n){return e<t?t:e>n?n:e}function ES(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function u5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ys,Cce=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],Q0=1,Ku=16,Tce=50**2;function RS(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:l5(Math.round(A.y/Ku),0,y-1),x:l5(Math.round(A.x/Ku),0,x-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=u5(t.position,p);for(let A=0;A<o;A++){let y=l(f,c,u),x=o5(y.y,y.x,n,r);f=u5({x:y.x*Ku,y:y.y*Ku},{x:x.x,y:x.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:sp[n],score:g}}function Nce(e,t,n,s,r){let a=CS.map(([p,h])=>[rp[p],rp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=i5(e.part,Ku,n);u[e.part.id]={score:e.score,part:sp[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=RS(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=RS(p,u[h],f,t,n,s))}return u}function Ece(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-Q0,0),c=Math.min(n+Q0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-Q0,0),p=Math.min(s+Q0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function Rce(e,t){let[n,s,r]=t.shape,a=new a5(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||Ece(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function DS(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?ES(n,t,a.y,a.x)<=Tce:!1})}function Dce(e,t){return t.reduce((s,{position:r,score:a},o)=>(DS(e,r,o)||(s+=a),s),0)/t.length}function _ce(e,t,n,s,r,a){let o=[],i=Rce(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=i5(l.part,Ku,e);if(DS(o,c,l.part.id))continue;let u=Nce(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=Dce(o,u),p=TS(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function c5(e,t){let n=j(()=>{if(!ys.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]),i=be(me(de(o,"float32"),127.5),1),c=ys.execute(i,Cce).map(u=>rt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Y(o);let r=await _ce(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ys.inputs[0].shape?NS(r,[e.shape[1],e.shape[2]],[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]):[]}async function _S(e){return!ys||xe.initial?(ys=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!ys||!ys.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",ys.modelUrl)):e.debug&&oe("cached model:",ys.modelUrl),ys}var Ds,d5=!1;async function p5(e){return!Ds||xe.initial?(Ds=await Qe(tt(e.modelBasePath,e.segmentation.modelPath||"")),!Ds||!Ds.modelUrl?oe("load model failed:",e.segmentation.modelPath):e.debug&&oe("load model:",Ds.modelUrl)):e.debug&&oe("cached model:",Ds.modelUrl),Ds}async function FS(e,t,n){var m,g;if(d5)return{data:[],canvas:null,alpha:null};d5=!0,Ds||await p5(n);let s=Gu(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=_e.resizeBilinear(s.tensor,[Ds.inputs[0].shape?Ds.inputs[0].shape[1]:0,Ds.inputs[0].shape?Ds.inputs[0].shape[2]:0],!1),Y(s.tensor),o.norm=me(o.resize,255),o.res=Ds.predict(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ci(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=_e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=_e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(xe.node&&!xe.Canvas&&typeof ImageData=="undefined")return n.debug&&oe("canvas support missing"),Object.keys(o).forEach(A=>Y(o[A])),{data:i,canvas:null,alpha:null};let l=Vn(r,a);await Ms.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Vn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Vn(r,a);let A=Gu(t,n);Y(A.tensor);let y=f.getContext("2d");y.drawImage(A.canvas,0,0,f.width,f.height),y.drawImage(d,0,0)}return Object.keys(o).forEach(A=>Y(o[A])),d5=!1,{data:i,canvas:f||d,alpha:l}}var h5=class{constructor(){he(this,"age",null);he(this,"agegenderrace",null);he(this,"blazeposedetect",null);he(this,"blazepose",null);he(this,"centernet",null);he(this,"efficientpose",null);he(this,"embedding",null);he(this,"emotion",null);he(this,"facedetect",null);he(this,"faceiris",null);he(this,"facemesh",null);he(this,"faceres",null);he(this,"gender",null);he(this,"handpose",null);he(this,"handskeleton",null);he(this,"handtrack",null);he(this,"movenet",null);he(this,"nanodet",null);he(this,"posenet",null);he(this,"segmentation",null);he(this,"antispoof",null)}};function f5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function $S(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,k,C,N,D,P,E,F,T,M,G;xe.initial&&f5(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Hx(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Hx(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=bI(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=WI(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=FI(e.config)),e.config.face.enabled&&((i=e.config.face.antispoof)==null?void 0:i.enabled)&&!e.models.antispoof&&(e.models.antispoof=cI(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((c=(l=e.config.hand.detector)==null?void 0:l.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handtrack=AS(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((d=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:d.includes("handtrack"))&&(e.models.handskeleton=yS(e.config)),e.config.body.enabled&&!e.models.posenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("posenet"))&&(e.models.posenet=_S(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=Ex(e.config)),e.config.body.enabled&&!e.models.blazepose&&((A=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=SI(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((y=e.config.body.detector)==null?void 0:y.modelPath)&&((b=(x=e.config.body)==null?void 0:x.modelPath)==null?void 0:b.includes("blazepose"))&&(e.models.blazeposedetect=II(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((k=(v=e.config.body)==null?void 0:v.modelPath)==null?void 0:k.includes("efficientpose"))&&(e.models.efficientpose=Ex(e.config)),e.config.body.enabled&&!e.models.movenet&&((N=(C=e.config.body)==null?void 0:C.modelPath)==null?void 0:N.includes("movenet"))&&(e.models.movenet=kS(e.config)),e.config.object.enabled&&!e.models.nanodet&&((P=(D=e.config.object)==null?void 0:D.modelPath)==null?void 0:P.includes("nanodet"))&&(e.models.nanodet=SS(e.config)),e.config.object.enabled&&!e.models.centernet&&((F=(E=e.config.object)==null?void 0:E.modelPath)==null?void 0:F.includes("centernet"))&&(e.models.centernet=NI(e.config)),e.config.face.enabled&&((T=e.config.face.emotion)==null?void 0:T.enabled)&&!e.models.emotion&&(e.models.emotion=_I(e.config)),e.config.face.enabled&&((M=e.config.face.description)==null?void 0:M.enabled)&&!e.models.faceres&&(e.models.faceres=jI(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=p5(e.config)),e.config.face.enabled&&((G=e.config.face.agegenderrace)==null?void 0:G.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=iI(e.config));for await(let H of Object.keys(e.models))e.models[H]&&typeof e.models[H]!="undefined"&&(e.models[H]=await e.models[H])}async function OS(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&oe("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&oe("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&oe("model validation:",n,i)}}}var Ot={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Fce(){let e=Ot.gl;!e||(Ot.extensions=e.getSupportedExtensions())}async function PS(e){var t;if(e.config.backend==="humangl"&&(Ot.name in as().registry&&(!Ot.gl||!Ot.gl.getParameter(Ot.gl.VERSION))&&(oe("error: humangl backend invalid context"),f5(e)),!gA(Ot.name))){try{Ot.canvas=await Vn(100,100)}catch(s){oe("error: cannot create canvas:",s);return}try{Ot.gl=(t=Ot.canvas)==null?void 0:t.getContext("webgl2",Ot.webGLattr),Ot.canvas&&(Ot.canvas.addEventListener("webglcontextlost",async s=>{throw oe("error: humangl:",s.type),oe("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),Ot.canvas.addEventListener("webglcontextrestored",s=>{oe("error: humangl context restored:",s)}),Ot.canvas.addEventListener("webglcontextcreationerror",s=>{oe("error: humangl context create:",s)}))}catch(s){oe("error: cannot get WebGL context:",s);return}try{l0(2,Ot.gl)}catch(s){oe("error: cannot set WebGL context:",s);return}try{let s=new A0(Ot.gl);ru(Ot.name,()=>new zu(s),Ot.priority)}catch(s){oe("error: cannot register WebGL backend:",s);return}try{Or("webgl").forEach(r=>{let a={...r,backendName:Ot.name};pa(a)})}catch(s){oe("error: cannot update WebGL backend registration:",s);return}let n=Ar().getGPGPUContext?Ar().getGPGPUContext().gl:null;if(n)oe(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{oe("error: no current gl context:",n,Ot.gl);return}try{fr.set("WEBGL_VERSION",2)}catch(s){oe("error: cannot set WebGL backend flags:",s);return}Fce(),oe("backend registered:",Ot.name)}}async function em(e,t=!1){if(e.state="backend",t||xe.initial||e.config.backend&&e.config.backend.length>0&&Ys()!==e.config.backend){let n=fe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&oe("running inside web worker"),xe.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&oe("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),xe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&oe(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),xe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")oe("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&oe("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await PS(e);let s=Object.keys(as().registryFactory);if(e.config.debug&&oe("available backends:",s),s.includes(e.config.backend)||(oe(`error: backend ${e.config.backend} not found in registry`),e.config.backend=xe.node?"tensorflow":"webgl",e.config.debug&&oe(`override: setting backend ${e.config.backend}`)),e.config.debug&&oe("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&oe("wasm path:",e.config.wasmPath),typeof(Di==null?void 0:Di.setWasmPaths)!="undefined")await K8(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await ne().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await ne().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&oe(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&oe("warning: wasm simd support is not enabled")}try{await t3(e.config.backend),await $h()}catch(r){return oe("error: cannot set backend:",e.config.backend,r),!1}}if(Ys()==="humangl"&&(fr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),fr.set("WEBGL_CPU_FORWARD",!0),fr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),fr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(oe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),fr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Ar().getGPGPUContext)){let s=await Ar().getGPGPUContext().gl;e.config.debug&&oe(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Ys()==="webgpu",e3(),await $h(),e.performance.backend=Math.trunc(fe()-n),e.config.backend=Ys(),xe.updateBackend()}return!0}function ju(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&oe("kernelFunc",n,t.backend)}};pa(s)}xe.kernels=Or(Ys()).map(n=>n.kernelName.toLowerCase())}var Zr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},zi=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},Zu=e=>Math.round(e*180/Math.PI);function m5(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ap(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function MS(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function $ce(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){MS(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function zS(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function g5(e,t,n){let s=Sn(Zr,n);if(!(!t||!e)&&s.drawGestures){let r=zi(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function A5(e,t,n){var a,o,i,l,c;let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&ap(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${Zu(u.rotation.angle.roll)}\xB0 yaw:${Zu(u.rotation.angle.yaw)}\xB0 pitch:${Zu(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${Zu(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)m5(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<_i.length/3;d++){let p=[_i[d*3+0],_i[d*3+1],_i[d*3+2]].map(h=>u.mesh[h]);MS(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*Zu(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*Zu(u.rotation.angle.pitch)/90,h=new Path2D(`
|
|
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
|
|
C
|
|
${d} ${u.box[1]},
|
|
${d} ${u.box[1]+u.box[3]},
|
|
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
|
|
C
|
|
${u.box[0]} ${p},
|
|
${u.box[0]+u.box[2]} ${p},
|
|
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
|
|
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];zS(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];zS(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function y5(e,t,n){var a;let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(ap(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,m5(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)$ce(r,l,s)}}async function x5(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ap(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,m5(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function b5(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ap(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function LS(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ap(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function BS(e,t){if(!e||!t)return;zi(t).drawImage(e,0,0)}async function WS(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=fe(),r=Sn(Zr,n),a=Promise.all([A5(e,t.face,r),y5(e,t.body,r),x5(e,t.hand,r),b5(e,t.object,r),g5(e,t.gesture,r)]);return t.performance.draw=xe.perfadd?(t.performance.draw||0)+Math.trunc(fe()-s):Math.trunc(fe()-s),a}var Oce=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},VS=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,C,N,D]=g,P,E,F;return b<1?b>-1?(F=Math.asin(b),E=Math.atan2(-C,A),P=Math.atan2(-k,v)):(F=-Math.PI/2,E=-Math.atan2(N,D),P=0):(F=Math.PI/2,E=Math.atan2(N,D),P=0),isNaN(P)&&(P=0),isNaN(E)&&(E=0),isNaN(F)&&(F=0),{pitch:2*-P,yaw:2*-E,roll:2*-F}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?Oce(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var v5=async(e,t)=>{var p,h,f,m;let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=fe();let d=await BI(t,e.config);if(e.performance.face=xe.perfadd?(e.performance.face||0)+Math.trunc(fe()-n):Math.trunc(fe()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let g=0;g<d.length;g++){if(e.analyze("Get Face"),!d[g].tensor||d[g].tensor.isDisposedInternal){oe("Face object is disposed:",d[g].tensor);continue}let A=VS(d[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?Fx(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:emotion",n=fe(),o=e.config.face.emotion.enabled?await Fx(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.emotion=xe.perfadd?(e.performance.emotion||0)+Math.trunc(fe()-n):Math.trunc(fe()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?ux(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:antispoof",n=fe(),l=e.config.face.antispoof.enabled?await ux(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.antispoof=xe.perfadd?(e.performance.antispoof||0)+Math.trunc(fe()-n):Math.trunc(fe()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?Lx(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:description",n=fe(),c=e.config.face.description.enabled?await Lx(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.embedding=xe.perfadd?(e.performance.embedding||0)+Math.trunc(fe()-n):Math.trunc(fe()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(p=d[g])==null?void 0:p.annotations)==null?void 0:h.leftEyeIris)&&((m=(f=d[g])==null?void 0:f.annotations)==null?void 0:m.rightEyeIris)&&(delete d[g].annotations.leftEyeIris,delete d[g].annotations.rightEyeIris);let y=d[g].annotations&&d[g].annotations.leftEyeIris&&d[g].annotations.leftEyeIris[0]&&d[g].annotations.rightEyeIris&&d[g].annotations.rightEyeIris[0]&&d[g].annotations.leftEyeIris.length>0&&d[g].annotations.rightEyeIris.length>0&&d[g].annotations.leftEyeIris[0]!==null&&d[g].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[g].annotations.leftEyeIris[3][0]-d[g].annotations.leftEyeIris[1][0]),Math.abs(d[g].annotations.rightEyeIris[4][1]-d[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,x=e.config.face.detector.return?rt(d[g].tensor):null;Y(d[g].tensor),d[g].tensor&&delete d[g].tensor,u.push({...d[g],id:g,age:c==null?void 0:c.age,gender:c==null?void 0:c.gender,genderScore:c==null?void 0:c.genderScore,embedding:c==null?void 0:c.descriptor,emotion:o,real:l,iris:y!==0?Math.trunc(500/y/11.7)/100:0,rotation:A,tensor:x}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var US=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},GS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},HS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},jS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=cS(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Oe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function qS(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,k,C,N,D,P,E,F,T,M,G,H;let n=fe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Oe.canvas=e.canvas,!Oe.body||e.body.length!==Oe.body.length)Oe.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((J,ee)=>((r-1)*Oe.body[z].box[ee]+J)/r),Q=e.body[z].boxRaw.map((J,ee)=>((r-1)*Oe.body[z].boxRaw[ee]+J)/r),Z=e.body[z].keypoints.map((J,ee)=>({score:J.score,part:J.part,position:[Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].position[0]+J.position[0])/r:J.position[0],Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].position[1]+J.position[1])/r:J.position[1]],positionRaw:[Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].positionRaw[0]+J.positionRaw[0])/r:J.position[0],Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].positionRaw[1]+J.positionRaw[1])/r:J.position[1]]})),te={},se={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?se=Tx:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?se=xx:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(se=Qx);for(let[J,ee]of Object.entries(se.connected)){let ce=[];for(let pe=0;pe<ee.length-1;pe++){let ve=Z.find(Te=>Te.part===ee[pe]),ke=Z.find(Te=>Te.part===ee[pe+1]);ve&&ke&&ve.score>(t.body.minConfidence||0)&&ke.score>(t.body.minConfidence||0)&&ce.push([ve.position,ke.position])}te[J]=ce}Oe.body[z]={...e.body[z],box:X,boxRaw:Q,keypoints:Z,annotations:te}}if(!Oe.hand||e.hand.length!==Oe.hand.length)Oe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((se,J)=>((r-1)*Oe.hand[z].box[J]+se)/r),Q=e.hand[z].boxRaw.map((se,J)=>((r-1)*Oe.hand[z].boxRaw[J]+se)/r);Oe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Oe.hand[z].keypoints=e.hand[z].keypoints);let Z=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((se,J)=>se.map((ee,ce)=>((r-1)*(Oe.hand[z].keypoints[J][ce]||1)+(ee||0))/r)):[],te={};if(Object.keys(Oe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Oe.hand[z].annotations=e.hand[z].annotations,te=Oe.hand[z].annotations;else if(e.hand[z].annotations)for(let se of Object.keys(e.hand[z].annotations))te[se]=e.hand[z].annotations[se]&&e.hand[z].annotations[se][0]?e.hand[z].annotations[se].map((J,ee)=>J.map((ce,pe)=>((r-1)*Oe.hand[z].annotations[se][ee][pe]+ce)/r)):null;Oe.hand[z]={...e.hand[z],box:X,boxRaw:Q,keypoints:Z,annotations:te}}if(!Oe.face||e.face.length!==Oe.face.length)Oe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((te,se)=>((r-1)*Oe.face[z].box[se]+te)/r),Q=e.face[z].boxRaw.map((te,se)=>((r-1)*Oe.face[z].boxRaw[se]+te)/r),Z={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};Z.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,Z.angle={roll:((r-1)*(((f=(h=Oe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((y=(A=Oe.face[z].rotation)==null?void 0:A.angle)==null?void 0:y.yaw)||0)+(((b=(x=e.face[z].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(v=Oe.face[z].rotation)==null?void 0:v.angle)==null?void 0:k.pitch)||0)+(((N=(C=e.face[z].rotation)==null?void 0:C.angle)==null?void 0:N.pitch)||0))/r},Z.gaze={bearing:((r-1)*(((P=(D=Oe.face[z].rotation)==null?void 0:D.gaze)==null?void 0:P.bearing)||0)+(((F=(E=e.face[z].rotation)==null?void 0:E.gaze)==null?void 0:F.bearing)||0))/r,strength:((r-1)*(((M=(T=Oe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:M.strength)||0)+(((H=(G=e.face[z].rotation)==null?void 0:G.gaze)==null?void 0:H.strength)||0))/r},Oe.face[z]={...e.face[z],rotation:Z,box:X,boxRaw:Q}}if(!Oe.object||e.object.length!==Oe.object.length)Oe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((Z,te)=>((r-1)*Oe.object[z].box[te]+Z)/r),Q=e.object[z].boxRaw.map((Z,te)=>((r-1)*Oe.object[z].boxRaw[te]+Z)/r);Oe.object[z]={...e.object[z],box:X,boxRaw:Q}}if(e.persons){let z=e.persons;if(!Oe.persons||z.length!==Oe.persons.length)Oe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)Oe.persons[X].box=z[X].box.map((Q,Z)=>((r-1)*Oe.persons[X].box[Z]+Q)/r)}e.gesture&&(Oe.gesture=e.gesture);let a=fe();return e.performance&&(Oe.performance={...e.performance,interpolate:Math.round(a-n)}),Oe}function tm(e,t,n={order:2,multiplier:20}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}function XS(e,t,n={order:2,multiplier:20}){let s=tm(e,t,n),r=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function KS(e,t,n={order:2,multiplier:20,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=tm(e,t[a],n);if(o<s&&(s=o,r=a),s<(n.threshold||0))break}return s=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function ZS(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,k;let a=0,o=[];for(let C of e){let N={id:a++,face:C,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let M of t)C.box[0]>M.box[0]&&C.box[0]<M.box[0]+M.box[2]&&C.box[1]+C.box[3]>M.box[1]&&C.box[1]+C.box[3]<M.box[1]+M.box[3]&&(N.body=M);if(N.body)for(let M of n)M.box[0]+M.box[2]>N.body.box[0]&&M.box[0]+M.box[2]<N.body.box[0]+N.body.box[2]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=M),M.box[0]<N.body.box[0]+N.body.box[2]&&M.box[0]>N.body.box[0]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=M);for(let M of s)M.face!==void 0&&M.face===C.id?(i=N.gestures)==null||i.push(M):M.iris!==void 0&&M.iris===C.id?(l=N.gestures)==null||l.push(M):M.body!==void 0&&M.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(M):M.hand!==void 0&&M.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(M):M.hand!==void 0&&M.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(M));let D=[],P=[],E=M=>{M&&M.length===4&&(D.push(M[0],M[0]+M[2]),P.push(M[1],M[1]+M[3]))};E((A=N.face)==null?void 0:A.box),E((y=N.body)==null?void 0:y.box),E((b=(x=N.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=N.hands)==null?void 0:v.right)==null?void 0:k.box);let F=Math.min(...D),T=Math.min(...P);N.box=[F,T,Math.max(...D)-F,Math.max(...P)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var nm=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,sm=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function Pce(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(nm);break;case"body":case"full":n=await t(sm);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Mce(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+nm;break;case"full":case"body":n="data:image/jpeg;base64,"+sm;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:xe.Image&&(s=new xe.Image),s.onload=async()=>{let r=Vn(s.naturalWidth,s.naturalHeight);if(!r)oe("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function zce(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(nm)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(sm)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&oe("Warmup tfjs-node not loaded");return s}async function YS(e,t){let n=fe();if(e.state="warmup",t&&(e.config=Sn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await Pce(e):typeof Image!="undefined"||xe.Canvas!==void 0?s=await Mce(e):s=await zce(e);let a=fe();e.config.debug&&oe("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Yu,op,ip,rm,QS=class{constructor(t){he(this,"version");he(this,"config");he(this,"result");he(this,"state");he(this,"process");he(this,"tf");he(this,"env");he(this,"draw");he(this,"models");he(this,"events");he(this,"faceTriangulation");he(this,"faceUVMap");he(this,"performance");pc(this,Yu,void 0);pc(this,op,void 0);pc(this,ip,void 0);he(this,"gl");he(this,"analyze",(...t)=>{if(!dc(this,op))return;let n=this.tf.engine().state.numTensors,s=dc(this,Yu);hc(this,Yu,n);let r=n-s;r!==0&&oe(...t,r)});pc(this,rm,t=>{if(!dc(this,ip))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});he(this,"similarity",XS);he(this,"distance",tm);he(this,"match",KS);he(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=xe,aa.wasmPath=Gc.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Gc}/dist/`,aa.modelBasePath=xe.browser?"../models/":"file://models/",aa.backend=xe.browser?"humangl":"tensorflow",this.version=ix,Object.defineProperty(this,"version",{value:ix}),this.config=JSON.parse(JSON.stringify(aa)),Object.seal(this.config),t&&(this.config=Sn(this.config,t)),this.tf=Di,this.state="idle",hc(this,Yu,0),hc(this,op,!1),hc(this,ip,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new h5,this.draw={options:Zr,canvas:(n,s)=>BS(n,s),face:(n,s,r)=>A5(n,s,r),body:(n,s,r)=>y5(n,s,r),hand:(n,s,r)=>x5(n,s,r),gesture:(n,s,r)=>g5(n,s,r),object:(n,s,r)=>b5(n,s,r),person:(n,s,r)=>LS(n,s,r),all:(n,s,r)=>WS(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=VI,this.faceUVMap=UI,this.gl=Ot,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(aa)),this.config.backend=t}validate(t){return Dg(aa,t||this.config)}now(){return fe()}image(t,n=!0){return Gu(t,this.config,n)}async segmentation(t,n){return FS(t,n,this.config)}enhance(t){return zx(t)}async init(){await em(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=fe(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Sn(this.config,t)),this.env.initial&&(this.config.debug&&oe(`version: ${this.version}`),this.config.debug&&oe(`tfjs version: ${this.tf.version_core}`),await em(this)||oe("error: backend check failed"),await $h(),this.env.browser&&(this.config.debug&&oe("configuration:",this.config),this.config.debug&&oe("tf flags:",this.tf.ENV.flags))),await $S(this),this.env.initial&&this.config.debug&&oe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await OS(this),this.emit("load"));let a=Math.trunc(fe()-n);a>(this.performance.load||0)&&(this.performance.load=this.env.perfadd?(this.performance.load||0)+a:a)}next(t=this.result){return qS(t,this.config)}async warmup(t){return YS(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,A,y,x,b,v,k,C,N,D,P,E,F,T,M,G,H,z,X,Q,Z,te;this.state="config";let r;this.config=Sn(this.config,n),this.state="check";let a=dc(this,rm).call(this,t);a&&(oe(a,t),s({error:a}));let o=fe();await em(this),await this.load(),r=fe(),this.state="image";let i=Gu(t,this.config);if(this.process=i,this.performance.image=this.env.perfadd?(this.performance.image||0)+Math.trunc(fe()-r):Math.trunc(fe()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&oe("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=fe(),this.config.skipAllowed=await aI(this.config,i.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipAllowed&&this.performance.cached++,this.performance.changed=this.env.perfadd?(this.performance.changed||0)+Math.trunc(fe()-r):Math.trunc(fe()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?v5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=fe(),l=this.config.face.enabled?await v5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?Sn(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(((g=this.config.body.modelPath)==null?void 0:g.includes("posenet"))?c=this.config.body.enabled?c5(i.tensor,p):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?c=this.config.body.enabled?wx(i.tensor,p):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("efficientpose"))?c=this.config.body.enabled?Rx(i.tensor,p):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("movenet"))&&(c=this.config.body.enabled?n5(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=fe(),((b=this.config.body.modelPath)==null?void 0:b.includes("posenet"))?c=this.config.body.enabled?await c5(i.tensor,p):[]:((v=this.config.body.modelPath)==null?void 0:v.includes("blazepose"))?c=this.config.body.enabled?await wx(i.tensor,p):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("efficientpose"))?c=this.config.body.enabled?await Rx(i.tensor,p):[]:((C=this.config.body.modelPath)==null?void 0:C.includes("movenet"))&&(c=this.config.body.enabled?await n5(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Sn(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?(((D=(N=this.config.hand.detector)==null?void 0:N.modelPath)==null?void 0:D.includes("handdetect"))?u=this.config.hand.enabled?Gx(i.tensor,h):[]:((E=(P=this.config.hand.detector)==null?void 0:P.modelPath)==null?void 0:E.includes("handtrack"))&&(u=this.config.hand.enabled?Kx(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=fe(),((T=(F=this.config.hand.detector)==null?void 0:F.modelPath)==null?void 0:T.includes("handdetect"))?u=this.config.hand.enabled?await Gx(i.tensor,h):[]:((G=(M=this.config.hand.detector)==null?void 0:M.modelPath)==null?void 0:G.includes("handtrack"))&&(u=this.config.hand.enabled?await Kx(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((H=this.config.object.modelPath)==null?void 0:H.includes("nanodet"))?d=this.config.object.enabled?r5(i.tensor,this.config):[]:((z=this.config.object.modelPath)==null?void 0:z.includes("centernet"))&&(d=this.config.object.enabled?Ix(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=fe(),((X=this.config.object.modelPath)==null?void 0:X.includes("nanodet"))?d=this.config.object.enabled?await r5(i.tensor,this.config):[]:((Q=this.config.object.modelPath)==null?void 0:Q.includes("centernet"))&&(d=this.config.object.enabled?await Ix(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=fe(),f=[...GS(l),...US(c),...jS(u),...HS(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.performance.total=Math.trunc(fe()-o);let m=((te=(Z=this.process)==null?void 0:Z.tensor)==null?void 0:te.shape)||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return ZS(l,c,u,f,m)}},Y(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Yu=new WeakMap,op=new WeakMap,ip=new WeakMap,rm=new WeakMap;return Lce;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|