mirror of https://github.com/vladmandic/human
5649 lines
1.4 MiB
5649 lines
1.4 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Rg=Object.defineProperty;var jC=(e,t,n)=>t in e?Rg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var qC=e=>Rg(e,"__esModule",{value:!0});var ra=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Fp=(e,t)=>{qC(e);for(var n in t)Rg(e,n,{get:t[n],enumerable:!0})};var he=(e,t,n)=>(jC(e,typeof t!="symbol"?t+"":t,n),n),O5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var cc=(e,t,n)=>(O5(e,t,"read from private field"),n?n.call(e):t.get(e)),dc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},pc=(e,t,n,s)=>(O5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);function tt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function oe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var fe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Dg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Dg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&oe("invalid configuration",s),s}function Sn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Sn(a,o):n[r]=o}),n),{})}var ja=1e3,qa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2.5*ja,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1.5*ja,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3*ja,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4*ja,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:.2*ja},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:2*ja,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:1*ja},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Di={};Fp(Di,{Abs:()=>Zi,Acos:()=>Yi,Acosh:()=>Ji,AdadeltaOptimizer:()=>ff,AdagradOptimizer:()=>mf,AdamOptimizer:()=>gf,AdamaxOptimizer:()=>Af,Add:()=>ia,AddN:()=>Ya,All:()=>Qi,Any:()=>el,ArgMax:()=>Ja,ArgMin:()=>Ac,Asin:()=>tl,Asinh:()=>nl,Atan:()=>sl,Atan2:()=>al,Atanh:()=>rl,AvgPool:()=>Qa,AvgPool3D:()=>yc,AvgPool3DGrad:()=>Wp,AvgPoolGrad:()=>Bp,BackendWasm:()=>q8,BatchMatMul:()=>eo,BatchToSpaceND:()=>ol,Bincount:()=>Vp,BroadcastArgs:()=>Up,BroadcastTo:()=>eb,Callback:()=>Gw,CallbackList:()=>Pv,Cast:()=>to,Ceil:()=>no,ClipByValue:()=>la,Complex:()=>Gp,ComplexAbs:()=>xc,Concat:()=>il,Conv2D:()=>so,Conv2DBackpropFilter:()=>Hp,Conv2DBackpropInput:()=>ro,Conv3D:()=>bc,Conv3DBackpropFilterV2:()=>jp,Conv3DBackpropInputV2:()=>qp,Cos:()=>ao,Cosh:()=>oo,CropAndResize:()=>ll,Cumsum:()=>io,CustomCallback:()=>zv,DataStorage:()=>Op,DenseBincount:()=>Xp,DepthToSpace:()=>ul,DepthwiseConv2dNative:()=>lo,DepthwiseConv2dNativeBackpropFilter:()=>Kp,DepthwiseConv2dNativeBackpropInput:()=>Zp,Diag:()=>Yp,Dilation2D:()=>vc,Dilation2DBackpropFilter:()=>Qp,Dilation2DBackpropInput:()=>Jp,ENV:()=>fr,EarlyStopping:()=>jw,Einsum:()=>eh,Elu:()=>co,EluGrad:()=>th,Environment:()=>J5,Equal:()=>dl,Erf:()=>cl,Exp:()=>po,ExpandDims:()=>pl,Expm1:()=>hl,FFT:()=>nh,Fill:()=>wc,FlipLeftRight:()=>fl,Floor:()=>ho,FloorDiv:()=>fo,FromPixels:()=>kh,FusedBatchNorm:()=>mo,FusedConv2D:()=>Ko,FusedDepthwiseConv2D:()=>Zo,GPGPUContext:()=>A0,GatherNd:()=>gl,GatherV2:()=>ml,GraphModel:()=>I7,Greater:()=>Al,GreaterEqual:()=>go,History:()=>Mv,IFFT:()=>sh,Identity:()=>Ao,Imag:()=>rh,InputSpec:()=>qt,IsFinite:()=>yl,IsInf:()=>xl,IsNan:()=>bl,KernelBackend:()=>fc,LRN:()=>Sc,LRNGrad:()=>oh,LayerVariable:()=>Dv,LayersModel:()=>Ur,LeakyRelu:()=>yo,Less:()=>vl,LessEqual:()=>wl,LinSpace:()=>ah,Log:()=>xo,Log1p:()=>kl,LogSoftmax:()=>tb,LogicalAnd:()=>Il,LogicalNot:()=>kc,LogicalOr:()=>Ic,MathBackendWebGL:()=>zu,Max:()=>bo,MaxPool:()=>wo,MaxPool3D:()=>Cc,MaxPool3DGrad:()=>lh,MaxPoolGrad:()=>ih,MaxPoolWithArgmax:()=>uh,Maximum:()=>vo,Mean:()=>ko,Min:()=>Io,Minimum:()=>So,MirrorPad:()=>Co,Mod:()=>Sl,MomentumOptimizer:()=>yf,Multinomial:()=>ch,Multiply:()=>To,Neg:()=>Cl,NonMaxSuppressionV3:()=>Nl,NonMaxSuppressionV4:()=>El,NonMaxSuppressionV5:()=>Rl,NotEqual:()=>Tl,OP_SCOPE_SUFFIX:()=>gb,OneHot:()=>No,OnesLike:()=>Dl,Optimizer:()=>Br,Pack:()=>_l,PadV2:()=>Eo,Pool:()=>UT,Pow:()=>Ro,Prelu:()=>Do,Prod:()=>Fl,RMSPropOptimizer:()=>xf,RNN:()=>Cr,Range:()=>Tc,Rank:()=>Vg,Real:()=>dh,RealDiv:()=>uo,Reciprocal:()=>$l,Reduction:()=>Pn,Relu:()=>_o,Relu6:()=>$o,Reshape:()=>Ol,ResizeBilinear:()=>Fo,ResizeBilinearGrad:()=>hh,ResizeNearestNeighbor:()=>Nc,ResizeNearestNeighborGrad:()=>ph,Reverse:()=>Oo,RotateWithOffset:()=>Zl,Round:()=>Po,Rsqrt:()=>Mo,SGDOptimizer:()=>id,ScatterNd:()=>Pl,Select:()=>Ml,Selu:()=>zl,Sequential:()=>Iu,Sigmoid:()=>Lo,Sign:()=>Wl,Sin:()=>zo,Sinh:()=>Bl,Slice:()=>Ll,Softmax:()=>Vo,Softplus:()=>Vl,SpaceToBatchND:()=>Ul,SparseFillEmptyRows:()=>fh,SparseReshape:()=>mh,SparseSegmentMean:()=>gh,SparseSegmentSum:()=>Ah,SparseToDense:()=>yh,SplitV:()=>Gl,Sqrt:()=>Bo,Square:()=>Ec,SquaredDifference:()=>Uo,Step:()=>ca,StridedSlice:()=>Hl,StringNGrams:()=>xh,StringSplit:()=>bh,StringToHashBucketFast:()=>vh,Sub:()=>Go,Sum:()=>Wo,SymbolicTensor:()=>rr,Tan:()=>Ho,Tanh:()=>jo,Tensor:()=>Ge,TensorBuffer:()=>Jt,Tile:()=>ua,TopK:()=>jl,Transform:()=>ql,Transpose:()=>qo,Unique:()=>wh,Unpack:()=>Xl,UnsortedSegmentSum:()=>Rc,Variable:()=>zc,ZerosLike:()=>Kl,_FusedMatMul:()=>Xo,abs:()=>Gt,acos:()=>AA,acosh:()=>yA,add:()=>le,addN:()=>Ph,all:()=>Mh,any:()=>Gc,argMax:()=>vs,argMin:()=>xA,asin:()=>bA,asinh:()=>vA,atan:()=>wA,atan2:()=>kA,atanh:()=>IA,avgPool:()=>jc,avgPool3d:()=>TA,backend:()=>Ar,backend_util:()=>R,basicLSTMCell:()=>kE,batchNorm:()=>ai,batchNorm2d:()=>a3,batchNorm3d:()=>o3,batchNorm4d:()=>i3,batchToSpaceND:()=>qc,bincount:()=>NA,booleanMaskAsync:()=>R_,broadcastArgs:()=>l3,broadcastTo:()=>ou,browser:()=>Ms,buffer:()=>He,callbacks:()=>GB,cast:()=>de,ceil:()=>EA,clipByValue:()=>Zn,clone:()=>Zs,complex:()=>ha,concat:()=>gt,concat1d:()=>u3,concat2d:()=>iu,concat3d:()=>c3,concat4d:()=>d3,constraints:()=>cv,conv1d:()=>Lh,conv2d:()=>Mr,conv2dTranspose:()=>Bh,conv3d:()=>DA,conv3dTranspose:()=>h3,copyRegisteredKernels:()=>jT,cos:()=>Xc,cosh:()=>Wh,cosineWindow:()=>r1,cumsum:()=>Vh,customGrad:()=>xr,data:()=>S7,denseBincount:()=>f3,deprecationWarn:()=>mA,depthToSpace:()=>_A,depthwiseConv2d:()=>lu,deregisterOp:()=>jB,device_util:()=>Bc,diag:()=>QE,dilation2d:()=>FA,disableDeprecationWarnings:()=>LN,dispose:()=>Y,disposeVariables:()=>BN,div:()=>me,divNoNan:()=>$A,dot:()=>m3,dropout:()=>P3,einsum:()=>g3,elu:()=>uu,enableDebugMode:()=>zN,enableProdMode:()=>e3,enclosingPowerOfTwo:()=>M3,engine:()=>as,env:()=>ne,equal:()=>os,erf:()=>OA,exp:()=>is,expandDims:()=>Bt,expm1:()=>PA,eye:()=>MA,fft:()=>rd,fill:()=>cu,findBackend:()=>gA,findBackendFactory:()=>GN,floor:()=>du,floorDiv:()=>Oh,forceHalfFloat:()=>J4,fused:()=>ba,gather:()=>oi,gatherND:()=>O3,gather_util:()=>lA,getBackend:()=>Ys,getGradient:()=>zg,getKernel:()=>Ih,getKernelsForBackend:()=>Or,getThreadsCount:()=>Nue,gpgpu_util:()=>C4,grad:()=>ER,grads:()=>RR,greater:()=>Yn,greaterEqual:()=>ya,ifft:()=>gu,imag:()=>Uh,image:()=>_e,inTopKAsync:()=>W_,initializers:()=>Av,input:()=>iw,io:()=>Xn,irfft:()=>sf,isFinite:()=>A3,isInf:()=>y3,isNaN:()=>zA,keep:()=>dn,kernel_impls:()=>vr,layers:()=>Nv,leakyRelu:()=>Kc,less:()=>Gh,lessEqual:()=>xa,linalg:()=>K3,linspace:()=>x3,loadGraphModel:()=>Qe,loadLayersModel:()=>eL,localResponseNormalization:()=>LA,log:()=>ls,log1p:()=>Zc,logSigmoid:()=>v3,logSoftmax:()=>jh,logSumExp:()=>VA,logicalAnd:()=>zs,logicalNot:()=>Yc,logicalOr:()=>qh,logicalXor:()=>S3,losses:()=>k$,matMul:()=>Ve,math:()=>$b,max:()=>$n,maxPool:()=>Jc,maxPool3d:()=>UA,maxPoolWithArgmax:()=>C3,maximum:()=>br,mean:()=>Ft,memory:()=>Fh,meshgrid:()=>JR,metrics:()=>Ww,min:()=>Qc,minimum:()=>pu,mirrorPad:()=>GA,mod:()=>HA,model:()=>Jz,models:()=>Vw,moments:()=>Xh,movingAverage:()=>F_,mul:()=>B,multiRNNCell:()=>oD,multinomial:()=>T3,neg:()=>Tt,nextFrame:()=>Z3,norm:()=>lf,notEqual:()=>ui,oneHot:()=>nu,ones:()=>us,onesLike:()=>cs,op:()=>V,outerProduct:()=>dD,pad:()=>ks,pad1d:()=>fD,pad2d:()=>gD,pad3d:()=>yD,pad4d:()=>bD,pool:()=>N3,pow:()=>zr,prelu:()=>td,print:()=>Nb,prod:()=>Kh,profile:()=>WN,rand:()=>ED,randomGamma:()=>FD,randomNormal:()=>E3,randomUniform:()=>hu,range:()=>fu,ready:()=>$h,real:()=>nd,reciprocal:()=>XA,registerBackend:()=>ru,registerCallbackConstructor:()=>tL,registerGradient:()=>nb,registerKernel:()=>da,registerOp:()=>HB,regularizers:()=>Uw,relu:()=>Js,relu6:()=>Zh,removeBackend:()=>UN,reshape:()=>U,reverse:()=>ds,reverse1d:()=>VD,reverse2d:()=>GD,reverse3d:()=>jD,reverse4d:()=>XD,rfft:()=>ad,round:()=>Yh,rsqrt:()=>Jh,scalar:()=>Re,scatterND:()=>$3,scatter_util:()=>uA,selu:()=>Qh,separableConv2d:()=>KA,sequential:()=>Qz,serialization:()=>ue,setBackend:()=>t3,setPlatform:()=>HN,setThreadsCount:()=>Tue,setWasmPath:()=>Cue,setWasmPaths:()=>K8,setWebGLContext:()=>l0,setdiff1dAsync:()=>R3,sigmoid:()=>Kn,sign:()=>ZA,signal:()=>w$,sin:()=>ef,sinh:()=>tf,slice:()=>Fe,slice1d:()=>nf,slice2d:()=>YA,slice3d:()=>mu,slice4d:()=>sd,slice_util:()=>Fn,softmax:()=>ci,softplus:()=>ii,spaceToBatchND:()=>ed,sparse:()=>od,sparseToDense:()=>s1,spectral:()=>v$,split:()=>pn,sqrt:()=>xn,square:()=>ft,squaredDifference:()=>rf,squeeze:()=>rt,stack:()=>bn,step:()=>Au,stridedSlice:()=>JA,string:()=>hf,sub:()=>xe,sum:()=>Se,sumOutType:()=>Eh,tan:()=>QA,tanh:()=>ri,tensor:()=>Lt,tensor1d:()=>jt,tensor2d:()=>Qs,tensor3d:()=>Ob,tensor4d:()=>b_,tensor5d:()=>v_,tensor6d:()=>w_,tensor_util:()=>Xs,test_util:()=>Yb,tidy:()=>j,tile:()=>ws,time:()=>VN,topk:()=>e1,train:()=>pi,transpose:()=>Ke,truncatedNormal:()=>af,unique:()=>of,unregisterGradient:()=>HT,unregisterKernel:()=>GT,unsortedSegmentSum:()=>t1,unstack:()=>On,upcastType:()=>Ps,util:()=>w,valueAndGrad:()=>DR,valueAndGrads:()=>_R,variable:()=>D3,variableGrads:()=>b3,version:()=>Lue,version_converter:()=>KW,version_core:()=>Uc,version_layers:()=>L1,version_wasm:()=>Eue,version_webgl:()=>iY,webgl:()=>lY,webgl_util:()=>Z6,where:()=>Tn,whereAsync:()=>n1,zeros:()=>Ht,zerosLike:()=>Ze});var XC=Object.create,$p=Object.defineProperty,KC=Object.getOwnPropertyDescriptor,ZC=Object.getOwnPropertyNames,YC=Object.getPrototypeOf,JC=Object.prototype.hasOwnProperty,P5=e=>$p(e,"__esModule",{value:!0}),qi=(e=>typeof ra!="undefined"?ra:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof ra!="undefined"?ra:t)[n]}):e)(function(e){if(typeof ra!="undefined")return ra.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Ct=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},ze=(e,t)=>{P5(e);for(var n in t)$p(e,n,{get:t[n],enumerable:!0})},QC=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of ZC(t))!JC.call(e,s)&&s!=="default"&&$p(e,s,{get:()=>t[s],enumerable:!(n=KC(t,s))||n.enumerable});return e},Xa=e=>QC(P5($p(e!=null?XC(YC(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),eT=Ct({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(F){}function s(F,T,M){this.low=F|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(F){return(F&&F.__isLong__)===!0}s.isLong=r;var a={},o={};function i(F,T){var M,G,H;return T?(F>>>=0,(H=0<=F&&F<256)&&(G=o[F],G)?G:(M=c(F,(F|0)<0?-1:0,!0),H&&(o[F]=M),M)):(F|=0,(H=-128<=F&&F<128)&&(G=a[F],G)?G:(M=c(F,F<0?-1:0,!1),H&&(a[F]=M),M))}s.fromInt=i;function l(F,T){if(isNaN(F))return T?b:x;if(T){if(F<0)return b;if(F>=g)return D}else{if(F<=-A)return P;if(F+1>=A)return N}return F<0?l(-F,T).neg():c(F%m|0,F/m|0,T)}s.fromNumber=l;function c(F,T,M){return new s(F,T,M)}s.fromBits=c;var u=Math.pow;function d(F,T,M){if(F.length===0)throw Error("empty string");if(F==="NaN"||F==="Infinity"||F==="+Infinity"||F==="-Infinity")return x;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var G;if((G=F.indexOf("-"))>0)throw Error("interior hyphen");if(G===0)return d(F.substring(1),T,M).neg();for(var H=l(u(M,8)),z=x,X=0;X<F.length;X+=8){var Q=Math.min(8,F.length-X),Z=parseInt(F.substring(X,X+Q),M);if(Q<8){var te=l(u(M,Q));z=z.mul(te).add(l(Z))}else z=z.mul(H),z=z.add(l(Z))}return z.unsigned=T,z}s.fromString=d;function p(F,T){return typeof F=="number"?l(F,T):typeof F=="string"?d(F,T):c(F.low,F.high,typeof T=="boolean"?T:F.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var C=i(-1);s.NEG_ONE=C;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var D=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=D;var P=c(0,2147483648|0,!1);s.MIN_VALUE=P;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(T),G=this.div(M),H=G.mul(M).sub(this);return G.toString(T)+H.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,Q="";;){var Z=X.div(z),te=X.sub(Z.mul(z)).toInt()>>>0,se=te.toString(T);if(X=Z,X.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var M=this.isNegative(),G=T.isNegative();return M&&!G?-1:!M&&G?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=p(T));var M=this.high>>>16,G=this.high&65535,H=this.low>>>16,z=this.low&65535,X=T.high>>>16,Q=T.high&65535,Z=T.low>>>16,te=T.low&65535,se=0,J=0,ee=0,ce=0;return ce+=z+te,ee+=ce>>>16,ce&=65535,ee+=H+Z,J+=ee>>>16,ee&=65535,J+=G+Q,se+=J>>>16,J&=65535,se+=M+X,se&=65535,c(ee<<16|ce,se<<16|J,this.unsigned)},E.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(P))return T.isOdd()?P:x;if(T.eq(P))return this.isOdd()?P:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var G=this.high>>>16,H=this.high&65535,z=this.low>>>16,X=this.low&65535,Q=T.high>>>16,Z=T.high&65535,te=T.low>>>16,se=T.low&65535,J=0,ee=0,ce=0,pe=0;return pe+=X*se,ce+=pe>>>16,pe&=65535,ce+=z*se,ee+=ce>>>16,ce&=65535,ce+=X*te,ee+=ce>>>16,ce&=65535,ee+=H*se,J+=ee>>>16,ee&=65535,ee+=z*te,J+=ee>>>16,ee&=65535,ee+=X*Z,J+=ee>>>16,ee&=65535,J+=G*se+H*te+z*Z+X*Q,J&=65535,c(ce<<16|pe,J<<16|ee,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var G,H,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(P)){if(T.eq(v)||T.eq(C))return P;if(T.eq(P))return v;var X=this.shr(1);return G=X.div(T).shl(1),G.eq(x)?T.isNegative()?v:C:(H=this.sub(T.mul(G)),z=G.add(H.div(T)),z)}else if(T.eq(P))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=x}for(H=this;H.gte(T);){G=Math.max(1,Math.floor(H.toNumber()/T.toNumber()));for(var Q=Math.ceil(Math.log(G)/Math.LN2),Z=Q<=48?1:u(2,Q-48),te=l(G),se=te.mul(T);se.isNegative()||se.gt(H);)G-=Z,te=l(G,this.unsigned),se=te.mul(T);te.isZero()&&(te=v),z=z.add(te),H=H.sub(se)}return z},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=p(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return c(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var G=this.low;return c(G>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?c(M,0,this.unsigned):c(M>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,G){return G?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),tT=Ct({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),nT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=d.toString();for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),sT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),M5=Ct({"(disabled):crypto"(){}}),lT=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",c=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(v,k,C){var N=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),N),P=new m(N),E=function(){for(var F=P.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=P.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return E.int32=function(){return P.g(4)|0},E.quick=function(){return P.g(4)/4294967296},E.double=E,y(b(P.S),n),(k.pass||C||function(F,T,M,G){return G&&(G.S&&g(G,P),F.state=function(){return g(P,{})}),M?(s[l]=F,T):F})(E,D,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,C=v.length,N=this,D=0,P=N.i=N.j=0,E=N.S=[];for(C||(v=[C++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[P=p&P+v[D%C]+(k=E[D])],E[P]=k;(N.g=function(F){for(var T,M=0,G=N.i,H=N.j,z=N.S;F--;)T=z[G=p&G+1],M=M*a+z[p&(z[G]=z[H=p&H+T])+(z[H]=T)];return N.i=G,N.j=H,M})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var C=[],N=typeof v,D;if(k&&N=="object")for(D in v)try{C.push(A(v[D],k-1))}catch(P){}return C.length?C:N=="string"?v:v+"\0"}function y(v,k){for(var C=v+"",N,D=0;D<C.length;)k[p&D]=p&(N^=k[p&D]*19)+C.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(N){var k=r.navigator,C=k&&k.plugins;return[+new Date,r,C,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=M5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),z5=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=nT(),s=sT(),r=rT(),a=aT(),o=oT(),i=iT(),l=lT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),uT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(v,k,C){var N=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),N),P=new m(N),E=function(){for(var F=P.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=P.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return E.int32=function(){return P.g(4)|0},E.quick=function(){return P.g(4)/4294967296},E.double=E,y(b(P.S),s),(k.pass||C||function(F,T,M,G){return G&&(G.S&&g(G,P),F.state=function(){return g(P,{})}),M?(r[l]=F,T):F})(E,D,"global"in k?k.global:this==r,k.state)}function m(v){var k,C=v.length,N=this,D=0,P=N.i=N.j=0,E=N.S=[];for(C||(v=[C++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[P=p&P+v[D%C]+(k=E[D])],E[P]=k;(N.g=function(F){for(var T,M=0,G=N.i,H=N.j,z=N.S;F--;)T=z[G=p&G+1],M=M*a+z[p&(z[G]=z[H=p&H+T])+(z[H]=T)];return N.i=G,N.j=H,M})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var C=[],N=typeof v,D;if(k&&N=="object")for(D in v)try{C.push(A(v[D],k-1))}catch(P){}return C.length?C:N=="string"?v:v+"\0"}function y(v,k){for(var C=v+"",N,D=0;D<C.length;)k[p&D]=p&(N^=k[p&D]*19)+C.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(N){var k=n.navigator,C=k&&k.plugins;return[+new Date,n,C,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=M5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),L5=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=uT(),s=cT(),r=dT(),a=pT(),o=hT(),i=fT(),l=mT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),B5=Ct({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),hc=Ct({"(disabled):path"(){}}),gT=Ct({"(disabled):worker_threads"(){}}),AT=Ct({"(disabled):perf_hooks"(){}}),yT=Ct({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.10.0_@tensorflow+tfjs-core@3.10.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return ee.buffer!=It&&An(ee.buffer),Dt}function o(){return ee.buffer!=It&&An(ee.buffer),Hn}function i(){return ee.buffer!=It&&An(ee.buffer),En}function l(){return ee.buffer!=It&&An(ee.buffer),ss}function c(){return ee.buffer!=It&&An(ee.buffer),xs}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(S,_){d=S,p=_});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(S,_){throw _},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(It=u.buffer);var C="";function N(S){return u.locateFile?u.locateFile(S,C):C+S}var D,P,E,F,T,M;if(b){x?C=hc().dirname(C)+"/":C=__dirname+"/",D=function(_,L){return T||(T=qi("fs")),M||(M=hc()),_=M.normalize(_),T.readFileSync(_,L?null:"utf8")},E=function(_){var L=D(_,!0);return L.buffer||(L=new Uint8Array(L)),ke(L.buffer),L},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof uc))throw S}),process.on("unhandledRejection",Dr),A=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var G;try{G=gT()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=G.Worker}else v?(typeof read!="undefined"&&(D=function(_){return read(_)}),E=function(_){var L;return typeof readbuffer=="function"?new Uint8Array(readbuffer(_)):(L=read(_,"binary"),ke(typeof L=="object"),L)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?C=self.location.href:typeof document!="undefined"&&document.currentScript&&(C=document.currentScript.src),typeof s!="undefined"&&s&&(C=s),C.indexOf("blob:")!==0?C=C.substr(0,C.lastIndexOf("/")+1):C="",b?(D=function(_,L){return T||(T=qi("fs")),M||(M=hc()),_=M.normalize(_),T.readFileSync(_,L?null:"utf8")},E=function(_){var L=D(_,!0);return L.buffer||(L=new Uint8Array(L)),ke(L.buffer),L}):(D=function(S){var _=new XMLHttpRequest;return _.open("GET",S,!1),_.send(null),_.responseText},x&&(E=function(S){var _=new XMLHttpRequest;return _.open("GET",S,!1),_.responseType="arraybuffer",_.send(null),new Uint8Array(_.response)}),P=function(S,_,L){var K=new XMLHttpRequest;K.open("GET",S,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){_(K.response);return}L()},K.onerror=L,K.send(null)}),F=function(S){document.title=S});b&&typeof performance=="undefined"&&(global.performance=AT().performance);var H=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(S){X.shown||(X.shown={}),X.shown[S]||(X.shown[S]=1,z(S))}var Q=Atomics.load,Z=Atomics.store,te=Atomics.compareExchange,se;u.wasmBinary&&(se=u.wasmBinary);var J=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Dr("no native wasm support detected");var ee,ce,pe=!1,ve;function ke(S,_){S||Dr("Assertion failed: "+_)}function Te(S){var _=u["_"+S];return ke(_,"Cannot call unknown function "+S+", make sure it is exported"),_}function Pe(S,_,L,K,ye){var ge={string:function(Rn){var ji=0;if(Rn!=null&&Rn!==0){var $5=(Rn.length<<2)+1;ji=Ui($5),ot(Rn,ji,$5)}return ji},array:function(Rn){var ji=Ui(Rn.length);return ht(Rn,ji),ji}};function Ae(Rn){return _==="string"?et(Rn):_==="boolean"?Boolean(Rn):Rn}var Ne=Te(S),ut=[],ln=0;if(K)for(var Yt=0;Yt<K.length;Yt++){var sa=ge[L[Yt]];sa?(ln===0&&(ln=lc()),ut[Yt]=sa(K[Yt])):ut[Yt]=K[Yt]}var Hi=Ne.apply(null,ut);return Hi=Ae(Hi),ln!==0&&Vi(ln),Hi}function Be(S,_,L,K){L=L||[];var ye=L.every(function(Ae){return Ae==="number"}),ge=_!=="string";return ge&&ye&&!K?Te(S):function(){return Pe(S,_,L,arguments,K)}}function Ue(S,_,L){for(var K=_+L,ye="";!(_>=K);){var ge=S[_++];if(!ge)return ye;if(!(ge&128)){ye+=String.fromCharCode(ge);continue}var Ae=S[_++]&63;if((ge&224)==192){ye+=String.fromCharCode((ge&31)<<6|Ae);continue}var Ne=S[_++]&63;if((ge&240)==224?ge=(ge&15)<<12|Ae<<6|Ne:ge=(ge&7)<<18|Ae<<12|Ne<<6|S[_++]&63,ge<65536)ye+=String.fromCharCode(ge);else{var ut=ge-65536;ye+=String.fromCharCode(55296|ut>>10,56320|ut&1023)}}return ye}function et(S,_){return S?Ue(o(),S,_):""}function ct(S,_,L,K){if(!(K>0))return 0;for(var ye=L,ge=L+K-1,Ae=0;Ae<S.length;++Ae){var Ne=S.charCodeAt(Ae);if(Ne>=55296&&Ne<=57343){var ut=S.charCodeAt(++Ae);Ne=65536+((Ne&1023)<<10)|ut&1023}if(Ne<=127){if(L>=ge)break;_[L++]=Ne}else if(Ne<=2047){if(L+1>=ge)break;_[L++]=192|Ne>>6,_[L++]=128|Ne&63}else if(Ne<=65535){if(L+2>=ge)break;_[L++]=224|Ne>>12,_[L++]=128|Ne>>6&63,_[L++]=128|Ne&63}else{if(L+3>=ge)break;_[L++]=240|Ne>>18,_[L++]=128|Ne>>12&63,_[L++]=128|Ne>>6&63,_[L++]=128|Ne&63}}return _[L]=0,L-ye}function ot(S,_,L){return ct(S,o(),_,L)}function it(S){for(var _=0,L=0;L<S.length;++L){var K=S.charCodeAt(L);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|S.charCodeAt(++L)&1023),K<=127?++_:K<=2047?_+=2:K<=65535?_+=3:_+=4}return _}function ht(S,_){a().set(S,_)}function mt(S,_){return S%_>0&&(S+=_-S%_),S}var It,Dt,Hn,gn,js,En,ss,_s,xs;function An(S){It=S,u.HEAP8=Dt=new Int8Array(S),u.HEAP16=gn=new Int16Array(S),u.HEAP32=En=new Int32Array(S),u.HEAPU8=Hn=new Uint8Array(S),u.HEAPU16=js=new Uint16Array(S),u.HEAPU32=ss=new Uint32Array(S),u.HEAPF32=_s=new Float32Array(S),u.HEAPF64=xs=new Float64Array(S)}var cr=u.INITIAL_MEMORY||16777216;if(k)ee=u.wasmMemory,It=u.buffer;else if(u.wasmMemory)ee=u.wasmMemory;else if(ee=new WebAssembly.Memory({initial:cr/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(It=ee.buffer),cr=It.byteLength,An(It);var In,dr=[],pr=[],Yr=[],Ju=[],qs=[],ip=!1,am=!1;k||pr.push({func:function(){Sp()}});function lp(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)om(u.preRun.shift());Li(dr)}}function up(){ip=!0,!k&&Li(pr)}function cp(){k||Li(Yr)}function jn(){k||(am=!0)}function dp(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)im(u.postRun.shift());Li(qs)}}function om(S){dr.unshift(S)}function im(S){qs.unshift(S)}var Fs=0,Qu=null,Va=null;function lm(S){ke(!k,"addRunDependency cannot be used in a pthread worker"),Fs++,u.monitorRunDependencies&&u.monitorRunDependencies(Fs)}function um(S){if(Fs--,u.monitorRunDependencies&&u.monitorRunDependencies(Fs),Fs==0&&(Qu!==null&&(clearInterval(Qu),Qu=null),Va)){var _=Va;Va=null,_()}}u.preloadedImages={},u.preloadedAudios={};function Dr(S){u.onAbort&&u.onAbort(S),k&&console.error("Pthread aborting at "+new Error().stack),S+="",z(S),pe=!0,ve=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var _=new WebAssembly.RuntimeError(S);throw p(_),_}function Ua(S,_){return String.prototype.startsWith?S.startsWith(_):S.indexOf(_)===0}var cm="data:application/octet-stream;base64,";function pp(S){return Ua(S,cm)}var dm="file://";function hp(S){return Ua(S,dm)}var qn="tfjs-backend-wasm-threaded-simd.wasm";pp(qn)||(qn=N(qn));function fp(S){try{if(S==qn&&se)return new Uint8Array(se);if(E)return E(S);throw"both async and sync fetching of the wasm failed"}catch(_){Dr(_)}}function pm(){if(!se&&(y||x)){if(typeof fetch=="function"&&!hp(qn))return fetch(qn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+qn+"'";return S.arrayBuffer()}).catch(function(){return fp(qn)});if(P)return new Promise(function(S,_){P(qn,function(L){S(new Uint8Array(L))},_)})}return Promise.resolve().then(function(){return fp(qn)})}function hm(){var S={a:ag};function _(Ae,Ne){var ut=Ae.exports;if(u.asm=ut,In=u.asm.I,ce=Ne,!k){var ln=De.unusedWorkers.length;De.unusedWorkers.forEach(function(Yt){De.loadWasmModuleToWorker(Yt,function(){--ln||um("wasm-instantiate")})})}}k||lm("wasm-instantiate");function L(Ae){_(Ae.instance,Ae.module)}function K(Ae){return pm().then(function(Ne){return WebAssembly.instantiate(Ne,S)}).then(Ae,function(Ne){z("failed to asynchronously prepare wasm: "+Ne),Dr(Ne)})}function ye(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!pp(qn)&&!hp(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(Ae){var Ne=WebAssembly.instantiateStreaming(Ae,S);return Ne.then(L,function(ut){return z("wasm streaming compile failed: "+ut),z("falling back to ArrayBuffer instantiation"),K(L)})}):K(L)}if(u.instantiateWasm)try{var ge=u.instantiateWasm(S,_);return ge}catch(Ae){return z("Module.instantiateWasm callback failed with error: "+Ae),!1}return ye().catch(p),{}}var fm={10520:function(){throw"Canceled!"},10538:function(S,_){setTimeout(function(){N5(S,_)},0)}};function mp(){De.initRuntime()}function Li(S){for(;S.length>0;){var _=S.shift();if(typeof _=="function"){_(u);continue}var L=_.func;typeof L=="number"?_.arg===void 0?In.get(L)():In.get(L)(_.arg):L(_.arg===void 0?null:_.arg)}}var Jr={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function ec(S,_){if(S<=0||S>a().length||S&!0||_<0)return-28;if(_==0)return 0;_>=2147483647&&(_=1/0);var L=Atomics.load(i(),Gi>>2),K=0;if(L==S){var ye=Atomics.compareExchange(i(),Gi>>2,L,0);if(ye==L&&(--_,K=1,_<=0))return 1}var ge=Atomics.notify(i(),S>>2,_);if(ge>=0)return ge+K;throw"Atomics.notify returned an unexpected value "+ge}u._emscripten_futex_wake=ec;function mm(S){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var _=De.pthreads[S];_.worker.terminate(),De.freeThreadData(_),De.runningWorkers.splice(De.runningWorkers.indexOf(_.worker),1),_.worker.pthread=void 0}function gm(S){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var _=De.pthreads[S];_.worker.postMessage({cmd:"cancel"})}function gp(S){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var _=De.pthreads[S];if(_){i()[S+12>>2]=0;var L=_.worker;De.returnWorkerToPool(L)}}var De={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=8,_=0;_<S;++_)De.allocateUnusedWorker()},initRuntime:function(){for(var S=Ha(228),_=0;_<228/4;++_)l()[S/4+_]=0;i()[S+12>>2]=S;var L=S+152;i()[L>>2]=L;for(var K=Ha(512),_=0;_<128;++_)l()[K/4+_]=0;Atomics.store(l(),S+100>>2,K),Atomics.store(l(),S+40>>2,S),Ng(S,!x,1),C5(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;De.threadExitHandlers.length>0;)De.threadExitHandlers.pop()();k&&na()&&S5()},runExitHandlersAndDeinitThread:function(S,_){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),De.runExitHandlers(),Atomics.store(l(),S+4>>2,_),Atomics.store(l(),S+0>>2,1),ec(S+0,2147483647),Ng(0,0,0)},threadExit:function(S){var _=na();_&&(De.runExitHandlersAndDeinitThread(_,S),k&&postMessage({cmd:"exit"}))},threadCancel:function(){De.runExitHandlersAndDeinitThread(na(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in De.pthreads){var _=De.pthreads[S];_&&_.worker&&De.returnWorkerToPool(_.worker)}De.pthreads={};for(var L=0;L<De.unusedWorkers.length;++L){var K=De.unusedWorkers[L];K.terminate()}De.unusedWorkers=[];for(var L=0;L<De.runningWorkers.length;++L){var K=De.runningWorkers[L],_=K.pthread;De.freeThreadData(_),K.terminate()}De.runningWorkers=[]},freeThreadData:function(S){if(!!S){if(S.threadInfoStruct){var _=i()[S.threadInfoStruct+100>>2];i()[S.threadInfoStruct+100>>2]=0,ic(_),ic(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&ic(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){De.runWithoutMainThreadQueuedCalls(function(){delete De.pthreads[S.pthread.threadInfoStruct],De.unusedWorkers.push(S),De.runningWorkers.splice(De.runningWorkers.indexOf(S),1),De.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[F5>>2]=0;try{S()}finally{i()[F5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,_){S.onmessage=function(L){var K=L.data,ye=K.cmd;if(S.pthread&&(De.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=na()){var ge=De.pthreads[K.targetThread];ge?ge.worker.postMessage(L.data,K.transferList):console.error('Internal error! Worker sent a message "'+ye+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),De.currentProxiedOperationCallerThread=void 0;return}if(ye==="processQueuedMainThreadWork")Dp();else if(ye==="spawnThread")kp(L.data);else if(ye==="cleanupThread")gp(K.thread);else if(ye==="killThread")mm(K.thread);else if(ye==="cancelThread")gm(K.thread);else if(ye==="loaded")S.loaded=!0,_&&_(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(ye==="print")H("Thread "+K.threadId+": "+K.text);else if(ye==="printErr")z("Thread "+K.threadId+": "+K.text);else if(ye==="alert")alert("Thread "+K.threadId+": "+K.text);else if(ye==="exit"){var Ae=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);Ae&&De.returnWorkerToPool(S)}else if(ye==="exitProcess")try{HC(K.returnCode)}catch(Ne){if(Ne instanceof uc)return;throw Ne}else ye==="cancelDone"?De.returnWorkerToPool(S):ye==="objectTransfer"?De.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?S.postMessage(L.data):z("worker sent an unknown command "+ye);De.currentProxiedOperationCallerThread=void 0},S.onerror=function(L){z("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},b&&(S.on("message",function(L){S.onmessage({data:L})}),S.on("error",function(L){S.onerror(L)}),S.on("exit",function(L){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:ee,wasmModule:ce})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");De.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return De.unusedWorkers.length==0&&(De.allocateUnusedWorker(),De.loadWasmModuleToWorker(De.unusedWorkers[0])),De.unusedWorkers.length>0?De.unusedWorkers.pop():null},busySpinWait:function(S){for(var _=performance.now()+S;performance.now()<_;);}};function Am(S,_){D5(S,_),Vi(S)}u.establishStackSpace=Am;function ym(){return J}u.getNoExitRuntime=ym;function xm(S,_){return In.get(S)(_)}u.invokeEntryPoint=xm;function bm(S,_,L,K){Dr("Assertion failed: "+et(S)+", at: "+[_?et(_):"unknown filename",L,K?et(K):"unknown function"])}function vm(S,_){var L=_main(S,_)}var Ga;b?Ga=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:k?Ga=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ga=dateNow:Ga=function(){return performance.now()};function wm(S){return i()[k5()>>2]=S,S}function km(S,_){if(k)return Qr(1,1,S,_)}function Im(S,_){if(S==_)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var L=De.pthreads[S],K=L&&L.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Sm(){Dr()}function Cm(S,_,L){var K=Rm(_,L);return fm[S].apply(null,K)}function Tm(S,_){}function Ap(S,_,L){if(S<=0||S>a().length||S&!0)return-28;if(y){if(Atomics.load(i(),S>>2)!=_)return-6;for(var ye=performance.now(),ge=ye+L,Ae=Atomics.exchange(i(),Gi>>2,S);;){if(ye=performance.now(),ye>ge)return Ae=Atomics.exchange(i(),Gi>>2,0),-73;if(Ae=Atomics.exchange(i(),Gi>>2,0),Ae==0)break;if(Dp(),Atomics.load(i(),S>>2)!=_)return-6;Ae=Atomics.exchange(i(),Gi>>2,S)}return 0}else{var K=Atomics.wait(i(),S>>2,_,L);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Nm(S,_,L){o().copyWithin(S,_,_+L)}function Em(){return b?qi("os").cpus().length:navigator.hardwareConcurrency}function Qr(S,_){for(var L=arguments.length-2,K=lc(),ye=L,ge=Ui(ye*8),Ae=ge>>3,Ne=0;Ne<L;Ne++){var ut=arguments[2+Ne];c()[Ae+Ne]=ut}var ln=R5(S,ye,ge,_);return Vi(K),ln}var tc=[],nc=[];function Rm(S,_){nc.length=0;var L;for(_>>=2;L=o()[S++];){var K=L<105;K&&_&1&&_++,nc.push(K?c()[_++>>1]:i()[_]),++_}return nc}function Dm(S,_,L){tc.length=_;for(var K=L>>3,ye=0;ye<_;ye++)tc[ye]=c()[K+ye];var ge=S<0,Ae=ge?fm[-S-1]:rg[S];return Ae.apply(null,tc)}function _m(){return o().length}function Fm(S){try{return ee.grow(S-It.byteLength+65535>>>16),An(ee.buffer),1}catch(_){}}function $m(S){var _=_m();if(S<=_)return!1;var L=2147483648;if(S>L)return!1;for(var K=1;K<=4;K*=2){var ye=_*(1+.2/K);ye=Math.min(ye,S+100663296);var ge=Math.min(L,mt(Math.max(S,ye),65536)),Ae=Fm(ge);if(Ae)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Ju.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,_,L){function K(Ae,Ne){if(Ae.length!=Ne.length)return!1;for(var ut in Ae)if(Ae[ut]!=Ne[ut])return!1;return!0}for(var ye in We.deferredCalls){var ge=We.deferredCalls[ye];if(ge.targetFunction==S&&K(ge.argsList,L))return}We.deferredCalls.push({targetFunction:S,precedence:_,argsList:L}),We.deferredCalls.sort(function(Ae,Ne){return Ae.precedence<Ne.precedence})},removeDeferredCalls:function(S){for(var _=0;_<We.deferredCalls.length;++_)We.deferredCalls[_].targetFunction==S&&(We.deferredCalls.splice(_,1),--_)},canPerformEventHandlerRequests:function(){return We.inEventHandler&&We.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!We.canPerformEventHandlerRequests())for(var S=0;S<We.deferredCalls.length;++S){var _=We.deferredCalls[S];We.deferredCalls.splice(S,1),--S,_.targetFunction.apply(null,_.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,_){for(var L=0;L<We.eventHandlers.length;++L)We.eventHandlers[L].target==S&&(!_||_==We.eventHandlers[L].eventTypeString)&&We._removeHandler(L--)},_removeHandler:function(S){var _=We.eventHandlers[S];_.target.removeEventListener(_.eventTypeString,_.eventListenerFunc,_.useCapture),We.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var _=function(ye){++We.inEventHandler,We.currentEventHandler=S,We.runDeferredCalls(),S.handlerFunc(ye),We.runDeferredCalls(),--We.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=_,S.target.addEventListener(S.eventTypeString,_,S.useCapture),We.eventHandlers.push(S),We.registerRemoveEventListeners();else for(var L=0;L<We.eventHandlers.length;++L)We.eventHandlers[L].target==S.target&&We.eventHandlers[L].eventTypeString==S.eventTypeString&&We._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(S,_,L,K,ye){var ge=lc(),Ae=Ui(12);i()[Ae>>2]=L,i()[Ae+4>>2]=K,i()[Ae+8>>2]=ye,Tg(0,S,637534208,_,K,Ae),Vi(ge)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return De.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Om(S){var _=it(S)+1,L=Ha(_);return ot(S,L,_),L}function Pm(S,_,L,K){var ye=lc(),ge=Ui(12),Ae=0;_&&(Ae=Om(_)),i()[ge>>2]=Ae,i()[ge+4>>2]=L,i()[ge+8>>2]=K,Tg(0,S,657457152,0,Ae,ge),Vi(ye)}function Mm(S,_,L,K){_=_?et(_):"",Pm(S,_,L,K)}function zm(S){return S>2?et(S):S}var Lm=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Bm(S){S=zm(S);var _=Lm[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return _}function sc(S){return Bm(S)}function yp(S,_,L){var K=sc(S);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=_,i()[K.canvasSharedPtr+4>>2]=L),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var ye=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var ge=K.GLctxObject.GLctx.getParameter(2978);ye=ge[0]===0&&ge[1]===0&&ge[2]===K.width&&ge[3]===K.height}K.width=_,K.height=L,ye&&K.GLctxObject.GLctx.viewport(0,0,_,L)}else if(K.canvasSharedPtr){var Ae=i()[K.canvasSharedPtr+8>>2];return Mm(Ae,S,_,L),1}else return-4;return 0}function xp(S,_,L){return k?Qr(2,1,S,_,L):yp(S,_,L)}function Wm(S,_,L){var K=sc(S);return K?yp(S,_,L):xp(S,_,L)}function Vm(S){}function Um(S,_){}function Gm(S){var _=S.getExtension("ANGLE_instanced_arrays");if(_)return S.vertexAttribDivisor=function(L,K){_.vertexAttribDivisorANGLE(L,K)},S.drawArraysInstanced=function(L,K,ye,ge){_.drawArraysInstancedANGLE(L,K,ye,ge)},S.drawElementsInstanced=function(L,K,ye,ge,Ae){_.drawElementsInstancedANGLE(L,K,ye,ge,Ae)},1}function Hm(S){var _=S.getExtension("OES_vertex_array_object");if(_)return S.createVertexArray=function(){return _.createVertexArrayOES()},S.deleteVertexArray=function(L){_.deleteVertexArrayOES(L)},S.bindVertexArray=function(L){_.bindVertexArrayOES(L)},S.isVertexArray=function(L){return _.isVertexArrayOES(L)},1}function jm(S){var _=S.getExtension("WEBGL_draw_buffers");if(_)return S.drawBuffers=function(L,K){_.drawBuffersWEBGL(L,K)},1}function qm(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(_){lt.lastError||(lt.lastError=_)},getNewId:function(S){for(var _=lt.counter++,L=S.length;L<_;L++)S[L]=null;return _},getSource:function(S,_,L,K){for(var ye="",ge=0;ge<_;++ge){var Ae=K?i()[K+ge*4>>2]:-1;ye+=et(i()[L+ge*4>>2],Ae<0?void 0:Ae)}return ye},createContext:function(S,_){var L=S.getContext("webgl",_);if(!L)return 0;var K=lt.registerContext(L,_);return K},registerContext:function(S,_){var L=Ha(8);i()[L+4>>2]=na();var K={handle:L,attributes:_,version:_.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=K),lt.contexts[L]=K,(typeof _.enableExtensionsByDefault=="undefined"||_.enableExtensionsByDefault)&<.initExtensions(K),L},makeContextCurrent:function(S){return lt.currentContext=lt.contexts[S],u.ctx=ea=lt.currentContext&<.currentContext.GLctx,!(S&&!ea)},getContext:function(S){return lt.contexts[S]},deleteContext:function(S){lt.currentContext===lt.contexts[S]&&(lt.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(lt.contexts[S].GLctx.canvas),lt.contexts[S]&<.contexts[S].GLctx.canvas&&(lt.contexts[S].GLctx.canvas.GLctxObject=void 0),ic(lt.contexts[S].handle),lt.contexts[S]=null},initExtensions:function(S){if(S||(S=lt.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var _=S.GLctx;Gm(_),Hm(_),jm(_),_.disjointTimerQueryExt=_.getExtension("EXT_disjoint_timer_query"),qm(_);var L=_.getSupportedExtensions()||[];L.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&_.getExtension(K)})}},populateUniformTable:function(S){for(var _=lt.programs[S],L=lt.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=L.uniforms,ye=ea.getProgramParameter(_,35718),ge=0;ge<ye;++ge){var Ae=ea.getActiveUniform(_,ge),Ne=Ae.name;L.maxUniformLength=Math.max(L.maxUniformLength,Ne.length+1),Ne.slice(-1)=="]"&&(Ne=Ne.slice(0,Ne.lastIndexOf("[")));var ut=ea.getUniformLocation(_,Ne);if(ut){var ln=lt.getNewId(lt.uniforms);K[Ne]=[Ae.size,ln],lt.uniforms[ln]=ut;for(var Yt=1;Yt<Ae.size;++Yt){var sa=Ne+"["+Yt+"]";ut=ea.getUniformLocation(_,sa),ln=lt.getNewId(lt.uniforms),lt.uniforms[ln]=ut}}}}},Xm=["default","low-power","high-performance"];function Km(S,_){var L=_>>2,K=i()[L+(24>>2)],ye={alpha:!!i()[L+(0>>2)],depth:!!i()[L+(4>>2)],stencil:!!i()[L+(8>>2)],antialias:!!i()[L+(12>>2)],premultipliedAlpha:!!i()[L+(16>>2)],preserveDrawingBuffer:!!i()[L+(20>>2)],powerPreference:Xm[K],failIfMajorPerformanceCaveat:!!i()[L+(28>>2)],majorVersion:i()[L+(32>>2)],minorVersion:i()[L+(36>>2)],enableExtensionsByDefault:i()[L+(40>>2)],explicitSwapControl:i()[L+(44>>2)],proxyContextToMainThread:i()[L+(48>>2)],renderViaOffscreenBackBuffer:i()[L+(52>>2)]},ge=sc(S);if(!ge||ye.explicitSwapControl)return 0;var Ae=lt.createContext(ge,ye);return Ae}function Zm(S,_){return Km(S,_)}var Bi={mappings:{},buffers:[null,[],[]],printChar:function(S,_){var L=Bi.buffers[S];_===0||_===10?((S===1?H:z)(Ue(L,0)),L.length=0):L.push(_)},varargs:void 0,get:function(){Bi.varargs+=4;var S=i()[Bi.varargs-4>>2];return S},getStr:function(S){var _=et(S);return _},get64:function(S,_){return S}};function bp(S){return k?Qr(3,1,S):0}function vp(S,_,L,K,ye){if(k)return Qr(4,1,S,_,L,K,ye)}function wp(S,_,L,K){if(k)return Qr(5,1,S,_,L,K);for(var ye=0,ge=0;ge<L;ge++){for(var Ae=i()[_+ge*8>>2],Ne=i()[_+(ge*8+4)>>2],ut=0;ut<Ne;ut++)Bi.printChar(S,o()[Ae+ut]);ye+=Ne}return i()[K>>2]=ye,0}function Ym(S){var _=De.threadExitHandlers.pop();S&&_()}function Jm(S,_){De.threadExitHandlers.push(function(){In.get(S)(_)})}function kp(S){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var _=De.getNewWorker();if(_.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";De.runningWorkers.push(_);for(var L=Ha(128*4),K=0;K<128;++K)i()[L+K*4>>2]=0;var ye=S.stackBase+S.stackSize,ge=De.pthreads[S.pthread_ptr]={worker:_,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},Ae=ge.threadInfoStruct>>2;Atomics.store(l(),Ae+(64>>2),S.detached),Atomics.store(l(),Ae+(100>>2),L),Atomics.store(l(),Ae+(40>>2),ge.threadInfoStruct),Atomics.store(l(),Ae+(80>>2),S.stackSize),Atomics.store(l(),Ae+(76>>2),ye),Atomics.store(l(),Ae+(104>>2),S.stackSize),Atomics.store(l(),Ae+(104+8>>2),ye),Atomics.store(l(),Ae+(104+12>>2),S.detached);var Ne=I5(),ut=Ne+40;Atomics.store(l(),Ae+(172>>2),ut),_.pthread=ge;var ln={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};_.runPthread=function(){ln.time=performance.now(),_.postMessage(ln,S.transferList)},_.loaded&&(_.runPthread(),delete _.runPthread)}function Qm(S,_,L,K){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return z("pthread_create called with a null thread pointer!"),28;var ye=[],ge=0;if(k&&(ye.length===0||ge))return E5(687865856,S,_,L,K);if(ge)return ge;var Ae=0,Ne=0,ut=0;_&&_!=-1?(Ae=i()[_>>2],Ae+=81920,Ne=i()[_+8>>2],ut=i()[_+12>>2]!==0):Ae=2097152;var ln=Ne==0;ln?Ne=_5(16,Ae):(Ne-=Ae,ke(Ne>0));for(var Yt=Ha(228),sa=0;sa<228>>2;++sa)l()[(Yt>>2)+sa]=0;i()[S>>2]=Yt,i()[Yt+12>>2]=Yt;var Hi=Yt+152;i()[Hi>>2]=Hi;var Rn={stackBase:Ne,stackSize:Ae,allocatedOwnStack:ln,detached:ut,startRoutine:L,pthread_ptr:Yt,arg:K,transferList:ye};return k?(Rn.cmd="spawnThread",postMessage(Rn,ye)):kp(Rn),0}function eg(){if(!!k){var S=na();if(!!S){var _=Atomics.load(l(),S+56>>2);if(!_){var L=Atomics.load(l(),S+0>>2);if(L==2)throw"Canceled!"}}}}function tg(){b||x||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function ng(S,_,L){if(!S)return z("pthread_join attempted on a null thread pointer!"),Jr.ESRCH;if(k&&na()==S)return z("PThread "+S+" is attempting to join to itself!"),Jr.EDEADLK;if(!k&&T5()==S)return z("Main thread "+S+" is attempting to join to itself!"),Jr.EDEADLK;var K=i()[S+12>>2];if(K!==S)return z("pthread_join attempted on thread "+S+", which does not point to a valid thread, or does not exist anymore!"),Jr.ESRCH;var ye=Atomics.load(l(),S+64>>2);if(ye)return z("Attempted to join thread "+S+", which was already detached!"),Jr.EINVAL;for(L&&tg();;){var ge=Atomics.load(l(),S+0>>2);if(ge==1){var Ae=Atomics.load(l(),S+4>>2);return _&&(i()[_>>2]=Ae),Atomics.store(l(),S+64>>2,1),k?postMessage({cmd:"cleanupThread",thread:S}):gp(S),0}if(!L)return Jr.EBUSY;eg(),k||Dp(),Ap(S+0,ge,k?100:1)}}function sg(S,_){return ng(S,_,!0)}function Ip(S){if(k)return Qr(6,1,S);switch(S){case 30:return 16384;case 85:var _=2147483648;return _/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return wm(28),-1}k||De.initMainThreadBlock();var ea,rg=[null,km,xp,bp,vp,wp,Ip],ag={e:bm,r:vm,x:Im,b:Sm,y:Cm,j:Tm,d:Ap,c:ec,f:Ga,p:Nm,A:Em,u:Dm,q:$m,v:Wm,i:Vm,s:Um,w:Zm,l:bp,n:vp,g:wp,o:mp,a:ee||u.wasmMemory,z:Ym,k:Jm,h:Qm,m:sg,t:Ip},w5=hm(),Sp=u.___wasm_call_ctors=function(){return(Sp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},og=u._init=function(){return(og=u._init=u.asm.C).apply(null,arguments)},ig=u._init_with_threads_count=function(){return(ig=u._init_with_threads_count=u.asm.D).apply(null,arguments)},lg=u._get_threads_count=function(){return(lg=u._get_threads_count=u.asm.E).apply(null,arguments)},ug=u._register_tensor=function(){return(ug=u._register_tensor=u.asm.F).apply(null,arguments)},cg=u._dispose_data=function(){return(cg=u._dispose_data=u.asm.G).apply(null,arguments)},dg=u._dispose=function(){return(dg=u._dispose=u.asm.H).apply(null,arguments)},pg=u._Abs=function(){return(pg=u._Abs=u.asm.J).apply(null,arguments)},hg=u._Add=function(){return(hg=u._Add=u.asm.K).apply(null,arguments)},fg=u._AddN=function(){return(fg=u._AddN=u.asm.L).apply(null,arguments)},mg=u._All=function(){return(mg=u._All=u.asm.M).apply(null,arguments)},gg=u._Any=function(){return(gg=u._Any=u.asm.N).apply(null,arguments)},Ag=u._ArgMax=function(){return(Ag=u._ArgMax=u.asm.O).apply(null,arguments)},yg=u._AvgPool=function(){return(yg=u._AvgPool=u.asm.P).apply(null,arguments)},xg=u._BatchMatMul=function(){return(xg=u._BatchMatMul=u.asm.Q).apply(null,arguments)},bg=u._Ceil=function(){return(bg=u._Ceil=u.asm.R).apply(null,arguments)},vg=u._ClipByValue=function(){return(vg=u._ClipByValue=u.asm.S).apply(null,arguments)},wg=u._Conv2D=function(){return(wg=u._Conv2D=u.asm.T).apply(null,arguments)},kg=u._Conv2DBackpropInput=function(){return(kg=u._Conv2DBackpropInput=u.asm.U).apply(null,arguments)},Ig=u._Cos=function(){return(Ig=u._Cos=u.asm.V).apply(null,arguments)},Sg=u._Cosh=function(){return(Sg=u._Cosh=u.asm.W).apply(null,arguments)},Cp=u._CropAndResize=function(){return(Cp=u._CropAndResize=u.asm.X).apply(null,arguments)},Tp=u._Cumsum=function(){return(Tp=u._Cumsum=u.asm.Y).apply(null,arguments)},Np=u._DepthToSpace=function(){return(Np=u._DepthToSpace=u.asm.Z).apply(null,arguments)},rc=u._DepthwiseConv2dNative=function(){return(rc=u._DepthwiseConv2dNative=u.asm._).apply(null,arguments)},Wi=u._Elu=function(){return(Wi=u._Elu=u.asm.$).apply(null,arguments)},Cg=u._Equal=function(){return(Cg=u._Equal=u.asm.aa).apply(null,arguments)},ac=u._Exp=function(){return(ac=u._Exp=u.asm.ba).apply(null,arguments)},re=u._FlipLeftRight=function(){return(re=u._FlipLeftRight=u.asm.ca).apply(null,arguments)},ie=u._Floor=function(){return(ie=u._Floor=u.asm.da).apply(null,arguments)},Ie=u._FloorDiv=function(){return(Ie=u._FloorDiv=u.asm.ea).apply(null,arguments)},st=u._FusedBatchNorm=function(){return(st=u._FusedBatchNorm=u.asm.fa).apply(null,arguments)},Pt=u._FusedConv2D=function(){return(Pt=u._FusedConv2D=u.asm.ga).apply(null,arguments)},St=u._FusedDepthwiseConv2D=function(){return(St=u._FusedDepthwiseConv2D=u.asm.ha).apply(null,arguments)},Xe=u._Gather=function(){return(Xe=u._Gather=u.asm.ia).apply(null,arguments)},Ye=u._GatherNd=function(){return(Ye=u._GatherNd=u.asm.ja).apply(null,arguments)},yn=u._Greater=function(){return(yn=u._Greater=u.asm.ka).apply(null,arguments)},_r=u._GreaterEqual=function(){return(_r=u._GreaterEqual=u.asm.la).apply(null,arguments)},Fr=u._LeakyRelu=function(){return(Fr=u._LeakyRelu=u.asm.ma).apply(null,arguments)},Ep=u._Less=function(){return(Ep=u._Less=u.asm.na).apply(null,arguments)},oc=u._LessEqual=function(){return(oc=u._LessEqual=u.asm.oa).apply(null,arguments)},rs=u._Log=function(){return(rs=u._Log=u.asm.pa).apply(null,arguments)},ta=u._LogicalAnd=function(){return(ta=u._LogicalAnd=u.asm.qa).apply(null,arguments)},Rp=u._Max=function(){return(Rp=u._Max=u.asm.ra).apply(null,arguments)},QS=u._MaxPool=function(){return(QS=u._MaxPool=u.asm.sa).apply(null,arguments)},eC=u._Maximum=function(){return(eC=u._Maximum=u.asm.ta).apply(null,arguments)},tC=u._Mean=function(){return(tC=u._Mean=u.asm.ua).apply(null,arguments)},nC=u._Min=function(){return(nC=u._Min=u.asm.va).apply(null,arguments)},sC=u._Minimum=function(){return(sC=u._Minimum=u.asm.wa).apply(null,arguments)},rC=u._MirrorPad=function(){return(rC=u._MirrorPad=u.asm.xa).apply(null,arguments)},aC=u._Multiply=function(){return(aC=u._Multiply=u.asm.ya).apply(null,arguments)},oC=u._Neg=function(){return(oC=u._Neg=u.asm.za).apply(null,arguments)},iC=u._NonMaxSuppressionV3=function(){return(iC=u._NonMaxSuppressionV3=u.asm.Aa).apply(null,arguments)},lC=u._NonMaxSuppressionV4=function(){return(lC=u._NonMaxSuppressionV4=u.asm.Ba).apply(null,arguments)},uC=u._NonMaxSuppressionV5=function(){return(uC=u._NonMaxSuppressionV5=u.asm.Ca).apply(null,arguments)},cC=u._NotEqual=function(){return(cC=u._NotEqual=u.asm.Da).apply(null,arguments)},dC=u._OneHot=function(){return(dC=u._OneHot=u.asm.Ea).apply(null,arguments)},pC=u._PadV2=function(){return(pC=u._PadV2=u.asm.Fa).apply(null,arguments)},hC=u._Pow=function(){return(hC=u._Pow=u.asm.Ga).apply(null,arguments)},fC=u._Prelu=function(){return(fC=u._Prelu=u.asm.Ha).apply(null,arguments)},mC=u._Prod=function(){return(mC=u._Prod=u.asm.Ia).apply(null,arguments)},gC=u._RealDiv=function(){return(gC=u._RealDiv=u.asm.Ja).apply(null,arguments)},AC=u._Relu=function(){return(AC=u._Relu=u.asm.Ka).apply(null,arguments)},yC=u._Relu6=function(){return(yC=u._Relu6=u.asm.La).apply(null,arguments)},xC=u._ResizeBilinear=function(){return(xC=u._ResizeBilinear=u.asm.Ma).apply(null,arguments)},bC=u._Reverse=function(){return(bC=u._Reverse=u.asm.Na).apply(null,arguments)},vC=u._RotateWithOffset=function(){return(vC=u._RotateWithOffset=u.asm.Oa).apply(null,arguments)},wC=u._Round=function(){return(wC=u._Round=u.asm.Pa).apply(null,arguments)},kC=u._Rsqrt=function(){return(kC=u._Rsqrt=u.asm.Qa).apply(null,arguments)},IC=u._ScatterNd=function(){return(IC=u._ScatterNd=u.asm.Ra).apply(null,arguments)},SC=u._SelectV2=function(){return(SC=u._SelectV2=u.asm.Sa).apply(null,arguments)},CC=u._Sigmoid=function(){return(CC=u._Sigmoid=u.asm.Ta).apply(null,arguments)},TC=u._Sin=function(){return(TC=u._Sin=u.asm.Ua).apply(null,arguments)},NC=u._Softmax=function(){return(NC=u._Softmax=u.asm.Va).apply(null,arguments)},EC=u._Sqrt=function(){return(EC=u._Sqrt=u.asm.Wa).apply(null,arguments)},RC=u._Square=function(){return(RC=u._Square=u.asm.Xa).apply(null,arguments)},DC=u._SquaredDifference=function(){return(DC=u._SquaredDifference=u.asm.Ya).apply(null,arguments)},_C=u._Step=function(){return(_C=u._Step=u.asm.Za).apply(null,arguments)},FC=u._StridedSlice=function(){return(FC=u._StridedSlice=u.asm._a).apply(null,arguments)},$C=u._Sub=function(){return($C=u._Sub=u.asm.$a).apply(null,arguments)},OC=u._Sum=function(){return(OC=u._Sum=u.asm.ab).apply(null,arguments)},PC=u._Tan=function(){return(PC=u._Tan=u.asm.bb).apply(null,arguments)},MC=u._Tanh=function(){return(MC=u._Tanh=u.asm.cb).apply(null,arguments)},zC=u._Tile=function(){return(zC=u._Tile=u.asm.db).apply(null,arguments)},LC=u._TopK=function(){return(LC=u._TopK=u.asm.eb).apply(null,arguments)},BC=u._Transform=function(){return(BC=u._Transform=u.asm.fb).apply(null,arguments)},WC=u._Transpose=function(){return(WC=u._Transpose=u.asm.gb).apply(null,arguments)},VC=u.__FusedMatMul=function(){return(VC=u.__FusedMatMul=u.asm.hb).apply(null,arguments)},Ha=u._malloc=function(){return(Ha=u._malloc=u.asm.ib).apply(null,arguments)},ic=u._free=function(){return(ic=u._free=u.asm.jb).apply(null,arguments)},k5=u.___errno_location=function(){return(k5=u.___errno_location=u.asm.kb).apply(null,arguments)},I5=u._emscripten_get_global_libc=function(){return(I5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},na=u._pthread_self=function(){return(na=u._pthread_self=u.asm.mb).apply(null,arguments)},S5=u.___pthread_tsd_run_dtors=function(){return(S5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},Dp=u._emscripten_main_thread_process_queued_calls=function(){return(Dp=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},UC=u._emscripten_current_thread_process_queued_calls=function(){return(UC=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},C5=u._emscripten_register_main_browser_thread_id=function(){return(C5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},T5=u._emscripten_main_browser_thread_id=function(){return(T5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},N5=u.__emscripten_do_dispatch_to_thread=function(){return(N5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},E5=u._emscripten_sync_run_in_main_thread_4=function(){return(E5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},R5=u._emscripten_run_in_main_runtime_thread_js=function(){return(R5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Tg=u.__emscripten_call_on_thread=function(){return(Tg=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},GC=u._emscripten_tls_init=function(){return(GC=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Ng=u.__emscripten_thread_init=function(){return(Ng=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},lc=u.stackSave=function(){return(lc=u.stackSave=u.asm.yb).apply(null,arguments)},Vi=u.stackRestore=function(){return(Vi=u.stackRestore=u.asm.zb).apply(null,arguments)},Ui=u.stackAlloc=function(){return(Ui=u.stackAlloc=u.asm.Ab).apply(null,arguments)},D5=u._emscripten_stack_set_limits=function(){return(D5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},_5=u._memalign=function(){return(_5=u._memalign=u.asm.Cb).apply(null,arguments)},F5=u.__emscripten_allow_main_runtime_queued_calls=10512,Gi=u.__emscripten_main_thread_futex=12148;u.cwrap=Be,u.PThread=De,u.PThread=De,u.wasmMemory=ee,u.ExitStatus=uc;var _p;function uc(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}Va=function S(){_p||Eg(),_p||(Va=S)};function Eg(S){if(S=S||m,Fs>0)return;if(k){d(u),up(),postMessage({cmd:"loaded"});return}if(lp(),Fs>0)return;function _(){_p||(_p=!0,u.calledRun=!0,!pe&&(up(),cp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),dp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),_()},1)):_()}u.run=Eg;function HC(S,_){if(!(_&&J&&S===0)){if(!_&&k)throw postMessage({cmd:"exitProcess",returnCode:S}),new uc(S);J||(De.terminateAllThreads(),ve=S,jn(),u.onExit&&u.onExit(S),pe=!0),A(S,new uc(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(J=!1,De.initWorker()),Eg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),xT=Ct({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.10.0_@tensorflow+tfjs-core@3.10.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(re,ie){o=re,i=ie});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(re,ie){throw ie},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function y(re){return a.locateFile?a.locateFile(re,A):A+re}var x,b,v,k,C,N;m?(f?A=hc().dirname(A)+"/":A=__dirname+"/",x=function(ie,Ie){return C||(C=qi("fs")),N||(N=hc()),ie=N.normalize(ie),C.readFileSync(ie,Ie?null:"utf8")},v=function(ie){var Ie=x(ie,!0);return Ie.buffer||(Ie=new Uint8Array(Ie)),H(Ie.buffer),Ie},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(re){if(!(re instanceof Cg))throw re}),process.on("unhandledRejection",qs),p=function(re){process.exit(re)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ie){return read(ie)}),v=function(ie){var Ie;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(Ie=read(ie,"binary"),H(typeof Ie=="object"),Ie)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(re){quit(re)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(re){var ie=new XMLHttpRequest;return ie.open("GET",re,!1),ie.send(null),ie.responseText},f&&(v=function(re){var ie=new XMLHttpRequest;return ie.open("GET",re,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(re,ie,Ie){var st=new XMLHttpRequest;st.open("GET",re,!0),st.responseType="arraybuffer",st.onload=function(){if(st.status==200||st.status==0&&st.response){ie(st.response);return}Ie()},st.onerror=Ie,st.send(null)},k=function(re){document.title=re});var D=a.print||console.log.bind(console),P=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var F=a.noExitRuntime||!0;typeof WebAssembly!="object"&&qs("no native wasm support detected");var T,M=!1,G;function H(re,ie){re||qs("Assertion failed: "+ie)}function z(re){var ie=a["_"+re];return H(ie,"Cannot call unknown function "+re+", make sure it is exported"),ie}function X(re,ie,Ie,st,Pt){var St={string:function(rs){var ta=0;if(rs!=null&&rs!==0){var Rp=(rs.length<<2)+1;ta=rc(Rp),ee(rs,ta,Rp)}return ta},array:function(rs){var ta=rc(rs.length);return ce(rs,ta),ta}};function Xe(rs){return ie==="string"?se(rs):ie==="boolean"?Boolean(rs):rs}var Ye=z(re),yn=[],_r=0;if(st)for(var Fr=0;Fr<st.length;Fr++){var Ep=St[Ie[Fr]];Ep?(_r===0&&(_r=Tp()),yn[Fr]=Ep(st[Fr])):yn[Fr]=st[Fr]}var oc=Ye.apply(null,yn);return oc=Xe(oc),_r!==0&&Np(_r),oc}function Q(re,ie,Ie,st){Ie=Ie||[];var Pt=Ie.every(function(Xe){return Xe==="number"}),St=ie!=="string";return St&&Pt&&!st?z(re):function(){return X(re,ie,Ie,arguments,st)}}var Z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(re,ie,Ie){for(var st=ie+Ie,Pt=ie;re[Pt]&&!(Pt>=st);)++Pt;if(Pt-ie>16&&re.subarray&&Z)return Z.decode(re.subarray(ie,Pt));for(var St="";ie<Pt;){var Xe=re[ie++];if(!(Xe&128)){St+=String.fromCharCode(Xe);continue}var Ye=re[ie++]&63;if((Xe&224)==192){St+=String.fromCharCode((Xe&31)<<6|Ye);continue}var yn=re[ie++]&63;if((Xe&240)==224?Xe=(Xe&15)<<12|Ye<<6|yn:Xe=(Xe&7)<<18|Ye<<12|yn<<6|re[ie++]&63,Xe<65536)St+=String.fromCharCode(Xe);else{var _r=Xe-65536;St+=String.fromCharCode(55296|_r>>10,56320|_r&1023)}}return St}function se(re,ie){return re?te(Te,re,ie):""}function J(re,ie,Ie,st){if(!(st>0))return 0;for(var Pt=Ie,St=Ie+st-1,Xe=0;Xe<re.length;++Xe){var Ye=re.charCodeAt(Xe);if(Ye>=55296&&Ye<=57343){var yn=re.charCodeAt(++Xe);Ye=65536+((Ye&1023)<<10)|yn&1023}if(Ye<=127){if(Ie>=St)break;ie[Ie++]=Ye}else if(Ye<=2047){if(Ie+1>=St)break;ie[Ie++]=192|Ye>>6,ie[Ie++]=128|Ye&63}else if(Ye<=65535){if(Ie+2>=St)break;ie[Ie++]=224|Ye>>12,ie[Ie++]=128|Ye>>6&63,ie[Ie++]=128|Ye&63}else{if(Ie+3>=St)break;ie[Ie++]=240|Ye>>18,ie[Ie++]=128|Ye>>12&63,ie[Ie++]=128|Ye>>6&63,ie[Ie++]=128|Ye&63}}return ie[Ie]=0,Ie-Pt}function ee(re,ie,Ie){return J(re,Te,ie,Ie)}function ce(re,ie){ke.set(re,ie)}function pe(re,ie){return re%ie>0&&(re+=ie-re%ie),re}var ve,ke,Te,Pe,Be,Ue,et,ct,ot;function it(re){ve=re,a.HEAP8=ke=new Int8Array(re),a.HEAP16=Pe=new Int16Array(re),a.HEAP32=Ue=new Int32Array(re),a.HEAPU8=Te=new Uint8Array(re),a.HEAPU16=Be=new Uint16Array(re),a.HEAPU32=et=new Uint32Array(re),a.HEAPF32=ct=new Float32Array(re),a.HEAPF64=ot=new Float64Array(re)}var ht=a.INITIAL_MEMORY||16777216,mt,It=[],Dt=[],Hn=[],gn=[],js=!1;Dt.push({func:function(){mp()}});function En(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)An(a.preRun.shift());Fs(It)}function ss(){js=!0,Fs(Dt)}function _s(){Fs(Hn)}function xs(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)cr(a.postRun.shift());Fs(gn)}function An(re){It.unshift(re)}function cr(re){gn.unshift(re)}var In=0,dr=null,pr=null;function Yr(re){In++,a.monitorRunDependencies&&a.monitorRunDependencies(In)}function Ju(re){if(In--,a.monitorRunDependencies&&a.monitorRunDependencies(In),In==0&&(dr!==null&&(clearInterval(dr),dr=null),pr)){var ie=pr;pr=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function qs(re){a.onAbort&&a.onAbort(re),re+="",P(re),M=!0,G=1,re="abort("+re+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(re);throw i(ie),ie}function ip(re,ie){return String.prototype.startsWith?re.startsWith(ie):re.indexOf(ie)===0}var am="data:application/octet-stream;base64,";function lp(re){return ip(re,am)}var up="file://";function cp(re){return ip(re,up)}var jn="tfjs-backend-wasm.wasm";lp(jn)||(jn=y(jn));function dp(re){try{if(re==jn&&E)return new Uint8Array(E);if(v)return v(re);throw"both async and sync fetching of the wasm failed"}catch(ie){qs(ie)}}function om(){if(!E&&(h||f)){if(typeof fetch=="function"&&!cp(jn))return fetch(jn,{credentials:"same-origin"}).then(function(re){if(!re.ok)throw"failed to load wasm binary file at '"+jn+"'";return re.arrayBuffer()}).catch(function(){return dp(jn)});if(b)return new Promise(function(re,ie){b(jn,function(Ie){re(new Uint8Array(Ie))},ie)})}return Promise.resolve().then(function(){return dp(jn)})}function im(){var re={a:hm};function ie(Xe,Ye){var yn=Xe.exports;a.asm=yn,T=a.asm.j,it(T.buffer),mt=a.asm.r,Ju("wasm-instantiate")}Yr("wasm-instantiate");function Ie(Xe){ie(Xe.instance)}function st(Xe){return om().then(function(Ye){return WebAssembly.instantiate(Ye,re)}).then(Xe,function(Ye){P("failed to asynchronously prepare wasm: "+Ye),qs(Ye)})}function Pt(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!lp(jn)&&!cp(jn)&&typeof fetch=="function"?fetch(jn,{credentials:"same-origin"}).then(function(Xe){var Ye=WebAssembly.instantiateStreaming(Xe,re);return Ye.then(Ie,function(yn){return P("wasm streaming compile failed: "+yn),P("falling back to ArrayBuffer instantiation"),st(Ie)})}):st(Ie)}if(a.instantiateWasm)try{var St=a.instantiateWasm(re,ie);return St}catch(Xe){return P("Module.instantiateWasm callback failed with error: "+Xe),!1}return Pt().catch(i),{}}function Fs(re){for(;re.length>0;){var ie=re.shift();if(typeof ie=="function"){ie(a);continue}var Ie=ie.func;typeof Ie=="number"?ie.arg===void 0?mt.get(Ie)():mt.get(Ie)(ie.arg):Ie(ie.arg===void 0?null:ie.arg)}}function Qu(){qs()}function Va(re,ie,Ie){Te.copyWithin(re,ie,ie+Ie)}function lm(){return Te.length}function um(re){try{return T.grow(re-ve.byteLength+65535>>>16),it(T.buffer),1}catch(ie){}}function Dr(re){var ie=lm(),Ie=2147483648;if(re>Ie)return!1;for(var st=1;st<=4;st*=2){var Pt=ie*(1+.2/st);Pt=Math.min(Pt,re+100663296);var St=Math.min(Ie,pe(Math.max(re,Pt),65536)),Xe=um(St);if(Xe)return!0}return!1}var Ua={mappings:{},buffers:[null,[],[]],printChar:function(re,ie){var Ie=Ua.buffers[re];ie===0||ie===10?((re===1?D:P)(te(Ie,0)),Ie.length=0):Ie.push(ie)},varargs:void 0,get:function(){Ua.varargs+=4;var re=Ue[Ua.varargs-4>>2];return re},getStr:function(re){var ie=se(re);return ie},get64:function(re,ie){return re}};function cm(re){return 0}function pp(re,ie,Ie,st,Pt){}function dm(re,ie,Ie,st){for(var Pt=0,St=0;St<Ie;St++){for(var Xe=Ue[ie+St*8>>2],Ye=Ue[ie+(St*8+4)>>2],yn=0;yn<Ye;yn++)Ua.printChar(re,Te[Xe+yn]);Pt+=Ye}return Ue[st>>2]=Pt,0}function hp(){return 6}function qn(){return 28}function fp(re){return Ue[Cp()>>2]=re,re}function pm(re){switch(re){case 30:return 16384;case 85:var ie=2147483648;return ie/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return fp(28),-1}var hm={a:Qu,d:Va,e:Dr,f:cm,c:pp,b:dm,h:hp,g:qn,i:pm},fm=im(),mp=a.___wasm_call_ctors=function(){return(mp=a.___wasm_call_ctors=a.asm.k).apply(null,arguments)},Li=a._init=function(){return(Li=a._init=a.asm.l).apply(null,arguments)},Jr=a._init_with_threads_count=function(){return(Jr=a._init_with_threads_count=a.asm.m).apply(null,arguments)},ec=a._get_threads_count=function(){return(ec=a._get_threads_count=a.asm.n).apply(null,arguments)},mm=a._register_tensor=function(){return(mm=a._register_tensor=a.asm.o).apply(null,arguments)},gm=a._dispose_data=function(){return(gm=a._dispose_data=a.asm.p).apply(null,arguments)},gp=a._dispose=function(){return(gp=a._dispose=a.asm.q).apply(null,arguments)},De=a._Abs=function(){return(De=a._Abs=a.asm.s).apply(null,arguments)},Am=a._Add=function(){return(Am=a._Add=a.asm.t).apply(null,arguments)},ym=a._AddN=function(){return(ym=a._AddN=a.asm.u).apply(null,arguments)},xm=a._All=function(){return(xm=a._All=a.asm.v).apply(null,arguments)},bm=a._Any=function(){return(bm=a._Any=a.asm.w).apply(null,arguments)},vm=a._ArgMax=function(){return(vm=a._ArgMax=a.asm.x).apply(null,arguments)},Ga=a._AvgPool=function(){return(Ga=a._AvgPool=a.asm.y).apply(null,arguments)},wm=a._BatchMatMul=function(){return(wm=a._BatchMatMul=a.asm.z).apply(null,arguments)},km=a._Ceil=function(){return(km=a._Ceil=a.asm.A).apply(null,arguments)},Im=a._ClipByValue=function(){return(Im=a._ClipByValue=a.asm.B).apply(null,arguments)},Sm=a._Conv2D=function(){return(Sm=a._Conv2D=a.asm.C).apply(null,arguments)},Cm=a._Conv2DBackpropInput=function(){return(Cm=a._Conv2DBackpropInput=a.asm.D).apply(null,arguments)},Tm=a._Cos=function(){return(Tm=a._Cos=a.asm.E).apply(null,arguments)},Ap=a._Cosh=function(){return(Ap=a._Cosh=a.asm.F).apply(null,arguments)},Nm=a._CropAndResize=function(){return(Nm=a._CropAndResize=a.asm.G).apply(null,arguments)},Em=a._Cumsum=function(){return(Em=a._Cumsum=a.asm.H).apply(null,arguments)},Qr=a._DepthToSpace=function(){return(Qr=a._DepthToSpace=a.asm.I).apply(null,arguments)},tc=a._DepthwiseConv2dNative=function(){return(tc=a._DepthwiseConv2dNative=a.asm.J).apply(null,arguments)},nc=a._Elu=function(){return(nc=a._Elu=a.asm.K).apply(null,arguments)},Rm=a._Equal=function(){return(Rm=a._Equal=a.asm.L).apply(null,arguments)},Dm=a._Exp=function(){return(Dm=a._Exp=a.asm.M).apply(null,arguments)},_m=a._FlipLeftRight=function(){return(_m=a._FlipLeftRight=a.asm.N).apply(null,arguments)},Fm=a._Floor=function(){return(Fm=a._Floor=a.asm.O).apply(null,arguments)},$m=a._FloorDiv=function(){return($m=a._FloorDiv=a.asm.P).apply(null,arguments)},We=a._FusedBatchNorm=function(){return(We=a._FusedBatchNorm=a.asm.Q).apply(null,arguments)},Om=a._FusedConv2D=function(){return(Om=a._FusedConv2D=a.asm.R).apply(null,arguments)},Pm=a._FusedDepthwiseConv2D=function(){return(Pm=a._FusedDepthwiseConv2D=a.asm.S).apply(null,arguments)},Mm=a._Gather=function(){return(Mm=a._Gather=a.asm.T).apply(null,arguments)},zm=a._GatherNd=function(){return(zm=a._GatherNd=a.asm.U).apply(null,arguments)},Lm=a._Greater=function(){return(Lm=a._Greater=a.asm.V).apply(null,arguments)},Bm=a._GreaterEqual=function(){return(Bm=a._GreaterEqual=a.asm.W).apply(null,arguments)},sc=a._LeakyRelu=function(){return(sc=a._LeakyRelu=a.asm.X).apply(null,arguments)},yp=a._Less=function(){return(yp=a._Less=a.asm.Y).apply(null,arguments)},xp=a._LessEqual=function(){return(xp=a._LessEqual=a.asm.Z).apply(null,arguments)},Wm=a._Log=function(){return(Wm=a._Log=a.asm._).apply(null,arguments)},Vm=a._LogicalAnd=function(){return(Vm=a._LogicalAnd=a.asm.$).apply(null,arguments)},Um=a._Max=function(){return(Um=a._Max=a.asm.aa).apply(null,arguments)},Gm=a._MaxPool=function(){return(Gm=a._MaxPool=a.asm.ba).apply(null,arguments)},Hm=a._Maximum=function(){return(Hm=a._Maximum=a.asm.ca).apply(null,arguments)},jm=a._Mean=function(){return(jm=a._Mean=a.asm.da).apply(null,arguments)},qm=a._Min=function(){return(qm=a._Min=a.asm.ea).apply(null,arguments)},lt=a._Minimum=function(){return(lt=a._Minimum=a.asm.fa).apply(null,arguments)},Xm=a._MirrorPad=function(){return(Xm=a._MirrorPad=a.asm.ga).apply(null,arguments)},Km=a._Multiply=function(){return(Km=a._Multiply=a.asm.ha).apply(null,arguments)},Zm=a._Neg=function(){return(Zm=a._Neg=a.asm.ia).apply(null,arguments)},Bi=a._NonMaxSuppressionV3=function(){return(Bi=a._NonMaxSuppressionV3=a.asm.ja).apply(null,arguments)},bp=a._NonMaxSuppressionV4=function(){return(bp=a._NonMaxSuppressionV4=a.asm.ka).apply(null,arguments)},vp=a._NonMaxSuppressionV5=function(){return(vp=a._NonMaxSuppressionV5=a.asm.la).apply(null,arguments)},wp=a._NotEqual=function(){return(wp=a._NotEqual=a.asm.ma).apply(null,arguments)},Ym=a._OneHot=function(){return(Ym=a._OneHot=a.asm.na).apply(null,arguments)},Jm=a._PadV2=function(){return(Jm=a._PadV2=a.asm.oa).apply(null,arguments)},kp=a._Pow=function(){return(kp=a._Pow=a.asm.pa).apply(null,arguments)},Qm=a._Prelu=function(){return(Qm=a._Prelu=a.asm.qa).apply(null,arguments)},eg=a._Prod=function(){return(eg=a._Prod=a.asm.ra).apply(null,arguments)},tg=a._RealDiv=function(){return(tg=a._RealDiv=a.asm.sa).apply(null,arguments)},ng=a._Relu=function(){return(ng=a._Relu=a.asm.ta).apply(null,arguments)},sg=a._Relu6=function(){return(sg=a._Relu6=a.asm.ua).apply(null,arguments)},Ip=a._ResizeBilinear=function(){return(Ip=a._ResizeBilinear=a.asm.va).apply(null,arguments)},ea=a._Reverse=function(){return(ea=a._Reverse=a.asm.wa).apply(null,arguments)},rg=a._RotateWithOffset=function(){return(rg=a._RotateWithOffset=a.asm.xa).apply(null,arguments)},ag=a._Round=function(){return(ag=a._Round=a.asm.ya).apply(null,arguments)},w5=a._Rsqrt=function(){return(w5=a._Rsqrt=a.asm.za).apply(null,arguments)},Sp=a._ScatterNd=function(){return(Sp=a._ScatterNd=a.asm.Aa).apply(null,arguments)},og=a._SelectV2=function(){return(og=a._SelectV2=a.asm.Ba).apply(null,arguments)},ig=a._Sigmoid=function(){return(ig=a._Sigmoid=a.asm.Ca).apply(null,arguments)},lg=a._Sin=function(){return(lg=a._Sin=a.asm.Da).apply(null,arguments)},ug=a._Softmax=function(){return(ug=a._Softmax=a.asm.Ea).apply(null,arguments)},cg=a._Sqrt=function(){return(cg=a._Sqrt=a.asm.Fa).apply(null,arguments)},dg=a._Square=function(){return(dg=a._Square=a.asm.Ga).apply(null,arguments)},pg=a._SquaredDifference=function(){return(pg=a._SquaredDifference=a.asm.Ha).apply(null,arguments)},hg=a._Step=function(){return(hg=a._Step=a.asm.Ia).apply(null,arguments)},fg=a._StridedSlice=function(){return(fg=a._StridedSlice=a.asm.Ja).apply(null,arguments)},mg=a._Sub=function(){return(mg=a._Sub=a.asm.Ka).apply(null,arguments)},gg=a._Sum=function(){return(gg=a._Sum=a.asm.La).apply(null,arguments)},Ag=a._Tan=function(){return(Ag=a._Tan=a.asm.Ma).apply(null,arguments)},yg=a._Tanh=function(){return(yg=a._Tanh=a.asm.Na).apply(null,arguments)},xg=a._Tile=function(){return(xg=a._Tile=a.asm.Oa).apply(null,arguments)},bg=a._TopK=function(){return(bg=a._TopK=a.asm.Pa).apply(null,arguments)},vg=a._Transform=function(){return(vg=a._Transform=a.asm.Qa).apply(null,arguments)},wg=a._Transpose=function(){return(wg=a._Transpose=a.asm.Ra).apply(null,arguments)},kg=a.__FusedMatMul=function(){return(kg=a.__FusedMatMul=a.asm.Sa).apply(null,arguments)},Ig=a._malloc=function(){return(Ig=a._malloc=a.asm.Ta).apply(null,arguments)},Sg=a._free=function(){return(Sg=a._free=a.asm.Ua).apply(null,arguments)},Cp=a.___errno_location=function(){return(Cp=a.___errno_location=a.asm.Va).apply(null,arguments)},Tp=a.stackSave=function(){return(Tp=a.stackSave=a.asm.Wa).apply(null,arguments)},Np=a.stackRestore=function(){return(Np=a.stackRestore=a.asm.Xa).apply(null,arguments)},rc=a.stackAlloc=function(){return(rc=a.stackAlloc=a.asm.Ya).apply(null,arguments)};a.cwrap=Q;var Wi;function Cg(re){this.name="ExitStatus",this.message="Program terminated with exit("+re+")",this.status=re}pr=function re(){Wi||ac(),Wi||(pr=re)};function ac(re){if(re=re||u,In>0||(En(),In>0))return;function ie(){Wi||(Wi=!0,a.calledRun=!0,!M&&(ss(),_s(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),xs()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=ac,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return ac(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),bT=1e-7,vT=1e-4,Op=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},fc=class{refCount(e){return $s("refCount")}incRef(e){return $s("incRef")}timerAvailable(){return!0}time(e){return $s("time")}read(e){return $s("read")}readSync(e){return $s("readSync")}numDataIds(){return $s("numDataIds")}disposeData(e,t){return $s("disposeData")}write(e,t,n){return $s("write")}move(e,t,n,s,r){return $s("move")}memory(){return $s("memory")}floatPrecision(){return $s("floatPrecision")}epsilon(){return this.floatPrecision()===32?bT:vT}dispose(){return $s("dispose")}};function $s(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function W5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Pp(e,t,n)}function wT(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Pp(e,n,s),Pp(t,n,s)}function mc(e,t,n){return Math.max(e,Math.min(t,n))}function kT(e){return e%2==0?e:e+1}function Pp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function IT(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function ST(e,t){let n=Math.random();return t*n+(1-n)*e}function CT(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Dn(e,t,n=""){O($r(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ka(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Za(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Cn(e)&&!n)for(let s=0;s<e.length;++s)Za(e[s],t,n);else t.push(e);return t}function zt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function TT(e){return e.length===0}function $r(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function un(e){return e%1==0}function NT(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function ET(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function RT(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return W5(t),t}function gc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function DT(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function _T(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Os(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>un(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function V5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Os(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function U5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function G5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function H5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function j5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function FT(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function _g(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function q5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function aa(e){return typeof e=="string"||e instanceof String}function X5(e){return typeof e=="boolean"}function K5(e){return typeof e=="number"}function Mp(e){return Array.isArray(e)?Mp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":K5(e)?"float32":aa(e)?"string":X5(e)?"bool":"float32"}function oa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function zp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Xi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function Z5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=Z5(e+l*i,o,n,s)}return r}function Ki(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Z5(0,e,t,n)}function Fg(e,t){let n=Lp(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Lp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function $T(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Ki(e,new Float32Array(n));if(t==="int32")return Ki(e,new Int32Array(n));if(t==="bool")return Ki(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function $g(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function OT(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function PT(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Og(e){return e&&e.then&&typeof e.then=="function"}function hr(...e){ne().getBool("IS_TEST")||ne().getBool("PROD")||console.warn(...e)}function MT(...e){ne().getBool("IS_TEST")||ne().getBool("PROD")||console.log(...e)}var Y5="tfjsflags",J5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=zT,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&hr(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];hr(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Og(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Y5 in e&&e[Y5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=BT(s,r)})}};function zT(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(LT(t,s[0],s[1]),s.join("="))),t}function LT(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function BT(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ne(){return fr}var fr=null;function WT(e){fr=e}var Pg;function Q5(){if(Pg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Pg=e}return Pg}function VT(){let e=Q5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Mg(e,t){let n=VT();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Zi="Abs",Yi="Acos",Ji="Acosh",ia="Add",Ya="AddN",Qi="All",el="Any",Ja="ArgMax",Ac="ArgMin",tl="Asin",nl="Asinh",sl="Atan",rl="Atanh",al="Atan2",Qa="AvgPool",Bp="AvgPoolGrad",yc="AvgPool3D",Wp="AvgPool3DGrad",eo="BatchMatMul",ol="BatchToSpaceND",Vp="Bincount",eb="BroadcastTo",Up="BroadcastArgs",to="Cast",no="Ceil",la="ClipByValue",Gp="Complex",xc="ComplexAbs",il="Concat",so="Conv2D",Hp="Conv2DBackpropFilter",ro="Conv2DBackpropInput",bc="Conv3D",jp="Conv3DBackpropFilterV2",qp="Conv3DBackpropInputV2",ao="Cos",oo="Cosh",io="Cumsum",ll="CropAndResize",Xp="DenseBincount",ul="DepthToSpace",lo="DepthwiseConv2dNative",Kp="DepthwiseConv2dNativeBackpropFilter",Zp="DepthwiseConv2dNativeBackpropInput",Yp="Diag",vc="Dilation2D",Jp="Dilation2DBackpropInput",Qp="Dilation2DBackpropFilter",uo="RealDiv",eh="Einsum",co="Elu",th="EluGrad",cl="Erf",dl="Equal",po="Exp",pl="ExpandDims",hl="Expm1",nh="FFT",wc="Fill",fl="FlipLeftRight",ho="Floor",fo="FloorDiv",mo="FusedBatchNorm",ml="GatherV2",gl="GatherNd",Al="Greater",go="GreaterEqual",Ao="Identity",sh="IFFT",rh="Imag",yl="IsFinite",xl="IsInf",bl="IsNan",yo="LeakyRelu",vl="Less",wl="LessEqual",ah="LinSpace",xo="Log",kl="Log1p",Il="LogicalAnd",kc="LogicalNot",Ic="LogicalOr",tb="LogSoftmax",Sc="LRN",oh="LRNGrad",bo="Max",vo="Maximum",wo="MaxPool",ih="MaxPoolGrad",Cc="MaxPool3D",lh="MaxPool3DGrad",uh="MaxPoolWithArgmax",ko="Mean",Io="Min",So="Minimum",Co="MirrorPad",Sl="Mod",ch="Multinomial",To="Multiply",Cl="Neg",Tl="NotEqual",Nl="NonMaxSuppressionV3",El="NonMaxSuppressionV4",Rl="NonMaxSuppressionV5",Dl="OnesLike",No="OneHot",_l="Pack",Eo="PadV2",UT="Pool",Ro="Pow",Do="Prelu",Fl="Prod",Tc="Range",dh="Real",$l="Reciprocal",_o="Relu",Ol="Reshape",Nc="ResizeNearestNeighbor",ph="ResizeNearestNeighborGrad",Fo="ResizeBilinear",hh="ResizeBilinearGrad",$o="Relu6",Oo="Reverse",Po="Round",Mo="Rsqrt",Pl="ScatterNd",Ml="Select",zl="Selu",Ll="Slice",zo="Sin",Bl="Sinh",Wl="Sign",Lo="Sigmoid",Vl="Softplus",Bo="Sqrt",Wo="Sum",Ul="SpaceToBatchND",Gl="SplitV",Vo="Softmax",fh="SparseFillEmptyRows",mh="SparseReshape",gh="SparseSegmentMean",Ah="SparseSegmentSum",yh="SparseToDense",Uo="SquaredDifference",Ec="Square",Hl="StridedSlice",xh="StringNGrams",bh="StringSplit",vh="StringToHashBucketFast",Go="Sub",Ho="Tan",jo="Tanh",ua="Tile",jl="TopK",ql="Transform",qo="Transpose",wh="Unique",Xl="Unpack",Rc="UnsortedSegmentSum",Kl="ZerosLike",ca="Step",kh="FromPixels",Zl="RotateWithOffset",Xo="_FusedMatMul",Ko="FusedConv2D",Zo="FusedDepthwiseConv2D",Yl=Mg("kernelRegistry",()=>new Map),Dc=Mg("gradRegistry",()=>new Map);function Ih(e,t){let n=Lg(e,t);return Yl.get(n)}function zg(e){return Dc.get(e)}function Or(e){let t=Yl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function da(e){let{kernelName:t,backendName:n}=e,s=Lg(t,n);Yl.has(s)&&hr(`The kernel '${t}' for backend '${n}' is already registered`),Yl.set(s,e)}function nb(e){let{kernelName:t}=e;Dc.has(t)&&ne().getBool("DEBUG")&&hr(`Overriding the gradient for '${t}'`),Dc.set(t,e)}function GT(e,t){let n=Lg(e,t);if(!Yl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Yl.delete(n)}function HT(e){if(!Dc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Dc.delete(e)}function jT(e,t){Or(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});da(r)})}function Lg(e,t){return`${t}_${e}`}var w={};ze(w,{arraysEqual:()=>$r,assert:()=>O,assertNonNegativeIntegerDimensions:()=>$g,assertNonNull:()=>Ka,assertShapesMatch:()=>Dn,bytesFromStringArray:()=>q5,bytesPerElement:()=>_g,checkConversionForErrors:()=>H5,clamp:()=>mc,computeStrides:()=>Xi,createScalarValue:()=>JT,createShuffledIndices:()=>RT,decodeString:()=>Th,distSquared:()=>CT,encodeString:()=>$c,fetch:()=>e9,fingerPrint64:()=>YT,flatten:()=>Za,getArrayFromDType:()=>G5,getTypedArrayFromDType:()=>U5,hasEncodingLoss:()=>FT,hexToLong:()=>_c,indexToLoc:()=>PT,inferDtype:()=>Mp,inferFromImplicitShape:()=>_T,isBoolean:()=>X5,isFunction:()=>oa,isInt:()=>un,isNumber:()=>K5,isPromise:()=>Og,isScalarShape:()=>TT,isString:()=>aa,isTypedArray:()=>Cn,isValidDtype:()=>j5,locToIndex:()=>OT,makeOnesTypedArray:()=>Fg,makeZerosNestedTypedArray:()=>$T,makeZerosTypedArray:()=>Lp,nearestDivisor:()=>zp,nearestLargerEven:()=>kT,now:()=>Fc,parseAxisParam:()=>Os,randUniform:()=>ST,repeatedTry:()=>DT,rightPad:()=>gc,shuffle:()=>W5,shuffleCombo:()=>wT,sizeFromShape:()=>zt,sizeToSquarishShape:()=>ET,squeezeShape:()=>V5,sum:()=>IT,swap:()=>Pp,tanh:()=>NT,toNestedArray:()=>Ki,toTypedArray:()=>Ch});var sb=Xa(eT()),Yo=sb.default||sb;function _c(e){return Yo.fromString(e,!0,16)}var rb=_c("c3a5c85c97cb3127"),Jo=_c("b492b66fbe98f273"),_n=_c("9ae16a3b2f90404f");function Bg(e){return e.xor(e.shru(47))}function ab(e,t,n){let s=e.slice(t,t+n);return Yo.fromBytes(Array.from(s),!0,!0)}function xt(e,t){return ab(e,t,8)}function ob(e,t){return ab(e,t,4)}function cn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function pa(e,t,n=_c("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function qT(e,t,n,s,r,a){r=r.add(e),a=cn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(cn(r,44)),[r.add(s),a.add(o)]}function Sh(e,t,n,s){return qT(xt(e,t),xt(e,t+8),xt(e,t+16),xt(e,t+24),n,s)}function XT(e,t=e.length){if(t>=8){let n=_n.add(t*2),s=xt(e,0).add(_n),r=xt(e,t-8),a=cn(r,37).mul(n).add(s),o=cn(s,25).add(r).mul(n);return pa(a,o,n)}if(t>=4){let n=_n.add(t*2),s=ob(e,0);return pa(s.shl(3).add(t),ob(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Bg(_n.mul(a).xor(rb.mul(o))).mul(_n)}return _n}function KT(e,t=e.length){let n=_n.add(t*2),s=xt(e,0).mul(Jo),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(_n);return pa(cn(s.add(r),43).add(cn(a,30)).add(o),s.add(cn(r.add(_n),18)).add(a),n)}function ZT(e,t=e.length){let n=_n.add(t*2),s=xt(e,0).mul(_n),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(_n),i=cn(s.add(r),43).add(cn(a,30)).add(o),l=pa(i,s.add(cn(r.add(_n),18)).add(a),n),c=xt(e,16).mul(n),u=xt(e,24),d=i.add(xt(e,t-32)).mul(n),p=l.add(xt(e,t-24)).mul(n);return pa(cn(c.add(u),43).add(cn(d,30)).add(p),c.add(cn(u.add(s),18)).add(d),n)}function YT(e,t=e.length){let n=Yo.fromNumber(81,!0);if(t<=32)return t<=16?XT(e,t):KT(e,t);if(t<=64)return ZT(e,t);let s=n,r=n.mul(Jo).add(113),a=Bg(r.mul(_n).add(113)).mul(_n),o=[Yo.UZERO,Yo.UZERO],i=[Yo.UZERO,Yo.UZERO];s=s.mul(_n).add(xt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=cn(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(Jo),r=cn(r.add(o[1]).add(xt(e,l+48)),42).mul(Jo),s=s.xor(i[1]),r=r.add(o[0]).add(xt(e,l+40)),a=cn(a.add(i[0]),33).mul(Jo),o=Sh(e,l,o[1].mul(Jo),s.add(i[0])),i=Sh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Jo.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=cn(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(d),r=cn(r.add(o[1]).add(xt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(xt(e,l+40))),a=cn(a.add(i[0]),33).mul(d),o=Sh(e,l,o[1].mul(d),s.add(i[0])),i=Sh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],pa(pa(o[0],i[0],d).add(Bg(r).mul(rb)).add(a),pa(o[1],i[1],d).add(s),d)}function JT(e,t){return t==="string"?$c(e):Ch([e],t)}function QT(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ch(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Za(e)),ne().getBool("DEBUG")&&H5(e,t),QT(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Fc(){return ne().platform.now()}function e9(e,t){return ne().platform.fetch(e,t)}function $c(e,t="utf-8"){return t=t||"utf-8",ne().platform.encode(e,t)}function Th(e,t="utf-8"){return t=t||"utf-8",ne().platform.decode(e,t)}var t9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new s9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Fc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Fc()-o})}if(ne().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{n9(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function n9(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var s9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?gc(`${s}ms`,9):s.error,i=gc(e,25),l=t.rank,c=t.size,u=gc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function r9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function a9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!$r(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var ib=20,Oc=3,Wg=7;function o9(e,t,n,s){let r=Xi(t),a=i9(e,t,n,r),o=t.length,i=Nh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function i9(e,t,n,s){let r=zt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Mc(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Pc(l[u+d],0,n).length)}return o}function Pc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Wg))} + ${parseFloat(e[1].toFixed(Wg))}j`:aa(e)?s=`'${e}'`:n==="bool"?s=lb(e):s=parseFloat(e.toFixed(Wg)).toString(),gc(s,t)}function lb(e){return e===0?"false":"true"}function Nh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Mc(e);return[Pc(m[0],0,n)]}return n==="bool"?[lb(e[0])]:[e[0].toString()]}if(l===1){if(i>ib){let g=Oc*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-Oc)*o,i*o));return n==="complex64"&&(A=Mc(A),y=Mc(y)),["["+A.map((x,b)=>Pc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>Pc(x,r[i-Oc+b],n)).join(", ")+"]"]}let m=n==="complex64"?Mc(e):Array.from(e);return["["+m.map((g,A)=>Pc(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>ib){for(let m=0;m<Oc;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-Oc;m<i;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function Mc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=zt(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||G5(t,this.size),this.strides=Xi(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return mr().makeTensor(this.values,this.shape,this.dtype)}},mr=null,Jl=null,l9=null;function u9(e){mr=e}function c9(e){Jl=e}function d9(e){l9=e}var Ge=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=zt(e),this.strides=Xi(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Jl.buffer(this.shape,this.dtype,e)}bufferSync(){return Jl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Ki(this.shape,e,this.dtype==="complex64")}arraySync(){return Ki(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=mr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Th(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=mr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Th(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await mr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(mr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jl.print(this,e)}clone(){return this.throwIfDisposed(),Jl.clone(this)}toString(e=!1){let t=this.dataSync();return o9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),mr().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ae(){return Mg("Tensor",()=>Ge)}ae();var zc=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!$r(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);mr().disposeTensor(this),this.dataId=e.dataId,mr().incRef(this,null)}dispose(){mr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(zc,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var Xs={};ze(Xs,{assertTypesMatch:()=>ub,getTensorsInContainer:()=>qg,isTensorInList:()=>h9,makeTypesMatch:()=>_t});var Vg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Vg||(Vg={}));var Ug;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Ug||(Ug={}));var Gg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Gg||(Gg={}));var Hg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Hg||(Hg={}));var jg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(jg||(jg={}));var p9={float32:Hg,int32:Ug,bool:Gg,complex64:jg};function Ps(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return p9[e][t]}function Eh(e){return Ps(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ps(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function ub(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function h9(e,t){return t.some(n=>n.id===e.id)}function qg(e){let t=[],n=new Set;return cb(e,t,n),t}function cb(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!f9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),cb(a,t,n))}}function f9(e){return Array.isArray(e)||typeof e=="object"}function Xg(e){return e.kernelName!=null}var db=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Lc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new db}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(hr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new t9(this.backendInstance),!0}setupRegisteredKernels(){Or(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Or(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof fc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,hr(`Initialization of backend ${e} failed`),hr(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return hr(`Initialization of backend ${e} failed`),hr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Lc.nextTensorId++}nextVariableId(){return Lc.nextVariableId++}clone(e){let t=W.runKernel(Ao,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel(to,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Ih(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Xg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Xg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Ih(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:C}=b;return this.makeTensorFromDataId(v,k,C)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=Xg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=zg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&aa(e[0])&&(r=e.map(i=>$c(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=q5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new zc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*_g(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof zc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*_g(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=zg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=Lp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=qg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=r9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?m9(r.shape):n,a9(o,a,l=>this.tidy(l),g9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(oa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(oa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];O(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(c.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Fc(),n=await this.backend.time(e);return n.wallMs=Fc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new db;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Lc.nextTensorId=0;Lc.nextVariableId=0;function m9(e){let t=Fg(zt(e),"float32");return W.makeTensor(t,e,"float32")}function pb(){let e=Q5();if(e._tfengine==null){let t=new J5(e);e._tfengine=new Lc(t)}return WT(e._tfengine.ENV),u9(()=>e._tfengine),e._tfengine}var W=pb();function g9(e,t){let n={a:e,b:t};return W.runKernel(ia,n)}var Bc={};ze(Bc,{isBrowser:()=>hb,isMobile:()=>x9,mockIsMobile:()=>y9});function A9(){return typeof navigator!="undefined"&&navigator!=null}var Kg;function y9(e){Kg=e}function x9(e){if(Kg!==void 0)return Kg;if(e||A9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function hb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ks=ne();Ks.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ks.registerFlag("IS_BROWSER",()=>hb());Ks.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ks.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ks.registerFlag("PROD",()=>!1);Ks.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ks.getBool("DEBUG"));Ks.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ks.registerFlag("IS_TEST",()=>!1);Ks.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ks.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function gr(e,t){let n=e;if(Cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Cn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&ne().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&fb(e,s,[]),s}function fb(e,t,n){if(n=n||[],!Array.isArray(e)&&!Cn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)fb(e[r],s,n.concat(r))}function mb(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof Ge)return mb(s,e.dtype,t,n),e;let r=Mp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),mb(s,r,t,n),e==null||!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=gr(e,r);!Cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ch(e,r):Za(e,[],!0);return W.makeTensor(i,a,r)}function Wc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var gb="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+gb;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return Og(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function b9(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");Dn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(Gp,r)}var ha=V({complex_:b9});function fa(e,t,n,s){if(s==null&&(s=Mp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){$g(t);let r=zt(t),a=zt(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==zt(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Ch(e,s):Za(e,[],!0),W.makeTensor(e,t,s)}function Lt(e,t,n){let s=gr(e,n);return fa(e,t,s,n)}var Zg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Rh=4;async function v9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Rh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=Rh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:w9(a),specs:n}}function Ab(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=zt(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Zg[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=N9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=zt(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Rh))[0];r+=Rh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=Zg[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Lt(h,l,"float32"),g=Lt(f,l,"float32");n[o]=ha(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Lt(u,l,i))}return n}function w9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Yg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function yb(e){return Yg?Buffer.byteLength(e):new Blob([e]).size}function k9(e){if(Yg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function I9(e){if(Yg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Jg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function xb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function bb(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Qg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Vc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:yb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:yb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function S9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function C9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function T9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function N9(){let e=S9(),t=C9(),n=T9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Mt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Mt.instance==null&&(Mt.instance=new Mt),Mt.instance}static registerSaveRouter(e){Mt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Mt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Mt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Mt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Mt.getInstance().loadRouters:Mt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},E9=e=>Mt.registerSaveRouter(e),R9=e=>Mt.registerLoadRouter(e),D9=e=>Mt.getSaveHandlers(e),_9=(e,t)=>Mt.getLoadHandlers(e,t),eA="tensorflowjs",tA=1,Qo="models_store",ma="model_info_store";function vb(){if(!ne().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function nA(e){let t=e.result;t.createObjectStore(Qo,{keyPath:"modelPath"}),t.createObjectStore(ma,{keyPath:"modelPath"})}var ei=class{constructor(e){if(this.indexedDB=vb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(eA,tA);r.onupgradeneeded=()=>nA(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Qo,"readonly"),l=o.objectStore(Qo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Vc(t),i=a.transaction(ma,"readwrite"),l=i.objectStore(ma),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Qo,"readwrite");let p=u.objectStore(Qo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(ma);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ei.URL_SCHEME="indexeddb://";var wb=e=>ne().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ei.URL_SCHEME)?F9(e.slice(ei.URL_SCHEME.length)):null;Mt.registerSaveRouter(wb);Mt.registerLoadRouter(wb);function F9(e){return new ei(e)}function $9(e){return e.startsWith(ei.URL_SCHEME)?e.slice(ei.URL_SCHEME.length):e}var O9=class{constructor(){this.indexedDB=vb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(eA,tA);n.onupgradeneeded=()=>nA(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ma,"readonly"),o=r.objectStore(ma).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=$9(e),new Promise((t,n)=>{let s=this.indexedDB.open(eA,tA);s.onupgradeneeded=()=>nA(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ma,"readwrite"),o=a.objectStore(ma),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Qo,"readwrite");let p=l.objectStore(Qo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Pr="/",Ql="tensorflowjs_models",kb="info",P9="model_topology",M9="weight_specs",z9="weight_data",L9="model_metadata";function Ib(e){return{info:[Ql,e,kb].join(Pr),topology:[Ql,e,P9].join(Pr),weightSpecs:[Ql,e,M9].join(Pr),weightData:[Ql,e,z9].join(Pr),modelMetadata:[Ql,e,L9].join(Pr)}}function Sb(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function B9(e){let t=e.split(Pr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Pr)}function W9(e){return e.startsWith(ti.URL_SCHEME)?e.slice(ti.URL_SCHEME.length):e}var ti=class{constructor(e){if(!ne().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ib(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Vc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,k9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Sb(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=I9(a),t}};ti.URL_SCHEME="localstorage://";var Cb=e=>ne().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ti.URL_SCHEME)?V9(e.slice(ti.URL_SCHEME.length)):null;Mt.registerSaveRouter(Cb);Mt.registerLoadRouter(Cb);function V9(e){return new ti(e)}var U9=class{constructor(){O(ne().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ql+Pr,n=Pr+kb;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=B9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=W9(e);let t=Ib(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Sb(t),n}},eu="://",bs=class{constructor(){this.managers={}}static getInstance(){return bs.instance==null&&(bs.instance=new bs),bs.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(eu)&&(e=e.slice(0,e.indexOf(eu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=bs.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Dh(e){if(e.indexOf(eu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${bs.getSchemes().join(",")}`);return{scheme:e.split(eu)[0],path:e.split(eu)[1]}}async function Tb(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Mt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Mt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Dh(e).scheme,l=Dh(e).path,c=i===Dh(e).scheme,u=await r.load();n&&c&&await bs.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await bs.getManager(i).removeModel(l),d.modelArtifactsInfo}async function G9(){let e=bs.getSchemes(),t={};for(let n of e){let s=await bs.getManager(n).listModels();for(let r in s){let a=n+eu+r;t[a]=s[r]}}return t}async function H9(e){let t=Dh(e);return bs.getManager(t.scheme).removeModel(t.path)}async function j9(e,t){return Tb(e,t,!1)}async function q9(e,t){return Tb(e,t,!0)}var X9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ne().get("IS_BROWSER")){ne().setPlatform("browser",new X9);try{bs.registerManager(ti.URL_SCHEME,new U9)}catch(e){}try{bs.registerManager(ei.URL_SCHEME,new O9)}catch(e){}}var K9={importFetch:()=>tT()},sA,Z9=class{constructor(){this.util=qi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ne().global.fetch!=null?ne().global.fetch(e,t):(sA==null&&(sA=K9.importFetch()),sA(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ne().get("IS_NODE")&&ne().setPlatform("node",new Z9);function He(e,t="float32",n){return t=t||"float32",$g(e),new Jt(e,t,n)}function Y9(e,t){let n=$(e,"x","cast");if(!j5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel(to,s,r)}var de=V({cast_:Y9});function J9(e){let n={x:$(e,"x","clone","string_or_numeric")};return W.runKernel(Ao,n)}var Zs=V({clone_:J9});function Nb(e,t=!1){console.log(e.toString(t))}pb();var Q9={buffer:He,cast:de,clone:Zs,print:Nb};c9(Q9);var Xn={};ze(Xn,{browserFiles:()=>oN,browserHTTPRequest:()=>dN,concatenateArrayBuffers:()=>Jg,copyModel:()=>j9,decodeWeights:()=>Ab,encodeWeights:()=>v9,fromMemory:()=>hN,getLoadHandlers:()=>_9,getModelArtifactsForJSON:()=>Qg,getModelArtifactsInfoForJSON:()=>Vc,getSaveHandlers:()=>D9,http:()=>oA,isHTTPScheme:()=>aA,listModels:()=>G9,loadWeights:()=>iN,moveModel:()=>q9,registerLoadRouter:()=>R9,registerSaveRouter:()=>E9,removeModel:()=>H9,weightsLoaderFactory:()=>_b,withSaveHandler:()=>fN});var eN="model",tN=".json",nN=".weights.bin";function Eb(e){return new Promise(t=>setTimeout(t)).then(e)}var tu=class{constructor(e){if(!ne().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(tu.URL_SCHEME)&&(e=e.slice(tu.URL_SCHEME.length)),(e==null||e.length===0)&&(e=eN),this.modelJsonFileName=e+tN,this.weightDataFileName=e+nN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=bb(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Eb(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Eb(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Vc(e)}}}};tu.URL_SCHEME="downloads://";var sN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Qg(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Jg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>xb(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=xb(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},rN=e=>ne().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tu.URL_SCHEME)?aN(e.slice(tu.URL_SCHEME.length)):null;Mt.registerSaveRouter(rN);function aN(e="model"){return new tu(e)}function oN(e){return new sN(e)}function Rb(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),O(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function Db(e,t){t==null&&(t={});let n=t.fetchFunc==null?ne().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Rb(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await Rb(i,t.onProgress,l,c)}async function iN(e,t="",n,s){return _b(o=>Db(o,{requestInit:s}))(e,t,n)}function _b(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=Zg[A]*zt(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(u[p+b]);A.set(v,y),y+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=Ab(v,[b.manifestEntry]);for(let C in k)d[C]=k[C]}),p+=f}),d}}var lN="application/octet-stream",uN="application/json",rA=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ne().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=bb(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:uN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:lN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Vc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Qg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=cN(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await Db(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Jg(l)]}};rA.URL_SCHEME_REGEX=/^https?:\/\//;function cN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function aA(e){return e.match(rA.URL_SCHEME_REGEX)!=null}var Fb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>aA(s)):n=aA(e),n)return oA(e,t)}return null};Mt.registerSaveRouter(Fb);Mt.registerLoadRouter(Fb);function oA(e,t){return new rA(e,t)}function dN(e,t){return oA(e,t)}var iA=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},pN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function hN(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new iA(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new iA({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new iA({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function fN(e){return new pN(e)}var $b={};ze($b,{confusionMatrix:()=>xN});function mN(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=_t(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(eo,o,i)}var Ve=V({matMul_:mN});function gN(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(No,a,o)}var nu=V({oneHot_:gN});function AN(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return W.runKernel(qo,s,r)}var Ke=V({transpose_:AN});function yN(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=nu(de(s,"int32"),n),o=nu(de(r,"int32"),n),i=Ke(a),l=Ve(i,o);return de(l,"int32")}var xN=V({confusionMatrix_:yN}),Ms={};ze(Ms,{fromPixels:()=>CN,fromPixelsAsync:()=>IN,toPixels:()=>SN});function Ob(e,t,n){if(Ka(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=gr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return fa(e,t,s,n)}var su;function Pb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Ih(kh,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(kh,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,c,u).data:s||n?d=e.data:(a||r||i)&&(su==null&&(su=document.createElement("canvas").getContext("2d")),su.canvas.width=c,su.canvas.height=u,su.drawImage(e,0,0,c,u),d=su.getImageData(0,0,c,u).data);let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Ob(p,[u,c,t],"int32")}function bN(e){return e!=null&&e.data instanceof Uint8Array}function vN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function wN(e){return e!=null&&e.width!==0&&e.height!==0}function kN(e){return vN()&&!(e instanceof ImageBitmap)&&wN(e)&&!bN(e)}async function IN(e,t=3){let n=null;if(ne().getBool("WRAP_TO_IMAGEBITMAP")&&kN(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Pb(n,t)}async function SN(e,t){let n=$(e,"img","toPixels");if(!(e instanceof Ge)){let c=n;n=de(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var CN=V({fromPixels_:Pb}),lA={};ze(lA,{prepareAndValidate:()=>Mb});function Mb(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(zt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...Xi(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var uA={};ze(uA,{calculateShapes:()=>zb,validateInput:()=>dA,validateUpdateShape:()=>cA});function cA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function dA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}cA(n,t,e)}function zb(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=zt(t.shape)/i,c=[...Xi(n.slice(0,r)),1],u=zt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Fn={};ze(Fn,{assertParamsValid:()=>TN,computeFlatOffset:()=>EN,computeOutShape:()=>Lb,getNormalizedAxes:()=>Ub,isSliceContinous:()=>NN,maskToAxes:()=>_h,parseSliceParams:()=>Kb,sliceInfo:()=>RN,startForAxis:()=>qb,startIndicesWithElidedDims:()=>Gb,stopForAxis:()=>Xb,stopIndicesWithElidedDims:()=>Hb,stridesForAxis:()=>jb,stridesWithElidedDims:()=>Bb});function TN(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function _h(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Lb(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function Bb(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function Wb(e,t,n){return n<=e?n:n-(t-1)}function Vb(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function Ub(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=Gb(o,h,f,s,e),d=Hb(i,h,f,r,e),p=Bb(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=qb(o,s,a,e,h,l),d[h]=Xb(i,r,a,e,h,l),p[h]=jb(a,h,l);return{begin:u,end:d,strides:p}}function Gb(e,t,n,s,r){let a=[...r],o=Vb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=Wb(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function Hb(e,t,n,s,r){let a=[...r],o=Vb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=Wb(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=mc(0,a[i],r[i])}return a}function jb(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function qb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=mc(0,o,l-1),o}function Xb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=mc(0,o,l):o=mc(-1,o,l-1),o}function NN(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function EN(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Kb(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function RN(e,t,n,s,r,a,o,i,l){let c=t.slice(),u=n.slice(),d=s;s==null&&(d=new Array(c.length));let p=_h(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,f=_h(i),m=e.slice();f.forEach(C=>{c[C]=0,u[C]=1,m.splice(C,0,1)});let{begin:g,end:A,strides:y}=Ub(m,p,h,c,u,d,r,a,o);c=g,u=A,d=y;let x=_h(l);x.forEach(C=>{u[C]=c[C]+1,d[C]=1});let b=Lb(c,u,d),v=b.filter((C,N)=>x.indexOf(N)===-1);return{nonStrided:d.every(C=>C===1),$begin:c,$end:u,$strides:d,size:b,newShape:m,outShape:v}}var ue={};ze(ue,{Serializable:()=>Zb,SerializationMap:()=>ni,registerClass:()=>ga});var Zb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ni=class{constructor(){this.classNameMap={}}static getMap(){return ni.instance==null&&(ni.instance=new ni),ni.instance}static register(e){ni.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ga(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ni.register(e)}var Yb={};ze(Yb,{TEST_EPSILON_FLOAT16:()=>Jb,encodeStrings:()=>Qb,expectArrayBuffersEqual:()=>MN,expectArraysClose:()=>_N,expectArraysEqual:()=>$N,expectNumbersClose:()=>ON,expectPromiseToFail:()=>FN,expectValuesInRange:()=>PN,testEpsilon:()=>pA});var DN=.001,Jb=.1;function _N(e,t,n){return n==null&&(n=pA()),hA(e,t,(s,r)=>fA(s,r,n))}function pA(){return W.backend.floatPrecision()===32?DN:Jb}function hA(e,t,n){let s=!0;if((Cn(e)||Cn(t))&&(s=!1),Cn(e)&&Cn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=gr(e),i=gr(t);if(!$r(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Cn(e)?e:Za(e),a=Cn(t)?t:Za(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function FN(e,t){e().then(()=>t.fail(),()=>t())}function $N(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return aa(e)||aa(e[0])||aa(t)||aa(t[0])?hA(e,n,(s,r)=>s==r):hA(e,t,(s,r)=>fA(s,r,0))}function ON(e,t,n){if(n==null&&(n=pA()),!fA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function fA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function PN(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function MN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Qb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Qb(n):e[t]=$c(n)}return e}var Uc="3.10.0";function e3(){ne().set("PROD",!0)}function zN(){ne().set("DEBUG",!0)}function LN(){ne().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function mA(e){ne().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}d9(mA);function BN(){W.disposeVariables()}function as(){return W}function Fh(){return W.memory()}function WN(e){return W.profile(e)}function j(e,t){return W.tidy(e,t)}function Y(e){qg(e).forEach(n=>n.dispose())}function dn(e){return W.keep(e)}function VN(e){return W.time(e)}function t3(e){return W.setBackend(e)}function $h(){return W.ready()}function Ys(){return W.backendName}function UN(e){W.removeBackend(e)}function gA(e){return W.findBackend(e)}function GN(e){return W.findBackendFactory(e)}function ru(e,t,n=1){return W.registerBackend(e,t,n)}function Ar(){return W.backend}function HN(e,t){ne().setPlatform(e,t)}function jN(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(ia,r)}var le=V({add_:jN});function qN(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(fo,r)}var Oh=V({floorDiv_:qN});function XN(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=_t(n,s),n.dtype==="int32"&&s.dtype==="int32")return Oh(n,s);let r={a:n,b:s},a={};return W.runKernel(uo,r,a)}var me=V({div_:XN});function KN(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(To,r)}var B=V({mul_:KN});function ZN(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(xc,n)}else{let n={x:t};return W.runKernel(Zi,n)}}var Gt=V({abs_:ZN});function YN(e){let n={x:$(e,"x","acos")};return W.runKernel(Yi,n)}var AA=V({acos_:YN});function JN(e){let n={x:$(e,"x","acosh")};return W.runKernel(Ji,n)}var yA=V({acosh_:JN});function QN(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!$r(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(Ya,s)}var Ph=V({addN_:QN});function eE(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(Qi,r,a)}var Mh=V({all_:eE});function tE(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(el,r,a)}var Gc=V({any_:tE});function nE(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return W.runKernel(Ja,s,r)}var vs=V({argMax_:nE});function sE(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return W.runKernel(Ac,s,r)}var xA=V({argMin_:sE});function rE(e){let n={x:$(e,"x","asin")};return W.runKernel(tl,n)}var bA=V({asin_:rE});function aE(e){let n={x:$(e,"x","asinh")};return W.runKernel(nl,n)}var vA=V({asinh_:aE});function oE(e){let n={x:$(e,"x","atan")};return W.runKernel(sl,n)}var wA=V({atan_:oE});function iE(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(al,r)}var kA=V({atan2_:iE});function lE(e){let n={x:$(e,"x","atanh")};return W.runKernel(rl,n)}var IA=V({atanh_:lE});function uE(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=r3(r);return Hc(e,i,n,a,s,null,null,l)}function n3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=zh(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Hc(e,c,n,s,r,a,!1,o)}function cE(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=CA(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return s3(e,u,n,s,r,!1,d,a)}function Hc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=zh(n),[A,y]=zh(s),x=au(p,A),b=au(h,y),{padInfo:v,outHeight:k,outWidth:C}=hE(r,c,u,m,g,x,b,a,i),N=o?f*d:f,D;return i==="channelsFirst"?D=[l,N,k,C]:i==="channelsLast"&&(D=[l,k,C,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:C,outChannels:N,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:D,filterShape:t}}function s3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,y,x]=CA(n),[b,v,k]=CA(s),C=au(h,b),N=au(f,v),D=au(m,k),{padInfo:P,outDepth:E,outHeight:F,outWidth:T}=fE(r,c,u,d,A,y,x,C,N,D,i),M=a?g*p:g,G;return o==="channelsFirst"?G=[l,M,E,F,T]:o==="channelsLast"&&(G=[l,E,F,T,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:E,outHeight:F,outWidth:T,outChannels:M,padInfo:P,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:N,effectiveFilterWidth:D,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:G,filterShape:t}}function dE(e,t,n,s,r){s==null&&(s=SA(e,t,n));let a=e[0],o=e[1],i=si((a-t+2*s)/n+1,r),l=si((o-t+2*s)/n+1,r);return[i,l]}function pE(e,t,n,s,r,a){r==null&&(r=SA(e,t,s));let o=e[0],i=e[1],l=e[2],c=si((o-t+2*r)/s+1,a),u=si((i-t+2*r)/s+1,a),d=si((l-t+2*r)/s+1,a);return[c,u,d,n]}function SA(e,t,n,s=1){let r=au(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function zh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function CA(e){return typeof e=="number"?[e,e,e]:e}function au(e,t){return t<=1?e:e+(e-1)*(t-1)}function hE(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=dE([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=si((t-a+p+h)/s+1,i),d=si((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function fE(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=pE([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),C=A-k;d={top:b,bottom:v,left:k,right:C,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function si(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Aa(e){let[t,n,s]=zh(e);return t===1&&n===1&&s===1}function yr(e,t){return Aa(e)||Aa(t)}function r3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function mE(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(Ol,s,r)}var U=V({reshape_:mE});function gE(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;O(yr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&O(un(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Qa,c,u);return d=de(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var jc=V({avgPool_:gE});function AE(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(un(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(yc,c,u);return d=de(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var TA=V({avgPool3d_:AE});function yE(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Wc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Zs(n[0]);let s=n,r={axis:t};return W.runKernel(il,s,r)}var gt=V({concat_:yE});function xE(e){let n={x:$(e,"x","sigmoid","float32")};return W.runKernel(Lo,n)}var Kn=V({sigmoid_:xE});function bE(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Ll,r,a)}var Fe=V({slice_:bE});function vE(e){let n={x:$(e,"x","tanh","float32")};return W.runKernel(jo,n)}var ri=V({tanh_:vE});function wE(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),c=$(s,"data","basicLSTMCell"),u=$(r,"c","basicLSTMCell"),d=$(a,"h","basicLSTMCell"),p=gt([c,d],1),h=Ve(p,i),f=le(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=Fe(f,[0,0],A),x=Fe(f,[0,g],A),b=Fe(f,[0,g*2],A),v=Fe(f,[0,g*3],A),k=le(B(Kn(y),ri(x)),B(u,Kn(le(o,b)))),C=B(ri(k),Kn(v));return[k,C]}var kE=V({basicLSTMCell_:wE});function IE(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(ol,a,o)}var qc=V({batchToSpaceND_:IE});function SE(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function CE(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;s!=null&&(u=$(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:SE(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(mo,p,h);return U(f,o.shape)}var ai=V({batchNorm_:CE});function TE(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var a3=V({batchNorm2d_:TE});function NE(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var o3=V({batchNorm3d_:NE});function EE(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),c;r!=null&&(c=$(r,"scale","batchNorm"));let u;return s!=null&&(u=$(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),ai(o,i,l,u,c,a)}var i3=V({batchNorm4d_:EE});function RE(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(Vp,a,o)}var NA=V({bincount_:RE});function DE(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(Up,r)}var l3=V({broadcastArgs_:DE});function _E(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=U(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Zs(n);let i={x:n},l={reps:a};return W.runKernel(ua,i,l)}var ou=V({broadcastTo_:_E});function FE(e){let n={x:$(e,"x","ceil","float32")};return W.runKernel(no,n)}var EA=V({ceil_:FE});function $E(e,t,n){let s=$(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(la,r,a)}var Zn=V({clipByValue_:$E});function OE(e){return gt(e,0)}var u3=V({concat1d_:OE});function PE(e,t){return gt(e,t)}var iu=V({concat2d_:PE});function ME(e,t){return gt(e,t)}var c3=V({concat3d_:ME});function zE(e,t){return gt(e,t)}var d3=V({concat4d_:zE});function LE(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&O(un(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];O(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),O(yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(so,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mr=V({conv2d_:LE});function BE(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1]])),O(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&O(un(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(yr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Mr(p,d,[1,n],s,"NHWC",[1,a],o);return u?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var Lh=V({conv1d_:BE});function WE(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&O(un(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(ro,p,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var RA=V({conv2DBackpropInput_:WE});function VE(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return RA(n,o,i,s,r,"NHWC",a)}var Bh=V({conv2dTranspose_:VE});function UE(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(yr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=W.runKernel(bc,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var DA=V({conv3d_:UE});function GE(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=W.runKernel(qp,u,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var p3=V({conv3DBackpropInput_:GE});function HE(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return p3(n,a,o,s,r)}var h3=V({conv3dTranspose_:HE});function jE(e){let n={x:$(e,"x","cos","float32")};return W.runKernel(ao,n)}var Xc=V({cos_:jE});function qE(e){let n={x:$(e,"x","cosh","float32")};return W.runKernel(oo,n)}var Wh=V({cosh_:qE});function XE(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(io,a,o)}var Vh=V({cumsum_:XE});function KE(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel(Xp,o,i)}var f3=V({denseBincount_:KE});function ZE(e,t,n="NHWC"){let s=$(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(ul,i,l)}var _A=V({depthToSpace_:ZE});function YE(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&O(un(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=W.runKernel(lo,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var lu=V({depthwiseConv2d_:YE});function JE(e){let n={x:$(e,"x","diag")};return W.runKernel(Yp,n)}var QE=V({diag_:JE});function eR(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=W.runKernel(vc,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var FA=V({dilation2d_:eR});function tR(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Qt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function bt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function nR(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(dl,r)}var os=V({equal_:nR});function sR(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=bt(bt(a.shape,s.shape),r.shape),i=ou(a,o),l=ou(s,o),c=ou(r,o),u={condition:i,t:l,e:c};return W.runKernel(Ml,u)}var Tn=V({where_:sR});function rR(e){let n={x:$(e,"x","zerosLike")};return W.runKernel(Kl,n)}var Ze=V({zerosLike_:rR});function aR(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=_t(n,s);let r=me(n,s),a=Ze(r),o=os(s,a);return Tn(o,a,r)}var $A=V({divNoNan_:aR});function oR(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Ve(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Ve(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Ve(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Ve(n,o)}}var m3=V({dot_:oR});function iR(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(eh,n,s)}var g3=V({einsum_:iR});function lR(e){let n={x:$(e,"x","elu","float32")};return W.runKernel(co,n)}var uu=V({elu_:lR});function uR(e){let t=$(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return W.runKernel(cl,n)}var OA=V({erf_:uR});function cR(e){let n={x:$(e,"x","exp")};return W.runKernel(po,n)}var is=V({exp_:cR});function dR(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(pl,s,r)}var Bt=V({expandDims_:dR});function pR(e){let n={x:$(e,"x","expm1")};return W.runKernel(hl,n)}var PA=V({expm1_:pR});function hR(e,t){let n=$(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(ua,s,r)}var ws=V({tile_:hR});function fR(e,t,n,s="float32"){t==null&&(t=e);let r=He([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return ws(Bt(o,0),[n[0],1,1]);if(n.length===2)return ws(Bt(Bt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return ws(Bt(Bt(Bt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var MA=V({eye_:fR});function cu(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(wc,{},s)}function mR(e){let n={x:$(e,"x","floor","float32")};return W.runKernel(ho,n)}var du=V({floor_:mR});function gR(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(ml,o,i)}var oi=V({gather_:gR});function AR(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Al,r)}var Yn=V({greater_:AR});function yR(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(go,r)}var ya=V({greaterEqual_:yR});function xR(e){let n={input:$(e,"input","imag")};return W.runKernel(rh,n)}var Uh=V({imag_:xR});function bR(e){let n={x:$(e,"x","isFinite")};return W.runKernel(yl,n)}var A3=V({isFinite_:bR});function vR(e){let n={x:$(e,"x","isInf")};return W.runKernel(xl,n)}var y3=V({isInf_:vR});function wR(e){let n={x:$(e,"x","isNaN")};return W.runKernel(bl,n)}var zA=V({isNaN_:wR});function kR(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(yo,s,r)}var Kc=V({leakyRelu_:kR});function IR(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(vl,r)}var Gh=V({less_:IR});function SR(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(wl,r)}var xa=V({lessEqual_:SR});function x3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(ah,{},s)}function CR(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(un(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=W.runKernel(Sc,l,c);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var LA=V({localResponseNormalization_:CR});function TR(e){let n={x:$(e,"x","log","float32")};return W.runKernel(xo,n)}var ls=V({log_:TR});function NR(e){let n={x:$(e,"x","log1p")};return W.runKernel(kl,n)}var Zc=V({log1p_:NR});function ER(e){return O(oa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&Dn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Hh(o),o[0]})}}function RR(e){return O(oa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Wc(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&Dn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(o),o})}}function DR(e){return O(oa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return Hh(s),{grad:s[0],value:r}}}function _R(e){return O(oa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&Dn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(s.grads),s}}function b3(e,t){O(oa(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(c=>c instanceof zc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in W.registeredVariables)t.push(W.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);O(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function xr(e){return W.customGrad(e)}function Hh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function FR(e){let n={x:$(e,"x","neg")};return W.runKernel(Cl,n)}var Tt=V({neg_:FR});function $R(e){let n={x:$(e,"x","softplus")};return W.runKernel(Vl,n)}var ii=V({softplus_:$R});function OR(e){let t=$(e,"x","logSigmoid");return xr(s=>({value:Tt(ii(Tt(s))),gradFunc:o=>B(o,Kn(Tt(s)))}))(t)}var v3=V({logSigmoid_:OR});function PR(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(bo,r,a)}var $n=V({max_:PR});function MR(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Go,r)}var xe=V({sub_:MR});function zR(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Wo,r,a)}var Se=V({sum_:zR});function LR(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return xr((r,a)=>{let o=!0,i=$n(r,t,!0),l=xe(r,i),c=xe(de(l,"float32"),ls(Se(is(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=is(h);return xe(d,B(Se(d,t,f),m))}}})(n)}var jh=V({logSoftmax_:LR});function BA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function w3(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function k3(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function li(e,t){let n=t.map(s=>1);return w3(e,n,t)}function BR(e,t,n){O(BA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function I3(e,t){if(BA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function WA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function WR(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function VR(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=Os(t,s.shape),a=$n(s,r,!0),o=xe(s,a),i=is(o),l=Se(i,r),c=ls(l),u=le(U(a,c.shape),c);if(n){let d=li(u.shape,r);return U(u,d)}return u}var VA=V({logSumExp_:VR});function UR(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Il,r)}var zs=V({logicalAnd_:UR});function GR(e){let n={x:$(e,"x","logicalNot","bool")};return W.runKernel(kc,n)}var Yc=V({logicalNot_:GR});function HR(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ic,r)}var qh=V({logicalOr_:HR});function jR(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return bt(n.shape,s.shape),zs(qh(e,t),Yc(zs(e,t)))}var S3=V({logicalXor_:jR});function qR(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(yr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&O(un(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(wo,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Jc=V({maxPool_:qR});function XR(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(un(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(Cc,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var UA=V({maxPool3d_:XR});function KR(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(uh,o,i);return{result:l[0],indexes:l[1]}}var C3=V({maxPoolWithArgmax_:KR});function ZR(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=_t(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(vo,r)}var br=V({maximum_:ZR});function YR(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(ko,r,a)}var Ft=V({mean_:YR});function Ht(e,t="float32"){if(t==="complex64"){let s=Ht(e,"float32"),r=Ht(e,"float32");return ha(s,r)}let n=Lp(zt(e),t);return W.makeTensor(n,e,t)}function us(e,t="float32"){if(t==="complex64"){let s=us(e,"float32"),r=Ht(e,"float32");return ha(s,r)}let n=Fg(zt(e),t);return W.makeTensor(n,e,t)}function JR(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=zt(s.shape),o=zt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ve(us([o,1],s.dtype),s),Ve(r,us([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ve(s,us([1,o],s.dtype)),Ve(us([a,1],r.dtype),r)])}function QR(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(Io,r,a)}var Qc=V({min_:QR});function eD(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=_t(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(So,r)}var pu=V({minimum_:eD});function tD(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(Co,o,a)}var GA=V({mirrorPad_:tD});function nD(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Sl,r)}var HA=V({mod_:nD});function sD(e){let t=$(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var ft=V({square_:sD});function rD(e,t=null,n=!1){e=$(e,"x","moments");let s=Os(t,e.shape),r=Ft(e,s,n),a=r.shape;n||(a=li(r.shape,s));let o=ft(xe(de(e,"float32"),U(r,a))),i=Ft(o,s,n);return{mean:r,variance:i}}var Xh=V({moments_:rD});function aD(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=Wc(n,"c","multiRNNCell"),o=Wc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var oD=V({multiRNNCell_:aD});function iD(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=W.runKernel(ch,l,c);return o===1?U(u,[u.size]):u}var T3=V({multinomial_:iD});function lD(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Tl,r)}var ui=V({notEqual_:lD});function uD(e){let n={x:$(e,"x","onesLike")};return W.runKernel(Dl,n)}var cs=V({onesLike_:uD});function cD(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ve(r,a)}var dD=V({outerProduct_:cD});function pD(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(Eo,a,r)}var ks=V({pad_:pD});function hD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ks(e,[t],n)}var fD=V({pad1d_:hD});function mD(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var gD=V({pad2d_:mD});function AD(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var yD=V({pad3d_:AD});function xD(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var bD=V({pad4d_:xD});function vD(e,t,n){let s=$(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(Ul,r,a)}var ed=V({spaceToBatchND_:vD});function wD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=$(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(yr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=n3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=ID([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=kD([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:ed(i,u,h),y=(n==="avg"?()=>jc(g,t,a,m):()=>Jc(g,t,a,m))(),x=p?y:qc(y,u,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function kD(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function ID(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var N3=V({pool_:wD});function SD(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Ro,r)}var zr=V({pow_:SD});function CD(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(Do,r)}var td=V({prelu_:CD});function TD(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Fl,r,a)}var Kh=V({prod_:TD});function ND(e,t,n){let s=zt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var ED=V({rand_:ND}),jA=Xa(z5()),qA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=jA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},RD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=jA.alea(r.toString()),this.randn=new qA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},DD=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=jA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function _D(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new RD(t,n,s,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var FD=V({randomGamma_:_D});function $D(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new qA(t,n,s,!1,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var E3=V({randomNormal_:$D});function OD(e,t=0,n=1,s="float32",r){let a=He(e,s),o=new DD(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var hu=V({randomUniform_:OD});function fu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(Tc,{},r)}function PD(e){let n={input:$(e,"input","real")};return W.runKernel(dh,n)}var nd=V({real_:PD});function MD(e){let n={x:$(e,"x","reciprocal")};return W.runKernel($l,n)}var XA=V({reciprocal_:MD});function zD(e){let n={x:$(e,"x","relu")};return W.runKernel(_o,n)}var Js=V({relu_:zD});function LD(e){let n={x:$(e,"x","relu6")};return W.runKernel($o,n)}var Zh=V({relu6_:LD});function BD(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return W.runKernel(Oo,s,r)}var ds=V({reverse_:BD});function WD(e){let t=$(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ds(t,0)}var VD=V({reverse1d_:WD});function UD(e,t){let n=$(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ds(n,t)}var GD=V({reverse2d_:UD});function HD(e,t){let n=$(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ds(n,t)}var jD=V({reverse3d_:HD});function qD(e,t){let n=$(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ds(n,t)}var XD=V({reverse4d_:qD});function KD(e){let n={x:$(e,"x","round")};return W.runKernel(Po,n)}var Yh=V({round_:KD});function ZD(e){let n={x:$(e,"x","rsqrt","float32")};return W.runKernel(Mo,n)}var Jh=V({rsqrt_:ZD});function Re(e,t){if((Cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return fa(e,[],[],t)}function YD(e){let n={x:$(e,"x","selu")};return W.runKernel(zl,n)}var Qh=V({selu_:YD});function JD(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),c=$(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),O(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];O(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=lu(u,l,s,r,o,a),g=Mr(f,c,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var KA=V({separableConv2d_:JD});async function QD(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new Jt([i],n.dtype),c=new Jt([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var R3=QD;function e_(e){let n={x:$(e,"x","sign")};return W.runKernel(Wl,n)}var ZA=V({sign_:e_});function t_(e){let n={x:$(e,"x","sin","float32")};return W.runKernel(zo,n)}var ef=V({sin_:t_});function n_(e){let n={x:$(e,"x","sinh")};return W.runKernel(Bl,n)}var tf=V({sinh_:n_});function s_(e,t,n){let s=$(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Fe(s,[t],[n])}var nf=V({slice1d_:s_});function r_(e,t,n){let s=$(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var YA=V({slice2d_:r_});function a_(e,t,n){let s=$(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var mu=V({slice3d_:a_});function o_(e,t,n){let s=$(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Fe(s,t,n)}var sd=V({slice4d_:o_});function i_(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(Vo,s,r)}var ci=V({softmax_:i_});function l_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(nh,t)}var rd=V({fft_:l_});function u_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(sh,t)}var gu=V({ifft_:u_});function c_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=gu(r)}else{let r=[n,2*(t-1)],a=U(nd(e),[n,t]),o=U(Uh(e),[n,t]),i=ds(Fe(a,[0,1],[n,t-2]),1),l=B(ds(Fe(o,[0,1],[n,t-2]),1),Re(-1)),c=gt([a,i],1),u=gt([o,l],1),d=U(ha(c,u),[r[0],r[1]]);s=gu(d)}if(s=nd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var sf=V({irfft_:c_});function d_(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Gl,r,a)}var pn=V({split_:d_});function p_(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Fe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=gt([e,Ht(f)],e.shape.length-1),n=t}else r=e;let a=Ze(r),o=U(ha(r,a),[s,n]),i=rd(o),l=Math.floor(n/2)+1,c=nd(i),u=Uh(i),d=pn(c,[l,n-l],c.shape.length-1),p=pn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(ha(d[0],p[0]),h)}var ad=V({rfft_:p_});function h_(e){let n={x:$(e,"x","sqrt","float32")};return W.runKernel(Bo,n)}var xn=V({sqrt_:h_});function f_(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(Uo,r,a)}var rf=V({squaredDifference_:f_});function m_(e,t){let n=$(e,"x","squeeze");return U(n,V5(n.shape,t).newShape)}var rt=V({squeeze_:m_});function g_(e,t=0){let n=Wc(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(_l,s,r)}var bn=V({stack_:g_});function A_(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return W.runKernel(ca,s,r)}var Au=V({step_:A_});function y_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Hl,u,d)}var JA=V({stridedSlice_:y_});function x_(e){let n={x:$(e,"x","tan","float32")};return W.runKernel(Ho,n)}var QA=V({tan_:x_});function jt(e,t){Ka(e);let n=gr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return fa(e,null,n,t)}function Qs(e,t,n){if(Ka(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=gr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return fa(e,t,s,n)}function b_(e,t,n){if(Ka(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=gr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return fa(e,t,s,n)}function v_(e,t,n){if(Ka(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=gr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return fa(e,t,s,n)}function w_(e,t,n){if(Ka(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=gr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,fa(e,t,s,n)}function k_(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(jl,a,o);return{values:i,indices:l}}var e1=V({topk_:k_});function I_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new qA(t,n,s,!0,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var af=V({truncatedNormal_:I_});function S_(e,t=0){let n=$(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(wh,s,r);return{values:a,indices:o}}var of=V({unique_:S_});function C_(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");O(un(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(Rc,a,o)}var t1=V({unsortedSegmentSum_:C_});function T_(e,t=0){let n=$(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(Xl,s,r)}var On=V({unstack_:T_});function D3(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function _3(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=He(e,"int32"),r=He([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function N_(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=_3(t.shape,n);return e!==t&&t.dispose(),s}var n1=N_;async function E_(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),Dn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=U(s,c),d=U(r,[-1]),p=await n1(d),h=rt(p,[1]),f=oi(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var R_=E_;function D_(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=F3(e,t,n),a=r.shape;if(s){let o=Os(n,e.shape);a=li(r.shape,o)}return U(r,a)}function F3(e,t,n=null){if(e.rank===0)return Gt(e);if(e.rank!==1&&n===null)return F3(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Gt(e),n);if(t===1/0)return $n(Gt(e),n);if(t===-1/0)return Qc(Gt(e),n);if(t==="euclidean"||t===2)return xn(Se(zr(Gt(e),Re(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return $n(Se(Gt(e),n[0]),n[1]-1);if(t===1/0)return $n(Se(Gt(e),n[1]),n[0]);if(t===-1/0)return Qc(Se(Gt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return xn(Se(ft(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var lf=V({norm_:D_});function __(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");ub(a,o),O($r(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Re(1),c=xe(l,i),u=B(xe(o,a),c);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let d=$(s,"step","movingAverage");u=me(u,xe(l,zr(i,d)))}return le(a,u)}var F_=V({movingAverage_:__});function $_(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");dA(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel(Pl,a,o)}var $3=V({scatterND_:$_});function O_(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function P_(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(s,"defaultValue","sparseToDense",a.dtype);O_(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(yh,i,l)}var s1=V({sparseToDense_:P_});function M_(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(gl,r)}var O3=V({gatherND_:M_});function z_(e,t){if(t==null)return e.shape.slice();if($r(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function L_(e,t,n,s){let r=$(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=z_(r,n),o=1-t,i=me(du(le(hu(a,0,1,"float32",s),o)),o);return B(r,i)}var P3=V({dropout_:L_});function M3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function r1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return jt(r,"float32")}async function B_(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Dn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=U5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Lt(u,r.shape,"bool")}var W_=B_,ba={};ze(ba,{conv2d:()=>G_,depthwiseConv2d:()=>X_,matMul:()=>Z_});function V_(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&O(un(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(Hp,d,p)}var a1=V({conv2DBackpropFilter_:V_});function uf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Au(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function cf(e,t){let n=t,s=Qt(e.shape,t.shape);return s.length>0&&(n=Se(n,s)),U(n,e.shape)}function df(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Js(e);if(t==="elu")return uu(e);if(t==="relu6")return Zh(e);if(t==="prelu")return td(e,n);if(t==="leakyrelu")return Kc(e,s);if(t==="sigmoid")return Kn(e);throw new Error(`Unknown fused activation ${t}.`)}var pf=(e,t)=>!(e>0)||t==="linear";function U_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",pf(W.state.gradientDepth,l)===!1){let v=Mr(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),df(v,l,c,u)}let d=$(e,"x","conv2d","float32"),p=$(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&O(un(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Hc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let A;c!=null&&(A=$(c,"prelu weights","fused conv2d"));let y=(v,k)=>{let[C,N,D,P]=k,E=uf(v,D,l);O(Aa(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let F=RA(N.shape,E,C,n,s),T=a1(N,E,C.shape,n,s),M=[F,T];if(P!=null){let G=cf(P,E);M.push(G)}return M},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?xr((k,C,N)=>{let D=W.runKernel(Ko,x,b);return N([C,k,D]),f&&(D=U(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):xr((k,C,N,D)=>{let P=W.runKernel(Ko,x,b);return D([C,k,P,N]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p,g)}var G_=V({fusedConv2d_:U_});function H_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(Kp,c,u)}var z3=V({depthwiseConv2dNativeBackpropFilter_:H_});function j_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=W.runKernel(Zp,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var L3=V({depthwiseConv2dNativeBackpropInput_:j_});function q_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(pf(W.state.gradientDepth,l)===!1){let v=lu(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),df(v,l,c,u)}let d=$(e,"x","depthwiseConv2d","float32"),p=$(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(yr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&O(un(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=Hc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let A;c!=null&&(A=$(c,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{O(Aa(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,N,D,P]=k,E=uf(v,D,l),F=L3(N.shape,E,C,n,s,a,o),T=z3(N,E,C.shape,n,s,a,o);if(P!=null){let M=cf(g,E);return[F,T,M]}return[F,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?xr((k,C,N)=>{let D=W.runKernel(Zo,x,b);return N([C,k,D]),f&&(D=U(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):xr((k,C,N,D)=>{let P=W.runKernel(Zo,x,b);return D([C,k,P,N]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p,g)}var X_=V({fusedDepthwiseConv2d_:q_});function K_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(pf(W.state.gradientDepth,a)===!1){let P=Ve(e,t,n,s);return r!=null&&(P=le(P,r)),df(P,a,o,i)}let l=$(e,"a","fused matMul"),c=$(t,"b","fused matMul");[l,c]=_t(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=zt(f),A=zt(m);O(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),O($r(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?U(l,[g,u,p]):U(l,[g,p,u]),b=s?U(c,[A,h,d]):U(c,[A,d,h]),v;r!=null&&(v=$(r,"bias","fused matMul"),[v]=_t(v,l),bt(y,v.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let C=(P,E)=>{let[F,T,M,G]=E,H=uf(U(P,M.shape),M,a),z,X;if(!n&&!s?(z=Ve(H,T,!1,!0),X=Ve(F,H,!0,!1)):!n&&s?(z=Ve(H,T,!1,!1),X=Ve(H,F,!0,!1)):n&&!s?(z=Ve(T,H,!1,!0),X=Ve(F,H,!1,!1)):(z=Ve(T,H,!0,!0),X=Ve(H,F,!0,!0)),r!=null){let Q=cf(G,H);return[z,X,Q]}else return[z,X]},N={a:x,b,bias:v,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?xr((E,F,T)=>{let M=W.runKernel(Xo,N,D);return T([E,F,M]),{value:U(M,y),gradFunc:C}})(x,b):xr((E,F,T,M)=>{let G=W.runKernel(Xo,N,D);return M([E,F,G,T]),{value:U(G,y),gradFunc:C}})(x,b,v)}var Z_=V({fusedMatMul_:K_});function Y_(e){return r1(e,.54,.46)}var J_=V({hammingWindow_:Y_});function Q_(e){return r1(e,.5,.5)}var B3=V({hannWindow_:Q_});function eF(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Fe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=gt([Fe(e,a,t-i),cu([i],r)]);o.push(l),a+=n}return o.length===0?Qs([],[0,t]):U(gt(o),[o.length,t])}var W3=V({frame_:eF});function tF(e,t,n,s,r=B3){s==null&&(s=M3(t));let a=W3(e,t,n),o=B(a,r(t));return ad(o,s)}var nF=V({stft_:tF});function sF(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),c=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(ll,u,d)}var rF=V({cropAndResize_:sF});function aF(e){let t=$(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(fl,n,{})}var oF=V({flipLeftRight_:aF});function iF(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,ws(t,r)}var lF=V({grayscaleToRGB_:iF});function uF(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(Zl,a,o)}var cF=V({rotateWithOffset_:uF});function yu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function dF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=yu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Nl,{boxes:a,scores:o},l)}var pF=V({nonMaxSuppression_:dF});function hF(e,t,n){let s=fF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function fF(e,t,n){return gF(e,t,n||mF)}function mF(e,t){return e>t?1:e<t?-1:0}function gF(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function V3(e,t,n,s,r){return o1(e,t,n,s,r,0)}function U3(e,t,n,s,r,a){return o1(e,t,n,s,r,0,!1,a,!0)}function G3(e,t,n,s,r,a){return o1(e,t,n,s,r,a,!0)}function o1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(H3);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=AF(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*yF(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&hF(c,g,H3))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function AF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(h+f-x)}function yF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function H3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function xF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=yu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=V3(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),jt(d,"int32")}var bF=xF;function vF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=yu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=W.runKernel(Rl,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var wF=V({nonMaxSuppressionWithScore_:vF});async function kF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=yu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=G3(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:jt(p,"int32"),selectedScores:jt(h)}}var IF=kF;function SF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=yu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=W.runKernel(El,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var CF=V({nonMaxSuppressionPadded_:SF});async function TF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=yu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=U3(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:jt(f,"int32"),validOutputs:Re(m,"int32")}}var NF=TF;function EF(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Fo,i,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var j3=V({resizeBilinear_:EF});function RF(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Nc,i,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var q3=V({resizeNearestNeighbor_:RF});function DF(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=B(jt([s]),255),u,d,p,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=pn(r,[1,1,1],-1);let g=B(u,a),A=B(d,o),y=B(p,i);h=le(le(g,A),y)}else h=e;if(t==="otsu"){let g=NA(de(Yh(h),"int32"),Lt([]),256);c=_F(g,l)}let f=n?xa(h,c):Yn(h,c);return de(B(f,255),"int32")}function _F(e,t){let n=jt([-1]),s=jt([0]),r=jt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=Fe(e,0,d+1),o=Fe(e,d+1),c=me(Se(a),t),u=me(Se(o),t);let p=Se(B(a,fu(0,a.size)));i=me(p,Se(a));let h=cu(o.shape,a.size),f=le(fu(0,o.size),h),m=B(o,f);l=me(Se(m),Se(o));let g=xe(i,l),A=xe(i,l),y=B(c,u);r=B(B(y,g),A);let x=Yn(r,s);s=Tn(x,r,s),n=Tn(x,jt([d]),n)}return n}var FF=V({threshold_:DF});function $F(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(ql,l,c)}var OF=V({transform_:$F});function PF(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(fu(0,a,1,"int32"),[-1,1]),l=fu(0,o,1,"int32"),c=xe(i,l),u=zs(xa(c,Re(+t,"int32")),ya(c,Re(-n,"int32"))),d=Ht([a,o],s.dtype);return U(bn(On(U(s,[-1,a,o])).map(p=>Tn(u,p,d))),r)}var MF=V({bandPart_:PF});function zF(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=pn(e,e.shape[0],0).map(r=>rt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=B(Se(B(n[o],a)),n[o]);a=xe(a,i)}return me(a,lf(a,"euclidean"))}));return t?bn(n,0):n}var LF=V({gramSchmidt_:zF});function BF(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return X3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=On(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=X3(l,t);r.push(c),a.push(u)});let o=U(bn(r,0),e.shape),i=U(bn(a,0),e.shape);return[o,i]}}function X3(e,t=!1){return W.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=MA(n),a=Zs(e),o=Qs([[1]],[1,1]),i=Zs(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=W.tidy(()=>{let h=Fe(a,[c,c],[n-c,1]),f=lf(h),m=Fe(a,[c,c],[1,1]),g=Tn(Yn(m,0),Qs([[-1]]),Qs([[1]])),A=xe(m,B(g,f)),y=me(h,A);y.shape[0]===1?i=Zs(o):i=gt([o,Fe(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Tt(me(Ve(g,A),f)),b=Fe(a,[c,0],[n-c,s]),v=B(x,i),k=Ke(i);if(c===0)a=xe(b,Ve(v,Ve(k,b)));else{let D=xe(b,Ve(v,Ve(k,b)));a=gt([Fe(a,[0,0],[c,s]),D],0)}let C=Ke(v),N=Fe(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=xe(N,Ve(Ve(N,i),C));else{let D=xe(N,Ve(Ve(N,i),C));r=gt([Fe(r,[0,0],[n,c]),D],1)}return[i,a,r]}),Y([u,d,p])}return!t&&n>s&&(r=Fe(r,[0,0],[n,s]),a=Fe(a,[0,0],[s,s])),[r,a]})}var WF=V({qr_:BF}),Pn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Pn||(Pn={}));function VF(e,t,n=Pn.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:B(s,r);if(n===Pn.NONE)return a;if(n===Pn.SUM)return Se(a);if(n===Pn.MEAN){if(r==null)return Ft(a);{let o=s.size/r.size,i=me(Se(a),Se(r));return o>1?me(i,Re(o)):i}}if(n===Pn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(Se(a),Re(s.size));{let o=B(r,us(s.shape)),i=de(Se(ui(o,Re(0))),"float32");return me(Se(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Lr=V({computeWeightedLoss_:VF});function UF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),Dn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Gt(xe(r,a));return Lr(i,o,s)}var GF=V({absoluteDifference_:UF});function HF(e,t,n,s,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),Dn(a.shape,o.shape,"Error in cosineDistance: ");let l=Re(1),c=xe(l,Se(B(a,o),n,!0));return Lr(c,i,r)}var jF=V({cosineDistance_:HF});function qF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),Dn(r.shape,a.shape,"Error in hingeLoss: ");let i=Re(1);r=xe(B(Re(2),r),i);let l=Js(xe(i,B(r,a)));return Lr(l,o,s)}var XF=V({hingeLoss_:qF});function KF(e,t,n,s=1,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),Dn(a.shape,o.shape,"Error in huberLoss: ");let l=Re(s),c=Gt(xe(o,a)),u=pu(c,l),d=xe(c,u),p=le(B(Re(.5),ft(u)),B(l,d));return Lr(p,i,r)}var ZF=V({huberLoss_:KF});function YF(e,t,n,s=1e-7,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),Dn(a.shape,o.shape,"Error in logLoss: ");let l=Re(1),c=Re(s),u=Tt(B(a,ls(le(o,c)))),d=B(xe(l,a),ls(le(xe(l,o),c))),p=xe(u,d);return Lr(p,i,r)}var JF=V({logLoss_:YF});function QF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),Dn(r.shape,a.shape,"Error in meanSquaredError: ");let i=rf(r,a);return Lr(i,o,s)}var e$=V({meanSquaredError_:QF});function t$(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");Dn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Js(s),a=B(s,n),o=Zc(is(Tt(Gt(s))));return le(xe(r,a),o)}function n$(e,t,n,s=0,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),Dn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(.5);a=le(B(a,xe(u,c)),B(d,c))}let l=t$(a,o);return Lr(l,i,r)}var s$=V({sigmoidCrossEntropy_:n$});function r$(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return xr((r,a,o)=>{let l=VA(a,[n],!0),c=xe(de(a,"float32"),l);o([r,c]);let u=Tt(B(c,r));return{value:Se(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=li(h.shape,[n]);return[B(U(h,A),xe(de(m,"float32"),is(g))),B(U(h,A),xe(is(g),de(m,"float32")))]}}})(e,t)}function a$(e,t,n,s=0,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),Dn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(a.shape[1]);a=le(B(a,xe(u,c)),me(c,d))}let l=r$(a,o);return Lr(l,i,r)}var o$=V({softmaxCrossEntropy_:a$});function i$(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=W.runKernel(fh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var l$=V({sparseFillEmptyRows_:i$});function u$(e,t,n){let s=$(e,"inputIndices","sparseReshape"),r=$(t,"inputShape","sparseReshape"),a=$(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(mh,o);return{outputIndices:i[0],outputShape:i[1]}}var c$=V({sparseReshape_:u$});function d$(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean"),a=$(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(gh,o)}var p$=V({sparseSegmentMean_:d$});function h$(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum"),a=$(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Ah,o)}var f$=V({sparseSegmentSum_:h$});function m$(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=$(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=W.runKernel(xh,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var g$=V({stringNGrams_:m$});function A$(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(bh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var y$=V({stringSplit_:A$});function x$(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(vh,r,s)}var b$=V({stringToHashBucketFast_:x$}),v$={fft:rd,ifft:gu,rfft:ad,irfft:sf},w$={hammingWindow:J_,hannWindow:B3,frame:W3,stft:nF},_e={flipLeftRight:oF,grayscaleToRGB:lF,resizeNearestNeighbor:q3,resizeBilinear:j3,rotateWithOffset:cF,cropAndResize:rF,nonMaxSuppression:pF,nonMaxSuppressionAsync:bF,nonMaxSuppressionWithScore:wF,nonMaxSuppressionWithScoreAsync:IF,nonMaxSuppressionPadded:CF,nonMaxSuppressionPaddedAsync:NF,threshold:FF,transform:OF},K3={bandPart:MF,gramSchmidt:LF,qr:WF},k$={absoluteDifference:GF,computeWeightedLoss:Lr,cosineDistance:jF,hingeLoss:XF,huberLoss:ZF,logLoss:JF,meanSquaredError:e$,sigmoidCrossEntropy:s$,softmaxCrossEntropy:o$},od={sparseFillEmptyRows:l$,sparseReshape:c$,sparseSegmentMean:p$,sparseSegmentSum:f$},hf={stringNGrams:g$,stringSplit:y$,stringToHashBucketFast:b$},Br=class extends Zb{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Y(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return b3(e,t)}dispose(){this.iterations_!=null&&Y(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Re(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ff=class extends Br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;j(()=>{let c=le(B(i,this.rho),B(ft(o),1-this.rho)),u=B(me(xn(le(l,this.epsilon)),xn(le(i,this.epsilon))),o),d=le(B(l,this.rho),B(ft(u),1-this.rho));i.assign(c),l.assign(d);let p=le(B(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Y(this.accumulatedGrads.map(e=>e.variable)),Y(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ff.className="Adadelta";ga(ff);var mf=class extends Br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>cu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;j(()=>{let i=le(o,ft(a));o.assign(i);let l=le(B(me(a,xn(le(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Y(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};mf.className="Adagrad";ga(mf);var gf=class extends Br{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Re(t).variable(),this.accBeta2=Re(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=xe(1,this.accBeta1),s=xe(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>Ze(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>Ze(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=le(B(c,this.beta1),B(l,1-this.beta1)),p=le(B(u,this.beta2),B(ft(l),1-this.beta2)),h=me(d,n),f=me(p,s);c.assign(d),u.assign(p);let m=le(B(me(h,le(xn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Y(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};gf.className="Adam";ga(gf);var Af=class extends Br{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Re(0).variable(),this.accBeta1=Re(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=xe(1,this.accBeta1),s=me(-this.learningRate,le(B(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ze(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ze(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=le(B(c,this.beta1),B(l,1-this.beta1)),p=B(u,this.beta2),h=Gt(l),f=br(p,h);c.assign(d),u.assign(f);let m=le(B(me(s,n),me(d,le(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Y(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Af.className="Adamax";ga(Af);var id=class extends Br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];j(()=>{let o=le(B(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=dn(Re(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};id.className="SGD";ga(id);var yf=class extends id{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Re(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>Ze(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&j(()=>{let i,l=le(B(this.m,a),o);this.useNesterov?i=le(B(this.c,le(o,B(l,this.m))),r):i=le(B(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Y(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};yf.className="Momentum";ga(yf);var xf=class extends Br{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;j(()=>{let c=le(B(i,this.decay),B(ft(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=le(B(u,this.decay),B(o,1-this.decay)),p=me(B(o,this.learningRate),xn(xe(c,le(ft(d),this.epsilon)))),h=le(B(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=xe(r,h);r.assign(f)}else{let u=le(B(i,this.decay),B(ft(o),1-this.decay)),d=le(B(l,this.momentum),me(B(o,this.learningRate),xn(le(u,this.epsilon))));i.assign(u),l.assign(d);let p=xe(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Y(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Y(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Y(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xf.className="RMSProp";ga(xf);var di=class{static sgd(e){return new id(e)}static momentum(e,t,n=!1){return new yf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new xf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new gf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Af(e,t,n,s,r)}static adagrad(e,t=.1){return new mf(e,t)}},pi={sgd:di.sgd,momentum:di.momentum,adadelta:di.adadelta,adagrad:di.adagrad,rmsprop:di.rmsprop,adamax:di.adamax,adam:di.adam},I$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Z3(){return new Promise(e=>I$(()=>e()))}var R={};ze(R,{ERF_A1:()=>O$,ERF_A2:()=>P$,ERF_A3:()=>M$,ERF_A4:()=>z$,ERF_A5:()=>L$,ERF_P:()=>$$,PARALLELIZE_THRESHOLD:()=>i1,SELU_SCALE:()=>J3,SELU_SCALEALPHA:()=>Y3,applyActivation:()=>df,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>BR,assertParamsConsistent:()=>S$,assignToTypedArray:()=>H$,axesAreInnerMostDims:()=>BA,calculateShapes:()=>zb,checkEinsumDimSizes:()=>Y$,combineLocations:()=>w3,complexWithEvenIndex:()=>V$,complexWithOddIndex:()=>U$,computeConv2DInfo:()=>Hc,computeConv3DInfo:()=>s3,computeDefaultPad:()=>SA,computeDilation2DInfo:()=>uE,computeOptimalWindowSize:()=>T$,computeOutAndReduceShapes:()=>k3,computeOutShape:()=>C$,computePool2DInfo:()=>n3,computePool3DInfo:()=>cE,convertConv2DDataFormat:()=>r3,decodeEinsumEquation:()=>K$,eitherStridesOrDilationsAreOne:()=>yr,expandShapeToKeepDim:()=>li,exponent:()=>q$,exponents:()=>j$,fromStringArrayToUint8:()=>oO,fromUint8ToStringArray:()=>aO,getAxesPermutation:()=>I3,getBroadcastDims:()=>tR,getComplexWithIndex:()=>G$,getEinsumComputePath:()=>J$,getEinsumPermutation:()=>Z$,getFusedBiasGradient:()=>cf,getFusedDyActivation:()=>uf,getImageCenter:()=>N$,getInnerMostAxes:()=>WR,getPermuted:()=>R$,getReductionAxes:()=>Qt,getReshaped:()=>E$,getReshapedPermuted:()=>D$,getSliceBeginCoords:()=>_$,getSliceSize:()=>F$,getUndoAxesPermutation:()=>WA,isIdentityPermutation:()=>Q$,log:()=>MT,mergeRealAndImagArrays:()=>B$,prepareAndValidate:()=>Mb,prepareSplitSize:()=>tO,segment_util:()=>tv,shouldFuse:()=>pf,slice_util:()=>Fn,splitRealAndImagArrays:()=>W$,tupleValuesAreOne:()=>Aa,upcastType:()=>Ps,validateInput:()=>dA,validateUpdateShape:()=>cA,warn:()=>hr});function S$(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function C$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var i1=30;function T$(e){return e<=i1?e:zp(e,Math.floor(Math.sqrt(e)))}function N$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function E$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function R$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function D$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function _$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function F$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Y3=1.7580993408473768,J3=1.0507009873554805,$$=.3275911,O$=.254829592,P$=-.284496736,M$=1.421413741,z$=-1.453152027,L$=1.061405429;function B$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function W$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function V$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function U$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function G$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function H$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function j$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function q$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var l1="->",X$=/->/g,Q3=",",ev="...";function K$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(X$,"").length)/l1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${l1}").`);let[s,r]=e.split(l1);O(s.indexOf(ev)===-1,()=>`The ellipsis notation ("${ev}") is not supported yet.`);let a=s.split(Q3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Q3&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function Z$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function Y$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function J$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=eO(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function Q$(e){return e.every((t,n)=>t===n)}function eO(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function tO(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var tv={};ze(tv,{collectGatherOpShapeInfo:()=>rO,computeOutShape:()=>sO,segOpComputeOptimalWindowSize:()=>nO});function nO(e,t){let n=!1,s;for(e<=i1?(s=e,n=!0):s=zp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=zp(e,s+1);return s}function sO(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function rO(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function aO(e){try{return e.map(t=>Th(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function oO(e){return e.map(t=>$c(t))}var vr={};ze(vr,{nonMaxSuppressionV3Impl:()=>V3,nonMaxSuppressionV4Impl:()=>U3,nonMaxSuppressionV5Impl:()=>G3,whereImpl:()=>_3});var nv={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Au(de(n,"float32"),-1))}}},iO={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ft(de(n,"float32")),r=xn(xe(Re(1),s));return Tt(me(e,r))}}}},lO={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xn(xe(ft(de(n,"float32")),1));return me(e,s)}}}},uO={kernelName:ia,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Qt(n.shape,r);return l.length>0&&(i=Se(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Qt(s.shape,r);return l.length>0&&(i=Se(i,l)),U(i,s.shape)}}}},cO={kernelName:Ya,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},dO={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},pO={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},hO={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,xn(xe(Re(1),ft(de(n,"float32")))))}}},fO={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xn(le(Re(1),ft(de(n,"float32"))));return me(e,s)}}}},mO={kernelName:al,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=le(ft(n),ft(s)),l=B(e,me(s,i)),c=Qt(n.shape,r);return c.length>0&&(l=Se(l,c)),U(l,n.shape)},b:()=>{let i=le(ft(n),ft(s)),l=Tt(B(e,me(n,i))),c=Qt(s.shape,r);return c.length>0&&(l=Se(l,c)),U(l,s.shape)}}}},gO={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,le(ft(de(n,"float32")),1))}}},AO={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,xe(Re(1),ft(de(n,"float32"))))}}};function yO(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&O(un(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(Wp,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var xO=V({avgPool3dGrad_:yO}),bO={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>xO(e,s,r,a,o,i)}}};function vO(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=W.runKernel(Bp,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wO=V({avgPoolGrad_:vO}),kO={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>wO(e,s,r,a,o)}}},IO={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&o?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!o?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},SO={kernelName:ol,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>ed(e,s,r)}}},CO={kernelName:eb,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Se(e,i,!0)}}},TO={kernelName:to,gradFunc:e=>({x:()=>e.clone()})},NO={kernelName:no,gradFunc:e=>({x:()=>Ze(e)})},EO={kernelName:la,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Tn(zs(ya(s,r),xa(s,a)),e,Ze(e))}}},RO={kernelName:xc,inputsToSave:["x"],gradFunc:nv.gradFunc},DO={kernelName:il,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Os(r,t[0].shape)[0],o=s.map(l=>l[a]);return pn(e,o,a).map(l=>()=>l)}},_O={kernelName:so,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(Aa(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>RA(s.shape,e,r,o,i,l),filter:()=>a1(s,e,r.shape,o,i,l)}}},FO={kernelName:ro,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Mr(e,r,a,o,i,1,l),filter:()=>a1(e,s,r.shape,a,o,i,l)}}};function $O(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(jp,i,l)}var OO=V({conv3DBackpropFilter_:$O}),PO={kernelName:bc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(Aa(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>p3(o.shape,e,i,r,a),filter:()=>OO(o,e,i.shape,r,a)}}},MO={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Tt(ef(de(n,"float32"))),e)}}},zO={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(tf(de(n,"float32")),e)}}},LO={kernelName:io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=I3([r],s.rank),l=Vh(e,r,a,!o);return i!=null&&(l=Ke(l,i)),l}}}},BO={kernelName:lo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(Aa(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),O(yr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&O(un(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>L3(l.shape,e,c,r,a,i,o),filter:()=>z3(l,e,c.shape,r,a,i,o)}}},WO={kernelName:vc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(Jp,a,n),filter:()=>W.runKernel(Qp,o,n)}}},VO={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(th,s)}}},UO={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(is(Tt(ft(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,s)}}},GO={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},HO={kernelName:pl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},jO={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,is(n))}}},qO={kernelName:ho,gradFunc:e=>({x:()=>Ze(e)})},XO={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=me(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Se(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);l.length>0&&(i=U(Se(i,l),s.shape));let c=ft(s);return Tt(me(i,de(c,"float32")))}}}},KO={kernelName:mo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Re(1):i,c=Qt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=xe(r,a),p=B(e,l),h=Jh(le(o,Re(s))),f=B(B(B(h,h),h),Re(-.5));return{x:()=>a.rank===1?U(B(B(e,ws(U(h,[1,1,1,a.shape[0]]),u)),l),r.shape):U(B(B(e,h),l),r.shape),mean:()=>{let b=B(B(h,Re(-1)),p);return a.rank===1&&(b=Se(b,c)),U(b,a.shape)},variance:()=>{let b=B(B(f,d),p);return a.rank===1&&(b=Se(b,c)),U(b,a.shape)},scale:()=>{let b=B(d,h),v=B(e,b);return a.rank===1&&(v=Se(v,c)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Se(b,c)),U(b,a.shape)}}}},ZO={kernelName:ml,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Os(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=sv(0,d),m=sv(d+1,d+1+h),g=rv([u,[c],p]),A=U(e,g),y=U(r,[c]),x=rv([[d],f,m]),b=Ke(A,x),v=t1(b,y,s.shape[o]),k=WA(x);return v=Ke(v,k),v},indices:()=>r}}};function sv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function rv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var YO={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ze(n),b:()=>Ze(s)}}},JO={kernelName:Ao,gradFunc:e=>({x:()=>de(e,"float32")})},QO={kernelName:yl,gradFunc:e=>({x:()=>Ze(e)})},eP={kernelName:xl,gradFunc:e=>({x:()=>Ze(e)})},tP={kernelName:bl,gradFunc:e=>({x:()=>Ze(e)})},nP={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Yn(s,0);return{x:()=>Tn(a,e,B(e,r))}}},sP={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,le(n,1))}}},rP={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,de(n,"float32"))}}},aP={kernelName:tb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=is(s);return xe(e,B(Se(e,r,a),o))}}}};function oP(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(oh,i,l)}var iP=V({localResponseNormalizationBackprop_:oP}),lP={kernelName:Sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>iP(s,r,e,a,o,i,l)}}};function av(e,t,n,s){return t.rank<n.rank&&(t=U(t,li(t.shape,s))),e.rank<n.rank&&(e=U(e,li(e.shape,s))),{x:()=>B(e,de(os(n,t),e.dtype))}}var ov={kernelName:bo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Os(r,a.shape),l=av(e,o,a,i);return{x:()=>l.x()}}},uP={kernelName:vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,de(ya(n,s),"float32")),b:()=>B(e,de(Gh(n,s),"float32"))}}};function cP(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),c=$(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&O(un(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(lh,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var dP=V({maxPool3dGrad_:cP}),pP={kernelName:Cc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>dP(e,s,r,a,o,i,l)}}};function hP(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),c=$(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&O(un(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(ih,u,d)}var fP=V({maxPoolGrad_:hP}),mP={kernelName:wo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>fP(e,s,r,a,o,i)}}},gP={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Os(r,s.shape),i=k3(s.shape,a)[1],l=zt(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=U(e,u);return me(B(d,us(s.shape,"float32")),l)}}}},AP={kernelName:Io,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Os(r,a.shape),l=av(e,o,a,i);return{x:()=>l.x()}}},yP={kernelName:So,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,de(xa(n,s),"float32")),b:()=>B(e,de(Yn(n,s),"float32"))}}},xP={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},bP={kernelName:Sl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=Qt(n.shape,r);return i.length>0?U(Se(e,i),n.shape):e},b:()=>{let i=B(e,Tt(du(me(n,s)))),l=Qt(s.shape,r);return l.length>0?U(Se(i,l),s.shape):i}}}},vP={kernelName:To,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=B(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Se(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);return l.length>0?U(Se(i,l),s.shape):i}}}},wP={kernelName:Cl,gradFunc:e=>({x:()=>Tt(e)})},kP={kernelName:No,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ht(n.shape,"float32")}}},IP={kernelName:Dl,gradFunc:e=>({x:()=>Ze(e)})},SP={kernelName:_l,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},iv={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Fe(e,a,s.shape)}}},CP={kernelName:Ro,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=bt(a.shape,o.shape);return{a:()=>{let u=de(o,"float32"),d=B(e,B(u,zr(a,xe(u,Re(1))))),p=Qt(a.shape,i);return p.length>0&&(d=Se(d,p)),U(d,a.shape)},b:()=>{let u=Yn(a,0),d=Tn(u,ls(a),Ze(a)),p=B(e,B(r,d)),h=Qt(o.shape,i);return h.length>0&&(p=Se(p,h)),U(p,o.shape)}}}},TP={kernelName:Do,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Yn(n,0);return{x:()=>Tn(r,e,B(e,s)),alpha:()=>{let a=Tn(r,Ze(e),B(e,n)),o=Qt(s.shape,e.shape);return o.length>0&&(a=Se(a,o)),U(a,s.shape)}}}},NP={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=me(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Se(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);l.length>0&&(i=U(Se(i,l),s.shape));let c=ft(s);return Tt(me(i,de(c,"float32")))}}}},EP={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Tt(ft(n)))}}},RP={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(xa(n,6),Au(n));return{x:()=>B(e,de(s,"float32"))}}},DP={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,de(Au(n),"float32"))}}},_P={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},FP={kernelName:Fo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(hh,r,n)}}},$P={kernelName:Nc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(ph,r,n)}}},OP={kernelName:Oo,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Os(s,e.shape);return{x:()=>ds(e,r)}}},PP={kernelName:Po,gradFunc:e=>({x:()=>Ze(e)})},MP={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(me(e,B(zr(n,1.5),2)))}}},zP={kernelName:Ml,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(Ze(n),"float32"),t:()=>B(e,de(n,e.dtype)),e:()=>B(e,de(Yc(n),e.dtype))}}},LP={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Yn(n,Re(0)),r=Re(Y3),a=Re(J3),o=B(e,a),i=B(B(e,r),is(de(n,"float32")));return Tn(s,o,i)}}}},BP={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,xe(Re(1),n)))}}},WP={kernelName:Wl,gradFunc:e=>({x:()=>Ze(e)})},VP={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Xc(de(n,"float32")),e)}}},UP={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Wh(de(n,"float32")),e)}}},GP={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=Kb(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>ks(e,c)}}},HP={kernelName:Vo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=B(e,s);return{logits:()=>xe(o,B(Se(o,[r],a),s))}}},jP={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Kn(n))}}},lv={kernelName:Ul,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>qc(e,s,r)}}},uv={kernelName:Gl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>gt(e,s)}}},qP={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,B(xn(de(n,"float32")),2))}}},XP={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(de(n,"float32"),2))}}},KP={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Re(2);return{a:()=>B(e,B(r,xe(n,s))),b:()=>B(e,B(r,xe(s,n)))}}},ZP={kernelName:ca,gradFunc:e=>({x:()=>Ze(e)})},YP={kernelName:Go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Qt(n.shape,r);return l.length>0&&(i=Se(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Qt(s.shape,r);return l.length>0&&(i=Se(i,l)),U(Tt(i),s.shape)}}}},JP={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Os(a,s.shape).forEach(c=>{r[c]=1});let i=U(e,r),l=B(i,us(s.shape,"float32"));return{x:()=>l}}},QP={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ft(Xc(n)))}}},eM={kernelName:jo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(xe(Re(1),ft(n)),e)}}},tM={kernelName:ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ze(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,Fe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=le(o,Fe(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},nM={kernelName:qo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=WA(r);return{x:()=>Ke(e,a)}}},sM={kernelName:Xl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>bn(e,r)}}},rM={kernelName:Rc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>aM(e,n)}}};function aM(e,t){let n=br(t,Ze(t)),s=oi(e,n),r=ya(t,Re(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Bt(r,i+1);r=zs(r,us(s.shape,"bool"));let o=Ze(s);return Tn(r,s,o)}var oM={kernelName:Kl,gradFunc:e=>({x:()=>Ze(e)})},iM=[nv,iO,lO,uO,cO,dO,pO,hO,fO,mO,gO,AO,bO,kO,IO,SO,CO,TO,NO,EO,RO,DO,FO,_O,PO,MO,zO,LO,BO,WO,NP,VO,UO,GO,HO,jO,XO,qO,KO,ZO,YO,JO,QO,eP,tP,nP,sP,rP,aP,lP,ov,ov,uP,pP,mP,gP,AP,yP,xP,bP,vP,wP,kP,IP,SP,iv,iv,CP,TP,EP,RP,DP,_P,FP,$P,OP,PP,MP,zP,LP,BP,WP,VP,UP,GP,HP,jP,lv,lv,uv,uv,qP,KP,XP,ZP,YP,JP,QP,eM,tM,nM,sM,rM,oM];for(let e of iM)nb(e);ae().prototype.abs=function(){return this.throwIfDisposed(),Gt(this)};ae().prototype.acos=function(){return this.throwIfDisposed(),AA(this)};ae().prototype.acosh=function(){return this.throwIfDisposed(),yA(this)};ae().prototype.add=function(e){return this.throwIfDisposed(),le(this,e)};ae().prototype.all=function(e,t){return this.throwIfDisposed(),Mh(this,e,t)};ae().prototype.any=function(e,t){return this.throwIfDisposed(),Gc(this,e,t)};ae().prototype.argMax=function(e){return this.throwIfDisposed(),vs(this,e)};ae().prototype.argMin=function(e){return this.throwIfDisposed(),xA(this,e)};ae().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),U(this,[])};ae().prototype.asType=function(e){return this.throwIfDisposed(),de(this,e)};ae().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};ae().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};ae().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};ae().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),U(this,[e,t,n,s])};ae().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),U(this,[e,t,n,s,r])};ae().prototype.asin=function(){return this.throwIfDisposed(),bA(this)};ae().prototype.asinh=function(){return this.throwIfDisposed(),vA(this)};ae().prototype.atan=function(){return this.throwIfDisposed(),wA(this)};ae().prototype.atan2=function(e){return this.throwIfDisposed(),kA(this,e)};ae().prototype.atanh=function(){return this.throwIfDisposed(),IA(this)};ae().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),jc(this,e,t,n,s)};ae().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),qc(this,e,t)};ae().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),ai(this,e,t,n,s,r)};ae().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ou(this,e)};ae().prototype.cast=function(e){return this.throwIfDisposed(),de(this,e)};ae().prototype.ceil=function(){return this.throwIfDisposed(),EA(this)};ae().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};ae().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ge&&(e=[e]),gt([this,...e],t)};ae().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Lh(this,e,t,n,s,r,a)};ae().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),Bh(this,e,t,n,s,r)};ae().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Mr(this,e,t,n,s,r,a)};ae().prototype.cos=function(){return this.throwIfDisposed(),Xc(this)};ae().prototype.cosh=function(){return this.throwIfDisposed(),Wh(this)};ae().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Vh(this,e,t,n)};ae().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_A(this,e,t)};ae().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),lu(this,e,t,n,s,r,a)};ae().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),FA(this,e,t,n,s,r)};ae().prototype.divNoNan=function(e){return this.throwIfDisposed(),$A(this,e)};ae().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};ae().prototype.dot=function(e){return this.throwIfDisposed(),m3(this,e)};ae().prototype.elu=function(){return this.throwIfDisposed(),uu(this)};ae().prototype.equal=function(e){return this.throwIfDisposed(),os(this,e)};ae().prototype.erf=function(){return this.throwIfDisposed(),OA(this)};ae().prototype.exp=function(){return this.throwIfDisposed(),is(this)};ae().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};ae().prototype.expm1=function(){return this.throwIfDisposed(),PA(this)};ae().prototype.fft=function(){return this.throwIfDisposed(),rd(this)};ae().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};ae().prototype.floor=function(){return this.throwIfDisposed(),du(this)};ae().prototype.floorDiv=function(e){return this.throwIfDisposed(),Oh(this,e)};ae().prototype.gather=function(e,t){return this.throwIfDisposed(),oi(this,e,t)};ae().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ya(this,e)};ae().prototype.greater=function(e){return this.throwIfDisposed(),Yn(this,e)};ae().prototype.ifft=function(){return this.throwIfDisposed(),gu(this)};ae().prototype.irfft=function(){return this.throwIfDisposed(),sf(this)};ae().prototype.isFinite=function(){return this.throwIfDisposed(),A3(this)};ae().prototype.isInf=function(){return this.throwIfDisposed(),y3(this)};ae().prototype.isNaN=function(){return this.throwIfDisposed(),zA(this)};ae().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Kc(this,e)};ae().prototype.lessEqual=function(e){return this.throwIfDisposed(),xa(this,e)};ae().prototype.less=function(e){return this.throwIfDisposed(),Gh(this,e)};ae().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),LA(this,e,t,n,s)};ae().prototype.logSigmoid=function(){return this.throwIfDisposed(),v3(this)};ae().prototype.logSoftmax=function(e){return this.throwIfDisposed(),jh(this,e)};ae().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),VA(this,e,t)};ae().prototype.log=function(){return this.throwIfDisposed(),ls(this)};ae().prototype.log1p=function(){return this.throwIfDisposed(),Zc(this)};ae().prototype.logicalAnd=function(e){return this.throwIfDisposed(),zs(this,e)};ae().prototype.logicalNot=function(){return this.throwIfDisposed(),Yc(this)};ae().prototype.logicalOr=function(e){return this.throwIfDisposed(),qh(this,e)};ae().prototype.logicalXor=function(e){return this.throwIfDisposed(),S3(this,e)};ae().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};ae().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Jc(this,e,t,n,s)};ae().prototype.max=function(e,t){return this.throwIfDisposed(),$n(this,e,t)};ae().prototype.maximum=function(e){return this.throwIfDisposed(),br(this,e)};ae().prototype.mean=function(e,t){return this.throwIfDisposed(),Ft(this,e,t)};ae().prototype.min=function(e,t){return this.throwIfDisposed(),Qc(this,e,t)};ae().prototype.minimum=function(e){return this.throwIfDisposed(),pu(this,e)};ae().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),GA(this,e,t)};ae().prototype.mod=function(e){return this.throwIfDisposed(),HA(this,e)};ae().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ae().prototype.neg=function(){return this.throwIfDisposed(),Tt(this)};ae().prototype.norm=function(e,t,n){return this.throwIfDisposed(),lf(this,e,t,n)};ae().prototype.notEqual=function(e){return this.throwIfDisposed(),ui(this,e)};ae().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),nu(this,e,t,n)};ae().prototype.onesLike=function(){return this.throwIfDisposed(),cs(this)};ae().prototype.pad=function(e,t){return this.throwIfDisposed(),ks(this,e,t)};ae().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),N3(this,e,t,n,s,r)};ae().prototype.pow=function(e){return this.throwIfDisposed(),zr(this,e)};ae().prototype.prelu=function(e){return this.throwIfDisposed(),td(this,e)};ae().prototype.prod=function(e,t){return this.throwIfDisposed(),Kh(this,e,t)};ae().prototype.reciprocal=function(){return this.throwIfDisposed(),XA(this)};ae().prototype.relu=function(){return this.throwIfDisposed(),Js(this)};ae().prototype.relu6=function(){return this.throwIfDisposed(),Zh(this)};ae().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};ae().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};ae().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),j3(this,e,t,n)};ae().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),q3(this,e,t,n)};ae().prototype.reverse=function(e){return this.throwIfDisposed(),ds(this,e)};ae().prototype.rfft=function(){return this.throwIfDisposed(),ad(this)};ae().prototype.round=function(){return this.throwIfDisposed(),Yh(this)};ae().prototype.rsqrt=function(){return this.throwIfDisposed(),Jh(this)};ae().prototype.selu=function(){return this.throwIfDisposed(),Qh(this)};ae().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),KA(this,e,t,n,s,r,a)};ae().prototype.sigmoid=function(){return this.throwIfDisposed(),Kn(this)};ae().prototype.sign=function(){return this.throwIfDisposed(),ZA(this)};ae().prototype.sin=function(){return this.throwIfDisposed(),ef(this)};ae().prototype.sinh=function(){return this.throwIfDisposed(),tf(this)};ae().prototype.slice=function(e,t){return this.throwIfDisposed(),Fe(this,e,t)};ae().prototype.softmax=function(e){return this.throwIfDisposed(),ci(this,e)};ae().prototype.softplus=function(){return this.throwIfDisposed(),ii(this)};ae().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),ed(this,e,t)};ae().prototype.split=function(e,t){return this.throwIfDisposed(),pn(this,e,t)};ae().prototype.sqrt=function(){return this.throwIfDisposed(),xn(this)};ae().prototype.square=function(){return this.throwIfDisposed(),ft(this)};ae().prototype.squaredDifference=function(e){return this.throwIfDisposed(),rf(this,e)};ae().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};ae().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ge?[this,e]:[this,...e];return bn(n,t)};ae().prototype.step=function(e){return this.throwIfDisposed(),Au(this,e)};ae().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),JA(this,e,t,n,s,r,a,o,i)};ae().prototype.sub=function(e){return this.throwIfDisposed(),xe(this,e)};ae().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};ae().prototype.tan=function(){return this.throwIfDisposed(),QA(this)};ae().prototype.tanh=function(){return this.throwIfDisposed(),ri(this)};ae().prototype.tile=function(e){return this.throwIfDisposed(),ws(this,e)};ae().prototype.toBool=function(){return this.throwIfDisposed(),de(this,"bool")};ae().prototype.toFloat=function(){return this.throwIfDisposed(),de(this,"float32")};ae().prototype.toInt=function(){return this.throwIfDisposed(),de(this,"int32")};ae().prototype.topk=function(e,t){return this.throwIfDisposed(),e1(this,e,t)};ae().prototype.transpose=function(e){return this.throwIfDisposed(),Ke(this,e)};ae().prototype.unique=function(e){return this.throwIfDisposed(),of(this,e)};ae().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),t1(this,e,t)};ae().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};ae().prototype.where=function(e,t){return this.throwIfDisposed(),Tn(e,this,t)};ae().prototype.zerosLike=function(){return this.throwIfDisposed(),Ze(this)};var cv={};ze(cv,{maxNorm:()=>dM,minMaxNorm:()=>fM,nonNeg:()=>hM,unitNorm:()=>pM});var u1;function en(){return u1==null&&(u1=Ar().epsilon()),u1}function er(){return"channelsLast"}var Wr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Wr.prototype)}},tr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,tr.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Me=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Me.prototype)}},dv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dv.prototype)}};function hi(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function wr(e,t){if(!e)throw new dv(t)}function pv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Jn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Vr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function fi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ls={};function c1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function d1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>d1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:d1(s))}}}function ld(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ls)o=Ls[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ls?[i,l]=Ls.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Ls))c[h]=Ls[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d=Object.assign({},Ls);for(let h of Object.keys(n))Ls[h]=n[h];d1(a.config);let p=l(i,a.config,n,r);return Ls=Object.assign({},d),p}else{let c=Object.assign({},Ls);for(let d of Object.keys(n))Ls[d]=n[d];let u=new i(a.config);return Ls=Object.assign({},c),u}}}function lM(e,t){return e<t?-1:e>t?1:0}function bf(e,t){return-1*lM(e,t)}function va(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function uM(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function mi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function p1(e,t,n=0,s=1/0){return wr(n>=0),wr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function hn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>hn(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${hv(e)}.`)}function hv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>hv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function cM(e,t,n){let s=n!=null?n():w.now(),r;return(...o)=>{let i=n!=null?n():w.now();return i-s<t||(s=i,r=e(...o)),r}}function fv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function h1(e,t){return j(()=>xn(Se(B(e,e),t,!0)))}var ud=class extends ue.Serializable{getConfig(){return{}}},f1=class extends ud{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=h1(e,this.axis),n=Zn(t,0,this.maxValue);return B(e,me(n,le(en(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};f1.className="MaxNorm";ue.registerClass(f1);var m1=class extends ud{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>me(e,le(en(),h1(e,this.axis))))}getConfig(){return{axis:this.axis}}};m1.className="UnitNorm";ue.registerClass(m1);var g1=class extends ud{apply(e){return Js(e)}};g1.className="NonNeg";ue.registerClass(g1);var A1=class extends ud{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=h1(e,this.axis),n=le(B(this.rate,Zn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,me(n,le(en(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};A1.className="MinMaxNorm";ue.registerClass(A1);var mv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function tn(e){return c1(e)}function gv(e,t={}){return ld(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function nn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in mv?mv[e]:e,config:{}};return gv(n)}else return e instanceof ud?e:gv(e)}function dM(e){return new f1(e)}function pM(e){return new m1(e)}function hM(){return new g1}function fM(e){return new A1(e)}var Av={};ze(Av,{constant:()=>MM,glorotNormal:()=>GM,glorotUniform:()=>UM,heNormal:()=>HM,heUniform:()=>jM,identity:()=>WM,leCunNormal:()=>qM,leCunUniform:()=>XM,ones:()=>PM,orthogonal:()=>KM,randomNormal:()=>LM,randomUniform:()=>zM,truncatedNormal:()=>BM,varianceScaling:()=>VM,zeros:()=>OM});var mM=["channelsFirst","channelsLast"],gM=["nearest","bilinear"],AM=["valid","same","causal"],yM=["max","avg"],xM=["sum","mul","concat","ave"],xu=new Map;function Wt(e){mi(mM,"DataFormat",e)}function bM(e){mi(gM,"InterpolationFormat",e)}function Is(e){mi(AM,"PaddingMode",e)}function yv(e){mi(yM,"PoolMode",e)}var cd=[],xv="/";function gi(e,t){cd.push(e);try{let n=t();return cd.pop(),n}catch(n){throw cd.pop(),n}}function vM(){return cd.length===0?"":cd.join(xv)+xv}function bv(e){if(!wv(e))throw new Error("Not a valid tensor name: '"+e+"'");return vM()+e}function vv(e){if(!wv(e))throw new Error("Not a valid tensor name: '"+e+"'");xu.has(e)||xu.set(e,0);let t=xu.get(e);if(xu.set(e,xu.get(e)+1),t>0){let n=`${e}_${t}`;return xu.set(n,1),n}else return e}var wM=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function wv(e){return!!e.match(wM)}function kM(e){return e===parseInt(e.toString(),10)}function wa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function bu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function ka(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function nr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function vf(e,t){return de(e,t)}function dd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function IM(e,t){return j(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=dd(e,1);return b1(n,[1,t,1])})}function SM(e){let t=[wa(e.shape)];return U(e,t)}function CM(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],wa(e.shape,1)];return U(e,t)}function Ai(e,t,n){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return YA(e,[t,0],[n,e.shape[1]]);case 3:return mu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return sd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Fe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Fe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function y1(e,t,n){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return YA(e,[0,t],[e.shape[0],n]);case 3:return mu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return sd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wf(e,t,n,s){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:switch(s){case 1:return Ai(e,t,n);case 2:return y1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Ai(e,t,n);case 2:return mu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return y1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Ai(e,t,n);case 2:return sd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return sd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return y1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function x1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),gt(e,t)}function kv(e,t){switch(e.rank){case 1:return u3([e,t]);case 2:return iu([e,t],0);case 3:return c3([e,t],0);case 4:return d3([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function b1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ws(e,t)}function kf(e,t=0,n=1,s,r){return E3(e,t,n,s,r)}function kr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return ba.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?v1(e.rank,s,er()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Ke(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return U(ba.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?v1(e.rank,s,er()):null,activation:n}),d)}}function Iv(e,t,n){return j(()=>(Array.isArray(t)?t=jt(t,"int32"):t=de(t,"int32"),oi(e,t,n)))}function pd(e){return B(e,e)}function v1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function sr(e,t,n){return j(()=>(n==null&&(n=er()),Wt(n),le(e,v1(e.rank,t,n))))}function TM(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return uu(e)}function NM(e){return j(()=>me(e,le(Gt(e),1)))}function Sv(e,t,n,s){return j(()=>P3(e,t,n,s))}function EM(e){return j(()=>{let t=le(.5,B(.2,e));return Zn(t,0,1)})}function hd(e,t,n=!1){return n?e():t()}var RM=["fanIn","fanOut","fanAvg"],DM=["normal","uniform","truncatedNormal"];function _M(e){mi(RM,"FanMode",e)}function FM(e){mi(DM,"Distribution",e)}var Bs=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},w1=class extends Bs{apply(e,t){return Ht(e,t)}};w1.className="Zeros";ue.registerClass(w1);var If=class extends Bs{apply(e,t){return us(e,t)}};If.className="Ones";ue.registerClass(If);var k1=class extends Bs{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>B(Re(this.value),us(e,t)))}getConfig(){return{value:this.value}}};k1.className="Constant";ue.registerClass(k1);var I1=class extends Bs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return hu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};I1.className="RandomUniform";ue.registerClass(I1);var S1=class extends Bs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};S1.className="RandomNormal";ue.registerClass(S1);var C1=class extends Bs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return af(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};C1.className="TruncatedNormal";ue.registerClass(C1);var T1=class extends Bs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,MA(e[0]))})}getConfig(){return{gain:this.gain}}};T1.className="Identity";ue.registerClass(T1);function $M(e,t="channelsLast"){let n,s;if(Wt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=wa(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=wa(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=wa(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Qn=class extends Bs{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,_M(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,FM(this.distribution),this.seed=e.seed}apply(e,t){let n=$M(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return af(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return hu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Qn.className="VarianceScaling";ue.registerClass(Qn);var Sf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Sf.className="GlorotUniform";ue.registerClass(Sf);var Cf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Cf.className="GlorotNormal";ue.registerClass(Cf);var Tf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Tf.className="HeNormal";ue.registerClass(Tf);var Nf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Nf.className="HeUniform";ue.registerClass(Nf);var Ef=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Ef.className="LeCunNormal";ue.registerClass(Ef);var Rf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Rf.className="LeCunNormal";ue.registerClass(Rf);var N1=class extends Bs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=kf(n,0,1,"float32"),r=K3.gramSchmidt(s);return e[0]>e[1]&&(r=Ke(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};N1.className="Orthogonal";ue.registerClass(N1);var Cv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Tv(e,t={}){return ld(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function $t(e){return c1(e)}function Nt(e){if(typeof e=="string"){let t=e in Cv?Cv[e]:e;if(t==="GlorotNormal")return new Cf;if(t==="GlorotUniform")return new Sf;if(t==="HeNormal")return new Tf;if(t==="HeUniform")return new Nf;if(t==="LeCunNormal")return new Ef;if(t==="LeCunUniform")return new Rf;{let n={};return n.className=t,n.config={},Tv(n)}}else return e instanceof Bs?e:Tv(e)}function OM(){return new w1}function PM(){return new If}function MM(e){return new k1(e)}function zM(e){return new I1(e)}function LM(e){return new S1(e)}function BM(e){return new C1(e)}function WM(e){return new T1(e)}function VM(e){return new Qn(e)}function UM(e){return new Sf(e)}function GM(e){return new Cf(e)}function HM(e){return new Tf(e)}function jM(e){return new Nf(e)}function qM(e){return new Ef(e)}function XM(e){return new Rf(e)}function KM(e){return new N1(e)}var Nv={};ze(Nv,{Layer:()=>Je,RNN:()=>Cr,RNNCell:()=>wd,activation:()=>DL,add:()=>BL,alphaDropout:()=>kB,average:()=>WL,averagePooling1d:()=>jy,averagePooling2d:()=>qy,averagePooling3d:()=>Xy,avgPool1d:()=>ZL,avgPool2d:()=>JL,avgPool3d:()=>eB,avgPooling1d:()=>YL,avgPooling2d:()=>QL,avgPooling3d:()=>tB,batchNormalization:()=>qL,bidirectional:()=>mB,concatenate:()=>VL,conv1d:()=>wL,conv2d:()=>kL,conv2dTranspose:()=>IL,conv3d:()=>SL,conv3dTranspose:()=>CL,convLstm2d:()=>dB,convLstm2dCell:()=>pB,cropping2D:()=>NL,dense:()=>_L,depthwiseConv2d:()=>RL,dot:()=>jL,dropout:()=>FL,elu:()=>gL,embedding:()=>LL,flatten:()=>OL,gaussianDropout:()=>wB,gaussianNoise:()=>vB,globalAveragePooling1d:()=>nB,globalAveragePooling2d:()=>sB,globalMaxPool1d:()=>AB,globalMaxPool2d:()=>yB,globalMaxPooling1d:()=>Mw,globalMaxPooling2d:()=>zw,gru:()=>aB,gruCell:()=>oB,input:()=>iw,inputLayer:()=>mL,layerNormalization:()=>XL,leakyReLU:()=>yL,lstm:()=>iB,lstmCell:()=>lB,masking:()=>IB,maxPool1d:()=>xB,maxPool2d:()=>bB,maxPooling1d:()=>Lw,maxPooling2d:()=>Bw,maxPooling3d:()=>rB,maximum:()=>UL,minimum:()=>GL,multiply:()=>HL,permute:()=>zL,prelu:()=>xL,reLU:()=>AL,repeatVector:()=>PL,reshape:()=>ML,rnn:()=>hB,separableConv2d:()=>TL,simpleRNN:()=>uB,simpleRNNCell:()=>cB,softmax:()=>bL,spatialDropout1d:()=>$L,stackedRNNCells:()=>fB,thresholdedReLU:()=>vL,timeDistributed:()=>gB,upSampling2d:()=>EL,zeroPadding2d:()=>KL});var ZM=0;function Ev(){return ZM++}var Df={};function _f(e=""){return e in Df||(Df[e]=0),Df[e]+=1,e+Df[e].toString()}function E1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ff(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function dt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function $f(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Rv="Variable",Dv=class{constructor(e,t="float32",n=Rv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ev(),n=n==null?Rv:n,this.originalName=bv(n),this.name=vv(this.originalName),this.trainable_=s,this.constraint=r,this.val=D3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),YM(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function YM(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function R1(e){return e.map(t=>t.read())}function D1(e){e.forEach(t=>{t[0].write(t[1])})}var qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},rr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Ev(),a!=null&&(this.originalName=bv(a),this.name=vv(this.originalName)),this.rank=t.length}},JM=0,Of=class{constructor(e,t){this.callArgs=t,this.id=JM++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},QM=0,Je=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=QM++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Vr(n)+"_"+_f(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new tr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} is not connected, no input to return.`);return Jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),s=!0;for(let a of n)if(!(a instanceof rr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof rr){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return gi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of vt(e))a.push(o.shape);this.build(Jn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=vt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Jn(i),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=ez(e),o=this.computeOutputShape(a),i,l=tz(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new rr(l,c,this,vt(e),t,this.name,u)):i=new rr(l,o,this,vt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Wr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Wr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new tr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return $f(this.weights)}build(e){this.built=!0}getWeights(e=!1){return R1(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=R1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}D1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Nt("zeros"));let l=s.apply(t,n),c=new Dv(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=vt(e);t=vt(t),n=vt(n),s=vt(s),r=Ff(r),a=Ff(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Of({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function ez(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return Jn(t)}function tz(e){return"float32"}function _v(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=_v(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var vu=class extends Je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:_f("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new rr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};vu.className="InputLayer";ue.registerClass(vu);function Fv(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new vu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Ia(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Y(s)}}function $v(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Ov;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Ov||(Ov={}));var nz=125,wu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Pv=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},sz=class extends wu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=j(()=>le(this.totals[s],B(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=B(me(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),dn(t[n])}))}},Mv=class extends wu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},zv=class extends wu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Z3,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=nz),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=cM(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Ia(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ia(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ia(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ia(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ia(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ia(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ia(e),await this.trainEnd(e))}};function Lv(e,t){return e==null&&(e={}),e instanceof wu?[e]:Array.isArray(e)&&e[0]instanceof wu?e:vt(e).map(s=>new zv(s,t))}var Ws=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ws.checkForDuplicate(t),Ws.constructors[e]==null&&(Ws.constructors[e]=[]),Ws.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ws.constructors)Ws.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){Ws.constructors={}}static createCallbacks(e){let t=[];for(let n in Ws.constructors){let s=+n;e>=s&&t.push(...Ws.constructors[s])}return t.map(n=>new n)}};Ws.constructors={};function Bv(e,t,n,s,r,a,o,i,l){let c=new Mv,u=[new sz,...Ws.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Pv(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function ar(e,t={},n=!1){return ld(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Pf(e,t){return j(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=Se(pd(e),t,!0),s=cu(n.shape,en()),r=xn(br(n,s));return me(e,r)})}function yi(e,t){return j(()=>Ft(pd(xe(t,e)),-1))}function Mf(e,t){return j(()=>Ft(Gt(xe(t,e)),-1))}function ku(e,t){return j(()=>{let n=xe(e,t),s=Zn(Gt(e),en(),Number.MAX_VALUE),r=Gt(me(n,s));return B(100,Ft(r,-1))})}function rz(e,t){return j(()=>{let n=Zn(t,en(),Number.MAX_VALUE),s=ls(le(1,n)),r=Zn(e,en(),Number.MAX_VALUE),a=ls(le(1,r));return Ft(pd(xe(s,a)),-1)})}function az(e,t){return j(()=>{let n=br(0,xe(1,B(e,t)));return Ft(pd(n),-1)})}function oz(e,t){return j(()=>{let n=br(0,xe(1,B(e,t)));return Ft(n,-1)})}function iz(e,t){return j(()=>{let n=Se(B(e,t),-1),s=$n(B(xe(1,e),t),-1);return br(0,le(1,xe(s,n)))})}function lz(e,t){return j(()=>{let n=Math.log(2),s=xe(t,e),r=xe(le(s,ii(B(-2,s))),n);return Ft(r,-1)})}function fd(e,t,n=!1){return j(()=>{if(n)t=ci(t);else{let s=Se(t,t.shape.length-1,!0);t=me(t,s)}return t=Zn(t,en(),1-en()),Tt(Se(B(de(e,"float32"),ls(t)),t.shape.length-1))})}function zf(e,t,n=!1){return j(()=>{let s=de(du(SM(e)),"int32");t=Zn(t,en(),1-en());let r=t.shape,a=U(nu(s,r[r.length-1]),r);return fd(a,t,n)})}function uz(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=Js(t),s=Tt(Gt(t));return le(xe(n,B(t,e)),Zc(is(s)))})}function Lf(e,t){return j(()=>{let n;return n=Zn(t,en(),1-en()),n=ls(me(n,xe(1,n))),Ft(uz(e,n),-1)})}function cz(e,t){return j(()=>{let n=Zn(e,en(),1),s=Zn(t,en(),1);return Se(B(e,ls(me(n,s))),-1)})}function dz(e,t){return j(()=>{let n=ls(le(en(),t));return Ft(xe(t,B(e,n)),-1)})}function _1(e,t){return j(()=>{let n=Pf(e,-1),s=Pf(t,-1),r=B(n,s);return Tt(Se(r,-1))})}var Bf={meanSquaredError:yi,meanAbsoluteError:Mf,meanAbsolutePercentageError:ku,meanSquaredLogarithmicError:rz,squaredHinge:az,hinge:oz,categoricalHinge:iz,logcosh:lz,categoricalCrossentropy:fd,sparseCategoricalCrossentropy:zf,binaryCrossentropy:Lf,kullbackLeiblerDivergence:cz,poisson:dz,cosineProximity:_1};function F1(e){if(typeof e=="string"){if(e in Bf)return Bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function $1(e,t){return j(()=>{let n=B(.5,cs(t)),s=vf(Yn(t,n),e.dtype);return Ft(os(e,s),-1)})}function O1(e,t){return j(()=>vf(os(vs(e,-1),vs(t,-1)),"float32"))}function Wv(e,t){return j(()=>de(Se(zs(os(e,1),os(t,1))),"float32"))}function pz(e,t){return j(()=>de(Se(zs(os(e,1),os(t,0))),"float32"))}function hz(e,t){return j(()=>de(Se(zs(os(e,0),os(t,1))),"float32"))}function Vv(e,t){return j(()=>{let n=Wv(e,t),s=hz(e,t),r=le(n,s);return de(Tn(Yn(r,0),me(n,r),0),"float32")})}function fz(e,t){return j(()=>{let n=Wv(e,t),s=pz(e,t),r=le(n,s);return de(Tn(Yn(r,0),me(n,r),0),"float32")})}function Uv(e,t){return Lf(e,t)}function Gv(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=vs(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(os(e,t),"float32")}var mz=yi,gz=yi,Az=Mf,yz=Mf,xz=ku,bz=ku,P1=fd,vz=_1,Hv=zf,Wf={binaryAccuracy:$1,categoricalAccuracy:O1,precision:Vv,categoricalCrossentropy:P1,sparseCategoricalCrossentropy:Hv,mse:mz,MSE:gz,mae:Az,MAE:yz,mape:xz,MAPE:bz,cosine:vz};function wz(e){if(typeof e=="string"&&e in Wf)return Wf[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Vf(e){if(wr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Bf))if(Bf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wf))if(Wf[n]===e){t=n;break}return t!==void 0?t:e.name}}function kz(e){let t={Adagrad:()=>pi.adagrad(.01),Adadelta:()=>pi.adadelta(1,.95,en()),Adam:()=>pi.adam(.001,.9,.999,en()),Adamax:()=>pi.adamax(.002,.9,.999,en(),0),RMSProp:()=>pi.rmsprop(.001,.9,0,en()),SGD:()=>pi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var jv=1*1024*1024;function qv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!M1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>jv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${jv}.`)}}function M1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!M1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!M1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Iz(e,t,n,s=console.log){let r=Cz(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),Uf(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?Tz(i[u],n,s):Nz(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Sz(e),c=$f(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function Sz(e){let t;return e.collectedTrainableWeights!=null?t=$f(e.collectedTrainableWeights):t=$f(e.trainableWeights),t}function Cz(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Uf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function Tz(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Uf(o,t,n)}function Nz(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];Uf(c,t,s);for(let u=1;u<a.length;++u)Uf(["","","",a[u]],t,s)}function Xv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function md(e,t){if(e===null)return null;if(typeof e=="string")return fi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xv(t,r,a)?n.push(a):n.push(md(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=fi(s);n[a]=md(r,a)}}return n}}function z1(e,t){if(e==null)return null;if(typeof e=="string")return Vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xv(t,r,a)?n.push(a):n.push(z1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Vr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=z1(r,s)}return n}}var L1="3.10.0";function Ez(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var xi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof xi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Ez(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof rr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof rr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Y(this.id2Mask)}},B1={},Kv={};function gd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(B1[u]==null){let f=Rz(o,t);d=f.sorted,p=f.recipientCounts,B1[u]=d,Kv[u]=p}d=B1[u],p={},r||Object.assign(p,Kv[u]);let h=new xi(t);for(let f=0;f<d.length;++f){if(s!=null){let D=Fh().numTensors;D>s.maxNumTensors&&(s.maxNumTensors=D),D<s.minNumTensors&&(s.minNumTensors=D)}let m=d[f],g=m.sourceLayer;if(g instanceof vu)continue;let A=[],y=[],x=[],b=!1;for(let D of m.inputs){let P=h.getValue(D),E=h.getMask(D);A.push(P),y.push(E),E!=null&&(b=!0),r||(p[D.name]--,p[D.name]===0&&!t.hasKey(D)&&i.indexOf(D.name)===-1&&!P.isDisposed&&D.sourceLayer.stateful!==!0&&x.push(P))}b&&(n=n||{},n.mask=y[0]);let v=vt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let C=_z(m),N=Array.isArray(C)?C:[C];for(let D=0;D<N.length;++D){h.hasKey(N[D])||h.add(N[D],v[D],Array.isArray(k)?k[0]:k);let P=i.indexOf(N[D].name);P!==-1&&(l[P]=v[D])}r||Y(x)}return h.disposeMasks(),a?l:l[0]}function Rz(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Zv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Zv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:Dz(s)}}function Dz(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Zv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function _z(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ir=class extends Je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=_f(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],va(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);va(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;wr(x===0,"input layer has >1 nodes"),wr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof vu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let C=b.inboundNodes[v];if(x.indexOf(C)!==-1)throw new tr(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(Ir.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(C)===-1&&x.push(C);let N=C.inboundLayers.length;for(let D=0;D<N;D++){let P=C.inputTensors[D],E=C.inboundLayers[D],F=C.nodeIndices[D],T=C.tensorIndices[D];i(P,y,x,E,F,T)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);o.push(C)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],k=A.nodeIndices[b],C=v.inboundNodes[k],N=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,N),n[C.id]=C}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(bf);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof Ir&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(bf);let f=this.inputs.slice(),m=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new tr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new tr(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}D1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${L1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=z1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=vt(e);let n=new xi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return gd(this.outputs,n,t)})}computeMask(e,t){return j(()=>{e=vt(e);let n;return t==null?n=hi(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ff(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(bf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];u.push(x)}let d=c.computeOutputShape(Jn(u)),p=Ff(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];wr(i in n),r.push(n[i])}return Jn(r)}runInternalGraph(e,t){t==null&&(t=hi(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(bf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,y;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),A=vt(u.call(x,f)),y=vt(u.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),A=vt(u.call(m,f)),y=vt(u.computeMask(m,g));if(u.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=A[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){wr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Ir?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Ir.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return j(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Ir.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Ir.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=Ir.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let C=r[b];if(C.inboundNodes.length<=v){o(m,g);return}let N=C.inboundNodes[v];A.push(N.outputTensors[k])}A.length>0&&m.apply(Jn(A),y)}function l(m){let g=m.name,A=ar(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!uM(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],y=m[2];wr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];wr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Fz(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Yv(e,t){return Fz(e,t,"classWeight")}async function Jv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return Zs(e);if(e.shape.length===2){if(e.shape[1]>1)return vs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Y(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),jt(o,"float32")}else return null}function $z(e,t){return B(e,t)}var Oz=32;function Qv(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=ew("input",e.inputNames,n),o=ew("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function ew(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function Pz(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Mz(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(tw(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Pz(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Lv(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=Bv(u,d,n.epochs,null,null,zz(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=Qv(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await p.onBatchBegin(y,k);let C=[];if(n.classWeight!=null){let P=Yv(n.classWeight,e.outputNames);for(let E=0;E<P.length;++E)C.push(await Jv(v[E],null,P[E]))}let N=b.concat(v).concat(C),D=i(N);Y(N);for(let P=0;P<l.length;++P){let E=l[P],F=D[P];k[E]=F,dn(F)}await p.onBatchEnd(y,k),$v(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;tw(n.validationData)?b=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=vt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?Oz:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function zz(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function tw(e){return typeof e.iterator=="function"}function Lz(e){return typeof e.next=="function"}async function Bz(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=Lz(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=j(()=>{if(c.value){let{xs:u,ys:d}=Qv(e,c.value),p=u.concat(d),h=j(()=>r(p));if(Y(p),l===0)for(let m=0;m<h.length;++m)a.push(Re(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=j(()=>le(a[m],B(f,g))),l>0&&Y(A)}Y(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=me(a[c],i),Y(u)}return Jn(a)}function W1(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ad(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Ai(s,t,n-t)):Ai(e,t,n-t)}function V1(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>V1(n,t)):Iv(e,t.dtype==="int32"?t:de(t,"int32")))}function U1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function Wz(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=nr(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=Bv(i,o,a,p,g,h,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let v={};if(h!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Me("batch shuffling is not implemneted yet");u&&w.shuffle(A);let k=jt(A),C=U1(g,r);for(let N=0;N<C.length;++N){let D={};if(await y.onBatchBegin(N,D),j(()=>{let P=C[N][0],E=C[N][1],F=Ai(k,P,E-P);D.batch=N,D.size=E-P;let T=V1(n,F),M=t(T);for(let G=0;G<s.length;++G){let H=s[G],z=M[G];D[H]=z,dn(z)}if(N===C.length-1&&m){let G=e.testLoop(l,c,r);for(let H=0;H<s.length;++H){let z=s[H],X=G[H];dn(X),v["val_"+z]=X}}}),await y.onBatchEnd(N,D),$v(D),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function Vz(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;W1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let C=!0,N=await e.standardizeUserData(o,i,null,null,C,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let C=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=Ad(r,C,N),r=Ad(r,0,C),c=Ad(a,C,N),a=Ad(a,0,C),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(C=>"val_"+C))):(x=null,m=[],b=y.slice());let v=Lv(s.callbacks,s.yieldEvery);return await Wz(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,bi(r,t),bi(a,n),bi(l,o),bi(c,i),u!=null&&Y(u)}}function nw(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(dd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function bi(e,t){if(e==null)return;let n=[];if(t instanceof Ge)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function Uz(e){return e instanceof Ge}function G1(e){return Array.isArray(e)}function sw(e){return!Uz(e)&&!G1(e)}function rw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(G1(e)&&e.length>0)o=!0;else if(sw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(sw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(G1(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=nw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function Gz(e,t,n){let s=va(e.map(a=>a.shape[0]));s.sort();let r=va(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function Hz(e,t,n){let s=[yi,Lf,fd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===fd&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function aw(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function jz(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var qz="layers-model",Ur=class extends Ir{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Iz(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=kz(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Br))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(F1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>F1(o))}else{let a=F1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],gi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=jz(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};gi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Lf?["accuracy","acc"].indexOf(h)!==-1?d=$1:["crossentropy","ce"].indexOf(h)!==-1&&(d=Uv):this.lossFunctions[a]===zf?["accuracy","acc"].indexOf(h)!==-1?d=Gv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Hv):["accuracy","acc"].indexOf(h)!==-1?d=O1:["crossentropy","ce"].indexOf(h)!==-1&&(d=P1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=wz(h),u=c+Vf(h);let f;gi(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;W1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Jn(l)}finally{bi(a[0],e),bi(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Bz(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new xi;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=gd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=hi(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let r=U1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)j(()=>{let l=r[o][0],c=r[o][1],u=Ad(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new xi(d);return gd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return Jn(a.map(o=>gt(o,0)))})}predict(e,t={}){let n=nw(e);aw(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return W1(s),this.predictLoop(n,s)}finally{bi(n,e)}}predictOnBatch(e){aw(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new tr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===zf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=rw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rw(t,this.feedOutputNames,r,!1,"target"),Gz(e,t,null),Hz(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Yv(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Jv(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return j(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Me("Verbose mode is not implemented yet.");if(r!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let i=U1(a,n),l=jt(nr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=Ai(l,u,d-u),h=V1(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Re(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=le(o[m],B(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=me(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;pv(e,s)>1&&(r+=`_${pv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new xi(u),p=gd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=$z(g,r[f]));let A=Ft(g);t.push(A),f===0?h=g:h=le(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Ft(g(s[A],p[A]))}dn(m),a.push(m)}return h=Ft(h),this.calculateLosses().forEach(f=>{h=le(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new xi(a),i=gd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Ft(c(r[l],i[l]));l===0?n=u:n=le(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Ft(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return Vz(this,e,t,n)}async fitDataset(e,t){return Mz(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return Y(o),Jn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Fh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Fh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Vr(Vf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Vr(Vf(e)));{let e={};for(let t in this.metrics)e[t]=Vr(Vf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=md(e.optimizer_config),n=ar(t),s;if(typeof e.loss=="string")s=fi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>fi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=fi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>fi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=fi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Xn.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Xn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:qz,generatedBy:`TensorFlow.js tfjs-layers v${L1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await Xn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=Xn.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;qv(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){qv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ur.className="Model";ue.registerClass(Ur);var ow=class extends Ur{};ow.className="Functional";ue.registerClass(ow);async function Xz(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=md(n),r=ar(s,t);if(e.weightsManifest!=null){let a=await Xn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Y(a)}return r}async function Kz(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Xn.getLoadHandlers(e,t);if(n.length===0)n.push(Xn.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Zz(e,void 0,t)}async function Zz(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=ar(md(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Yz(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),Y(c),Y(u.map(d=>d.tensor))}return i}function Yz(e,t){let n=Xn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Iu=class extends Ur{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_f("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Iu||e instanceof Ur,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Fv({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=_v(this.outputs[0])}this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:hi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(dt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ur({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof Iu))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=ar(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Iu.className="Sequential";ue.registerClass(Iu);function Jz(e){return new Ur(e)}function Qz(e){return new Iu(e)}function eL(e,t){return t==null&&(t={}),Kz(e,t)}function iw(e){return Fv(e)}function tL(e,t){Ws.registerCallbackConstructor(e,t)}var es=class extends ue.Serializable{getConfig(){return{}}},lw=class extends es{apply(e,t=1){return TM(e,t)}};lw.className="elu";ue.registerClass(lw);var uw=class extends es{apply(e){return Qh(e)}};uw.className="selu";ue.registerClass(uw);var cw=class extends es{apply(e){return Js(e)}};cw.className="relu";ue.registerClass(cw);var dw=class extends es{apply(e){return j(()=>pu(6,Js(e)))}};dw.className="relu6";ue.registerClass(dw);var pw=class extends es{apply(e){return e}};pw.className="linear";ue.registerClass(pw);var hw=class extends es{apply(e){return Kn(e)}};hw.className="sigmoid";ue.registerClass(hw);var fw=class extends es{apply(e){return EM(e)}};fw.className="hardSigmoid";ue.registerClass(fw);var mw=class extends es{apply(e){return ii(e)}};mw.className="softplus";ue.registerClass(mw);var gw=class extends es{apply(e){return NM(e)}};gw.className="softsign";ue.registerClass(gw);var Aw=class extends es{apply(e){return ri(e)}};Aw.className="tanh";ue.registerClass(Aw);var H1=class extends es{apply(e,t=-1){return ci(e,t)}};H1.className="softmax";ue.registerClass(H1);var yw=class extends es{apply(e,t=-1){return jh(e,t)}};yw.className="logSoftmax";ue.registerClass(yw);var xw=class extends es{apply(e,t=1){return j(()=>B(Kn(B(e,t)),e))}};xw.className="swish";ue.registerClass(xw);var bw=class extends es{apply(e){return j(()=>B(e,ri(ii(e))))}};bw.className="mish";ue.registerClass(bw);function Sa(e){return e.getClassName()}function j1(e,t={}){return ld(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Ca(e){if(e==null){let t={};return t.className="linear",t.config={},j1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},j1(t)}else return e instanceof es?e:j1(e)}function q1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var vw=class extends ue.Serializable{},yd=class extends vw{constructor(e){super();q1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Ht([1]);return this.hasL1&&(t=le(t,Se(B(this.l1,Gt(e))))),this.hasL2&&(t=le(t,Se(B(this.l2,pd(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};yd.className="L1L2";ue.registerClass(yd);function nL(e){return q1(e),new yd({l1:e!=null?e.l1:null,l2:0})}function sL(e){return q1(e),new yd({l2:e!=null?e.l2:null,l1:0})}var ww={l1l2:"L1L2"};function At(e){return c1(e)}function kw(e,t={}){return ld(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Et(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ww?ww[e]:e,config:{}};return kw(n)}else return e instanceof vw?e:kw(e)}var X1=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Js(e);return this.maxValue!=null&&(n=Zn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};X1.className="ReLU";ue.registerClass(X1);var K1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Kc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};K1.className="LeakyReLU";ue.registerClass(K1);var Z1=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Et(e.alphaRegularizer),this.alphaConstraint=nn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=dt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new qt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),td(e,this.alpha.read())}getConfig(){let e={alphaInitializer:$t(this.alphaInitializer),alphaRegularizer:At(this.alphaRegularizer),alphaConstraint:tn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Z1.className="PReLU";ue.registerClass(Z1);var Y1=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return uu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Y1.className="ELU";ue.registerClass(Y1);var J1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return B(n,de(Yn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};J1.className="ThresholdedReLU";ue.registerClass(J1);var Q1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new H1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Q1.className="Softmax";ue.registerClass(Q1);function Su(e,t,n){if(typeof e=="number")return hi(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!kM(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function or(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Sr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+ka([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function ey(e,t){return j(()=>(Wt(t),t==="channelsFirst"?Ke(e,[0,2,3,1]):e))}function Iw(e,t){return j(()=>(Wt(t),t==="channelsFirst"?Ke(e,[0,2,3,4,1]):e))}function rL(e,t,n,s=1,r="valid",a,o=1){return j(()=>{if(a==null&&(a=er()),Wt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ke(e,[0,2,1])),r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Lh(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=sr(i,n)),i})}function Sw(e,t,n,s=[1,1],r="valid",a,o,i=null){return j(()=>{if(a==null&&(a=er()),Wt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=ey(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ba.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ke(l,[0,3,1,2])),l})}function aL(e,t,n,s=[1,1,1],r="valid",a,o){return j(()=>{if(a==null&&(a=er()),Wt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Iw(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=DA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=sr(i,n)),a==="channelsFirst"&&(i=Ke(i,[0,4,1,2,3])),i})}var ty=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ty.verifyArgs(t),this.rank=e,hn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Su(t.kernelSize,e,"kernelSize"),this.strides=Su(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Is(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Wt(this.dataFormat),this.activation=Ca(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=nn(t.biasConstraint),this.biasRegularizer=Et(t.biasRegularizer),this.activityRegularizer=Et(t.activityRegularizer),this.dilationRate=Su(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(wr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!p1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Sa(this.activation),useBias:this.useBias,biasInitializer:$t(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:tn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},xd=class extends ty{constructor(e,t){super(e,t);this.kernel=null,xd.verifyArgs(t),this.filters=t.filters,hn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=nn(t.kernelConstraint),this.kernelRegularizer=Et(t.kernelRegularizer)}build(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n,s=this.bias==null?null:this.bias.read(),r=fv(this.activation.getClassName());if(r!=null&&this.rank===2)n=Sw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=rL(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Sw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=aL(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=dt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=or(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:$t(this.kernelInitializer),kernelRegularizer:At(this.kernelRegularizer),kernelConstraint:tn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},bd=class extends xd{constructor(e){super(2,e);bd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};bd.className="Conv2D";ue.registerClass(bd);var vd=class extends xd{constructor(e){super(3,e);vd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};vd.className="Conv3D";ue.registerClass(vd);var ny=class extends bd{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Sr(i,d,c,this.padding),f=Sr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,1]));let g=Bh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ke(g,[0,3,1,2])),this.bias!=null&&(g=sr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Sr(t[s],i,a,this.padding),t[r]=Sr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ny.className="Conv2DTranspose";ue.registerClass(ny);var sy=class extends vd{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Sr(l,f,d,this.padding),y=Sr(c,m,p,this.padding),x=Sr(u,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,4,1]));let v=h3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ke(v,[0,4,1,2,3])),this.bias!==null&&(v=sr(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Sr(t[s],c,o,this.padding),t[r]=Sr(t[r],u,i,this.padding),t[a]=Sr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};sy.className="Conv3DTranspose";ue.registerClass(sy);var Cw=class extends xd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Et(t.depthwiseRegularizer),this.depthwiseConstraint=nn(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Et(t.pointwiseRegularizer),this.pointwiseConstraint=nn(t.pointwiseConstraint)}build(e){if(e=dt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new qt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ke(e,[0,2,3,1])),n=KA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ke(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=$t(this.depthwiseInitializer),e.pointwiseInitializer=$t(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=tn(this.depthwiseConstraint),e.pointwiseConstraint=tn(this.pointwiseConstraint),e}};Cw.className="SeparableConv";var ry=class extends Cw{constructor(e){super(2,e)}};ry.className="SeparableConv2D";ue.registerClass(ry);var Gf=class extends xd{constructor(e){super(1,e);Gf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!p1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Gf.className="Conv1D";ue.registerClass(Gf);var ay=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ay.className="Cropping2D";ue.registerClass(ay);var oy=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,bM(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Le(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ke(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a]);return Ke(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?_e.resizeNearestNeighbor(n,[r,a]):_e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};oy.className="UpSampling2D";ue.registerClass(oy);function oL(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=er()),Wt(r);let o=ey(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=lu(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}var iy=class extends ty{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=nn(e.depthwiseConstraint),this.depthwiseRegularizer=Et(e.depthwiseRegularizer)}build(e){if(e=dt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Le(e);let n=oL(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=or(t,this.kernelSize[0],this.padding,this.strides[0]),a=or(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=$t(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=tn(this.depthwiseRegularizer),e}};iy.className="DepthwiseConv2D";ue.registerClass(iy);function Tw(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Nw(e,t,n,s=!1,r,a,o=!1,i=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(nr(2,l));if(t=Ke(t,c),a!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=Ke(r,c)),s&&(t=ds(t,0),r!=null&&(r=ds(r,0)));let u=[],d,p=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let A=0;A<h;++A){let y=f[A],x=j(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=j(()=>{let v=m[A],k=xe(cs(v),v),C=le(B(x[0],v),B(p[0],k)),N=p.map((D,P)=>le(B(x[1][P],v),B(D,k)));return{output:C,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=bn(u,1)),[d,g,p]})}var Cr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new qf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return nr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){E1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");E1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new qt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Me("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new qt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_=[Ht([n,this.cell.stateSize])];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_[0]=Ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>dn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Tw(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new qt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof rr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Nw((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return j(()=>{let t=Ht(e.shape);return t=Se(t,[1,2]),t=dd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?b1(t,[1,n]):t):this.cell.stateSize>1?[b1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Cr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=ar(s,n);return new e(Object.assign(t,{cell:r}))}};Cr.className="RNN";ue.registerClass(Cr);var wd=class extends Je{},Hf=class extends wd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,hn(this.units,"units"),this.activation=Ca(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=bu([1,ka([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,ka([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ta({ones:()=>cs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ta({ones:()=>cs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=kr(B(e,a),this.kernel.read()):r=kr(e,this.kernel.read()),this.bias!=null&&(r=sr(r,this.bias.read())),o!=null&&(n=B(n,o));let i=le(r,kr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Sa(this.activation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Hf.className="SimpleRNNCell";ue.registerClass(Hf);var ly=class extends Cr{constructor(e){e.cell=new Hf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};ly.className="SimpleRNN";ue.registerClass(ly);var jf=class extends wd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,hn(this.units,"units"),this.activation=Ca(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ca(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=bu([1,ka([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,ka([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ta({ones:()=>cs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ta({ones:()=>cs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let c=kr(e,this.kernel.read());this.useBias&&(c=sr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=pn(u,[2*this.units,this.units],u.rank-1),h=kr(s,d),[f,m,g]=pn(c,3,c.rank-1),[A,y]=pn(h,2,h.rank-1);o=this.recurrentActivation.apply(le(f,A)),i=this.recurrentActivation.apply(le(m,y));let x=kr(B(i,s),p);l=this.activation.apply(le(g,x));let b=le(B(o,s),B(le(1,Tt(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Sa(this.activation),recurrentActivation:Sa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};jf.className="GRUCell";ue.registerClass(jf);var uy=class extends Cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new jf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};uy.className="GRU";ue.registerClass(uy);var kd=class extends wd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,hn(this.units,"units"),this.activation=Ca(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ca(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=bu([1,ka([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,ka([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=dt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Bs{apply(i,l){let c=r.apply([a]),u=new If().apply([a]),d=r.apply([a*2]);return kv(kv(c,u),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ta({ones:()=>cs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ta({ones:()=>cs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=B(e,a[0]));let d=kr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,o[0])),d=le(d,kr(s,this.recurrentKernel.read())),this.useBias&&(d=sr(d,this.bias.read()));let[p,h,f,m]=pn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=le(B(l,r),B(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=B(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Sa(this.activation),recurrentActivation:Sa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};kd.className="LSTMCell";ue.registerClass(kd);var cy=class extends Cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new kd(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};cy.className="LSTM";ue.registerClass(cy);var qf=class extends wd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){E1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{gi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(ar(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return R1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}D1(t)}};qf.className="StackedRNNCells";ue.registerClass(qf);function Ta(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Sv(t(),n),i=()=>hd(o,t,s);return!r||r<=1?dn(i().clone()):Array(r).fill(void 0).map(i).map(c=>dn(c.clone()))}var iL=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},Ew=class extends Cr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new qt({ndim:5})]}call(e,t){return j(()=>{if(this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ht(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_=[Ht(r)];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_[0]=Ht(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>dn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=or(l,s[0],r,a[0],o[0]),d=or(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};Ew.className="ConvRNN2D";var Xf=class extends kd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,hn(this.filters,"filters"),this.kernelSize=Su(n,2,"kernelSize"),this.kernelSize.forEach(i=>hn(i,"kernelSize")),this.strides=Su(s||1,2,"strides"),this.strides.forEach(i=>hn(i,"strides")),this.padding=r||"valid",Is(this.padding),this.dataFormat=a||"channelsLast",Wt(this.dataFormat),this.dilationRate=Su(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>hn(i,"dilationRate"))}build(e){var t;e=dt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Bs{apply(d,p){let h=l.apply([c]),f=us([c]),m=l.apply([c*2]);return x1([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ta({ones:()=>cs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Q,Z,te)=>!Z||!Z[te]?Q:B(Z[te],Q),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ta({ones:()=>cs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,v,k]=pn(this.kernel.read(),o,y),[C,N,D,P]=this.useBias?pn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,C,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,v,D,this.padding),p=this.inputConv(p,k,P,this.padding);let[E,F,T,M]=pn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,F),g=this.recurrentConv(g,T),A=this.recurrentConv(A,M);let G=this.recurrentActivation.apply(le(c,f)),H=this.recurrentActivation.apply(le(u,m)),z=le(B(H,a),B(G,this.activation.apply(le(d,g)))),X=B(this.recurrentActivation.apply(le(p,A)),this.activation.apply(z));return[X,X,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=iL(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Mr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?sr(r,n,this.dataFormat):r}recurrentConv(e,t){return Mr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Xf.className="ConvLSTM2DCell";ue.registerClass(Xf);var dy=class extends Ew{constructor(e){let t=new Xf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};dy.className="ConvLSTM2D";ue.registerClass(dy);var Kf=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return hd(()=>Sv(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Kf.className="Dropout";ue.registerClass(Kf);var py=class extends Kf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};py.className="SpatialDropout1D";ue.registerClass(py);var hy=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,hn(this.units,"units"),this.activation=Ca(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=nn(e.kernelConstraint),this.biasConstraint=nn(e.biasConstraint),this.kernelRegularizer=Et(e.kernelRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=dt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=dt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=fv(this.activation.getClassName()),r;return s!=null?r=kr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=kr(n,this.kernel.read()),this.bias!=null&&(r=sr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Sa(this.activation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),biasConstraint:tn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hy.className="Dense";ue.registerClass(hy);var fy=class extends Je{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=dt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],wa(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ke(n,s)}return CM(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};fy.className="Flatten";ue.registerClass(fy);var my=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ca(e.activation)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:Sa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};my.className="Activation";ue.registerClass(my);var gy=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Le(e),IM(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};gy.className="RepeatVector";ue.registerClass(gy);var Ay=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=wa(e);if(a!==null){if(r===0||o%r!=0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Ay.className="Reshape";ue.registerClass(Ay);var yy=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=nr(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=dt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ke(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};yy.className="Permute";ue.registerClass(yy);var xy=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),s=-1;return Gc(ui(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=-1,r=!0,a=Gc(ui(n,this.maskValue),s,r);return B(n,de(a,n.dtype))})}};xy.className="Masking";ue.registerClass(xy);var by=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,hn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,hn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Et(e.embeddingsRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.embeddingsConstraint=nn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Le(e),ui(e,Ze(e))):null)}computeOutputShape(e){if(e=dt(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);n.dtype!=="int32"&&(n=vf(n,"int32"));let s=Iv(this.embeddings.read(),U(n,[n.size]));return U(s,dt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:$t(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:tn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};by.className="Embedding";ue.registerClass(by);var vi=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[dt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=va(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&va(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=ka(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=dd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=U(i,[u].concat(wa(c.slice(1))));p=Ke(p,[1,0]),p=U(p,d),n.push(p),r=!0}else if(l>1){let c=nr(1,l).concat([0]);n.push(Ke(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=U(Ke(U(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(nr(0,o-1));a=Ke(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=va(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return j(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=zs(n,t[s]);return n})}},vy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};vy.className="Add";ue.registerClass(vy);var wy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};wy.className="Multiply";ue.registerClass(wy);var ky=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return B(1/e.length,t)})}};ky.className="Average";ue.registerClass(ky);var Iy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=br(t,e[n]);return t})}};Iy.className="Maximum";ue.registerClass(Iy);var Sy=class extends vi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=pu(t,e[n]);return t})}};Sy.className="Minimum";ue.registerClass(Sy);var Cy=class extends vi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>x1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(de(cs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Bt(t[a],-1)):s.push(t[a]);let r=gt(s,this.axis);return Mh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Concatenate";ue.registerClass(Cy);function Id(e,t){for(;e<0;)e+=t;return e}function lL(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Se(B(e,t),a[0]):i=Se(B(Ke(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Ve(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=rt(i,c)}return i.shape.length===1&&(i=Bt(i,1)),i})}var Ty=class extends vi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Id(r,e[a].shape.length)):s=[Id(this.axes,t.shape.length),Id(this.axes,n.shape.length)],this.normalize&&(t=Pf(t,s[0]),n=Pf(n,s[1])),lL(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Id(this.axes,e.length),Id(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Dot";ue.registerClass(Ty);var Ny=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return hd(()=>le(kf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Ny.className="GaussianNoise";ue.registerClass(Ny);var Ey=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?hd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return B(n,kf(n.shape,1,r))},()=>n,t.training||!1):n})}};Ey.className="GaussianDropout";ue.registerClass(Ey);var Ry=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return hd(()=>{let r=Le(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ya(hu(n),this.rate);l=vf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=le(B(r,l),B(le(l,-1),i));return le(B(d,c),u)},()=>Le(e),t.training||!1)}return e})}};Ry.className="AlphaDropout";ue.registerClass(Ry);function Sd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=a3(e,t,n,s,r,a);else if(e.rank===3)o=o3(e,t,n,s,r,a);else if(e.rank===4)o=i3(e,t,n,s,r,a);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function uL(e,t,n,s,r=.001){return j(()=>{let a=Xh(e,s),o=a.mean,i=a.variance;return[Sd(e,o,i,n,t,r),o,i]})}function cL(e,t,n,s,r=.001){return j(()=>{let a=Xh(e,s),o=a.mean,i=a.variance,l=[];for(let f of nr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=U(o,l),u=U(i,l),d=t==null?null:U(t,l),p=n==null?null:U(n,l);return[Sd(e,c,u,p,d,r),o,i]})}function dL(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),nr(0,e.rank-1))?uL(e,t,n,s,r):cL(e,t,n,s,r)}var Dy=class extends Je{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=nn(e.betaConstraint),this.gammaConstraint=nn(e.gammaConstraint),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer)}build(e){e=dt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new qt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=Le(e),r=s.shape,a=r.length,o=nr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=hi(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!w.arraysEqual(c,nr(0,a).slice(0,a-1)),d=()=>{if(u){let A=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Sd(s,A,y,x,b,this.epsilon)}else return Sd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=dL(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{j(()=>{let b=1-x,v=A.read(),k=B(xe(v,y),b);A.write(xe(v,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:$t(this.betaInitializer),gammaInitializer:$t(this.gammaInitializer),movingMeanInitializer:$t(this.movingMeanInitializer),movingVarianceInitializer:$t(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:tn(this.betaConstraint),gammaConstraint:tn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dy.className="BatchNormalization";ue.registerClass(Dy);var _y=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=dt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==va(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Le(e),s=n.shape,r=s.length;return j(()=>{let a=!0,{mean:o,variance:i}=Xh(n,this.axis,a),l=hi(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?U(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=ws(o,p),i=ws(i,p),u=ws(u,h),d=ws(d,h),Sd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:$t(this.betaInitializer),gammaInitializer:$t(this.gammaInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};_y.className="LayerNormalization";ue.registerClass(_y);function pL(e,t,n){return j(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=er()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],ks(e,s)})}var Fy=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=dt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>pL(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="ZeroPadding2D";ue.registerClass(Fy);function Zf(e,t,n,s,r,a){return j(()=>{Wt(r),yv(a),Is(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=er()),a==null&&(a="max"),e=ey(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Jc(e,t,n,i):o=jc(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}function Rw(e,t,n,s,r,a){return j(()=>{Wt(r),yv(a),Is(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=er()),a==null&&(a="max"),e=Iw(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=UA(e,t,n,i):o=TA(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,4,1,2,3])),o})}var Dw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(hn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Is(this.padding),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){e=dt(e);let t=or(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=dd(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},$y=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"max")}};$y.className="MaxPooling1D";ue.registerClass($y);var Oy=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"avg")}};Oy.className="AveragePooling1D";ue.registerClass(Oy);var _w=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];hn(this.poolSize,"poolSize"),hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),Is(this.padding),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=or(t,this.poolSize[0],this.padding,this.strides[0]),n=or(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Py=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"max")}};Py.className="MaxPooling2D";ue.registerClass(Py);var My=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"avg")}};My.className="AveragePooling2D";ue.registerClass(My);var Fw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];hn(this.poolSize,"poolSize"),hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),Is(this.padding),this.inputSpec=[new qt({ndim:5})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=or(t,this.poolSize[0],this.padding,this.strides[0]),n=or(n,this.poolSize[1],this.padding,this.strides[1]),s=or(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},zy=class extends Fw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Rw(e,t,n,s,r,"max")}};zy.className="MaxPooling3D";ue.registerClass(zy);var Ly=class extends Fw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Rw(e,t,n,s,r,"avg")}};Ly.className="AveragePooling3D";ue.registerClass(Ly);var $w=class extends Je{constructor(e){super(e);this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},By=class extends $w{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return Ft(n,1)})}};By.className="GlobalAveragePooling1D";ue.registerClass(By);var Wy=class extends $w{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return $n(n,1)})}};Wy.className="GlobalMaxPooling1D";ue.registerClass(Wy);var Ow=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Vy=class extends Ow{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Ft(n,[1,2]):Ft(n,[2,3])})}};Vy.className="GlobalAveragePooling2D";ue.registerClass(Vy);var Uy=class extends Ow{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?$n(n,[1,2]):$n(n,[2,3])})}};Uy.className="GlobalMaxPooling2D";ue.registerClass(Uy);var Pw=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=ar(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Gy=class extends Pw{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=dt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=dt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=Le(e),Nw((a,o)=>[Le(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Gy.className="TimeDistributed";ue.registerClass(Gy);function hL(e){mi(xM,"BidirectionalMergeMode",e)}var fL="concat",Hy=class extends Pw{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ar(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=ar(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?fL:e.mergeMode,hL(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Jn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Tw(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new qt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof rr;for(let l of a)if(l instanceof rr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=ds(r,1));let o;return this.mergeMode==="concat"?o=x1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=B(.5,le(s,r)):this.mergeMode==="mul"?o=B(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){gi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),gi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ar(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Hy.className="Bidirectional";ue.registerClass(Hy);function mL(e){return new vu(e)}function gL(e){return new Y1(e)}function AL(e){return new X1(e)}function yL(e){return new K1(e)}function xL(e){return new Z1(e)}function bL(e){return new Q1(e)}function vL(e){return new J1(e)}function wL(e){return new Gf(e)}function kL(e){return new bd(e)}function IL(e){return new ny(e)}function SL(e){return new vd(e)}function CL(e){return new sy(e)}function TL(e){return new ry(e)}function NL(e){return new ay(e)}function EL(e){return new oy(e)}function RL(e){return new iy(e)}function DL(e){return new my(e)}function _L(e){return new hy(e)}function FL(e){return new Kf(e)}function $L(e){return new py(e)}function OL(e){return new fy(e)}function PL(e){return new gy(e)}function ML(e){return new Ay(e)}function zL(e){return new yy(e)}function LL(e){return new by(e)}function BL(e){return new vy(e)}function WL(e){return new ky(e)}function VL(e){return new Cy(e)}function UL(e){return new Iy(e)}function GL(e){return new Sy(e)}function HL(e){return new wy(e)}function jL(e){return new Ty(e)}function qL(e){return new Dy(e)}function XL(e){return new _y(e)}function KL(e){return new Fy(e)}function jy(e){return new Oy(e)}function ZL(e){return jy(e)}function YL(e){return jy(e)}function qy(e){return new My(e)}function JL(e){return qy(e)}function QL(e){return qy(e)}function Xy(e){return new Ly(e)}function eB(e){return Xy(e)}function tB(e){return Xy(e)}function nB(e){return new By(e)}function sB(e){return new Vy(e)}function Mw(e){return new Wy(e)}function zw(e){return new Uy(e)}function Lw(e){return new $y(e)}function Bw(e){return new Py(e)}function rB(e){return new zy(e)}function aB(e){return new uy(e)}function oB(e){return new jf(e)}function iB(e){return new cy(e)}function lB(e){return new kd(e)}function uB(e){return new ly(e)}function cB(e){return new Hf(e)}function dB(e){return new dy(e)}function pB(e){return new Xf(e)}function hB(e){return new Cr(e)}function fB(e){return new qf(e)}function mB(e){return new Hy(e)}function gB(e){return new Gy(e)}var AB=Mw,yB=zw,xB=Lw,bB=Bw;function vB(e){return new Ny(e)}function wB(e){return new Ey(e)}function kB(e){return new Ry(e)}function IB(e){return new xy(e)}var Ww={};ze(Ww,{MAPE:()=>OB,MSE:()=>zB,binaryAccuracy:()=>SB,binaryCrossentropy:()=>CB,categoricalAccuracy:()=>NB,categoricalCrossentropy:()=>EB,cosineProximity:()=>_B,mape:()=>PB,meanAbsoluteError:()=>FB,meanAbsolutePercentageError:()=>$B,meanSquaredError:()=>MB,mse:()=>LB,precision:()=>RB,recall:()=>DB,sparseCategoricalAccuracy:()=>TB});function SB(e,t){return $1(e,t)}function CB(e,t){return Uv(e,t)}function TB(e,t){return Gv(e,t)}function NB(e,t){return O1(e,t)}function EB(e,t){return P1(e,t)}function RB(e,t){return Vv(e,t)}function DB(e,t){return fz(e,t)}function _B(e,t){return _1(e,t)}function FB(e,t){return Mf(e,t)}function $B(e,t){return ku(e,t)}function OB(e,t){return ku(e,t)}function PB(e,t){return ku(e,t)}function MB(e,t){return yi(e,t)}function zB(e,t){return yi(e,t)}function LB(e,t){return yi(e,t)}var Vw={};ze(Vw,{modelFromJSON:()=>Xz});var Uw={};ze(Uw,{l1:()=>WB,l1l2:()=>BB,l2:()=>VB});function BB(e){return new yd(e)}function WB(e){return nL(e)}function VB(e){return sL(e)}var Gw=class extends wu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ur))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yf(e,t){return e<t}function Hw(e,t){return e>t}var jw=class extends Gw{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yf:this.mode==="max"?this.monitorFunc=Hw:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Hw:this.monitorFunc=Yf,this.monitorFunc===Yf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yf?1/0:-1/0}async onEpochEnd(e,t){await Ia(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function UB(e){return new jw(e)}var GB={earlyStopping:UB},ir;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ir||(ir={}));var qw;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(qw||(qw={}));var Ky={};function HB(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ky[e]=n}function Xw(e){return Ky[e]}function jB(e){delete Ky[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Mn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Mn(p,n,s,r));let c=Mn(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Mn(e,t,n,s){let[r,a]=ps(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Jf(r,i)]);return o!==void 0?t[Jf(r,o)][a]:void 0}function qB(e,t,n){return t[Jf(e,n.currentContextId)]}function Gr(e,t){let[n,s,r]=ps(e);return[Jf(n,t&&t.currentContextId),s,r]}function Jf(e,t){return t?`${e}-${t}`:e}function ps(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Qf(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Hr(e){return e.kept?e:Zs(e)}var Kw={};ze(Kw,{json:()=>XB});var XB=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Zw={};ze(Zw,{json:()=>KB});var KB=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Yw={};ze(Yw,{json:()=>ZB});var ZB=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Jw={};ze(Jw,{json:()=>YB});var YB=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Qw={};ze(Qw,{json:()=>JB});var JB=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],e7={};ze(e7,{json:()=>QB});var QB=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],t7={};ze(t7,{json:()=>eW});var eW=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],n7={};ze(n7,{json:()=>tW});var tW=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],s7={};ze(s7,{json:()=>nW});var nW=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],r7={};ze(r7,{json:()=>sW});var sW=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],a7={};ze(a7,{json:()=>rW});var rW=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o7={};ze(o7,{json:()=>aW});var aW=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],i7={};ze(i7,{json:()=>oW});var oW=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],l7={};ze(l7,{json:()=>iW});var iW=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],u7={};ze(u7,{json:()=>lW});var lW=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],c7={};ze(c7,{json:()=>uW});var uW=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],d7={};ze(d7,{json:()=>cW});var cW=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],p7={};ze(p7,{json:()=>dW});var dW=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],h7={};ze(h7,{json:()=>pW});var pW=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],f7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Kw,Zw,Yw,Jw,Qw,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Gr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=Gr(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=Gr(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Xw(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Zy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Zy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=r2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=r2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Jy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Jy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=s2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Yy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=o2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=o2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=n2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=a2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=a2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=e2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=t2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=g7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=g7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Gr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Qy(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Gr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Gr(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function hW(e){let t=ne().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function m7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):hW(e);return t?n:n.toLowerCase()}function Zy(e,t,n,s=!1){let r=e[t];return r!=null?m7(r.s,s):n}function Yy(e,t,n){let s=e[t];return s?s.b:n}function Jy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Qy(e){switch(typeof e=="string"&&(e=ir[e]),e){case ir.DT_FLOAT:return"float32";case ir.DT_INT32:case ir.DT_INT64:case ir.DT_INT8:case ir.DT_UINT8:return"int32";case ir.DT_BOOL:return"bool";case ir.DT_DOUBLE:return"float32";case ir.DT_STRING:return"string";default:return null}}function g7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function e2(e,t,n){let s=e[t];return s&&s.type?Qy(s.type):n}function t2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Qy(r)):n}function A7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function n2(e,t,n){let s=e[t];return s&&s.shape?A7(s.shape):n}function s2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function r2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>m7(a,s)):n}function a2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>A7(r)):n}function o2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var fW=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Jy(this.node.rawAttrs,e,t);if(n.s!=null)return Zy(this.node.rawAttrs,e,t);if(n.b!=null)return Yy(this.node.rawAttrs,e,t);if(n.shape!=null)return n2(this.node.rawAttrs,e,t);if(n.type!=null)return e2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return s2(this.node.rawAttrs,e,t);if(n.list.s!=null)return r2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return a2(this.node.rawAttrs,e,t);if(n.list.b!=null)return o2(this.node.rawAttrs,e,t);if(n.list.type!=null)return t2(this.node.rawAttrs,e,t)}return t}},mW=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Ph(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[HA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[$A(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Oh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[xe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[pu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[br(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[zr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[rf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gW=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Gt(I("x",e,t,n))];case"Acos":return[AA(I("x",e,t,n))];case"Acosh":return[yA(I("x",e,t,n))];case"Asin":return[bA(I("x",e,t,n))];case"Asinh":return[vA(I("x",e,t,n))];case"Atan":return[wA(I("x",e,t,n))];case"Atan2":return[kA(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[IA(I("x",e,t,n))];case"Ceil":return[EA(I("x",e,t,n))];case"Complex":return[ha(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Xc(I("x",e,t,n))];case"Cosh":return[Wh(I("x",e,t,n))];case"Elu":return[uu(I("x",e,t,n))];case"Erf":return[OA(I("x",e,t,n))];case"Exp":return[is(I("x",e,t,n))];case"Expm1":return[PA(I("x",e,t,n))];case"Floor":return[du(I("x",e,t,n))];case"Log":return[ls(I("x",e,t,n))];case"Log1p":return[Zc(I("x",e,t,n))];case"Imag":return[Uh(I("x",e,t,n))];case"Neg":return[Tt(I("x",e,t,n))];case"Reciprocal":return[XA(I("x",e,t,n))];case"Real":return[nd(I("x",e,t,n))];case"Relu":return[Js(I("x",e,t,n))];case"Round":return[Yh(I("x",e,t,n))];case"Selu":return[Qh(I("x",e,t,n))];case"Sigmoid":return[Kn(I("x",e,t,n))];case"Sin":return[ef(I("x",e,t,n))];case"Sign":return[ZA(I("x",e,t,n))];case"Sinh":return[tf(I("x",e,t,n))];case"Softplus":return[ii(I("x",e,t,n))];case"Sqrt":return[xn(I("x",e,t,n))];case"Square":return[ft(I("x",e,t,n))];case"Tanh":return[ri(I("x",e,t,n))];case"Tan":return[QA(I("x",e,t,n))];case"ClipByValue":return[Zn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Zh(I("x",e,t,n))];case"Rsqrt":return[Jh(Mn(e.inputNames[0],t,n))];case"Prod":return[Kh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Kc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[td(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[zA(Mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Vs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function y7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Cd(e,t,n){let s=i2(e,n),r=!y7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=i2(a.shape,s)}),!y7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function i2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var AW=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Re(0),dn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Vs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,dn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Lt([],[0].concat(this.elementShape));let n=this.readMany(e);return Vs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),bn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Lt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Vs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),gt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=U(Fe(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Td=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Vs(t,r.shape,"TensorList shape mismatch: "),dn(r)}),this.idTensor=Re(0),this.maxNumElements=s,dn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Td([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Vs(e,this.elementShape,"TensorList shape mismatch: ");let s=Cd(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>U(a,s));return bn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Cd(this.elementShape,this.tensors,e),s=this.tensors.pop();return Vs(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Vs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");dn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Vs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Cd(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Vs(this.elementShape,t.shape,"TensorList shape mismatch: "),dn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Vs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Cd(this.elementShape,this.tensors,n);return e.length===0?Lt([],[0].concat(s)):j(()=>{let r=e.map(a=>U(this.tensors[a],s));return bn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Vs(this.elementShape,t,"TensorList shape mismatch: ");let n=Cd(this.elementShape,this.tensors,t);return this.size()===0?Lt([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>U(r,n));return gt(s,0)})}};function yW(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Vs(r,t,"TensorList shape mismatch: ");let a=On(e);return new Td(a,t,s)}function xW(e,t,n){return new Td([],e,t,n)}function bW(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Td([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function vW(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=i2(a,n),i=s===0?0:e.size/s,l=j(()=>{let u=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=U(Fe(e,h,f),o)}return e.dispose(),u}),c=new Td([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var wW=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=I("pred",e,t,n);return[Hr(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Hr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Mn(r,t,n)!==void 0);if(s){let r=Mn(s,t,n);return[Hr(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Hr(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Hr(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Hr(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new AW(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Re(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Re(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=bW(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=xW(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=yW(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=vW(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function x7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=I("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=Qf(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var kW=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Lh(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Qf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Mr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=x7(e,t,n);return[ba.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=x7(e,t,n);return[ba.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Qf(e,t,n);return[Bh(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Qf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[lu(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[DA(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[jc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Jc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=C3(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[TA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[UA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[FA(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},IW=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[cu(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[x3(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[T3(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[nu(s,r,a,o)]}case"Ones":return[us(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[cs(I("x",e,t,n))];case"RandomUniform":return[hu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[fu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[af(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Ht(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ze(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function l2(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var SW=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=l2(e,t,n),c=await _e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=l2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await _e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=l2(e,t,n);return[await _e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=de(I("condition",e,t,n),"bool"),r=[await n1(s)];return s.dispose(),r}case"ListDiff":return R3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},CW=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=e1(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=of(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=of(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},TW=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Mn(e.name,t,n)||s];case"Placeholder":return[Mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Hr(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Hr(c));case"Snapshot":let r=I("x",e,t,n);return[Hr(r)];case"Shape":return[jt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>jt(c.shape));case"Size":return[Re(I("x",e,t,n).size,"int32")];case"Rank":return[Re(I("x",e,t,n).rank,"int32")];case"NoOp":return[Re(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},NW=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Re(0),this.tensorMap=new Map,dn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Re(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=On(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];dn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return j(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return bn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},EW=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new NW(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},RW=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[_e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[_e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[_e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DW=(e,t,n)=>{switch(e.op){case"Equal":return[os(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ui(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Yn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ya(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Gh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[xa(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[zs(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Yc(I("a",e,t,n))];case"LogicalOr":return[qh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Tn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_W=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[g3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ke(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[ba.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FW=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ai(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[ai(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[LA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[ci(I("x",e,t,n))];case"LogSoftmax":return[jh(I("x",e,t,n))];case"SparseToDense":return[s1(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$W=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[$n(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Ft(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Qc(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Se(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Mh(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Gc(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[vs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[xA(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Kh(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Vh(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[NA(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[f3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},OW=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[gt(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[oi(s,de(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[oi(a,de(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[ds(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[ds(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[Fe(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[JA(d,s,r,a,o,i,l,c,u)]}case"Pack":return j(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=rt(r[0]).shape,i=r.map(l=>{let c=w.arraysEqual(l.shape,a);if(!c&&!w.arraysEqual(rt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:U(l,a)});return[bn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return On(r,s)}case"Tile":{let s=I("reps",e,t,n);return[ws(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return pn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[$3(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[O3(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[s1(s,a,r,a.dtype===o.dtype?o:de(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},PW=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=od.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=od.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[od.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[od.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},MW=(e,t,n)=>{switch(e.op){case"FFT":return[rd(I("x",e,t,n))];case"IFFT":return[gu(I("x",e,t,n))];case"RFFT":return[ad(I("x",e,t,n))];case"IRFFT":return[sf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zW=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=hf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=hf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[hf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LW=(e,t,n)=>{switch(e.op){case"Cast":return[de(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Bt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[rt(I("x",e,t,n),s)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[GA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ks(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[ed(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[qc(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[_A(I("x",e,t,n),s,r)]}case"BroadcastTo":return[ou(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[l3(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function b7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return j(()=>mW(a,o,i));case"basic_math":return j(()=>gW(a,o,i));case"control":return wW(a,o,i);case"convolution":return j(()=>kW(a,o,i));case"creation":return j(()=>IW(a,o,i));case"dynamic":return SW(a,o,i);case"evaluation":return j(()=>CW(a,o,i));case"image":return j(()=>RW(a,o,i));case"graph":return j(()=>TW(a,o,i));case"logical":return j(()=>DW(a,o,i));case"matrices":return j(()=>_W(a,o,i));case"normalization":return j(()=>FW(a,o,i));case"reduction":return j(()=>$W(a,o,i));case"slice_join":return j(()=>OW(a,o,i));case"sparse":return j(()=>PW(a,o,i));case"spectral":return j(()=>MW(a,o,i));case"string":return j(()=>zW(a,o,i));case"transformation":return j(()=>LW(a,o,i));case"hash_table":return EW(a,o,i,s);case"custom":let l=Xw(a.op);if(l&&l.customExecutor)return l.customExecutor(new fW(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var v7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function w7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ps(p)[0]),u=[];s!=null&&(u=s.map(p=>ps(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((k7(p)||GW(p)||HW(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function BW(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ps(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var WW=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],VW=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],UW=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function k7(e){return WW.indexOf(e.op)>=0}function GW(e){return VW.indexOf(e.op)>=0}function HW(e){return UW.indexOf(e.op)>=0}var u2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new u2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=w7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return BW(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ps(u)[0]]),r=t.map(u=>ps(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return j(()=>{let u=new v7(this.weightMap,l,c,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ps(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=b7(m,d,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Mn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=qB(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new v7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Mn(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[ps(y)[0]]),o=n.map(y=>ps(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=w7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=ps(y),v=[];v[b]=e[y],h[x]=v});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(y)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!k7(y)&&!Mn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw u!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,s,n)&&([d]=Gr(u.node.name,n)),s[u.node.name]==null){let p=b7(u.node,s,n,this._resourceManager);d||([d]=Gr(u.node.name,n));let h=n.currentContext;w.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Gr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Mn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Mn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ps(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ps(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ps(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},jW=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},qW="?tfjs-format=file",XW="model.json",I7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new jW}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Xn.browserHTTPRequest(e,this.loadOptions);else{let t=Xn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Xn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Xn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new u2(f7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=f7.Instance.transformGraph(e.modelInitializer);this.initializer=new u2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Xn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Qe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${XW}${qW}`);let n=new I7(e,t);return await n.load(),n}var KW="3.10.0",S7={};ze(S7,{CSVDataset:()=>M7,Dataset:()=>Tu,FileDataSource:()=>G7,TextLineDataset:()=>$7,URLDataSource:()=>H7,array:()=>yV,csv:()=>EV,func:()=>RV,generator:()=>DV,microphone:()=>FV,version_data:()=>$V,webcam:()=>_V,zip:()=>xV});var ZW=Xa(L5()),YW=Xa(L5());function JW(e,t){return e0(e,t)}function e0(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Cu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=e0(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function QW(e,t=T7){return C7(e,t)}function C7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Cu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=C7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function T7(e){return e===null?null:Cu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function N7(e,t){let n=new Map;e0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return e0(e,t,n)}function Cu(e){let t=!1;if(ne().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=B5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge)&&!(e instanceof Promise)&&!t)}function eV(e){return e==null||tV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||w.isTypedArray(e)}function tV(e){return e===null||typeof e!="object"&&typeof e!="function"}function nV(e){return JW(e,sV)}function sV(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:Cu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var E7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},c2=class extends E7{constructor(){super(c2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};c2.INITIAL_CAPACITY=32;function R7(e){return new oV(e)}function d2(e){return new iV(e)}function rV(e,t){return new _7(e,t)}function aV(e,t=Na.FAIL){return new gV(e,t)}var fn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new fV(this,e)}filter(e){return new pV(this,e)}map(e){return new hV(this,e)}mapAsync(e){return new D7(this,e)}serialMapAsync(e){return new D7(this,e).serial()}flatmap(e){return new mV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new dV(this,e,t)}columnMajorBatch(e,t=!0,n=T7){return this.rowMajorBatch(e,t).map(r=>QW(r,n))}concatenate(e,t){return new _7(R7([this,e]),t)}take(e){return e<0||e==null?this:new cV(this,e)}skip(e){return e<0||e==null?this:new uV(this,e)}prefetch(e){return new F7(this,e)}shuffle(e,t){return new AV(this,e,t)}serial(){return new lV(this)}},oV=class extends fn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:nV(e),done:!1}}},iV=class extends fn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},lV=class extends fn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},uV=class extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Y(e.value)}return this.upstream.next()}},cV=class extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},dV=class extends fn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},pV=class extends fn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Y(e.value)}}},hV=class extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Xs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Xs.getTensorsInContainer(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},fV=class extends fn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},D7=class extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Xs.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Xs.getTensorsInContainer(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},p2=class extends fn{constructor(){super();this.outputQueue=new c2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},mV=class extends p2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Xs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Xs.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return!0}},_7=class extends fn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Na;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Na||(Na={}));var gV=class extends fn{constructor(e,t=Na.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof fn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await N7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Na.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Na.SHORTEST:return{value:null,done:!0};case Na.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},F7=class extends fn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new E7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},AV=class extends F7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=YW.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Tu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),hs(async()=>(await n.iterator()).columnMajorBatch(e,t,bV),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,hs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,hs(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return hs(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return hs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return hs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,hs(async()=>{let s=d2(async()=>({value:await t.iterator(),done:!1}));return rV(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,hs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=ZW.alea(t||w.now().toString());return hs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,hs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Tu.MAX_BUFFER_SIZE=1e4;function hs(e,t=null){return new class extends Tu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function yV(e){return hs(async()=>R7(e),e.length)}function xV(e){if(!Cu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return hs(async()=>{let n=await N7(e,s=>{if(s instanceof Tu)return{value:s.iterator(),recurse:!1};if(Cu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return aV(n,Na.SHORTEST)},t)}function bV(e){if(e===null)return null;let t=e[0];return eV(t)?{value:vV(e),recurse:!1}:{value:null,recurse:!0}}function vV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?bn(e):Lt(e)}var $7=class extends Tu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},t0='"',Nd=Symbol("out"),O7=Symbol("field"),n0=Symbol("quote"),h2=Symbol("quoteafterquote"),P7=Symbol("quoteinquote"),M7=class extends Tu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Nd;for(let o=0;o<r;o++)switch(a){case Nd:switch(e.charAt(o)){case t0:s=o+1,a=n0;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Nd;break;default:a=O7,s=o;break}break;case O7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Nd,s=o+1;break;default:}break;case n0:switch(e.charAt(o)){case t0:a=h2;break;default:}break;case h2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Nd,s=o+1;break;case t0:a=n0;break;default:a=P7;break}break;case P7:switch(e.charAt(o)){case t0:a=n0;break;default:}break;default:}if(a===h2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},z7=class extends fn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ne().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new z7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Lt(n,t)}},L7=class extends fn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=jt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Qs([a,r,i,o],[1,4])}else this.cropBox=Qs([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ne().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new L7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ms.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=Bt(de(e,"float32"),0),n;n=_e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},B7=class{},W7=class extends fn{split(e){return new wV(this,e)}},wV=class extends W7{constructor(e,t){super();this.upstream=e,this.impl=new kV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},kV=class extends p2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},IV=class extends fn{decodeUTF8(){return new SV(this)}},SV=class extends W7{constructor(e){super();this.upstream=e,this.impl=new CV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},CV=class extends p2{constructor(e){super();if(this.upstream=e,ne().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=B5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ne().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},V7=class extends IV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(ne().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function TV(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=NV(e));let a=await(n||w.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new V7(o,t)}else throw new Error(a.statusText)}var NV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function U7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var G7=class extends B7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(U7(this.input)&&ne().get("IS_NODE")){let e=qi("fs");this.input=e.readFileSync(this.input.substr(7))}return new V7(this.input,this.options)}},H7=class extends B7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return U7(this.url)?new G7(this.url,this.fileOptions).iterator():TV(this.url,this.fileOptions)}};function EV(e,t={}){return new M7(new H7(e),t)}function RV(e){let t=d2(e);return hs(async()=>t)}function DV(e){return hs(async()=>{let t=await e();return d2(()=>t.next())})}async function _V(e,t){return L7.create(e,t)}async function FV(e){return z7.create(e)}var $V="3.10.0";function Ee(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var OV=vr.whereImpl,f2=class extends fc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Op(this,as())}nextDataId(){return f2.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ne().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return as().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ee([e],"where");let t=this.readSync(e.dataId);return OV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};f2.nextDataId=0;var j7={};ze(j7,{addImpl:()=>X7,bincountImpl:()=>g2,bincountReduceImpl:()=>K7,ceilImpl:()=>Z7,concatImpl:()=>A2,equalImpl:()=>Y7,expImpl:()=>Q7,expm1Impl:()=>t6,floorImpl:()=>n6,gatherNdImpl:()=>s6,gatherV2Impl:()=>r6,greaterEqualImpl:()=>o6,greaterImpl:()=>a6,lessEqualImpl:()=>l6,lessImpl:()=>i6,linSpaceImpl:()=>u6,logImpl:()=>c6,maxImpl:()=>d6,maximumImpl:()=>p6,minimumImpl:()=>h6,multiplyImpl:()=>y2,negImpl:()=>f6,notEqualImpl:()=>m6,prodImpl:()=>g6,rangeImpl:()=>b2,rsqrtImpl:()=>A6,sigmoidImpl:()=>kU,simpleAbsImpl:()=>q7,sliceImpl:()=>a0,sparseFillEmptyRowsImpl:()=>x6,sparseReshapeImpl:()=>b6,sparseSegmentReductionImpl:()=>v2,sqrtImpl:()=>CU,squaredDifferenceImpl:()=>v6,stridedSliceImpl:()=>w6,stringNGramsImpl:()=>k6,stringSplitImpl:()=>I6,stringToHashBucketFastImpl:()=>S6,subImpl:()=>C6,tileImpl:()=>T6,topKImpl:()=>E6,transposeImpl:()=>x2,uniqueImpl:()=>R6});function q7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var PV=e=>{let{x:t}=e.inputs,n=e.backend;Ee(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=q7(r),n.makeOutput(s,t.shape,t.dtype)},MV={kernelName:Zi,backendName:"cpu",kernelFunc:PV};function Xt(e){return(t,n,s,r,a)=>{let o=R.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),c=w.sizeFromShape(o),u=w.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=R.getBroadcastDims(t,o),g=R.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(C=>x[C]=0);let b=w.locToIndex(x,d,h),v=y.slice(-p);g.forEach(C=>v[C]=0);let k=w.locToIndex(v,p,f);u[A]=e(s[b],r[k])}return[u,o]}}function fs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var zV={kernelName:Gp,backendName:"cpu",kernelFunc:fs};function s0(e,t,n="float32"){if(n==="complex64"){let r=s0(e,t,"float32"),a=s0(e,t,"float32");return fs({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Tr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var LV={kernelName:Ao,backendName:"cpu",kernelFunc:Tr};function wi(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var BV={kernelName:dh,backendName:"cpu",kernelFunc:wi};function Ea(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Tr({inputs:{x:r},backend:n});let o=s0(n,r.shape,r.dtype),i=Ea({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=wi({inputs:{input:r},backend:n}),i=Ea({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=Tr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,c]=Xt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var WV={kernelName:to,backendName:"cpu",kernelFunc:Ea};function mn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ee([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?R.fromUint8ToStringArray(c):c,p=o.dtype==="string"?R.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Ea({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Ea({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,C]=n(o.shape,i.shape,h,f,x,b),N=l.makeTensorInfo(C,"float32",v),D=l.makeTensorInfo(C,"float32",k),P=fs({inputs:{real:N,imag:D},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(D),P}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function m2(e){return(t,n,s,r,a,o)=>{let i=R.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),c=i.length,u=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=R.getBroadcastDims(t,i),f=R.getBroadcastDims(n,i),m=R.mergeRealAndImagArrays(s,r),g=R.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(h.length+f.length===0)for(let v=0;v<d.length;v++){let k=v%m.length,C=v%g.length,N=e(m[k*2],m[k*2+1],g[C*2],g[C*2+1]);d[v]=N.real,p[v]=N.imag}else for(let v=0;v<d.length;v++){let k=w.indexToLoc(v,c,u),C=k.slice(-A);h.forEach(F=>C[F]=0);let N=w.locToIndex(C,A,y),D=k.slice(-x);f.forEach(F=>D[F]=0);let P=w.locToIndex(D,x,b),E=e(m[N*2],m[N*2+1],g[P*2],g[P*2+1]);d[v]=E.real,p[v]=E.imag}return[d,p,i]}}var X7=Xt((e,t)=>e+t),VV=m2((e,t,n,s)=>({real:e+n,imag:t+s})),Ed=mn(ia,X7,VV),UV={kernelName:ia,backendName:"cpu",kernelFunc:Ed};function g2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function K7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=He([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Ra(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function pt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ee(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=w.sizeFromShape(o.shape),u=n||o.dtype,d=w.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Nu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ee(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var Z7=Ra(e=>Math.ceil(e)),GV=Nu(no,Z7),HV={kernelName:no,backendName:"cpu",kernelFunc:GV};function A2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?R.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var Y7=Xt((e,t)=>e===t?1:0),J7=mn(dl,Y7,null,"bool"),jV={kernelName:dl,backendName:"cpu",kernelFunc:J7},Q7=Ra(e=>Math.exp(e)),e6=Nu(po,Q7,"float32"),qV={kernelName:po,backendName:"cpu",kernelFunc:e6},t6=Ra(e=>Math.expm1(e)),XV=Nu(hl,t6),KV={kernelName:hl,backendName:"cpu",kernelFunc:XV},n6=Ra(e=>Math.floor(e)),ZV=Nu(ho,n6),YV={kernelName:ho,backendName:"cpu",kernelFunc:ZV};function s6(e,t,n,s,r,a,o,i,l){let c=He([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function r6(e,t,n){let s=He(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var a6=Xt((e,t)=>e>t?1:0),JV=mn(Al,a6,null,"bool"),QV={kernelName:Al,backendName:"cpu",kernelFunc:JV},o6=Xt((e,t)=>e>=t?1:0),eU=mn(go,o6,null,"bool"),tU={kernelName:go,backendName:"cpu",kernelFunc:eU},i6=Xt((e,t)=>e<t?1:0),nU=mn(vl,i6,null,"bool"),sU={kernelName:vl,backendName:"cpu",kernelFunc:nU},l6=Xt((e,t)=>e<=t?1:0),rU=mn(wl,l6,null,"bool"),aU={kernelName:wl,backendName:"cpu",kernelFunc:rU};function u6(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var c6=Ra(e=>Math.log(e)),oU=Nu(xo,c6),iU={kernelName:xo,backendName:"cpu",kernelFunc:oU};function d6(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var p6=Xt((e,t)=>Math.max(e,t)),lU=mn(vo,p6),uU={kernelName:vo,backendName:"cpu",kernelFunc:lU},h6=Xt((e,t)=>Math.min(e,t)),cU=mn(So,h6),dU={kernelName:So,backendName:"cpu",kernelFunc:cU},y2=Xt((e,t)=>e*t),pU=m2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),r0=mn(To,y2,pU),hU={kernelName:To,backendName:"cpu",kernelFunc:r0};function f6(e,t,n){let s=w.createScalarValue(-1,n);return y2([],t,s,e,n)}function fU(e){let{inputs:t,backend:n}=e,{x:s}=t;Ee(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=f6(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var mU={kernelName:Cl,backendName:"cpu",kernelFunc:fU},m6=Xt((e,t)=>e!==t?1:0),gU=mn(Tl,m6,null,"bool"),AU={kernelName:Tl,backendName:"cpu",kernelFunc:gU};function x2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<o;++u){let d=w.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=w.locToIndex(p,a,l);c[h]=e[u]}return c}function Ss(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ee(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=x2(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var yU={kernelName:qo,backendName:"cpu",kernelFunc:Ss};function g6(e,t,n,s){let[r,a]=R.computeOutAndReduceShapes(e,s),o=Ps(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function xU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=R.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=R.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=g6(d.shape,d.dtype,h,u),A=m;return o&&(A=R.expandShapeToKeepDim(m,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var bU={kernelName:Fl,backendName:"cpu",kernelFunc:xU};function b2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var A6=Ra(e=>1/Math.sqrt(e)),vU=Nu(Mo,A6),wU={kernelName:Mo,backendName:"cpu",kernelFunc:vU},kU=Ra(e=>1/(1+Math.exp(-e))),y6=pt(Lo,e=>1/(1+Math.exp(-e))),IU={kernelName:Lo,backendName:"cpu",kernelFunc:y6};function a0(e,t,n,s,r){let a=Fn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=Fn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?R.fromUint8ToStringArray(e):e,c=He(s,r,l),u=He(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?R.fromStringArrayToUint8(u.values):u.values}function ki(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ee(r,"slice");let[i,l]=Fn.parseSliceParams(r,a,o);Fn.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=a0(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var SU={kernelName:Ll,backendName:"cpu",kernelFunc:ki};function x6(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let y=0;y<i;++y)u[y]=y;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],C=(v===0?0:f[v-1])+k;x[v]++;for(let N=0;N<d;++N)A[C*d+N]=e[b*d+N];y[C]=s[b],u[b]=C}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let C=1;C<d;++C)A[k*d+C]=0;y[k]=o}return[A,[g,d],y,c,u]}}function b6(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function v2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*c,y*c);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[y*c+k]+=e[v*c+k]}if(a)for(let b=0;b<c;b++)f[y*c+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var CU=Ra(e=>Math.sqrt(e)),TU=pt(Bo,e=>Math.sqrt(e)),NU={kernelName:Bo,backendName:"cpu",kernelFunc:TU},v6=Xt((e,t)=>{let n=e-t;return n*n}),EU=mn(Uo,v6),RU={kernelName:Uo,backendName:"cpu",kernelFunc:EU};function w6(e,t,n,s){let r=He(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var DU=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function k6(e,t,n,s,r,a,o,i){return new DU(n,s,r,a,o,i).compute(e,t)}function _U(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function I6(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;_U(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function S6(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var C6=Xt((e,t)=>e-t),FU=m2((e,t,n,s)=>({real:e-n,imag:t-s})),w2=mn(Go,C6,FU),$U={kernelName:Go,backendName:"cpu",kernelFunc:w2};function T6(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=He(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Rd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function N6(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));N6(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),Rd(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;Rd(e[a],r)<0;)a=a+1;for(;Rd(e[o],r)>0;)o=o-1}Rd(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function E6(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),c=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(N6(f,s),f=f.slice(0,s)),r&&f.sort(Rd);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let u=t.slice();return u[u.length-1]=s,[He(u,n,l),He(u,"int32",c)]}function R6(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Jt(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Jt(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}ru("cpu",()=>new f2,1);var D6=pt(co,e=>e>=0?e:Math.exp(e)-1),OU={kernelName:co,backendName:"cpu",kernelFunc:D6};function _6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ee([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var PU={kernelName:yo,backendName:"cpu",kernelFunc:_6},MU=Xt((e,t)=>e<0?t*e:e);function F6(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ee([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=MU(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var zU={kernelName:Do,backendName:"cpu",kernelFunc:F6},$6=pt(_o,e=>Math.max(0,e)),LU={kernelName:_o,backendName:"cpu",kernelFunc:$6},O6=pt($o,e=>Math.min(Math.max(0,e),6)),BU={kernelName:$o,backendName:"cpu",kernelFunc:O6};function k2(e,t,n,s,r){if(n==="linear")return Tr({inputs:{x:t},backend:e});if(n==="relu")return $6({inputs:{x:t},backend:e});if(n==="elu")return D6({inputs:{x:t},backend:e});if(n==="relu6")return O6({inputs:{x:t},backend:e});if(n==="prelu")return F6({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return _6({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return y6({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var WU={kernelName:Ol,backendName:"cpu",kernelFunc:wt};function P6(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ee([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],k=i?[A,h,d]:[A,d,h],C=wt({inputs:{x:r},backend:n,attrs:{shape:v}}),N=wt({inputs:{x:a},backend:n,attrs:{shape:k}}),D=o?C.shape[1]:C.shape[2],P=o?C.shape[2]:C.shape[1],E=i?N.shape[1]:N.shape[2],F=Math.max(g,A),T=n.data.get(C.dataId).values,M=n.data.get(N.dataId).values,G=w.computeStrides(C.shape),H=w.computeStrides(N.shape),[z,X,Q]=o?[G[0],1,G[1]]:[G[0],G[1],1],[Z,te,se]=i?[1,H[1],H[0]]:[H[1],1,H[0]],J=P*E,ee=He([F,P,E],C.dtype),ce=ee.values,pe=n.blockSize;for(let ve=0;ve<F;ve++)for(let ke=0;ke<P;ke+=pe)for(let Te=0;Te<E;Te+=pe)for(let Pe=0;Pe<D;Pe+=pe){let Be=Math.min(ke+pe,P),Ue=Math.min(Te+pe,E),et=Math.min(Pe+pe,D);for(let ct=ke;ct<Be;ct++)for(let ot=Te;ot<Ue;ot++){let it=0;for(let ht=Pe;ht<et;ht++){let mt=Math.min(ve,g-1)*z,It=Math.min(ve,A-1)*se,Dt=T[mt+ct*X+ht*Q],Hn=M[ht*Z+ot*te+It];it+=Dt*Hn}ce[ve*J+(ct*E+ot)]+=it}}return n.disposeIntermediateTensorInfo(C),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,ee.dtype,ee.values)}var VU={kernelName:eo,backendName:"cpu",kernelFunc:P6};function UU(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=P6({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=Ed({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=k2(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var GU={kernelName:Xo,backendName:"cpu",kernelFunc:UU},HU=pt(Yi,e=>Math.acos(e)),jU={kernelName:Yi,backendName:"cpu",kernelFunc:HU},qU=pt(Ji,e=>Math.acosh(e)),XU={kernelName:Ji,backendName:"cpu",kernelFunc:qU};function KU(e){let{inputs:t,backend:n}=e,s=t;Ee(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=He(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var ZU={kernelName:Ya,backendName:"cpu",kernelFunc:KU};function YU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x&&v}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var JU={kernelName:Qi,backendName:"cpu",kernelFunc:YU};function QU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x||v}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var eG={kernelName:el,backendName:"cpu",kernelFunc:QU};function tG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ee(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ss({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=R.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v>y&&(y=v,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var nG={kernelName:Ja,backendName:"cpu",kernelFunc:tG};function sG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ee(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ss({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=R.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v<y&&(y=v,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var rG={kernelName:Ac,backendName:"cpu",kernelFunc:sG},aG=pt(tl,e=>Math.asin(e)),oG={kernelName:tl,backendName:"cpu",kernelFunc:aG},iG=pt(nl,e=>Math.asinh(e)),lG={kernelName:nl,backendName:"cpu",kernelFunc:iG},uG=pt(sl,e=>Math.atan(e)),cG={kernelName:sl,backendName:"cpu",kernelFunc:uG},dG=Xt((e,t)=>Math.atan2(e,t)),pG=mn(al,dG),hG={kernelName:al,backendName:"cpu",kernelFunc:pG},fG=pt(rl,e=>Math.atanh(e)),mG={kernelName:rl,backendName:"cpu",kernelFunc:fG};function I2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=He(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,k=b*s[0];for(let C=0;C<r.inChannels;++C)for(let N=0;N<r.outHeight;++N){let D=N*o-p,P=Math.max(0,D),E=Math.min(r.inHeight,u+D),F=v+N*y;for(let T=0;T<r.outWidth;++T){let M=T*i-h,G=Math.max(0,M),H=Math.min(r.inWidth,d+M),z=f,X=0,Q=0;for(let te=P;te<E;te+=l){let se=k+te*s[1];for(let J=G;J<H;J+=c){let ee=se+J*s[2],ce=e[ee+C];a==="max"&&ce>z?z=ce:a==="avg"&&(X+=ce,Q++)}if(isNaN(z))break}let Z=F+T*x+C;g[Z]=a==="avg"?X/Q:z}}}return m}function M6(e,t,n,s,r=!1,a=!1){let o=He(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=He(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=c;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let C=k*l-f,N=C;for(;N<0;)N+=u;let D=Math.min(s.inWidth,p+C),P=Number.NEGATIVE_INFINITY,E=-1;for(let F=b;F<v;F+=c){let T=F-x;for(let M=N;M<D;M+=u){let G=M-C,H=m.get(g,F,M,A);H>P&&(P=H,r?E=a?((g*s.inHeight+F)*s.inWidth+M)*s.inChannels+A:(F*s.inWidth+M)*s.inChannels+A:E=T*p+G)}}o.set(E,g,y,k,A)}}return o}function z6(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=He(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let D=0;D<r.batchSize;++D){let P=D*v,E=D*s[0];for(let F=0;F<r.inChannels;++F)for(let T=0;T<r.outDepth;++T){let M=T*o-m,G=M;for(;G<0;)G+=c;let H=Math.min(r.inDepth,p+M),z=P+T*k;for(let X=0;X<r.outHeight;++X){let Q=X*i-g,Z=Q;for(;Z<0;)Z+=u;let te=Math.min(r.inHeight,h+Q),se=z+X*C;for(let J=0;J<r.outWidth;++J){let ee=J*l-A,ce=ee;for(;ce<0;)ce+=d;let pe=Math.min(r.inWidth,f+ee),ve=se+J*N,ke=y,Te=0,Pe=0;for(let Ue=G;Ue<H;Ue+=c){let et=E+Ue*s[1];for(let ct=Z;ct<te;ct+=u){let ot=et+ct*s[2];for(let it=ce;it<pe;it+=d){let ht=ot+it*s[3],mt=e[ht+F];if(a==="max"&&mt>ke?ke=mt:a==="avg"&&(Te+=mt,Pe++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Be=ve+F;b[Be]=a==="avg"?Te/Pe:ke}}}}return x}function gG(e,t){let n=He(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,c+y);for(let v=0;v<t.outHeight;++v){let k=v*r-h,C=k;for(;C<0;)C+=i;let N=Math.min(t.inHeight,u+k);for(let D=0;D<t.outWidth;++D){let P=D*a-f,E=P;for(;E<0;)E+=l;let F=Math.min(t.inWidth,d+P),T=Number.NEGATIVE_INFINITY,M=-1;for(let G=x;G<b;G+=o){let H=G-y;for(let z=C;z<N;z+=i){let X=z-k;for(let Q=E;Q<F;Q+=l){let Z=Q-P,te=e.get(m,G,z,Q,g);te>=T&&(T=te,M=H*u*d+X*u+Z)}}}n.set(M,m,A,v,D,g)}}}return n}function AG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ee(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Tr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=I2(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var yG={kernelName:Qa,backendName:"cpu",kernelFunc:AG};function xG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ee(r,"avgPool3d");let u=R.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=z6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var bG={kernelName:yc,backendName:"cpu",kernelFunc:xG};function vG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ee([r,a],"avgPool3DGrad");let u=R.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,y=u.dilationHeight,x=u.dilationWidth,b=u.effectiveFilterDepth,v=u.effectiveFilterHeight,k=u.effectiveFilterWidth,C=b-1-u.padInfo.front,N=k-1-u.padInfo.left,D=v-1-u.padInfo.top,P=He(a.shape,"float32"),E=1/(f*m*g),F=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let M=0;M<u.inChannels;++M)for(let G=0;G<u.inDepth;++G)for(let H=0;H<u.inHeight;++H)for(let z=0;z<u.inWidth;++z){let X=G-C,Q=H-D,Z=z-N,te=0;for(let se=0;se<b;se+=A){let J=(X+se)/d;if(!(J<0||J>=u.outDepth||Math.floor(J)!==J))for(let ee=0;ee<v;ee+=y){let ce=(Q+ee)/p;if(!(ce<0||ce>=u.outHeight||Math.floor(ce)!==ce))for(let pe=0;pe<k;pe+=x){let ve=(Z+pe)/h;if(ve<0||ve>=u.outWidth||Math.floor(ve)!==ve)continue;te+=F.get(T,J,ce,ve,M)}}}P.set(te*E,T,G,H,z,M)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var wG={kernelName:Wp,backendName:"cpu",kernelFunc:vG};function kG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ee([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=R.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,y=u.effectiveFilterWidth,x=y-1-u.padInfo.left,b=A-1-u.padInfo.top,v=He(o.shape,"float32"),k=1/(h*f),C=n.data.get(r.dataId).values,N=He(r.shape,"float32",C);for(let D=0;D<u.batchSize;++D)for(let P=0;P<u.inChannels;++P)for(let E=0;E<u.inHeight;++E)for(let F=0;F<u.inWidth;++F){let T=E-b,M=F-x,G=0;for(let H=0;H<A;H+=m){let z=(T+H)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<y;X+=g){let Q=(M+X)/p;if(Q<0||Q>=u.outWidth||Math.floor(Q)!==Q)continue;G+=N.get(D,z,Q,P)}}v.set(G*k,D,E,F,P)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var IG={kernelName:Bp,backendName:"cpu",kernelFunc:kG};function SG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ee([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,y=p.length,x=d.length,b=0,v=0,k=0,C=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[v++])*h[k++]/Math.sqrt(p[C++]+c),b>=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var CG={kernelName:mo,backendName:"cpu",kernelFunc:SG};function TG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ee([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=wt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ss({inputs:{x:h},backend:n,attrs:{perm:c}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=ki({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var NG={kernelName:ol,backendName:"cpu",kernelFunc:TG};function EG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=g2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var RG={kernelName:Vp,backendName:"cpu",kernelFunc:EG};function DG(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=R.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var _G={kernelName:Up,backendName:"cpu",kernelFunc:DG},FG=pt(la,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),$G={kernelName:la,backendName:"cpu",kernelFunc:FG},OG=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},PG={kernelName:xc,backendName:"cpu",kernelFunc:OG};function Eu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var MG={kernelName:rh,backendName:"cpu",kernelFunc:Eu};function Ru(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=R.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return Tr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(R.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>wi({inputs:{input:b},backend:n})),g=i.map(b=>Eu({inputs:{input:b},backend:n})),A=Ru({inputs:m,backend:n,attrs:{axis:a}}),y=Ru({inputs:g,backend:n,attrs:{axis:a}}),x=fs({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let c=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=R.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=A2(u,o,t[0].dtype,d),h=R.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var zG={kernelName:il,backendName:"cpu",kernelFunc:Ru};function L6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ee([r,a],"conv2d");let d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new Jt(p.outShape,r.dtype),v=w.computeStrides(r.shape),k=w.computeStrides(a.shape),C=v[0],N=x?v[1]:v[2],D=x?v[2]:1,P=x?1:v[1],E=b.strides[0],F=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,M=x?1:b.strides[1],G=n.data.get(r.dataId).values,H=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let Q=X*C,Z=X*E;for(let te=0;te<p.outHeight;++te){let se=Z+te*F,J=te*p.strideHeight-y;for(let ee=0;ee<h;++ee){let ce=J+ee*m;if(ce<0||ce>=p.inHeight)continue;let pe=ee*k[0],ve=Q+ce*N;for(let ke=0;ke<p.outWidth;++ke){let Te=se+ke*T,Pe=ke*p.strideWidth-A;for(let Be=0;Be<f;++Be){let Ue=Pe+Be*g;if(Ue<0||Ue>=p.inWidth)continue;let et=pe+Be*k[1],ct=ve+Ue*D,ot=et;for(let it=0;it<p.inChannels;++it){let ht=G[ct+it*P];for(let mt=0;mt<p.outChannels;++mt)z[Te+mt*M]+=ht*H[ot+mt];ot+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var LG={kernelName:so,backendName:"cpu",kernelFunc:L6};function BG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ee([r,a],"conv2dBackpropFilter");let d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new Jt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=new Jt(r.shape,r.dtype,v),N=new Jt(a.shape,a.dtype,k);for(let D=0;D<m;++D){let P=Math.max(0,Math.ceil((b-D)/h)),E=Math.min(p.outHeight,(p.inHeight+b-D)/h);for(let F=0;F<g;++F){let T=Math.max(0,Math.ceil((x-F)/f)),M=Math.min(p.outWidth,(p.inWidth+x-F)/f);for(let G=0;G<p.inChannels;++G)for(let H=0;H<p.outChannels;++H){let z=0;for(let X=0;X<p.batchSize;++X)for(let Q=P;Q<E;++Q){let Z=D+Q*h-b;for(let te=T;te<M;++te){let se=F+te*f-x;A?z+=C.get(X,Z,se,G)*N.get(X,Q,te,H):z+=C.get(X,G,Z,se)*N.get(X,H,Q,te)}}y.set(z,D,F,G,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var WG={kernelName:Hp,backendName:"cpu",kernelFunc:BG};function VG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ee([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=R.convertConv2DDataFormat(c),f=R.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new Jt(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:C,filterWidth:N,inChannels:D,inHeight:P,inWidth:E,outChannels:F,outHeight:T,outWidth:M,strideHeight:G,strideWidth:H}=f;h=f.dataFormat;let z=C-1-f.padInfo.top,X=N-1-f.padInfo.left,Q=h==="channelsLast",Z=m.strides[0],te=Q?m.strides[1]:m.strides[2],se=Q?m.strides[2]:1,J=Q?1:m.strides[1],ee=p[0],ce=Q?p[1]:p[2],pe=Q?p[2]:1,ve=Q?1:p[1];for(let ke=0;ke<k;++ke)for(let Te=0;Te<D;++Te)for(let Pe=0;Pe<P;++Pe){let Be=Pe-z,Ue=Math.max(0,Math.ceil(Be/G)),et=Math.min(T,(C+Be)/G);for(let ct=0;ct<E;++ct){let ot=ct-X,it=Math.max(0,Math.ceil(ot/H)),ht=Math.min(M,(N+ot)/H),mt=0;for(let Dt=Ue;Dt<et;++Dt){let Hn=Dt*G-Be;for(let gn=it;gn<ht;++gn){let js=gn*H-ot,En=ee*ke+ce*Dt+pe*gn,ss=x*(C-1-Hn)+b*(N-1-js)+v*Te;for(let _s=0;_s<F;++_s){let xs=A[En+ve*_s],An=y[ss+_s];mt+=xs*An}}}let It=Z*ke+te*Pe+se*ct+J*Te;g[It]=mt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var UG={kernelName:ro,backendName:"cpu",kernelFunc:VG};function GG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ee([r,a],"conv3d");let c=R.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,y=g.left,x=g.top,b=new Jt(c.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=b.values,N=w.computeStrides(r.shape),D=w.computeStrides(a.shape);for(let P=0;P<c.batchSize;++P){let E=P*N[0],F=P*b.strides[0];for(let T=0;T<c.outDepth;++T){let M=F+T*b.strides[1],G=T*c.strideDepth-A;for(let H=0;H<u;++H){let z=G+H*h;if(z<0||z>=c.inDepth)continue;let X=H*D[0],Q=E+z*N[1];for(let Z=0;Z<c.outHeight;++Z){let te=M+Z*b.strides[2],se=Z*c.strideHeight-x;for(let J=0;J<d;++J){let ee=se+J*f;if(ee<0||ee>=c.inHeight)continue;let ce=X+J*D[1],pe=Q+ee*N[2];for(let ve=0;ve<c.outWidth;++ve){let ke=te+ve*c.outChannels,Te=ve*c.strideWidth-y;for(let Pe=0;Pe<p;++Pe){let Be=Te+Pe*m;if(Be<0||Be>=c.inWidth)continue;let Ue=ce+Pe*D[2],et=pe+Be*c.inChannels,ct=Ue;for(let ot=0;ot<c.inChannels;++ot){let it=v[et+ot];for(let ht=0;ht<c.outChannels;++ht)C[ke+ht]+=it*k[ct+ht];ct+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var HG={kernelName:bc,backendName:"cpu",kernelFunc:GG};function jG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ee([r,a],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=R.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Jt(d.filterShape,"float32"),x=y.values,[b,v,k,C]=y.strides,N=n.data.get(a.dataId).values,[D,P,E,F]=u,T=n.data.get(r.dataId).values,[M,G,H,z]=c,X=d.padInfo.front,Q=d.padInfo.left,Z=d.padInfo.top;for(let te=0;te<m;++te){let se=Math.max(0,Math.ceil((X-te)/p)),J=Math.min(d.outDepth,(d.inDepth+X-te)/p),ee=te*b;for(let ce=0;ce<g;++ce){let pe=Math.max(0,Math.ceil((Z-ce)/h)),ve=Math.min(d.outHeight,(d.inHeight+Z-ce)/h),ke=ce*v+ee;for(let Te=0;Te<A;++Te){let Pe=Math.max(0,Math.ceil((Q-Te)/f)),Be=Math.min(d.outWidth,(d.inWidth+Q-Te)/f),Ue=Te*k+ke;for(let et=0;et<d.inChannels;++et){let ct=et*C+Ue;for(let ot=0;ot<d.outChannels;++ot){let it=0;for(let ht=0;ht<d.batchSize;++ht){let mt=ht*M,It=ht*D;for(let Dt=se;Dt<J;++Dt){let gn=(te+Dt*p-X)*G+mt,js=Dt*P+It;for(let En=pe;En<ve;++En){let _s=(ce+En*h-Z)*H+gn,xs=En*E+js;for(let An=Pe;An<Be;++An){let In=(Te+An*f-Q)*z+_s,dr=An*F+xs;it+=T[In+et]*N[dr+ot]}}}}x[ct+ot]=it}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var qG={kernelName:jp,backendName:"cpu",kernelFunc:jG};function XG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ee([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=R.computeConv3DInfo(l,a.shape,i,1,o),p=new Jt(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=c,C=n.data.get(a.dataId).values,[N,D,P,E]=u,{batchSize:F,filterDepth:T,filterHeight:M,filterWidth:G,inChannels:H,inDepth:z,inHeight:X,inWidth:Q,outChannels:Z,outDepth:te,outHeight:se,outWidth:J,strideDepth:ee,strideHeight:ce,strideWidth:pe}=d,ve=T-1-d.padInfo.front,ke=M-1-d.padInfo.top,Te=G-1-d.padInfo.left;for(let Pe=0;Pe<F;++Pe)for(let Be=0;Be<H;++Be)for(let Ue=0;Ue<z;++Ue){let et=Ue-ve,ct=Math.max(0,Math.ceil(et/ee)),ot=Math.min(te,(T+et)/ee);for(let it=0;it<X;++it){let ht=it-ke,mt=Math.max(0,Math.ceil(ht/ce)),It=Math.min(se,(M+ht)/ce);for(let Dt=0;Dt<Q;++Dt){let Hn=Dt-Te,gn=Math.max(0,Math.ceil(Hn/pe)),js=Math.min(J,(G+Hn)/pe),En=0;for(let ss=ct;ss<ot;++ss){let _s=ss*ee-et;for(let xs=mt;xs<It;++xs){let An=xs*ce-ht;for(let cr=gn;cr<js;++cr){let In=cr*pe-Hn,dr=x*Pe+b*ss+v*xs+k*cr,pr=N*(T-1-_s)+D*(M-1-An)+P*(G-1-In)+E*Be;for(let Yr=0;Yr<Z;++Yr){let Ju=y[dr+Yr],qs=C[pr+Yr];En+=Ju*qs}}}}h[f*Pe+m*Ue+g*it+A*Dt+Be]=En}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var KG={kernelName:qp,backendName:"cpu",kernelFunc:XG},ZG=pt(ao,e=>Math.cos(e)),YG={kernelName:ao,backendName:"cpu",kernelFunc:ZG},JG=pt(oo,e=>Math.cosh(e)),QG={kernelName:oo,backendName:"cpu",kernelFunc:JG};function eH(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=He([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let C=0;C<f;C++){let N=C*4,D=y[N],P=y[N+1],E=y[N+2],F=y[N+3],T=x[C];if(T>=u)continue;let M=m>1?(E-D)*(d-1)/(m-1):0,G=g>1?(F-P)*(p-1)/(g-1):0;for(let H=0;H<m;H++){let z=m>1?D*(d-1)+H*M:.5*(D+E)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let Q=0;Q<h;Q++){let Z=Q+X*k[2]+H*k[1]+C*k[0];A.values[Z]=c}continue}if(l==="bilinear"){let X=Math.floor(z),Q=Math.ceil(z),Z=z-X;for(let te=0;te<g;te++){let se=g>1?P*(p-1)+te*G:.5*(P+F)*(p-1);if(se<0||se>p-1){for(let pe=0;pe<h;pe++){let ve=pe+te*k[2]+H*k[1]+C*k[0];A.values[ve]=c}continue}let J=Math.floor(se),ee=Math.ceil(se),ce=se-J;for(let pe=0;pe<h;pe++){let ve=pe+J*v[2]+X*v[1]+T*v[0],ke=b[ve];ve=pe+ee*v[2]+X*v[1]+T*v[0];let Te=b[ve];ve=pe+J*v[2]+Q*v[1]+T*v[0];let Pe=b[ve];ve=pe+ee*v[2]+Q*v[1]+T*v[0];let Be=b[ve],Ue=ke+(Te-ke)*ce,et=Pe+(Be-Pe)*ce;ve=pe+te*k[2]+H*k[1]+C*k[0],A.values[ve]=Ue+(et-Ue)*Z}}}else for(let X=0;X<g;++X){let Q=g>1?P*(p-1)+X*G:.5*(P+F)*(p-1);if(Q<0||Q>p-1){for(let se=0;se<h;se++){let J=se+X*k[2]+H*k[1]+C*k[0];A.values[J]=c}continue}let Z=Math.round(Q),te=Math.round(z);for(let se=0;se<h;se++){let J=se+Z*v[2]+te*v[1]+T*v[0],ee=se+X*k[2]+H*k[1]+C*k[0];A.values[ee]=b[J]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var tH={kernelName:ll,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ee(r,"cumsum");let l=R.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ss({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=R.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Ps(c.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)p[x]=o?0:h[x];else{let b=m(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=R.getUndoAxesPermutation(l),y=Ss({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),y}return g}var sH={kernelName:io,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=g2(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=K7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var aH={kernelName:Xp,backendName:"cpu",kernelFunc:rH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<p;++v){let k=Math.floor(v/a),C=v%a,N=(b*a+C)*h;for(let D=0;D<h;++D){let E=D+N+u*(k+c*(x+l*A));m[g++]=f[E]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var iH={kernelName:ul,backendName:"cpu",kernelFunc:oH};function B6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ee([r,a],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=R.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,v=h.outChannels/h.inChannels,k=new Jt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,D=k.values;for(let P=0;P<h.batchSize;++P){let E=P*u[0],F=P*k.strides[0];for(let T=0;T<h.outHeight;++T){let M=F+T*k.strides[1],G=T*h.strideHeight-b;for(let H=0;H<f;++H){let z=G+H*g;if(z<0||z>=h.inHeight)continue;let X=H*d[0],Q=E+z*u[1];for(let Z=0;Z<h.outWidth;++Z){let te=M+Z*k.strides[2],se=Z*h.strideWidth-x;for(let J=0;J<m;++J){let ee=se+J*A;if(ee<0||ee>=h.inWidth)continue;let ce=X+J*d[1],pe=Q+ee*h.inChannels,ve=te,ke=ce;for(let Te=0;Te<h.inChannels;++Te){let Pe=C[pe+Te];for(let Be=0;Be<v;++Be)D[ve+Be]+=Pe*N[ke+Be];ve+=v,ke+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var lH={kernelName:lo,backendName:"cpu",kernelFunc:B6};function uH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ee([r,a],"depthwiseConv2dNativeBackpropFilter");let d=R.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Jt(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Jt(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,C=new Jt(a.shape,a.dtype,k);for(let N=0;N<f;++N){let D=Math.max(0,Math.ceil((y-N)/p)),P=Math.min(d.outHeight,(d.inHeight+y-N)/p);for(let E=0;E<m;++E){let F=Math.max(0,Math.ceil((A-E)/h)),T=Math.min(d.outWidth,(d.inWidth+A-E)/h);for(let M=0;M<d.outChannels;++M){let G=Math.trunc(M/x),H=M%x,z=0;for(let X=0;X<d.batchSize;++X)for(let Q=D;Q<P;++Q){let Z=N+Q*p-y;for(let te=F;te<T;++te){let se=E+te*h-A;z+=v.get(X,Z,se,G)*C.get(X,Q,te,M)}}g.set(z,N,E,G,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var cH={kernelName:Kp,backendName:"cpu",kernelFunc:uH};function dH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ee([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=R.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new Jt(h.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,C=n.data.get(a.dataId).values,[N,D,P]=p,{batchSize:E,filterHeight:F,filterWidth:T,inChannels:M,inHeight:G,inWidth:H,outChannels:z,outHeight:X,outWidth:Q,strideHeight:Z,strideWidth:te}=h,se=F-1-h.padInfo.top,J=T-1-h.padInfo.left,ee=z/M;for(let ce=0;ce<E;++ce)for(let pe=0;pe<M;++pe)for(let ve=0;ve<G;++ve){let ke=ve-se,Te=Math.max(0,Math.ceil(ke/Z)),Pe=Math.min(X,(F+ke)/Z);for(let Be=0;Be<H;++Be){let Ue=Be-J,et=Math.max(0,Math.ceil(Ue/te)),ct=Math.min(Q,(T+Ue)/te),ot=0;for(let it=Te;it<Pe;++it){let ht=it*Z-ke;for(let mt=et;mt<ct;++mt){let It=mt*te-Ue,Dt=b*ce+v*it+k*mt,Hn=N*(F-1-ht)+D*(T-1-It)+P*pe;for(let gn=0;gn<ee;++gn){let js=pe*ee+gn,En=x[Dt+js],ss=C[Hn+gn];ot+=En*ss}}}m[g*ce+A*ve+y*Be+pe]=ot}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var pH={kernelName:Zp,backendName:"cpu",kernelFunc:dH};function hH(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=He([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var fH={kernelName:Yp,backendName:"cpu",kernelFunc:hH},mH={kernelName:vc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:D,outShape:P}=R.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(P),F=P.length,T=w.getArrayFromDType(s.dtype,E);for(let G=0;G<h;++G)for(let H=0;H<A;++H){let z=H*b-x.top;for(let X=0;X<y;++X){let Q=X*v-x.left;for(let Z=0;Z<g;++Z){let te=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let ee=z+J*N;if(ee>=0&&ee<f)for(let ce=0;ce<C;++ce){let pe=Q+ce*D;if(pe>=0&&pe<m){let ve=w.locToIndex([G,ee,pe,Z],u,w.computeStrides(s.shape)),ke=w.locToIndex([J,ce,Z],p,w.computeStrides(r.shape)),Te=c[ve]+d[ke];Te>te&&(te=Te)}}}let se=w.locToIndex([G,H,X,Z],F,w.computeStrides(P));T[se]=te}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},gH={kernelName:Qp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:C,dilationWidth:N,outShape:D}=R.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Qp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let P=w.toNestedArray(D,c.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let G=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,Z=0,te=0;for(let se=0;se<v;++se){let J=G+se*C;if(J>=0&&J<h)for(let ee=0;ee<k;++ee){let ce=z+ee*N;if(ce>=0&&ce<f){let pe=u[T][J][ce][X]+d[se][ee][X];pe>Q&&(Q=pe,Z=se,te=ee)}}}E[Z][te][X]+=P[T][M][H][X]}}}return{dataId:c.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},AH={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:C,dilationWidth:N,outShape:D}=R.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Jp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let P=w.toNestedArray(D,c.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let G=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,Z=G<0?0:G,te=z<0?0:z;for(let se=0;se<v;++se){let J=G+se*C;if(J>=0&&J<h)for(let ee=0;ee<k;++ee){let ce=z+ee*N;if(ce>=0&&ce<f){let pe=u[T][J][ce][X]+d[se][ee][X];pe>Q&&(Q=pe,Z=J,te=ce)}}}E[T][Z][te][X]+=P[T][M][H][X]}}}return{dataId:c.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Dd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"sum");let i;r.dtype==="bool"?i=Ea({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Tr({inputs:{x:r},backend:n});let l=i.shape.length,c=w.parseAxisParam(a,i.shape),u=R.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ss({inputs:{x:i},backend:n,attrs:{perm:u}}),d=R.getInnerMostAxes(d.length,l)),R.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=R.computeOutAndReduceShapes(p.shape,d),m=R.upcastType(p.dtype,"int32"),g=s0(n,h,m),A=w.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,k=0;for(let C=0;C<A;++C)k+=x[v+C];y[b]=k}if(o){let b=R.expandShapeToKeepDim(g.shape,c),v=g;g=wt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var yH={kernelName:Wo,backendName:"cpu",kernelFunc:Dd};function xH(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(r,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=R.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=a[g]:(x=Ss({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=wt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=r0({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Dd({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var bH={kernelName:eh,backendName:"cpu",kernelFunc:xH};function vH(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ee([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var wH={kernelName:th,backendName:"cpu",kernelFunc:vH},kH=R.ERF_P,IH=R.ERF_A1,SH=R.ERF_A2,CH=R.ERF_A3,TH=R.ERF_A4,NH=R.ERF_A5,EH=pt(cl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+kH*n);return t*(1-((((NH*s+TH)*s+CH)*s+SH)*s+IH)*s*Math.exp(-n*n))}),RH={kernelName:cl,backendName:"cpu",kernelFunc:EH};function o0(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),wt({inputs:{x:r},backend:n,attrs:{shape:i}})}var DH={kernelName:pl,backendName:"cpu",kernelFunc:o0},_H=Xt((e,t)=>e/t),S2=mn(uo,_H),C2={kernelName:uo,backendName:"cpu",kernelFunc:S2};function W6(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=w.sizeFromShape(c),d=w.getTypedArrayFromDType("float32",u),p=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=ki({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ki({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=fs({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=FH(x,t,n),k=R.mergeRealAndImagArrays(b,v);for(let C=0;C<a;C++){let N=R.getComplexWithIndex(k,C);d[g*a+C]=N.real,p[g*a+C]=N.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=fs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function FH(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if($H(s)){let i=T2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=Tr({inputs:{x:d},backend:n}),h=C2.kernelFunc({inputs:{a:c,b:d},backend:n}),f=C2.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=R.mergeRealAndImagArrays(a,o),l=OH(i,s,t);return R.splitRealAndImagArrays(l)}}function $H(e){return(e&e-1)==0}function T2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=R.mergeRealAndImagArrays(e,t),o=n/2,i=R.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=fs({inputs:{real:d,imag:p},backend:r}),f=R.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=fs({inputs:{real:y,imag:x},backend:r}),v=T2(l,c,o,s,r),k=v.real,C=v.imag,N=[k.length],D=r.makeTensorInfo(N,"float32",k),P=r.makeTensorInfo(N,"float32",C),E=fs({inputs:{real:D,imag:P},backend:r}),F=T2(m,g,o,s,r),T=F.real,M=F.imag,G=[T.length],H=r.makeTensorInfo(G,"float32",T),z=r.makeTensorInfo(G,"float32",M),X=fs({inputs:{real:H,imag:z},backend:r}),Q=R.exponents(n,s),Z=[Q.real.length],te=r.makeTensorInfo(Z,"float32",Q.real),se=r.makeTensorInfo(Z,"float32",Q.imag),J=fs({inputs:{real:te,imag:se},backend:r}),ee=r0({inputs:{a:J,b:X},backend:r}),ce=Ed({inputs:{a:E,b:ee},backend:r}),pe=w2({inputs:{a:E,b:ee},backend:r}),ve=wi({inputs:{input:ce},backend:r}),ke=wi({inputs:{input:pe},backend:r}),Te=Eu({inputs:{input:ce},backend:r}),Pe=Eu({inputs:{input:pe},backend:r}),Be=Ru({inputs:[ve,ke],backend:r,attrs:{axis:0}}),Ue=Ru({inputs:[Te,Pe],backend:r,attrs:{axis:0}}),et=r.data.get(Be.dataId).values,ct=r.data.get(Ue.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(ve),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Ue),{real:et,imag:ct}}function OH(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=R.exponent(r*i,t,n),c=R.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),R.assignToTypedArray(s,a,o,r)}return s}function PH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=W6(i,!1,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var MH={kernelName:nh,backendName:"cpu",kernelFunc:PH};function N2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return LH(i,r,o),t.makeTensorInfo(s,o,i)}var zH={kernelName:wc,backendName:"cpu",kernelFunc:N2};function LH(e,t,n){e.fill(t)}var BH={kernelName:fl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let y=0;y<c;y++){let x=Math.round(l-g-1),b=h+m+A+y,v=u[b];if(x>=0&&x<l){let k=x*c,C=h+m+k+y;v=u[C]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},WH=Xt((e,t)=>Math.floor(e/t)),VH=mn(fo,WH,null,"int32"),UH={kernelName:fo,backendName:"cpu",kernelFunc:VH};function GH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=L6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Ed({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=k2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var HH={kernelName:Ko,backendName:"cpu",kernelFunc:GH};function jH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=B6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Ed({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=k2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var qH={kernelName:Zo,backendName:"cpu",kernelFunc:jH};function XH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=R.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=s6(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var KH={kernelName:gl,backendName:"cpu",kernelFunc:XH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ee([r,a],"gatherV2");let l=w.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=w.sizeFromShape(a.shape),h=R.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=wt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=wt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),y=n.bufferSync(f),x=r6(y,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var YH={kernelName:ml,backendName:"cpu",kernelFunc:ZH};function JH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=W6(i,!0,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var QH={kernelName:sh,backendName:"cpu",kernelFunc:JH},ej=pt(yl,e=>Number.isFinite(e)?1:0,"bool"),tj={kernelName:yl,backendName:"cpu",kernelFunc:ej},nj=pt(xl,e=>Math.abs(e)===1/0?1:0,"bool"),sj={kernelName:xl,backendName:"cpu",kernelFunc:nj},rj=pt(bl,e=>Number.isNaN(e)?1:0,"bool"),aj={kernelName:bl,backendName:"cpu",kernelFunc:rj};function oj(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=u6(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var ij={kernelName:ah,backendName:"cpu",kernelFunc:oj},lj=pt(kl,e=>Math.log1p(e)),uj={kernelName:kl,backendName:"cpu",kernelFunc:lj},cj=Xt((e,t)=>e&&t),dj=mn(Il,cj,null,"bool"),pj={kernelName:Il,backendName:"cpu",kernelFunc:dj},hj=pt(kc,e=>e?0:1,"bool"),fj={kernelName:kc,backendName:"cpu",kernelFunc:hj},mj=Xt((e,t)=>e||t),gj=mn(Ic,mj,null,"bool"),Aj={kernelName:Ic,backendName:"cpu",kernelFunc:gj};function yj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ee(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,u),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var xj={kernelName:Sc,backendName:"cpu",kernelFunc:yj};function bj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ee(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),v=y-x+Math.min(p,x+i+1),k=0;for(let C=b;C<v;C++)k+=Math.pow(f[C],2);k=c*k+l;for(let C=b;C<v;C++){let N=-2*c*u*f[C]*m[y]/k;y===C&&(N+=Math.pow(k,-u)),N*=h[y],g[C]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var vj={kernelName:oh,backendName:"cpu",kernelFunc:bj};function V6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=w.parseAxisParam(a,l),d=u,p=R.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=x2(h,l,r.dtype,p,b),d=R.getInnerMostAxes(d.length,c),l=b}Ee(r,"max"),R.assertAxesAreInnerMostDims("max",d,c);let[f,m]=R.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=d6(h,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=R.expandShapeToKeepDim(f,u)),{dataId:y,shape:x,dtype:r.dtype}}var wj={kernelName:bo,backendName:"cpu",kernelFunc:V6};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ee(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Tr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=I2(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Ij={kernelName:wo,backendName:"cpu",kernelFunc:kj};function Sj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ee(r,"maxPool3d");let u=R.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=z6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Cj={kernelName:Cc,backendName:"cpu",kernelFunc:Sj};function Tj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ee([r,a],"maxPool3DGrad");let u=R.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=gG(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,y=u.dilationWidth,x=u.effectiveFilterDepth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,k=x-1-u.padInfo.front,C=v-1-u.padInfo.left,N=b-1-u.padInfo.top,D=He(a.shape,"float32"),P=n.bufferSync(r);for(let E=0;E<u.batchSize;++E)for(let F=0;F<u.inChannels;++F)for(let T=0;T<u.inDepth;++T)for(let M=0;M<u.inHeight;++M)for(let G=0;G<u.inWidth;++G){let H=T-k,z=M-N,X=G-C,Q=0;for(let Z=0;Z<x;Z+=g){let te=(H+Z)/h;if(!(te<0||te>=u.outDepth||Math.floor(te)!==te))for(let se=0;se<b;se+=A){let J=(z+se)/f;if(!(J<0||J>=u.outHeight||Math.floor(J)!==J))for(let ee=0;ee<v;ee+=y){let ce=(X+ee)/m;if(ce<0||ce>=u.outWidth||Math.floor(ce)!==ce)continue;let pe=x*b*v-1-p.get(E,te,J,ce,F),ve=Z*b*v+se*v+ee,ke=pe===ve?1:0;if(ke===0)continue;Q+=P.get(E,te,J,ce,F)*ke}}}D.set(Q,E,T,M,G,F)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var Nj={kernelName:lh,backendName:"cpu",kernelFunc:Tj};function Ej(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ee([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=R.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=He(p.outShape,i.dtype,M6(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,k=x-1-p.padInfo.top,C=He(i.shape,"float32"),N=n.data.get(r.dataId).values,D=He(r.shape,"float32",N);for(let P=0;P<p.batchSize;++P)for(let E=0;E<p.inChannels;++E)for(let F=0;F<p.inHeight;++F)for(let T=0;T<p.inWidth;++T){let M=F-k,G=T-v,H=0;for(let z=0;z<x;z+=A){let X=(M+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let Q=0;Q<b;Q+=y){let Z=(G+Q)/g;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let te=x*b-1-f.get(P,X,Z,E),se=z*b+Q,J=te===se?1:0;if(J===0)continue;H+=D.get(P,X,Z,E)*J}}C.set(H,P,F,T,E)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var Rj={kernelName:ih,backendName:"cpu",kernelFunc:Ej};function Dj(e,t,n,s,r){let a=w.computeStrides(t),o=I2(e,t,n,a,r,"max"),i=M6(e,t,n,r,!0,s);return[o.values,i.values]}var _j={kernelName:uh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ee(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=R.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=Dj(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),c=R.computeOutAndReduceShapes(r.shape,i)[1],u=w.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Ea({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=S2({inputs:{a:h,b:p},backend:n});d.push(f);let m=Dd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var $j={kernelName:ko,backendName:"cpu",kernelFunc:Fj};function Oj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ee(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var Pj={kernelName:Io,backendName:"cpu",kernelFunc:Oj};function Mj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ee(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),c=a.map((x,b)=>x[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=w.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,C)=>k-l[C]);let v=w.locToIndex(b,p,h);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var zj={kernelName:Co,backendName:"cpu",kernelFunc:Mj},Lj=Xt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Bj=mn(Sl,Lj),Wj={kernelName:Sl,backendName:"cpu",kernelFunc:Bj},Vj=Xa(z5());function U6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),c=V6({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=R.expandShapeToKeepDim(c.shape,l),d=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=w2({inputs:{a:r,b:d},backend:n}),h=e6({inputs:{x:p},backend:n}),f=Dd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=S2({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Uj={kernelName:Vo,backendName:"cpu",kernelFunc:U6};function Gj(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ee(r,"multinomial");let l=i?r:U6({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=Vj.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var Hj={kernelName:ch,backendName:"cpu",kernelFunc:Gj},jj=vr.nonMaxSuppressionV3Impl;function qj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ee(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=jj(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Xj={kernelName:Nl,backendName:"cpu",kernelFunc:qj},Kj=vr.nonMaxSuppressionV4Impl;function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ee(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=Kj(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Yj={kernelName:El,backendName:"cpu",kernelFunc:Zj},Jj=vr.nonMaxSuppressionV5Impl;function Qj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ee(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Jj(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var eq={kernelName:Rl,backendName:"cpu",kernelFunc:Qj};function tq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ee(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var nq={kernelName:No,backendName:"cpu",kernelFunc:tq};function i0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=wi({inputs:{input:s},backend:n}),a=i0({inputs:{x:r},backend:n}),o=Eu({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return N2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var sq={kernelName:Kl,backendName:"cpu",kernelFunc:i0};function G6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=wi({inputs:{input:s},backend:n}),a=G6({inputs:{x:r},backend:n}),o=Eu({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return N2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var rq={kernelName:Dl,backendName:"cpu",kernelFunc:G6};function H6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return o0({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=o0({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Ru({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var aq={kernelName:_l,backendName:"cpu",kernelFunc:H6};function oq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ee(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<u;y++){let b=w.indexToLoc(y,d,p).map((k,C)=>k+l[C]),v=w.locToIndex(b,f,m);g[v]=c[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var j6={kernelName:Eo,backendName:"cpu",kernelFunc:oq},iq=Xt((e,t)=>Math.pow(e,t)),lq=mn(Ro,iq),uq={kernelName:Ro,backendName:"cpu",kernelFunc:lq};function cq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=b2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var dq={kernelName:Tc,backendName:"cpu",kernelFunc:cq},pq=pt($l,e=>1/e),hq={kernelName:$l,backendName:"cpu",kernelFunc:pq};function fq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ee(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k<d;k++)for(let C=0;C<c;C++){let N;o?N=b*(C+.5)-.5:N=b*C;let D=Math.max(0,Math.floor(N)),P=N-D,E=Math.min(p-1,Math.ceil(N)),F=k*l[0]+D*l[1],T=k*l[0]+E*l[1];for(let M=0;M<u;M++){let G;o?G=v*(M+.5)-.5:G=v*M;let H=Math.max(0,Math.floor(G)),z=G-H,X=Math.min(h-1,Math.ceil(G)),Q=F+H*l[2],Z=T+H*l[2],te=F+X*l[2],se=T+X*l[2];for(let J=0;J<f;J++){let ee=m[Q+J],ce=m[Z+J],pe=m[te+J],ve=m[se+J],ke=ee+(pe-ee)*z,Te=ce+(ve-ce)*z,Pe=ke+(Te-ke)*P;g[x++]=Pe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var mq={kernelName:Fo,backendName:"cpu",kernelFunc:fq};function gq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ee([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let C=0;C<p;C++){let N=C*A,D=Math.floor(N),P=Math.min(Math.ceil(N),c-1),E=k+D*i[1],F=k+P*i[1],T=N-D,M=1-T;for(let G=0;G<h;G++){let H=G*y,z=Math.floor(H),X=Math.min(Math.ceil(H),u-1),Q=H-z,Z=1-Q,te=E+z*i[2],se=E+X*i[2],J=F+z*i[2],ee=F+X*i[2],ce=M*Z,pe=M*Q,ve=T*Z,ke=T*Q;for(let Te=0;Te<d;Te++){let Pe=x[b++];f[te+Te]+=Pe*ce,f[se+Te]+=Pe*pe,f[J+Te]+=Pe*ve,f[ee+Te]+=Pe*ke}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var Aq={kernelName:hh,backendName:"cpu",kernelFunc:gq};function yq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ee(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k<d;k++){let C=k*l[0];for(let N=0;N<c;N++){let D=o?x*(N+.5):x*N,P=Math.min(p-1,a?Math.round(D):Math.floor(D));o&&(P=Math.max(0,P));let E=C+P*l[1];for(let F=0;F<u;F++){let T=o?b*(F+.5):b*F,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let G=E+M*l[2];for(let H=0;H<f;H++){let z=m[G+H];g[v++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var xq={kernelName:Nc,backendName:"cpu",kernelFunc:yq};function bq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ee([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,C=Math.ceil(v)*2+2,N=Math.ceil(k)*2+2;for(let D=0;D<c;D++){let P=D*i[0];for(let E=0;E<u;E++){let F=P+E*i[1],T=Math.floor(E*v),M=Math.floor(T-C/2);for(let G=0;G<d;G++){let H=F+G*i[2],z=Math.floor(G*k),X=Math.floor(z-N/2);for(let Q=0;Q<p;Q++){let Z=0;for(let te=0;te<C;te++){let se=te+M;if(se<0||se>=h)continue;let J=P+se*l[1],ee=se*x,ce=Math.min(u-1,o?Math.round(ee):Math.floor(ee));if(E===ce)for(let pe=0;pe<N;pe++){let ve=pe+X;if(ve<0||ve>=f)continue;let ke=J+ve*l[2],Te=ve*b,Pe=Math.min(d-1,o?Math.round(Te):Math.floor(Te));G===Pe&&(Z+=g[ke+Q])}}m[H+Q]=Z}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var vq={kernelName:ph,backendName:"cpu",kernelFunc:bq};function wq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ee(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return Tr({inputs:{x:r},backend:n});let l=new Jt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var kq={kernelName:Oo,backendName:"cpu",kernelFunc:wq},Iq={kernelName:Zl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=R.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let v=b*d*u*p;for(let k=0;k<u;k++){let C=k*(d*p);for(let N=0;N<d;N++){let D=N*p;for(let P=0;P<p;P++){let E=[c,k,N,P],F=E[2],T=E[1],M=(F-h)*A-(T-f)*g,G=(F-h)*g+(T-f)*A;M=Math.round(M+h),G=Math.round(G+f);let H=a;if(typeof a!="number"&&(P===3?H=m:H=a[P]),M>=0&&M<d&&G>=0&&G<u){let X=G*(d*p),Q=M*p,Z=v+X+Q+P;H=y[Z]}let z=v+C+D+P;l[z]=H}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Sq=pt(Po,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Cq={kernelName:Po,backendName:"cpu",kernelFunc:Sq};function q6(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return He(n,t.dtype);let h=He(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function Tq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=R.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=q6(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var Nq={kernelName:Pl,backendName:"cpu",kernelFunc:Tq};function Eq(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ee([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Ps(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var Rq={kernelName:Ml,backendName:"cpu",kernelFunc:Eq},Dq=R.SELU_SCALEALPHA,_q=R.SELU_SCALE,Fq=pt(zl,e=>e>=0?_q*e:Dq*(Math.exp(e)-1)),$q={kernelName:zl,backendName:"cpu",kernelFunc:Fq},Oq=pt(Wl,e=>e<0?-1:e>0?1:0),Pq={kernelName:Wl,backendName:"cpu",kernelFunc:Oq},Mq=pt(zo,e=>Math.sin(e)),zq={kernelName:zo,backendName:"cpu",kernelFunc:Mq},Lq=pt(Bl,e=>Math.sinh(e)),Bq={kernelName:Bl,backendName:"cpu",kernelFunc:Lq},Wq=11920928955078125e-23,X6=Math.log(Wq)+2,Vq=pt(Vl,e=>{let t=e>-X6,n=e<X6,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),Uq={kernelName:Vl,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ee([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=j6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,a,i,!1),d=R.getPermuted(u.length,a.length,!1),p=R.getReshapedPermuted(c.shape,a,i,!1),m=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Ss({inputs:{x:m},backend:n,attrs:{perm:d}}),v=wt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var Hq={kernelName:Ul,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=x6(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var qq={kernelName:fh,backendName:"cpu",kernelFunc:jq};function Xq(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=b6(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Kq={kernelName:mh,backendName:"cpu",kernelFunc:Xq};function Zq(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=v2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Yq={kernelName:gh,backendName:"cpu",kernelFunc:Zq};function Jq(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=v2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Qq={kernelName:Ah,backendName:"cpu",kernelFunc:Jq};function eX(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=q6(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var tX={kernelName:yh,backendName:"cpu",kernelFunc:eX};function nX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=ki({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var sX={kernelName:Gl,backendName:"cpu",kernelFunc:nX},rX={kernelName:Ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ee(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},aX=pt(ca,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),oX={kernelName:ca,backendName:"cpu",kernelFunc:aX};function iX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ee(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=Fn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=wt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=ki({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=wt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),C=w6(y,k,m,f);b=n.makeTensorInfo(C.shape,C.dtype,C.values)}let v=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var lX={kernelName:Hl,backendName:"cpu",kernelFunc:iX};function uX(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=k6(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var cX={kernelName:xh,backendName:"cpu",kernelFunc:uX};function dX(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=I6(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var pX={kernelName:bh,backendName:"cpu",kernelFunc:dX};function hX(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=S6(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var fX={kernelName:vh,backendName:"cpu",kernelFunc:hX},mX=pt(Ho,e=>Math.tan(e)),gX={kernelName:Ho,backendName:"cpu",kernelFunc:mX},AX=pt(jo,e=>Math.tanh(e)),yX={kernelName:jo,backendName:"cpu",kernelFunc:AX};function xX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ee(r,"tile");let o=T6(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var bX={kernelName:ua,backendName:"cpu",kernelFunc:xX};function vX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ee(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=E6(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var wX={kernelName:jl,backendName:"cpu",kernelFunc:vX};function kX(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,C=s.data.get(a.dataId).values;for(let D=0;D<u;++D){let P=a.shape[0]===1?C:C.subarray(D*8,D*8+8);for(let E=0;E<f;++E)for(let F=0;F<m;++F)for(let T=0;T<h;++T){let M,G=P[6]*F+P[7]*E+1;if(G===0)continue;let H=(P[0]*F+P[1]*E+P[2])/G,z=(P[3]*F+P[4]*E+P[5])/G,X=K6(H,p,i),Q=K6(z,d,i);switch(o){case"nearest":M=EX(k,d,p,y,x,b,D,Q,X,T,l);break;case"bilinear":M=RX(k,d,p,y,x,b,D,Q,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let Z=D*y+E*x+F*b+T;v[Z]=M}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var IX={kernelName:ql,backendName:"cpu",kernelFunc:kX};function K6(e,t,n){switch(n){case"reflect":return SX(e,t);case"wrap":return CX(e,t);case"nearest":return NX(e,t);case"constant":default:return TX(e,t)}}function SX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function CX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function TX(e,t){return e}function NX(e,t){return w.clamp(0,e,t-1)}function _d(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function EX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return _d(e,t,n,s,r,a,o,d,p,c,u)}function RX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*_d(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*_d(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*_d(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*_d(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function DX(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ee(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=R6(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var _X={kernelName:wh,backendName:"cpu",kernelFunc:DX};function FX(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=ki({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=wt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var $X={kernelName:Xl,backendName:"cpu",kernelFunc:FX};function OX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ee(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=o0({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=J7({inputs:{a:g,b:p},backend:n}),y=Ea({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=r0({inputs:{a:y,b:r},backend:n}),b=Dd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(y),u.push(x),u.push(b)}let h=H6({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var PX={kernelName:Rc,backendName:"cpu",kernelFunc:OX},MX=[GU,MV,jU,XU,UV,ZU,JU,eG,nG,rG,oG,lG,cG,hG,mG,yG,bG,wG,IG,VU,CG,NG,RG,_G,WV,HV,$G,zV,PG,zG,WG,UG,LG,qG,KG,HG,YG,QG,tH,sH,aH,iH,lH,cH,pH,fH,mH,AH,gH,C2,bH,OU,wH,jV,RH,qV,DH,KV,MH,zH,BH,YV,UH,HH,qH,KH,YH,QV,tU,LV,QH,MG,tj,sj,aj,PU,sU,aU,ij,iU,uj,pj,fj,Aj,xj,vj,uU,Ij,Cj,Nj,Rj,_j,wj,$j,Pj,dU,zj,Wj,Hj,hU,mU,Xj,Yj,eq,AU,nq,rq,aq,j6,uq,zU,bU,dq,BV,hq,LU,BU,WU,mq,Aq,xq,vq,kq,Iq,Cq,wU,Nq,Rq,$q,IU,Pq,zq,Bq,SU,Uj,Uq,Hq,qq,Kq,Yq,Qq,tX,sX,NU,rX,RU,oX,lX,cX,pX,fX,$U,yH,gX,yX,bX,wX,yU,IX,_X,$X,PX,sq];for(let e of MX)da(e);var Z6={};ze(Z6,{assertNotComplex:()=>_u,bindCanvasToFramebuffer:()=>KX,bindColorTextureToFramebuffer:()=>d0,bindTextureToProgramUniformSampler:()=>d4,bindTextureUnit:()=>l4,bindVertexBufferToProgramAttribute:()=>D2,callAndCheck:()=>Ce,canBeRepresented:()=>Y6,createFragmentShader:()=>e4,createFramebuffer:()=>i4,createProgram:()=>t4,createStaticIndexBuffer:()=>r4,createStaticVertexBuffer:()=>s4,createTexture:()=>a4,createVertexShader:()=>Q6,getBatchDim:()=>Si,getExtensionOrThrow:()=>Od,getFramebufferErrorMessage:()=>p4,getMaxTexturesInShader:()=>g4,getNumChannels:()=>qX,getProgramUniformLocation:()=>c4,getProgramUniformLocationOrThrow:()=>u4,getRowsCols:()=>Ci,getShapeAs3D:()=>p0,getTextureShapeFromLogicalShape:()=>f4,getWebGLDisjointQueryTimerVersion:()=>A4,getWebGLErrorMessage:()=>J6,getWebGLMaxTextureSize:()=>m4,hasExtension:()=>Ts,isCapableOfRenderingToFloatTexture:()=>y4,isDownloadFloatTextureEnabled:()=>x4,isReshapeFree:()=>Md,isWebGLFenceEnabled:()=>b4,isWebGLVersionEnabled:()=>F2,linkProgram:()=>n4,resetMaxTextureSize:()=>ZX,resetMaxTexturesInShader:()=>YX,unbindColorTextureFromFramebuffer:()=>_2,unbindTextureUnit:()=>XX,validateFramebuffer:()=>Pd,validateProgram:()=>c0,validateTextureSize:()=>o4});var Ii={},E2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function l0(e,t){Ii[e]=t}function Nr(e){if(!(e in Ii)){let n=LX(e);if(n!==null)Ii[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ii[e];return t.isContextLost()?(delete Ii[e],Nr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ii[e])}function zX(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function LX(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=zX(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ii[e]},!1),e===1?t.getContext("webgl",E2)||t.getContext("experimental-webgl",E2):t.getContext("webgl2",E2)}var Fd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Fd||(Fd={}));var Cs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Cs||(Cs={}));var vn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(vn||(vn={}));function $d(e,t){return[t,e]}function BX(e,t){return e*t}function u0(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Du(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function WX(e,t){let[n,s]=Du(e,t);return n*s*4}function R2(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return ne().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Ce(e,t){let n=t();return ne().getBool("DEBUG")&&VX(e),n}function VX(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+J6(e,t))}var UX=596e-10,GX=65504;function Y6(e){return!!(ne().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||UX<Math.abs(e)&&Math.abs(e)<GX)}function J6(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Od(e,t){return jr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Q6(e,t){let n=jr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ce(e,()=>e.shaderSource(n,t)),Ce(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function e4(e,t){let n=jr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ce(e,()=>e.shaderSource(n,t)),Ce(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw jX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var HX=/ERROR: [0-9]+:([0-9]+):/g;function jX(e,t){let n=HX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function t4(e){return jr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function n4(e,t){if(Ce(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function c0(e,t){if(Ce(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function s4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ce(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function r4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ce(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function qX(){return ne().getNumber("WEBGL_VERSION")===2?1:4}function a4(e){return jr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function o4(e,t){let n=ne().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function i4(e){return jr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function D2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ce(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ce(e,()=>e.enableVertexAttribArray(i)),!0)}function l4(e,t,n){h4(e,n),Ce(e,()=>e.activeTexture(e.TEXTURE0+n)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function XX(e,t){h4(e,t),Ce(e,()=>e.activeTexture(e.TEXTURE0+t)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u4(e,t,n){return jr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function c4(e,t,n){return e.getUniformLocation(t,n)}function d4(e,t,n,s){Ce(e,()=>l4(e,t,s)),Ce(e,()=>e.uniform1i(n,s))}function KX(e){Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ce(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ce(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function d0(e,t,n){Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ce(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function _2(e,t){Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ce(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Pd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+p4(e,t))}function p4(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function jr(e,t,n){let s=Ce(e,()=>t());if(s==null)throw new Error(n);return s}function h4(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Si(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function p0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Si(e),...Ci(e)]),t}function f4(e,t=!1){let n=ne().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Si(e),a=2,o=2;return e.length&&([a,o]=Ci(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function h0(e){return e%2==0}function Md(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||h0(n)&&h0(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&h0(e[0])&&h0(t[0])}var f0,m0;function m4(e){if(f0==null){let t=Nr(e);f0=t.getParameter(t.MAX_TEXTURE_SIZE)}return f0}function ZX(){f0=null}function YX(){m0=null}function g4(e){if(m0==null){let t=Nr(e);m0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,m0)}function A4(e){if(e===0)return 0;let t,n=Nr(e);return Ts(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ts(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ts(e,t){return e.getExtension(t)!=null}function F2(e){try{if(Nr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function y4(e){if(e===0)return!1;let t=Nr(e);if(e===1){if(!Ts(t,"OES_texture_float"))return!1}else if(!Ts(t,"EXT_color_buffer_float"))return!1;return $2(t)}function x4(e){if(e===0)return!1;let t=Nr(e);if(e===1){if(!Ts(t,"OES_texture_float")||!Ts(t,"WEBGL_color_buffer_float"))return!1}else{if(Ts(t,"EXT_color_buffer_float"))return $2(t);let s="EXT_color_buffer_half_float";if(Ts(t,s)){let r=t.getExtension(s);return JX(t,r)}return!1}return $2(t)}function $2(e){let t=R2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function JX(e,t){let n=R2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function b4(e){return e!==2?!1:Nr(e).fenceSync!=null}function _u(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=ne();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>F2(2)?2:F2(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>m4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>g4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:A4(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Bc.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>y4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>x4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>b4($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Bc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function zn(){let e,t,n,s,r,a,o,i,l,c;return ne().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Ti(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function g0(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function QX(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function eK(e,t,n="index"){let s=e.map((a,o)=>o),r=QX(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function O2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function P2(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var v4=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:w4}=R;function tK(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=M2(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>nK(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=zn(),l=aK(i),c,u,d=lK(i);return t.isPacked?(c=sK(t.logicalShape,o,n.enableShapeUniforms),u=iK(i)):(c=rK(t.logicalShape,o,n.enableShapeUniforms),u=oK(i)),n.packedInputs&&(d+=pK),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function Fu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return IK(e,t);case 1:return CK(e,t);case 2:return NK(e,t);case 3:return RK(e,t);case 4:return _K(e,t);case 5:return FK(e);case 6:return $K(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function k4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return kK(e);case 1:return SK(e,t);case 2:return TK(e,t);case 3:return EK(e,t);default:return DK(e,t)}}function nK(e,t,n=!1,s){let r="";n?r+=k4(e,s):r+=Fu(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=OK(e,t):r+=PK(e,t)),r}function sK(e,t,n){switch(e.length){case 0:return I4();case 1:return hK(e,t,n);case 2:return vK(e,t,n);case 3:return mK(e,t,n);default:return AK(e,t,n)}}function rK(e,t,n){switch(e.length){case 0:return I4();case 1:return fK(e,t,n);case 2:return wK(e,t,n);case 3:return gK(e,t,n);case 4:return yK(e,t,n);case 5:return xK(e,t);case 6:return bK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function aK(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function oK(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function iK(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function lK(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${uK}
|
|
${cK}
|
|
${dK}
|
|
`}var uK=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,cK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,dK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,pK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function I4(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function hK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function fK(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function mK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function gK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Ti(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function AK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function yK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Ti(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function xK(e,t){let n=Ti(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function bK(e,t){let n=Ti(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function vK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function wK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ni(e){return`offset${e}`}function kK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=zn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function IK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Ni(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function SK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=zn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function CK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${$u(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Ni(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function TK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=zn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function NK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=Ou(e,l),h=["row","col"];return`
|
|
${Fu(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Pu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=Ni(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function EK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=Ou(e,p),m=["b","row","col"];return`
|
|
${k4(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Pu(m,h)});
|
|
}
|
|
`}let i=zn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function RK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),c=i;if(c.length<n.length){let m=Ou(e,c),g=["row","col","depth"];return`
|
|
${Fu(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Pu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=Ni(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function DK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=zn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function _K(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(n);if(l.length<n.length){let y=Ou(e,l),x=["row","col","depth","depth2"];return`
|
|
${Fu(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Pu(x,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=Ni(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function FK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let m=Ou(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Fu(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Pu(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${$u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ni(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function $K(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=Ou(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Fu(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Pu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${$u(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ni(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function $u(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function OK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=w4(e.shapeInfo.logicalShape,t.logicalShape),l=yt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(y=>`coords.${d[y+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function PK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=yt(l),u=w4(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function M2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function Ou(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Pu(e,t){return t.map(n=>e[n]).join(", ")}function MK(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=tK(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);ne().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function S4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function zK(e,t,n,s,r){t.program.enableShapeUniforms||(S4(t.inShapeInfos,n),S4([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ne().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=M2(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function LK(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=M2(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let v=w.computeStrides(u);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=R.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${c?d:""}_${u.length}_${A}_${y}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${ne().getNumber("WEBGL_VERSION")}`,a}function Ns(e){return ne().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var BK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Fd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},WK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Fd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},VK=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Cs.DOWNLOAD;let t=zn();this.outputShape=e,this.userCode=`
|
|
${v4}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},UK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Cs.DOWNLOAD;let t=zn();this.outputShape=e,this.userCode=`
|
|
${v4}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},GK=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?P2():O2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},HK=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?P2():O2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},C4={};ze(C4,{bindVertexProgramAttributeStreams:()=>O4,createBufferFromOutputTexture:()=>z4,createFloat16MatrixTexture:()=>D4,createFloat16PackedMatrixTexture:()=>$4,createFloat32MatrixTexture:()=>R4,createIndexBuffer:()=>E4,createPackedMatrixTexture:()=>F4,createUnsignedBytesMatrixTexture:()=>_4,createVertexBuffer:()=>N4,createVertexShader:()=>T4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>B4,downloadFloat32MatrixFromBuffer:()=>L4,downloadMatrixFromPackedOutputTexture:()=>V4,downloadPackedMatrixFromBuffer:()=>W4,getInternalFormatForFloat16MatrixTexture:()=>L2,getInternalFormatForFloat16PackedMatrixTexture:()=>V2,getInternalFormatForFloat32MatrixTexture:()=>z2,getInternalFormatForPackedMatrixTexture:()=>W2,getInternalFormatForUnsignedBytesMatrixTexture:()=>B2,uploadDenseMatrixToTexture:()=>P4,uploadPixelDataToTexture:()=>M4});function T4(e){let t=zn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Q6(e,n)}function N4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return s4(e,t)}function E4(e){let t=new Uint16Array([0,1,2,2,1,3]);return r4(e,t)}function zd(e,t,n,s,r,a){o4(t,n);let o=a4(e),i=e.TEXTURE_2D;return Ce(e,()=>e.bindTexture(i,o)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ce(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ce(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function z2(e){return e.internalFormatFloat}function R4(e,t,n,s){let[r,a]=$d(t,n);return zd(e,r,a,z2(s),s.textureFormatFloat,e.FLOAT)}function L2(e){return e.internalFormatHalfFloat}function D4(e,t,n,s){let[r,a]=$d(t,n);return zd(e,r,a,L2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function B2(e){return e.downloadTextureFormat}function _4(e,t,n,s){let[r,a]=$d(t,n);return zd(e,r,a,B2(s),e.RGBA,e.UNSIGNED_BYTE)}function W2(e){return e.internalFormatPackedFloat}function F4(e,t,n,s){let[r,a]=Du(t,n);return zd(e,r,a,W2(s),e.RGBA,e.FLOAT)}function V2(e){return e.internalFormatPackedHalfFloat}function $4(e,t,n,s){let[r,a]=Du(t,n);return zd(e,r,a,V2(s),e.RGBA,s.textureTypeHalfFloat)}function O4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),D2(e,t,"clipSpacePos",n,3,a,s)&&D2(e,t,"uv",n,2,a,r)}function P4(e,t,n,s,r,a){Ce(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M4(e,t,n){Ce(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function z4(e,t,n,s){let r=e.createBuffer();Ce(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ce(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ce(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ce(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function L4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function B4(e,t,n,s){let[r,a]=$d(t,n),o=4,i=new Uint8Array(BX(t*n,o));return Ce(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function W4(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(WX(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function V4(e,t,n){let s=new Float32Array(t*n*4);return Ce(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var A0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ne().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,l0(t,e)):this.gl=Nr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(ne().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Od(this.gl,r),Ts(this.gl,a))this.textureHalfFloatExtension=Od(this.gl,a);else if(ne().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ts(this.gl,s))this.colorBufferHalfFloatExtension=Od(this.gl,s);else if(ne().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ts(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ts(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=N4(this.gl),this.indexBuffer=E4(this.gl),this.framebuffer=i4(this.gl),this.textureConfig=R2(this.gl,this.textureHalfFloatExtension)}get debug(){return ne().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ce(e,()=>e.finish()),Ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ce(e,()=>e.deleteFramebuffer(this.framebuffer)),Ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ce(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),R4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),D4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),_4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),M4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),P4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),F4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(_2(this.gl,this.framebuffer),this.outputTexture=null),Ce(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>B4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return W4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return L4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=z4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ne().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>V4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=e4(t,e);this.vertexShader==null&&(this.vertexShader=T4(t));let s=t4(t);return Ce(t,()=>t.attachShader(s,this.vertexShader)),Ce(t,()=>t.attachShader(s,n)),n4(t,s),this.debug&&c0(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=O4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ce(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&c0(this.gl,this.program),Ce(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?u4(this.gl,e,t):c4(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ce(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),d4(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Du(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&c0(this.gl,this.program),Pd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ce(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ce(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Od(this.gl,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=jK(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),d0(this.gl,e,this.framebuffer),this.debug&&Pd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(d0(this.gl,this.outputTexture,this.framebuffer),this.debug&&Pd(this.gl)):_2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;d0(s,e,this.framebuffer),this.debug&&Pd(s),this.outputTexture=e,Ce(s,()=>s.viewport(0,0,t,n)),Ce(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ce(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function jK(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:qK,bincountImpl:U4,bincountReduceImpl:XK,ceilImpl:KK,concatImpl:ZK,equalImpl:YK,expImpl:JK,expm1Impl:QK,floorImpl:eZ,gatherNdImpl:tZ,gatherV2Impl:nZ,greaterImpl:sZ,greaterEqualImpl:rZ,lessImpl:aZ,lessEqualImpl:oZ,linSpaceImpl:iZ,logImpl:lZ,maxImpl:uZ,maximumImpl:cZ,minimumImpl:dZ,multiplyImpl:pZ,negImpl:hZ,notEqualImpl:fZ,prodImpl:mZ,rangeImpl:gZ,rsqrtImpl:AZ,sigmoidImpl:yZ,simpleAbsImpl:G4,sliceImpl:xZ,sparseFillEmptyRowsImpl:bZ,sparseReshapeImpl:vZ,sparseSegmentReductionImpl:H4,sqrtImpl:wZ,stridedSliceImpl:kZ,stringNGramsImpl:IZ,stringSplitImpl:SZ,stringToHashBucketFastImpl:CZ,subImpl:TZ,tileImpl:NZ,topKImpl:EZ,transposeImpl:U2,uniqueImpl:RZ}=j7;function j4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Ln(e,t){return t===1?[e]:j4(e,t)}function DZ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var _Z=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Ln("rc",t),s=yt(t),r=$Z(t,e,n),a=OZ(t,e[e.length-1],e[e.length-2],n),o=PZ(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function FZ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function $Z(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function OZ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function PZ(e,t){let n=e.length,s=FZ(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var q4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${MZ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?P2():O2(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function MZ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?eK(["r","c","d"],"inputShape"):Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var zZ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=K4(t,n),r=Z4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=X4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===vn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===vn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===vn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===vn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===vn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=K4(n,s),a=Z4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=X4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=ne().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function LZ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function X4(e,t,n,s,r){let a=BZ(t,s),o;if(r){let[l,c]=Du(e[0],e[1]);o=l*c}else{let[l,c]=$d(e[0],e[1]);o=l*c}let i=LZ(n,a);return o*i}function BZ(e,t){switch(e){case vn.PACKED_2X2_FLOAT32:return W2(t);case vn.PACKED_2X2_FLOAT16:return V2(t);case vn.UNPACKED_FLOAT32:return z2(t);case vn.UNPACKED_FLOAT16:return L2(t);case vn.PACKED_4X1_UNSIGNED_BYTE:return B2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function WZ(e){return ne().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?vn.PACKED_2X2_FLOAT32:vn.UNPACKED_FLOAT32:e?vn.PACKED_2X2_FLOAT16:vn.UNPACKED_FLOAT16}function K4(e,t){if(e===Cs.UPLOAD)return vn.PACKED_2X2_FLOAT32;if(e===Cs.RENDER||e==null)return WZ(t);if(e===Cs.DOWNLOAD||e===Cs.PIXELS)return vn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Z4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Da=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},lr="if (isnan(x)) return x;",VZ="return x;",Y4="return abs(x);",UZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",GZ=lr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,HZ=lr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,y0="return x;",jZ="return 1.0 / (1.0 + exp(-1.0 * x));",qZ="return x;",XZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,KZ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ZZ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,YZ="return 1.0 / (1.0 + exp(-1.0 * x));",Mu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},JZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Ln("rc",t),s=yt(t),r=DZ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},QZ=vr.whereImpl,eY=1e-7,tY=1e-4,x0={};function nY(e){return e in x0||(x0[e]={}),x0[e]}var sY=ne().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),rY=600;function aY(){return ne().global.screen==null?1024:ne().global.screen.height*ne().global.screen.width*window.devicePixelRatio*rY/1024/1024}var zu=class extends fc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ne().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Nr(ne().getNumber("WEBGL_VERSION"));this.binaryCache=nY(ne().getNumber("WEBGL_VERSION")),this.gpgpu=new A0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new zZ(this.gpgpu),this.numMBBeforeWarning=aY(),this.texData=new Op(this,as())}nextDataId(){return zu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ne().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ne().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Cs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(ne().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Cs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Mu(o,y0):d=new Da(o,y0);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=R.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Mu(s,y0):h=new Da(s,y0);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ne().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ne().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&ne().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...u0(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=R.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Ce(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&as().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Y6(n))throw ne().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(ne().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...u0(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=ne().getBool("WEBGL_PACK")&&s===!0,o=a?p0(t):t,i=a?new UK(o):new VK(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(ne().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=sY){return ne().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return QZ(e.shape,t)}packedUnaryOp(e,t,n){let s=new Mu(e.shape,t),r=this.compileAndRun(s,[e],n);return as().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=G4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(ne().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Y4,e.dtype);let t=new Da(e.shape,Y4),n=this.compileAndRun(t,[e]);return as().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return as().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new JZ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new _Z(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Si(e.shape),...Ci(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Si(t),...Ci(t)],a=new q4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=p0(s),o,i=u0(a);n?o=new WK(a):o=new BK(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Fd.DENSE){let m=u0(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=ne().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Md(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=LK(e,l,c),d=this.getAndSaveBinary(u,()=>MK(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),zK(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=ne().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!ne().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ne().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!ne().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ne().getBool("DEBUG");ne().set("DEBUG",!1);let t=this.abs(Re(1e-8)).dataSync()[0];if(ne().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?eY:tY}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=f4(n,i),t.texShape=u),r!=null){let d=p0(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=Du(u[0],u[1]),p=new HK(d,m)):p=new GK(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Cs.PIXELS:this.texData.get(g.dataId).usage=Cs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=oY(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};zu.nextDataId=0;function oY(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var iY="3.10.0";function J4(){ne().set("WEBGL_FORCE_F16_TEXTURES",!0)}Bc.isBrowser()&&ru("webgl",()=>new zu,2);var lY={forceHalfFloat:J4},Q4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Lu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},b0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Ld=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Ns(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${yt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Ln("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ms(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var uY={kernelName:Ao,backendName:"webgl",kernelFunc:ms};function _a(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ms({inputs:{x:s},backend:n}),l=ms({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var cY={kernelName:Gp,backendName:"webgl",kernelFunc:_a},ek="return (a < 0.) ? b * a : a;",tk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function dY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ld(tk,r.shape,o.shape):new Lu(ek,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var pY={kernelName:yo,backendName:"webgl",kernelFunc:dY},nk="return (a < 0.) ? b * a : a;",sk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function hY(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ld(sk,s.shape,r.shape):new Lu(nk,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var fY={kernelName:Do,backendName:"webgl",kernelFunc:hY},rk="if (isnan(x)) return x;",mY=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,gY=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function nt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=ne().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Mu(o.shape,t):u=new Da(o.shape,e),i.runWebGLProgram(u,[o],l)}}function wn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:v.dataId,dtype:v.dtype,shape:c.shape},N=new Lu(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,C],Ps(b.dtype,v.dtype))}),y=_a({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),y}let d=a||Ps(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?R.fromUint8ToStringArray(f):f,A=l.dtype==="string"?R.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(x,d),v=u.texData.get(b.dataId);return v.values=y,b}let p=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Ld(t,l.shape,c.shape,n):h=new Lu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function v0(e,t=!1){if(e==="linear")return t?qZ:VZ;if(e==="relu")return t?KZ:GZ;if(e==="elu")return t?XZ:UZ;if(e==="relu6")return t?ZZ:HZ;if(e==="prelu")return t?sk:nk;if(e==="leakyrelu")return t?tk:ek;if(e==="sigmoid")return t?YZ:jZ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var ak=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Ns(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},ok={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},ik=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},lk="return a * b;";function G2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=R.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new ik(ok.REAL,s.shape,r.shape),u=new ik(ok.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=_a({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=pZ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Ld(lk,s.shape,r.shape):o=new Lu(lk,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var AY={kernelName:To,backendName:"webgl",kernelFunc:G2};function yY(e,t,n){let s=[Si(e.shape),...Ci(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Si(t),...Ci(t)],o=new q4(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function we(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),c=w.sizeFromShape(l);w.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!Md(r.shape,l)&&!(u.texture!==null&&Md(u.shape,l))?yY(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var xY={kernelName:Ol,backendName:"webgl",kernelFunc:we},uk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},bY=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function vY(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Ei(e,t,n,s){let r=vY(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new uk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new uk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new bY({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var wY=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=kY(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function kY(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var IY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=yt(this.rank),r=j4("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function w0(e,t,n){let s=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IY(e.shape,t):new wY(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function SY(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=R.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=w0(e,l,s),i=R.getInnerMostAxes(i.length,a)),R.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=R.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=R.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,A=we({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),y=Eh(e.dtype),x=Ei(A,y,"sum",s),b=we({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),c&&s.disposeIntermediateTensorInfo(u),b}function k0(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return SY(r,a,o,n)}var CY={kernelName:Wo,backendName:"webgl",kernelFunc:k0};function Bn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=U2(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=w0(r,a,o);return c}var TY={kernelName:qo,backendName:"webgl",kernelFunc:Bn},ck=1e3;function I0({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],C=s?[y,f,p]:[y,p,f],N=we({inputs:{x:e},backend:r,attrs:{shape:k}}),D=we({inputs:{x:t},backend:r,attrs:{shape:C}}),P=[N,D],E=Math.max(A,y),F=n?N.shape[1]:N.shape[2],T=a!=null,M=o!=null,G=l==="leakyrelu",H=l!=null?v0(l,!0):null,z=T||M||G||H!=null,X;if((h===1||f===1)&&F>ck&&z===!1){let Z=N,te=D;n&&(Z=Bn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),P.push(Z)),s&&(te=Bn({inputs:{x:D},backend:r,attrs:{perm:[0,2,1]}}),P.push(te));let se=f!==1,J=f===1,ee=Z;se&&(ee=we({inputs:{x:Z},backend:r,attrs:{shape:[E,F,1]}}),P.push(ee));let ce=f===1?2:1,pe=te;J&&(pe=we({inputs:{x:te},backend:r,attrs:{shape:[E,1,F]}}),P.push(pe));let ve=G2({inputs:{a:ee,b:pe},backend:r});X=k0({inputs:{x:ve},backend:r,attrs:{axis:ce,keepDims:!0}}),P.push(ve)}else{let Z=Ps(e.dtype,t.dtype),te=new ak(k,C,[E,h,f],n,s,T,H,M,G),se=[N,D];if(a!=null&&se.push(a),M&&se.push(o),G){let J=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));se.push(J),P.push(J)}X=r.runWebGLProgram(te,se,Z)}let Q=we({inputs:{x:X},backend:r,attrs:{shape:v}});P.push(X);for(let Z of P)r.disposeIntermediateTensorInfo(Z);return Q}function NY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return I0({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var EY={kernelName:Xo,backendName:"webgl",kernelFunc:NY},dk="return abs(x);";function RY(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=G4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return ne().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Mu(s.shape,dk):r=new Da(s.shape,dk),n.runWebGLProgram(r,[s],s.dtype)}var DY={kernelName:Zi,backendName:"webgl",kernelFunc:RY},_Y=lr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,FY=nt({opSnippet:_Y}),$Y={kernelName:Yi,backendName:"webgl",kernelFunc:FY},OY=lr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,PY=nt({opSnippet:OY}),MY={kernelName:Ji,backendName:"webgl",kernelFunc:PY},pk="return a + b;",zY=wn({opSnippet:pk,packedOpSnippet:pk,supportsComplex:!0,cpuKernelImpl:qK}),LY={kernelName:ia,backendName:"webgl",kernelFunc:zY},BY=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},WY=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function S0(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ms({inputs:{x:s[0]},backend:n});if(s.length>ne().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=S0({inputs:s.slice(0,l),backend:n}),u=S0({inputs:s.slice(l),backend:n});return S0({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Ps(l,c)),a=s.map(l=>l.shape),i=ne().getBool("WEBGL_PACK")?new WY(s[0].shape,a):new BY(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var VY={kernelName:Ya,backendName:"webgl",kernelFunc:S0};function UY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,i)),R.assertAxesAreInnerMostDims("all",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ei(m,m.dtype,"all",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var GY={kernelName:Qi,backendName:"webgl",kernelFunc:UY};function HY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,i)),R.assertAxesAreInnerMostDims("any",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ei(m,m.dtype,"any",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var jY={kernelName:el,backendName:"webgl",kernelFunc:HY},qY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},XY=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=yt(i),c=Ln("coords",i),u,d;if(a===1){d=i+1;let C=yt(d);u=`
|
|
${C} sourceLocR = ${C}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${C} sourceLocG = ${C}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${C} sourceLocA = ${C}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${C} sourceLocB = ${C}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(C=>"int "+C),m=Ln("sourceLocR",d-1).concat("inIdx.r"),g=Ln("sourceLocG",d-1).concat("inIdx.g"),A=Ln("sourceLocB",d-1).concat("inIdx.b"),y=Ln("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function hk(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=R.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new qY(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=hk(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function fk(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=R.computeOptimalWindowSize(a),i=new XY(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=fk(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function mk(e,t,n,s){let r=[n];if(R.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!ne().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=R.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(u),p=we({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=hk(e,p,s);a.push(h);let f=we({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return fk(e,t,s)}function KY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Bn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=mk(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var ZY={kernelName:Ja,backendName:"webgl",kernelFunc:KY};function YY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Bn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=mk(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var JY={kernelName:Ac,backendName:"webgl",kernelFunc:YY},QY=lr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,eJ=nt({opSnippet:QY}),tJ={kernelName:tl,backendName:"webgl",kernelFunc:eJ},nJ=lr+"return log(x + sqrt(x * x + 1.0));",sJ=nt({opSnippet:nJ}),rJ={kernelName:nl,backendName:"webgl",kernelFunc:sJ},aJ=lr+`
|
|
return atan(x);
|
|
`,oJ=nt({opSnippet:aJ}),iJ={kernelName:sl,backendName:"webgl",kernelFunc:oJ},lJ=mY+`
|
|
return atan(a, b);
|
|
`,uJ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+gY+`
|
|
return result;
|
|
`,cJ=wn({opSnippet:lJ,packedOpSnippet:uJ}),dJ={kernelName:al,backendName:"webgl",kernelFunc:cJ},pJ=lr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,hJ=nt({opSnippet:pJ}),fJ={kernelName:rl,backendName:"webgl",kernelFunc:hJ},Bd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},H2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,C=a%4,N=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${N}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;_u(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Bd(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var gJ={kernelName:Qa,backendName:"webgl",kernelFunc:mJ};function AJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=R.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new H2(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var yJ={kernelName:yc,backendName:"webgl",kernelFunc:AJ},xJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function vJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=R.computePool3DInfo(o.shape,i,l,d,c,u),h=new bJ(p);return n.runWebGLProgram(h,[r],o.dtype)}var wJ={kernelName:Wp,backendName:"webgl",kernelFunc:vJ};function kJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;_u([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=R.computePool2DInfo(o.shape,i,l,1,c),d=new xJ(u);return n.runWebGLProgram(d,[r],o.dtype)}var IJ={kernelName:Bp,backendName:"webgl",kernelFunc:kJ};function SJ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return I0({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var CJ={kernelName:eo,backendName:"webgl",kernelFunc:SJ},TJ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},NJ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},EJ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=ne().getBool("WEBGL_PACK_NORMALIZATION")?new NJ(s.shape,r.shape,a.shape,u,d,l):new TJ(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},RJ={kernelName:mo,backendName:"webgl",kernelFunc:EJ},DJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=_J(this.rank),s,r=e.map((a,o)=>`sourceLoc.${j2[o]} = start[${o}] + coords.${j2[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},j2=["x","y","z","w","u","v"];function _J(e){if(e===1)return"sourceLoc";if(e<=6)return j2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var FJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),n=Ln("coords",this.rank),s=Ln("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function $J(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Fn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function Bu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Fn.parseSliceParams(r,a,o);if(Fn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=xZ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Fn.isSliceContinous(r.shape,i,l);if(c||!u){let d=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new FJ(l):new DJ(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),$J(r,i,l,n)}var OJ={kernelName:Ll,backendName:"webgl",kernelFunc:Bu},PJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=[],f=we({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Bn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=we({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Bu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},MJ={kernelName:ol,backendName:"webgl",kernelFunc:PJ};function zJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=U4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var LJ={kernelName:Vp,backendName:"webgl",kernelFunc:zJ};function BJ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=R.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var WJ={kernelName:Up,backendName:"webgl",kernelFunc:BJ},VJ="return float(a != b);",gk=wn({opSnippet:VJ,cpuKernelImpl:fZ,dtype:"bool"}),UJ={kernelName:Tl,backendName:"webgl",kernelFunc:gk};function Wd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.real},backend:n})}var GJ={kernelName:dh,backendName:"webgl",kernelFunc:Wd},HJ="return float(int(x));";function jJ(e,t){let n=new Da(e.shape,HJ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function q2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ms({inputs:{x:r},backend:n});let o=Ht(r.shape),i=q2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=_a({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Wd({inputs:{input:r},backend:n}),i=q2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=ms({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return jJ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=gk({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var qJ={kernelName:to,backendName:"webgl",kernelFunc:q2},Ak="return ceil(x);",XJ=nt({opSnippet:Ak,packedOpSnippet:Ak,cpuKernelImpl:KK}),KJ={kernelName:no,backendName:"webgl",kernelFunc:XJ},ZJ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},YJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function JJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;ne().getBool("WEBGL_PACK_CLIP")?i=new YJ(r.shape):i=new ZJ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var QJ={kernelName:la,backendName:"webgl",kernelFunc:JJ},eQ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function yk(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function tQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new eQ(s.shape),o=[yk(s,r.complexTensorInfos.real),yk(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var nQ={kernelName:xc,backendName:"webgl",kernelFunc:tQ},sQ=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},rQ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=yt(s),a=Ln("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${C0(o,l,m)}),
|
|
vec2(${C0(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${C0(o,l,h)}),
|
|
vec2(${C0(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function C0(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function T0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.imag},backend:n})}var aQ={kernelName:rh,backendName:"webgl",kernelFunc:T0};function Wu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Wd({inputs:{input:m},backend:n})),d=e.map(m=>T0({inputs:{input:m},backend:n})),p=Wu(u,t,n),h=Wu(d,t,n),f=_a({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return we({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=R.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=ZK(d,p,s,h),m=R.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>ne().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Wu(e.slice(0,u),t,n),p=Wu(e.slice(u),t,n),h=Wu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new rQ(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=oQ(e,t,n),i=new sQ(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=we({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function oQ(e,t,n){let s=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>we({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function xk(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=R.computeOutShape(t.map(c=>c.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>w.sizeFromShape(c.shape)>0);if(i.length===1)return ms({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return R.assertParamsConsistent(l,a),Wu(i,a,n)}var iQ={kernelName:il,backendName:"webgl",kernelFunc:xk},bk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},lQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},uQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let{dataFormat:n}=t,s=zn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function vk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>ck)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&w.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(Md(c.shape,v.shape),()=>`packed reshape ${c.shape} to ${v.shape} isn't free`);let C=we({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(C);let N=I0({a:v,b:C,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),D=s.texData.get(N.dataId);w.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,D.shape=n.outShape,g=ms({inputs:{x:N},backend:s}),g.shape=n.outShape,A.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=we({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=we({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=I0({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=we({inputs:{x:C},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(C)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function wk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],y=!0,x=!1,b=[],v=we({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=we({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let C=new uQ(A,n),N=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],D=s.runWebGLProgram(C,[v],"float32",N),P=we({inputs:{x:D},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(D),b.push(P);let E=r!=null,F=a!=null,T=i==="leakyrelu",M=i?v0(i,!0):null,G=new ak(P.shape,k.shape,[1,g,n.outChannels],y,x,E,M,F,T),H=[P,k];if(r&&H.push(r),F&&H.push(a),T){let Z=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));H.push(Z),b.push(Z)}let z=s.runWebGLProgram(G,H,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Q=we({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let Z of b)s.disposeIntermediateTensorInfo(Z);return Q}function cQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=vk({x:r,filter:a,convInfo:p,backend:n});else if(ne().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=wk({x:r,filter:a,convInfo:p,backend:n});else{let m=new bk(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=we({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var dQ={kernelName:so,backendName:"webgl",kernelFunc:cQ},pQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},hQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function gQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new pQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var AQ={kernelName:Hp,backendName:"webgl",kernelFunc:gQ};function yQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=R.convertConv2DDataFormat(c),p=R.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new hQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var xQ={kernelName:ro,backendName:"webgl",kernelFunc:yQ};function bQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=R.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new lQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var vQ={kernelName:bc,backendName:"webgl",kernelFunc:bQ};function wQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=R.computeConv3DInfo(r.shape,l,o,1,i),u=new fQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var kQ={kernelName:jp,backendName:"webgl",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=R.computeConv3DInfo(l,a.shape,i,1,o),u=new mQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var SQ={kernelName:qp,backendName:"webgl",kernelFunc:IQ},CQ=rk+`
|
|
return cos(x);
|
|
`,TQ=nt({opSnippet:CQ}),NQ={kernelName:ao,backendName:"webgl",kernelFunc:TQ},EQ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,RQ=nt({opSnippet:EQ}),DQ={kernelName:oo,backendName:"webgl",kernelFunc:RQ},_Q=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},FQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new _Q(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},$Q={kernelName:ll,backendName:"webgl",kernelFunc:FQ},kk=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${Ik(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${yt(s)} coords = getOutputCoords();
|
|
int end = ${Sk(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${Sk(s,"coords")} = idx;
|
|
val += getX(${Ik(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Ik(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Sk(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=R.getAxesPermutation([a],l),u=r;c!=null&&(u=Bn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=R.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ms({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new kk(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new kk(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=R.getUndoAxesPermutation(c),m=Bn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var PQ={kernelName:io,backendName:"webgl",kernelFunc:OQ};function MQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=U4(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=XK(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var zQ={kernelName:Xp,backendName:"webgl",kernelFunc:MQ},LQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function BQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new LQ(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var WQ={kernelName:ul,backendName:"webgl",kernelFunc:BQ},Ck=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Ns(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},Tk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Ns(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let y=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):y===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(r, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(r, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function VQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=R.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;ne().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new Tk(d):p=new Ck(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var UQ={kernelName:lo,backendName:"webgl",kernelFunc:VQ},GQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},HQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function jQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=R.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new GQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var qQ={kernelName:Kp,backendName:"webgl",kernelFunc:jQ};function XQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=R.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new HQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var KQ={kernelName:Zp,backendName:"webgl",kernelFunc:XQ},ZQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function YQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=we({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new ZQ(a),l=n.runWebGLProgram(i,[o],o.dtype),c=we({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var JQ={kernelName:Yp,backendName:"webgl",kernelFunc:YQ},QQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function eee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=R.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new QQ(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=we({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var tee={kernelName:vc,backendName:"webgl",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(r,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=R.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=a[g]:(x=Bn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=we({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=G2({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=k0({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var see={kernelName:eh,backendName:"webgl",kernelFunc:nee},ree="return (x >= 0.0) ? x : (exp(x) - 1.0);",aee=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,oee=nt({opSnippet:ree,packedOpSnippet:aee}),iee={kernelName:co,backendName:"webgl",kernelFunc:oee},lee="return (b >= 1.0) ? a : a * (b + 1.0);",uee=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,cee=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=ne().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ld(uee,s.shape,r.shape):new Lu(lee,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},dee={kernelName:th,backendName:"webgl",kernelFunc:cee},pee=`
|
|
return vec4(equal(a, b));
|
|
`,hee="return float(a == b);",fee=wn({opSnippet:hee,packedOpSnippet:pee,dtype:"bool",cpuKernelImpl:YK}),mee={kernelName:dl,backendName:"webgl",kernelFunc:fee},gee=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Aee=nt({opSnippet:gee}),yee={kernelName:cl,backendName:"webgl",kernelFunc:Aee},Nk="return exp(x);",Ek=nt({opSnippet:Nk,packedOpSnippet:Nk,cpuKernelImpl:JK,dtype:"float32"}),xee={kernelName:po,backendName:"webgl",kernelFunc:Ek};function X2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),we({inputs:{x:a},backend:s,attrs:{shape:i}})}var bee={kernelName:pl,backendName:"webgl",kernelFunc:X2},Rk="return exp(x) - 1.0;",vee=nt({opSnippet:Rk,packedOpSnippet:Rk,cpuKernelImpl:QK}),wee={kernelName:hl,backendName:"webgl",kernelFunc:vee},Dk=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function _k(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=we({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new Dk("real",l,t),u=new Dk("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=_a({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=we({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function kee(e){let{inputs:t,backend:n}=e,{input:s}=t;return _k(s,!1,n)}var Iee={kernelName:nh,backendName:"webgl",kernelFunc:kee},See=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Vd(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new See(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Cee={kernelName:wc,backendName:"webgl",kernelFunc:Vd},Tee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Nee={kernelName:fl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Tee(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Fk="return floor(x);",Eee=nt({opSnippet:Fk,packedOpSnippet:Fk,cpuKernelImpl:eZ}),Ree={kernelName:ho,backendName:"webgl",kernelFunc:Eee},Dee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,_ee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,Fee=wn({opSnippet:Dee,packedOpSnippet:_ee,dtype:"int32"}),$ee={kernelName:fo,backendName:"webgl",kernelFunc:Fee},Oee=class{constructor(e){this.variableNames=["A"];let t=zn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Pee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=zn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Mee={kernelName:kh,backendName:"webgl",kernelFunc:zee},Vu;function zee(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(Vu==null&&(Vu=document.createElement("canvas").getContext("2d")),Vu.canvas.width=l,Vu.canvas.height=c,Vu.drawImage(r,0,0,l,c),r=Vu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Cs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=ne().getBool("WEBGL_PACK")?new Pee(d):new Oee(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Lee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=R.convertConv2DDataFormat(u),g=R.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=vk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(ne().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=wk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=h==="leakyrelu",C=h?v0(h,!1):null,N=new bk(g,b,C,v,k),D=[r,a];if(o&&D.push(o),i&&D.push(i),k){let P=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));D.push(P),y.push(P)}A=n.runWebGLProgram(N,D,"float32")}let x=we({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Bee={kernelName:Ko,backendName:"webgl",kernelFunc:Lee};function Wee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=R.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=ne().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?v0(p,A):null,x=[r,a],b=o!=null,v=i!=null,k=p==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(P),f.push(P)}let C;A?C=new Tk(g,b,y,v,k):C=new Ck(g,b,y,v,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=n.runWebGLProgram(C,x,"float32",N);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),D}var Vee={kernelName:Zo,backendName:"webgl",kernelFunc:Wee},Uee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=yt(t.length),r=yt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Gee(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,c,u,d]=R.prepareAndValidate(s,r),p=we({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=we({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=tZ(A,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new Uee(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=we({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Hee={kernelName:gl,backendName:"webgl",kernelFunc:Gee},jee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=yt(this.rank),s=qee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function qee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function $k(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=R.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=w.sizeFromShape(a.shape),h=[],f=we({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=we({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),v=n.bufferSync(f),k=nZ(v,b,g);return h.forEach(C=>n.disposeIntermediateTensorInfo(C)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let A=new jee(f.shape,g),y=n.runWebGLProgram(A,[f,m],f.dtype);h.push(y);let x=we({inputs:{x:y},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Xee={kernelName:ml,backendName:"webgl",kernelFunc:$k},Kee="return float(a > b);",Zee=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Yee=wn({opSnippet:Kee,packedOpSnippet:Zee,cpuKernelImpl:sZ,dtype:"bool"}),Jee={kernelName:Al,backendName:"webgl",kernelFunc:Yee},Qee="return float(a >= b);",ete=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,tte=wn({opSnippet:Qee,packedOpSnippet:ete,dtype:"bool",cpuKernelImpl:rZ}),nte={kernelName:go,backendName:"webgl",kernelFunc:tte};function ste(e){let{inputs:t,backend:n}=e,{input:s}=t;return _k(s,!0,n)}var rte={kernelName:sh,backendName:"webgl",kernelFunc:ste},ate="return float(!isnan(x) && !isinf(x));",ote=nt({opSnippet:ate,dtype:"bool"}),ite={kernelName:yl,backendName:"webgl",kernelFunc:ote},lte="return float(isinf(x));",ute=nt({opSnippet:lte,dtype:"bool"}),cte={kernelName:xl,backendName:"webgl",kernelFunc:ute},dte="return float(isnan(x));",pte=nt({opSnippet:dte,dtype:"bool"}),hte={kernelName:bl,backendName:"webgl",kernelFunc:pte},fte="return float(a < b);",mte=`
|
|
return vec4(lessThan(a, b));
|
|
`,gte=wn({opSnippet:fte,packedOpSnippet:mte,cpuKernelImpl:aZ,dtype:"bool"}),Ate={kernelName:vl,backendName:"webgl",kernelFunc:gte},yte="return float(a <= b);",xte=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,bte=wn({opSnippet:yte,packedOpSnippet:xte,cpuKernelImpl:oZ,dtype:"bool"}),vte={kernelName:wl,backendName:"webgl",kernelFunc:bte};function wte(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=iZ(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var kte={kernelName:ah,backendName:"webgl",kernelFunc:wte},Ite=`if (x < 0.0) return NAN;
|
|
return log(x);`,Ste=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,Cte=nt({opSnippet:Ite,packedOpSnippet:Ste,cpuKernelImpl:lZ}),Tte={kernelName:xo,backendName:"webgl",kernelFunc:Cte},Nte="return log(1.0 + x);",Ete=nt({opSnippet:Nte}),Rte={kernelName:kl,backendName:"webgl",kernelFunc:Ete},Dte="return float(a >= 1.0 && b >= 1.0);",_te=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Fte=wn({opSnippet:Dte,packedOpSnippet:_te,dtype:"bool"}),$te={kernelName:Il,backendName:"webgl",kernelFunc:Fte},Ote="return float(!(x >= 1.0));",Pte=nt({opSnippet:Ote}),Mte={kernelName:kc,backendName:"webgl",kernelFunc:Pte},zte="return float(a >= 1.0 || b >= 1.0);",Lte=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Bte=wn({opSnippet:zte,packedOpSnippet:Lte,dtype:"bool"}),Wte={kernelName:Ic,backendName:"webgl",kernelFunc:Bte},Vte=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Ute=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Gte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=ne().getBool("WEBGL_PACK_NORMALIZATION")?new Ute(r.shape,a,o,i,l):new Vte(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Hte={kernelName:Sc,backendName:"webgl",kernelFunc:Gte},jte=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},qte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new jte(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Xte={kernelName:oh,backendName:"webgl",kernelFunc:qte};function Kte(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=we({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ei(i,e.dtype,"max",s),c=we({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function Ok(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let C=0;C<b.length;C++)b[C]=r.shape[u[C]];let v=U2(x,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=w0(r,u,n);c=R.getInnerMostAxes(c.length,i)}R.assertAxesAreInnerMostDims("max",c,i);let[f,m]=R.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=R.expandShapeToKeepDim(f,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=uZ(x,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=Kte(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Zte={kernelName:bo,backendName:"webgl",kernelFunc:Ok},Yte=Q4+`
|
|
return max(a, b);
|
|
`,Jte=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+b0+`
|
|
return result;
|
|
`,Qte=wn({opSnippet:Yte,packedOpSnippet:Jte,cpuKernelImpl:cZ}),ene={kernelName:vo,backendName:"webgl",kernelFunc:Qte};function tne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;_u(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Bd(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var nne={kernelName:wo,backendName:"webgl",kernelFunc:tne};function sne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=R.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new H2(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var rne={kernelName:Cc,backendName:"webgl",kernelFunc:sne},ane=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},one=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function ine(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=R.computePool3DInfo(o.shape,i,l,d,c,u),h=new H2(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new one(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var lne={kernelName:lh,backendName:"webgl",kernelFunc:ine};function une(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;_u([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=R.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new Bd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new ane(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var cne={kernelName:ih,backendName:"webgl",kernelFunc:une};function dne(e,t,n,s){let r=new Bd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Bd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var pne={kernelName:uh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];w.assert(R.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=R.computePool2DInfo(s.shape,r,a,c,o),[d,p]=dne(s,i,u,l);return[d,p]}};function hne(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=we({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ei(i,"float32","mean",s),c=we({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var fne={kernelName:ko,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),c=l,u=R.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let N=0;N<v.length;N++)v[N]=s.shape[u[N]];let k=U2(b,s.shape,s.dtype,u,v);f=o.makeTensorInfo(v,s.dtype);let C=o.texData.get(f.dataId);C.values=k}else f=w0(s,u,o);h.push(f),c=R.getInnerMostAxes(c.length,i)}R.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=R.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=R.expandShapeToKeepDim(m,l));let y=hne(f,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function mne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=we({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ei(m,m.dtype,"min",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=we({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=we({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var gne={kernelName:Io,backendName:"webgl",kernelFunc:mne},Ane=Q4+`
|
|
return min(a, b);
|
|
`,yne=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+b0+`
|
|
return result;
|
|
`,xne=wn({opSnippet:Ane,packedOpSnippet:yne,cpuKernelImpl:dZ}),bne={kernelName:So,backendName:"webgl",kernelFunc:xne},vne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=yt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},wne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=yt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Ln("rc",s),l=Ln("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},kne=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wne(s.shape,r,a):new vne(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Ine={kernelName:Co,backendName:"webgl",kernelFunc:kne},Sne=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Cne=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+b0+`
|
|
return result;
|
|
`,Tne=wn({opSnippet:Sne,packedOpSnippet:Cne}),Nne={kernelName:Sl,backendName:"webgl",kernelFunc:Tne},Ene=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Rne=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Dne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Pk=wn({opSnippet:Rne,packedOpSnippet:Dne,checkOutOfBounds:!0}),_ne={kernelName:uo,backendName:"webgl",kernelFunc:Pk},Mk="return a - b;",zk=wn({opSnippet:Mk,packedOpSnippet:Mk,supportsComplex:!0,cpuKernelImpl:TZ}),Fne={kernelName:Go,backendName:"webgl",kernelFunc:zk};function Lk(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=Ok({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=R.expandShapeToKeepDim(i.shape,o),c=we({inputs:{x:i},backend:n,attrs:{shape:l}}),u=zk({inputs:{a:r,b:c},backend:n}),d=Ek({inputs:{x:u},backend:n}),p=k0({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=we({inputs:{x:p},backend:n,attrs:{shape:l}}),f=Pk({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var $ne={kernelName:Vo,backendName:"webgl",kernelFunc:Lk};function One(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:Lk({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new Ene(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Pne={kernelName:ch,backendName:"webgl",kernelFunc:One},Bk="return -x;";function Mne(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=hZ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return ne().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Mu(s.shape,Bk):r=new Da(s.shape,Bk),n.runWebGLProgram(r,[s],s.dtype)}var zne={kernelName:Cl,backendName:"webgl",kernelFunc:Mne},Lne=vr.nonMaxSuppressionV3Impl;function Bne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Lne(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Wne={kernelName:Nl,backendName:"webgl",kernelFunc:Bne},Vne=vr.nonMaxSuppressionV4Impl;function Une(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Vne(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Gne={kernelName:El,backendName:"webgl",kernelFunc:Une},Hne=vr.nonMaxSuppressionV5Impl;function jne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Hne(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var qne={kernelName:Rl,backendName:"webgl",kernelFunc:jne},Xne=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Kne=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),c=new Xne(l,a,o,i),u=we({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=we({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Zne={kernelName:No,backendName:"webgl",kernelFunc:Kne};function N0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Wd({inputs:{input:s},backend:n}),a=N0({inputs:{x:r},backend:n}),o=T0({inputs:{input:s},backend:n}),i=N0({inputs:{x:o},backend:n}),l=_a({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Vd({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Yne={kernelName:Kl,backendName:"webgl",kernelFunc:N0};function Wk(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Wd({inputs:{input:s},backend:n}),a=Wk({inputs:{x:r},backend:n}),o=T0({inputs:{input:s},backend:n}),i=N0({inputs:{x:o},backend:n}),l=_a({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Vd({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Jne={kernelName:Dl,backendName:"webgl",kernelFunc:Wk};function Qne(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return X2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=X2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=xk({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var ese={kernelName:_l,backendName:"webgl",kernelFunc:Qne},tse=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=yt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},nse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=yt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Ln("rc",s),l=Ln("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},Vk=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return Vd({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new nse(r.shape,a,o):new tse(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},sse={kernelName:Eo,backendName:"webgl",kernelFunc:Vk},rse=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,ase=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+b0+`
|
|
return result;
|
|
`,ose=wn({opSnippet:rse,packedOpSnippet:ase}),ise={kernelName:Ro,backendName:"webgl",kernelFunc:ose};function lse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=w.parseAxisParam(a,r.shape),u=c,d=R.getAxesPermutation(u,i),p=r;d!=null&&(p=Bn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,i),l.push(p)),R.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=mZ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=R.computeOutAndReduceShapes(p.shape,u),g=w.sizeFromShape(m),A=we({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=Eh(r.dtype),x=Ei(A,y,"prod",n);h=we({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(h);let f=R.expandShapeToKeepDim(h.shape,c);h=we({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var use={kernelName:Fl,backendName:"webgl",kernelFunc:lse},Uk=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=gZ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},cse={kernelName:Tc,backendName:"webgl",kernelFunc:Uk},dse="return 1.0 / x;",pse=nt({opSnippet:dse}),hse={kernelName:$l,backendName:"webgl",kernelFunc:pse},fse=lr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,mse=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,gse=nt({opSnippet:fse,packedOpSnippet:mse}),Ase={kernelName:_o,backendName:"webgl",kernelFunc:gse},yse=lr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,xse=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,bse=nt({opSnippet:yse,packedOpSnippet:xse}),vse={kernelName:$o,backendName:"webgl",kernelFunc:bse},wse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},kse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Ise(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=ne().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kse(r.shape,l,c,a,o):new wse(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Sse={kernelName:Fo,backendName:"webgl",kernelFunc:Ise},Cse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Tse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Cse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Nse={kernelName:hh,backendName:"webgl",kernelFunc:Tse},Ese=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Rse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Dse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=ne().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Rse(r.shape,l,c,a,o):new Ese(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var _se={kernelName:Nc,backendName:"webgl",kernelFunc:Dse},Fse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function $se(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Fse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ose={kernelName:ph,backendName:"webgl",kernelFunc:$se},Pse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=yt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Mse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Ln("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=yt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return ms({inputs:{x:r},backend:n});let l=ne().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Mse(r.shape,i):new Pse(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Lse={kernelName:Oo,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Wse={kernelName:Zl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Bse(s.shape,a),[c,u]=R.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Vse=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Use=nt({opSnippet:Vse}),Gse={kernelName:Po,backendName:"webgl",kernelFunc:Use},Hse="return inversesqrt(x);",jse=nt({opSnippet:Hse,cpuKernelImpl:AZ}),qse={kernelName:Mo,backendName:"webgl",kernelFunc:jse},Gk=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=yt(r.length),l=yt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Xse(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=R.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=we({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=we({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new Gk(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),y=we({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var Kse={kernelName:Pl,backendName:"webgl",kernelFunc:Xse},Zse=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=yt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Yse(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Zse(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ps(r.dtype,a.dtype))}var Jse={kernelName:Ml,backendName:"webgl",kernelFunc:Yse},Qse=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,ere=nt({opSnippet:Qse}),tre={kernelName:zl,backendName:"webgl",kernelFunc:ere},Hk="return 1.0 / (1.0 + exp(-1.0 * x));",nre=nt({opSnippet:Hk,packedOpSnippet:Hk,cpuKernelImpl:yZ}),sre={kernelName:Lo,backendName:"webgl",kernelFunc:nre},rre=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,are=nt({opSnippet:rre}),ore={kernelName:Wl,backendName:"webgl",kernelFunc:are},ire=rk+`
|
|
return sin(x);
|
|
`,lre=nt({opSnippet:ire}),ure={kernelName:zo,backendName:"webgl",kernelFunc:lre},cre=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,dre=nt({opSnippet:cre}),pre={kernelName:Bl,backendName:"webgl",kernelFunc:dre},hre=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,fre=nt({opSnippet:hre}),mre={kernelName:Vl,backendName:"webgl",kernelFunc:fre},gre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=Vk({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=R.getReshaped(u.shape,a,i,!1),p=R.getPermuted(d.length,a.length,!1),h=R.getReshapedPermuted(u.shape,a,i,!1),f=we({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Bn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=we({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Are={kernelName:Ul,backendName:"webgl",kernelFunc:gre};function yre(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=bZ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var xre={kernelName:fh,backendName:"webgl",kernelFunc:yre};function bre(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=vZ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var vre={kernelName:mh,backendName:"webgl",kernelFunc:bre};function wre(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=H4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var kre={kernelName:gh,backendName:"webgl",kernelFunc:wre};function Ire(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=H4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Sre={kernelName:Ah,backendName:"webgl",kernelFunc:Ire};function Cre(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=R.calculateShapes(a,r,i),p=!1,h=new Gk(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Tre={kernelName:yh,backendName:"webgl",kernelFunc:Cre};function Nre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Bu({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Ere={kernelName:Gl,backendName:"webgl",kernelFunc:Nre},jk="return sqrt(x);",Rre=nt({opSnippet:jk,packedOpSnippet:jk,cpuKernelImpl:wZ}),Dre={kernelName:Bo,backendName:"webgl",kernelFunc:Rre},_re="return x * x;",Fre=nt({opSnippet:_re}),$re={kernelName:Ec,backendName:"webgl",kernelFunc:Fre},qk="return (a - b) * (a - b);",Ore=wn({opSnippet:qk,packedOpSnippet:qk}),Pre={kernelName:Uo,backendName:"webgl",kernelFunc:Ore};function Mre({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=lr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Da(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var zre={kernelName:ca,backendName:"webgl",kernelFunc:Mre},Lre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=yt(n.length),a=yt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Bre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=Fn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=we({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=Bu({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=we({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.texData.get(x.dataId).values,D=He(x.shape,x.dtype,N),P=kZ(y,D,m,f);b=n.makeTensorInfo(y,x.dtype,P.values)}else{let C=new Lre(f,m,y);b=n.runWebGLProgram(C,[x],x.dtype)}let v=we({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Wre={kernelName:Hl,backendName:"webgl",kernelFunc:Bre};function Vre(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=IZ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Ure={kernelName:xh,backendName:"webgl",kernelFunc:Vre};function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=SZ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Hre={kernelName:bh,backendName:"webgl",kernelFunc:Gre};function jre(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=CZ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var qre={kernelName:vh,backendName:"webgl",kernelFunc:jre},Xre="return tan(x);",Kre=nt({opSnippet:Xre}),Zre={kernelName:Ho,backendName:"webgl",kernelFunc:Kre},Yre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Jre=nt({opSnippet:Yre}),Qre={kernelName:jo,backendName:"webgl",kernelFunc:Jre},eae=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=tae(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function tae(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function Xk(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,u=He(r.shape,r.dtype,c),d=NZ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new eae(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var nae={kernelName:ua,backendName:"webgl",kernelFunc:Xk},sae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},rae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Ri(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Kk(e){let t=1;for(;t<e;)t*=2;return t}function aae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=ne().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=ne().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let P=n.readSync(r.dataId),[E,F]=EZ(P,c,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,Vd({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=w.sizeFromShape(c)/u,g=we({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&Ri(n,h);let A=Kk(a),y=Kk(u),x=null,b=()=>x===null?[g,g]:[g,x],v=(P,E,F)=>{let T=b(),M=new sae(F),H=[[u],[x===null?1:0],[Number.NEGATIVE_INFINITY],[P],[E]],z=x;x=n.runWebGLProgram(M,T,"int32",H),Ri(n,z)};for(let P=1;P<A;P*=2){let E=P*2;for(let F=P;F>=1;F/=2)v(E,F,[m,y])}for(let P=y;P>A;P/=2){let E=b(),F=new rae([m,P/2]),M=[[u],[x===null?1:0],[A]],G=x;x=n.runWebGLProgram(F,E,"int32",M),Ri(n,G);let H=A/2,z=H*2;for(let X=H;X>=1;X/=2)v(z,X,x.shape)}let k=x;x=Bu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),Ri(n,k);let C=$k({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});Ri(n,g);let N=c.slice(0,-1);N.push(a),k=x,x=we({inputs:{x},attrs:{shape:N},backend:n}),Ri(n,k);let D=C;return C=we({inputs:{x:C},attrs:{shape:N},backend:n}),Ri(n,D),[C,x]}var oae={kernelName:jl,backendName:"webgl",kernelFunc:aae},iae=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function lae(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new iae(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var uae={kernelName:ql,backendName:"webgl",kernelFunc:lae};function cae(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;_u(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=RZ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var dae={kernelName:wh,backendName:"webgl",kernelFunc:cae};function pae(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Bu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=we({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var hae={kernelName:Xl,backendName:"webgl",kernelFunc:pae},fae=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=R.getAxesPermutation([c],i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=R.getInnerMostAxes(1,i)[0]);let p=R.segment_util.computeOutShape(d.shape,c,o),h=w.sizeFromShape([d.shape[c]]),f=we({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=Eh(r.dtype),g=(b,v,k,C,N)=>{let D=b.shape[0],P=b.shape[1],E=R.segment_util.segOpComputeOptimalWindowSize(P,N),F={windowSize:E,inSize:P,batchSize:D,numSegments:N},T=new fae(F,v),M=n.compileAndRun(T,[b,k],C);if(l.push(M),M.shape[1]===N)return M;let G=Uk({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),H=Xk({inputs:{x:G},backend:n,attrs:{reps:[P/E]}});return l.push(G),l.push(H),g(M,v,H,C,N)},A=g(f,"unsortedSegmentSum",a,m,o),y=we({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(u!=null){l.push(y);let b=R.getUndoAxesPermutation(u);x=Bn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var gae={kernelName:Rc,backendName:"webgl",kernelFunc:mae},Aae=[Hte,Xte,EY,DY,$Y,MY,LY,VY,GY,jY,ZY,JY,tJ,rJ,dJ,iJ,fJ,yJ,gJ,wJ,IJ,CJ,RJ,MJ,LJ,WJ,qJ,KJ,QJ,nQ,cY,iQ,AQ,xQ,dQ,kQ,SQ,vQ,NQ,DQ,$Q,PQ,zQ,WQ,qQ,KQ,UQ,JQ,tee,see,iee,dee,mee,yee,xee,bee,wee,Iee,Cee,Nee,Ree,$ee,Mee,Bee,Vee,Hee,Xee,Jee,nte,uY,rte,aQ,ite,cte,hte,pY,Ate,vte,kte,Rte,Tte,$te,Mte,Wte,Zte,rne,nne,lne,cne,pne,ene,fne,gne,bne,Ine,Nne,Pne,AY,zne,Wne,Gne,qne,UJ,Zne,Jne,ese,sse,ise,fY,use,cse,GJ,_ne,hse,vse,Ase,xY,Sse,Nse,_se,Ose,Lse,Wse,Gse,qse,Kse,Jse,tre,sre,ore,ure,pre,OJ,$ne,mre,Are,xre,vre,kre,Sre,Tre,Ere,Dre,$re,Pre,zre,Wre,Ure,Hre,qre,Fne,CY,Zre,Qre,nae,oae,uae,TY,dae,hae,gae,Yne];for(let e of Aae)da(e);var Kt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Kt||(Kt={}));var Ud;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Ud||(Ud={}));var Zk;function yae(e){Zk=e.wasm.cwrap(Xo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function xae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Ud[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=c?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return Zk(p,k,r.shape.length,h,C,a.shape.length,l,c,g,f,m,d||0,v),b}var bae={kernelName:Xo,backendName:"wasm",setupFunc:yae,kernelFunc:xae};function kn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return w.sizeFromShape(c.shape)===0||n(l,Kt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var vae=kn(Zi);function Wn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=R.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,c.shape.length,p,A,u.shape.length,Kt[c.dtype],y);if(t&&c.dtype==="float32")return x(),m;let b=R.getBroadcastDims(c.shape,f),v=R.getBroadcastDims(u.shape,f),k=b.every((N,D)=>N===D),C=v.every((N,D)=>N===D);if(k&&C)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var wae=!0,kae=Wn(ia,wae),Yk;function Iae(e){Yk=e.wasm.cwrap(Ya,null,["array","number","number","number"])}function Sae(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return Yk(a,r.length,Kt[s.dtype],o),s}var Cae={kernelName:Ya,backendName:"wasm",setupFunc:Iae,kernelFunc:Sae};function E0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Tae={kernelName:Ao,backendName:"wasm",kernelFunc:E0},Jk;function Nae(e){Jk=e.wasm.cwrap(qo,null,["number","array","number","number","number","array","number"])}function Uu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Rae(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Eae(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=E0({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Jk(u,h,l.shape.length,Kt[l.dtype],d,p,a.length),c}function Eae(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Rae(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Dae={kernelName:qo,backendName:"wasm",kernelFunc:Uu,setupFunc:Nae};function Fa(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=R.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=R.getInnerMostAxes(o.length,r),l=Uu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var Qk;function _ae(e){Qk=e.wasm.cwrap(Qi,null,["number, number, number"])}function Fae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("all",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Qk(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var $ae={kernelName:Qi,backendName:"wasm",setupFunc:_ae,kernelFunc:Fae},e8;function Oae(e){e8=e.wasm.cwrap(el,null,["number, number, number"])}function Pae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("any",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;e8(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Mae={kernelName:el,backendName:"wasm",setupFunc:Oae,kernelFunc:Pae},t8;function zae(e){t8=e.wasm.cwrap(Ja,null,["number","number","number","number","number"])}function Lae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=Fa(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=l.shape[u[0]];return t8(i,Kt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var Bae={kernelName:Ja,backendName:"wasm",kernelFunc:Lae,setupFunc:zae},n8;function Wae(e){n8=e.wasm.cwrap(Qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,y=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return n8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,v),b}var Uae={kernelName:Qa,backendName:"wasm",setupFunc:Wae,kernelFunc:Vae};function ts(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Gae={kernelName:Ol,backendName:"wasm",kernelFunc:ts},s8;function Hae(e){s8=e.wasm.cwrap(eo,null,["number","array","number","number","array","number","number","number","number"])}function jae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],k=i?[A,h,d]:[A,d,h],C=ts({inputs:{x:r},backend:n,attrs:{shape:v}}),N=ts({inputs:{x:a},backend:n,attrs:{shape:k}}),D=n.dataIdMap.get(C.dataId).id,P=n.dataIdMap.get(N.dataId).id,E=o?C.shape[2]:C.shape[1],F=i?N.shape[1]:N.shape[2],T=Math.max(g,A),M=n.makeOutput([T,E,F],C.dtype),G=n.dataIdMap.get(M.dataId).id,H=new Uint8Array(new Int32Array(C.shape).buffer),z=new Uint8Array(new Int32Array(N.shape).buffer);return s8(D,H,C.shape.length,P,z,N.shape.length,o,i,G),n.disposeData(C.dataId),n.disposeData(N.dataId),M.shape=b,M}var qae={kernelName:eo,backendName:"wasm",setupFunc:Hae,kernelFunc:jae};function Gd(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Fn.parseSliceParams(t,n,s),i=Fn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=w.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Fn.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+w.sizeFromShape(o))),c}if(t.dtype==="string"){let f=a0(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Xae(l,u[0],p,a,o);else if(h===3)Kae(l,u[0],u[1],p,a,o);else if(h===4)Zae(l,u[0],u[1],u[2],p,a,o);else{let f=a0(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Xae(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function Kae(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Zae(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var Yae={kernelName:Ll,backendName:"wasm",kernelFunc:Gd};function Jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=ts({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Uu({inputs:{x:h},backend:n,attrs:{perm:c}}),m=ts({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Gd({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Qae={kernelName:ol,backendName:"wasm",kernelFunc:Jae};function Hd(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var eoe={kernelName:to,backendName:"wasm",kernelFunc:Hd},toe=kn(no),r8;function noe(e){r8=e.wasm.cwrap(la,null,["number","number","number","number"])}function soe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return r8(i,a,o,c),l}var roe={kernelName:la,backendName:"wasm",setupFunc:noe,kernelFunc:soe};function a8(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=R.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return E0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(R.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return ts({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=R.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=A2(f,r,t[0].dtype,m),A=R.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=R.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,y=d[m].subarray(A,A+g);p.set(y,f),f+=g}}return o}var aoe={kernelName:il,backendName:"wasm",kernelFunc:a8},o8;function ooe(e){o8=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ioe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=R.convertConv2DDataFormat(p),f=R.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,C=f.strideHeight,N=f.strideWidth,D=f.inChannels,P=f.outChannels,E=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let F=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(F.dataId).id;return o8(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,E,v,k,C,N,D,P,T),F}var loe={kernelName:so,backendName:"wasm",setupFunc:ooe,kernelFunc:ioe},i8;function uoe(e){i8=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function coe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:C,strideWidth:N}=h,D=m-1-h.padInfo.top,P=g-1-h.padInfo.left,E=h.dataFormat==="channelsLast",F=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[M,G,H]=w.computeStrides(a.shape),z=F[0],X=E?F[1]:F[2],Q=E?F[2]:1,Z=E?1:F[1],te=T[0],se=E?T[1]:T[2],J=E?T[2]:1,ee=E?1:T[1],ce=t.makeOutput(h.inShape,"float32"),pe=t.dataIdMap.get(ce.dataId).id,ve=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(a.dataId).id;return i8(ve,ke,f,m,g,y,x,A,v,k,b,C,N,D,P,M,G,H,z,X,Q,Z,te,se,J,ee,pe),ce}var doe={kernelName:ro,backendName:"wasm",setupFunc:uoe,kernelFunc:coe},poe=kn(ao),hoe=kn(oo),K2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(K2||(K2={}));var l8;function foe(e){l8=e.wasm.cwrap(ll,null,["number","number","number","number","array","number","number","number","number","number"])}function moe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Hd({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return l8(g,A,y,u,v,d,p,K2[r],a,b),m!=null&&t.disposeData(m.dataId),x}var goe={kernelName:ll,backendName:"wasm",setupFunc:foe,kernelFunc:moe},u8;function Aoe(e){u8=e.wasm.cwrap(io,null,["number","number","number","number","number","number"])}function yoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=R.getAxesPermutation([a],l),u=r;c!==null&&(u=Uu({inputs:{x:r},attrs:{perm:c},backend:n}));let d=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;u8(f,o?1:0,i?1:0,h,m,Kt[r.dtype]);let g=p;if(c!==null){let A=R.getUndoAxesPermutation(c);g=Uu({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var xoe={kernelName:io,backendName:"wasm",setupFunc:Aoe,kernelFunc:yoe},c8;function boe(e){c8=e.wasm.cwrap(ul,null,["number","number","number","array","number","array","array","number","number"])}function voe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return c8(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var woe={kernelName:ul,backendName:"wasm",setupFunc:boe,kernelFunc:voe},d8;function koe(e){d8=e.wasm.cwrap(lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ioe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=R.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,k=h.strideHeight,C=h.strideWidth,N=h.inChannels,D=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(h.outShape,"float32"),F=s.dataIdMap.get(E.dataId).id;return d8(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,P,b,v,k,C,N,D,F),E}var Soe={kernelName:lo,backendName:"wasm",setupFunc:koe,kernelFunc:Ioe},Coe=kn(co),Toe=!1,Noe=Wn(dl,Toe,"bool"),Eoe=kn(po,"float32");function Z2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ts({inputs:{x:r},backend:s,attrs:{shape:i}})}var Roe={kernelName:pl,backendName:"wasm",kernelFunc:Z2};function p8(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Doe={kernelName:wc,backendName:"wasm",kernelFunc:p8},h8;function _oe(e){h8=e.wasm.cwrap(fl,null,["number","number","number","number","number","number"])}function Foe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return h8(a,i,l,c,u,o),r}var $oe={kernelName:fl,backendName:"wasm",kernelFunc:Foe,setupFunc:_oe},Ooe=kn(ho),Poe=!1,Moe=Wn(fo,Poe),f8;function zoe(e){f8=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number"])}function Loe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return f8(u,d,p,h,f,r,g),m}var Boe={kernelName:mo,backendName:"wasm",setupFunc:zoe,kernelFunc:Loe},m8;function Woe(e){m8=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Voe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=Ud[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,D=m.padInfo.bottom,P=m.padInfo.left,E=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,G=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Z=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(Z.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return m8(A,z,X,Q,y,v,k,b,C,N,D,P,H,E,F,T,M,G,x,g,se,f||0,te),Z}var Uoe={kernelName:Ko,backendName:"wasm",setupFunc:Woe,kernelFunc:Voe},g8;function Goe(e){g8=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hoe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=Ud[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,D=m.padInfo.bottom,P=m.padInfo.left,E=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,G=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Z=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(Z.dataId).id,se=i==null?0:s.dataIdMap.get(i.dataId).id;return g8(A,z,X,Q,y,v,k,b,C,N,D,P,H,E,F,T,M,G,x,g,se,f||0,te),Z}var joe={kernelName:Zo,backendName:"wasm",setupFunc:Goe,kernelFunc:Hoe},A8;function qoe(e){A8=e.wasm.cwrap(gl,null,["number","number","number","number","number","number","array","number"])}function Xoe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=lA.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return A8(h,Kt[s.dtype],m,o,d,i,g,A),c}var Koe={kernelName:gl,backendName:"wasm",setupFunc:qoe,kernelFunc:Xoe},y8;function Zoe(e){y8=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Yoe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let D=0;D<c.length;++D){let P=c[D];w.assert(P<=u-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${u-1}]`)}let d=R.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=ts({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=ts({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,x=t.dataIdMap.get(p.dataId).id,v=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),N=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return y8(x,Kt[r.dtype],C,A,v,d.batchSize,N,k),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Joe={kernelName:ml,backendName:"wasm",setupFunc:Zoe,kernelFunc:Yoe},Qoe=!1,eie=Wn(Al,Qoe,"bool"),tie=!1,nie=Wn(go,tie,"bool"),x8;function sie(e){x8=e.wasm.cwrap(yo,null,["number","number","number","number"])}function rie(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;x8(r,Kt[t.dtype],n,o)}return a}var aie={kernelName:yo,backendName:"wasm",setupFunc:sie,kernelFunc:rie},oie=!1,iie=Wn(vl,oie,"bool"),lie=!1,uie=Wn(wl,lie,"bool"),cie=kn(xo),die=!1,pie=Wn(Il,die,"bool"),b8;function hie(e){b8=e.wasm.cwrap(bo,null,["number","number","number","number"])}function fie(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("max",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;b8(l,Kt[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var mie={kernelName:bo,backendName:"wasm",setupFunc:hie,kernelFunc:fie},gie=!1,Aie=Wn(vo,gie),v8;function yie(e){v8=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xie(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,y=u.dilationWidth,x=u.strideHeight,b=u.strideWidth,v=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(C.dataId).id;return v8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,b,v,k,N),C}var bie={kernelName:wo,backendName:"wasm",setupFunc:yie,kernelFunc:xie},w8;function vie(e){w8=e.wasm.cwrap(ko,null,["number, number, number"])}function wie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=c;c.dtype!=="float32"&&(y=Hd({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;w8(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=R.expandShapeToKeepDim(x.shape,p);x.shape=b}return c.dtype!=="float32"&&t.disposeData(y.dataId),x}var kie={kernelName:ko,backendName:"wasm",setupFunc:vie,kernelFunc:wie},k8;function Iie(e){k8=e.wasm.cwrap(Io,null,["number","number","number","number"])}function Sie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x)}let f=c.shape.length;R.assertAxesAreInnerMostDims("min",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;k8(l,Kt[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Cie={kernelName:Io,backendName:"wasm",setupFunc:Iie,kernelFunc:Sie},Tie=!1,Nie=Wn(So,Tie),Y2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Y2||(Y2={}));var I8;function Eie(e){I8=e.wasm.cwrap(Co,null,["number","array","number","number","array","array","number","number"])}function Rie(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return I8(o,c,t.shape.length,Kt[t.dtype],p,h,Y2[r],l),i}var Die={kernelName:Co,backendName:"wasm",kernelFunc:Rie,setupFunc:Eie},_ie=!0,Fie=Wn(To,_ie),$ie=kn(Cl);function J2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var S8;function Oie(e){S8=e.wasm.cwrap(Nl,"number",["number","number","number","number","number"])}function Pie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=S8(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=J2(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Mie={kernelName:Nl,backendName:"wasm",setupFunc:Oie,kernelFunc:Pie},C8;function zie(e){C8=e.wasm.cwrap(El,"number",["number","number","number","number","number","bool"])}function Lie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=C8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=J2(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var Bie={kernelName:El,backendName:"wasm",setupFunc:zie,kernelFunc:Lie},T8;function Wie(e){T8=e.wasm.cwrap(Rl,"number",["number","number","number","number","number","number"])}function Vie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=T8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=J2(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[A,y]}var Uie={kernelName:Rl,backendName:"wasm",setupFunc:Wie,kernelFunc:Vie},Gie=!1,Hie=Wn(Tl,Gie,"bool"),N8;function jie(e){N8=e.wasm.cwrap(No,null,["number","number","number","number","number"])}function qie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return N8(d,a,o,i,c),l}var Xie={kernelName:No,backendName:"wasm",setupFunc:jie,kernelFunc:qie};function Kie(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Zie={kernelName:Dl,backendName:"wasm",kernelFunc:Kie};function Yie(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Z2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Z2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=a8({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Jie={kernelName:_l,backendName:"wasm",kernelFunc:Yie},E8;function Qie(e){E8=e.wasm.cwrap(Eo,null,["number","array","number","number","array","array","number","number"])}function ele(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return p8({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return E8(o,u,t.shape.length,Kt[t.dtype],h,f,r,c),i}var R8={kernelName:Eo,backendName:"wasm",kernelFunc:ele,setupFunc:Qie},tle=!1,nle=Wn(Ro,tle),D8;function sle(e){D8=e.wasm.cwrap(Do,null,["number","number","number"])}function rle(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=Hd({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return D8(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var ale={kernelName:Do,backendName:"wasm",setupFunc:sle,kernelFunc:rle},_8;function ole(e){_8=e.wasm.cwrap(Fl,null,["number","number","number","number"])}function ile(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;_8(l,A,Kt[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var lle={kernelName:Fl,backendName:"wasm",setupFunc:ole,kernelFunc:ile},ule=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=b2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},cle={kernelName:Tc,backendName:"wasm",kernelFunc:ule},dle=!0,ple=Wn(uo,dle),hle=kn(_o),fle=kn($o),F8;function mle(e){F8=e.wasm.cwrap(Fo,null,["number","number","number","number","number","number","number","number","number","number"])}function gle(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Hd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return F8(A,u,d,p,h,l,c,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Ale={kernelName:Fo,backendName:"wasm",setupFunc:mle,kernelFunc:gle},$8;function yle(e){$8=e.wasm.cwrap(Oo,null,["number","array","number","array","number","number"])}function xle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return E0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);$8(l,u,o.length,d,r.shape.length,c);let p=ts({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var ble={kernelName:Oo,backendName:"wasm",kernelFunc:xle,setupFunc:yle},O8;function vle(e){O8=e.wasm.cwrap(Zl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function wle(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=R.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return O8(c,d,p,h,f,a,m,g,b,x.length,u),l}var kle={kernelName:Zl,backendName:"wasm",kernelFunc:wle,setupFunc:vle},Ile=kn(Po),Sle=kn(Mo),P8;function Cle(e){P8=e.wasm.cwrap(Pl,null,["number","number","number","number","number","number","array","number","number"])}function Tle(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=uA.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return P8(f,g,Kt[a.dtype],l,c,u,A,p,y),i}var Nle={kernelName:Pl,backendName:"wasm",setupFunc:Cle,kernelFunc:Tle},M8;function Ele(e){M8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Rle(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return M8(o,i,l,h,u),c}var Dle={kernelName:Ml,backendName:"wasm",kernelFunc:Rle,setupFunc:Ele},z8;function _le(e){z8=e.wasm.cwrap(Lo,null,["number","number"])}function Fle(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||z8(s,a),r}var $le={kernelName:"Sigmoid",backendName:"wasm",setupFunc:_le,kernelFunc:Fle},Ole=kn(zo),L8;function Ple(e){L8=e.wasm.cwrap(Vo,null,["number","number","number","number"])}function Mle(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||L8(r,o,i,l),a}var zle={kernelName:Vo,backendName:"wasm",setupFunc:Ple,kernelFunc:Mle};function Lle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=R8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,a,i,!1),d=R.getPermuted(u.length,a.length,!1),p=R.getReshapedPermuted(c.shape,a,i,!1),m=ts({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Uu({inputs:{x:m},backend:n,attrs:{perm:d}}),v=ts({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var Ble={kernelName:Ul,backendName:"wasm",kernelFunc:Lle};function Wle(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Gd({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var Vle={kernelName:Gl,backendName:"wasm",kernelFunc:Wle},Ule=kn(Bo),Gle=kn(Ec),Hle=!0,jle=Wn(Uo,Hle),B8;function qle(e){B8=e.wasm.cwrap(ca,null,["number","number","number","number"])}function Xle(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return B8(o,r,Kt[a.dtype],l),i}var Kle={kernelName:ca,backendName:"wasm",setupFunc:qle,kernelFunc:Xle},W8;function Zle(e){W8=e.wasm.cwrap(Hl,null,["number","array","number","array","array","array","array","array","number","number"])}function Yle(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,h=R.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=R.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=ts({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=R.slice_util.getNormalizedAxes(A.shape,h,f,a,o,i,l,c,u);a=y,o=x,i=b;let v=R.slice_util.maskToAxes(p);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=R.slice_util.computeOutShape(a,o,i),C=k.filter((E,F)=>v.indexOf(F)===-1);if(i.every(E=>E===1)){let E=Gd({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let F=ts({inputs:{x:E},attrs:{shape:C},backend:t});return t.disposeData(E.dataId),F}let D=t.makeOutput(C,"float32");if(!C.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,F=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),M=new Uint8Array(new Int32Array(o).buffer),G=new Uint8Array(new Int32Array(i).buffer),H=new Uint8Array(new Int32Array(C).buffer),z=new Uint8Array(new Int32Array(w.computeStrides(C)).buffer),X=t.dataIdMap.get(D.dataId).id;W8(E,F,A.shape.length,T,M,G,H,z,C.length,X)}t.disposeData(A.dataId);let P=ts({inputs:{x:D},attrs:{shape:C},backend:t});return t.disposeData(D.dataId),P}var Jle={kernelName:Hl,backendName:"wasm",setupFunc:Zle,kernelFunc:Yle},Qle=!0,eue=Wn(Go,Qle),V8;function tue(e){V8=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function nue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Fa(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;V8(l,A,Kt[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var sue={kernelName:Wo,backendName:"wasm",setupFunc:tue,kernelFunc:nue},rue=kn(Ho),aue=kn(jo),U8;function oue(e){U8=e.wasm.cwrap(ua,null,["number","array","number","array","number","number"])}function iue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return U8(a,l,r.shape.length,c,i.length,Kt[u.dtype],d),u}var lue={kernelName:ua,backendName:"wasm",setupFunc:oue,kernelFunc:iue},G8;function uue(e){G8=e.wasm.cwrap(jl,null,["number","array","number","number","number","bool","number","number"])}var cue=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return G8(o,i,s.shape.length,Kt[s.dtype],r,a,u,p),[c,d]},due={kernelName:jl,backendName:"wasm",setupFunc:uue,kernelFunc:cue},H8;function pue(e){H8=e.wasm.cwrap(ql,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function hue(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,C=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return H8(v,C,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,N,D,l,x),y}var fue={kernelName:ql,backendName:"wasm",setupFunc:pue,kernelFunc:hue};function mue(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=Gd({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var gue={kernelName:Xl,backendName:"wasm",kernelFunc:mue};function Aue(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var yue={kernelName:Kl,backendName:"wasm",kernelFunc:Aue},xue=[vae,kae,Cae,$ae,Mae,Bae,Uae,qae,Qae,eoe,toe,roe,aoe,loe,doe,poe,hoe,goe,xoe,woe,Soe,Coe,Noe,Eoe,Roe,Doe,$oe,Ooe,Moe,bae,Boe,Uoe,joe,Koe,Joe,eie,nie,Tae,aie,iie,uie,cie,pie,mie,Aie,bie,kie,Cie,Nie,Die,Fie,$ie,Mie,Bie,Uie,Hie,Xie,Zie,Jie,R8,nle,ale,lle,cle,ple,hle,fle,Gae,Ale,ble,kle,Sle,Ile,Nle,Dle,$le,Ole,Yae,zle,Ble,Vle,Ule,Gle,jle,Kle,Jle,eue,sue,rue,aue,lue,due,fue,Dae,gue,yue];for(let e of xue)da(e);var Q2=ne();Q2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Q2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Q2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var j8=Xa(yT()),bue='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',vue=Xa(xT()),q8=class extends fc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(Z8),tx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Op(this,as())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return Iue(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function wue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function X8(e,t,n){if(R0!=null)return R0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),qd!=null&&qd[s]!=null?qd[s]:n+s}async function kue(){let[e,t]=await Promise.all([ne().getAsync("WASM_HAS_SIMD_SUPPORT"),ne().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=bue,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?X8(e,t,jd!=null?jd:l):l+i},ex&&(r.instantiateWasm=wue(X8(e,t,jd!=null?jd:"")));let a=!1;r.onAbort=()=>{if(a||Xd)return;Xd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&R0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+j8.default.toString()],{type:"text/javascript"}),o=(0,j8.default)(r)):o=(0,vue.default)(r),o.then(i=>{a=!0,Xd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Iue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Sue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],R0=null,jd=null,qd={},Xd=!1,ex=!1;function Cue(e,t=!1){if(mA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Xd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");R0=e,ex=t}function K8(e,t=!1){if(Xd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")jd=e;else{qd=e;let n=Sue.filter(s=>qd[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}ex=t}var Z8=-1,tx=-1;function Tue(e){Z8=e}function Nue(){if(tx===-1)throw new Error("WASM backend not initialized.");return tx}var Eue="3.10.0",Rue=2;ru("wasm",async()=>{let{wasm:e}=await kue();return new q8(e)},Rue);var Due="3.10.0",_ue="3.10.0",Fue="3.10.0",$ue="3.10.0",Oue="3.10.0",Pue="3.10.0",Mue="3.10.0",zue="3.10.0",Lue={tfjs:Due,"tfjs-core":_ue,"tfjs-data":Fue,"tfjs-layers":$ue,"tfjs-converter":Oue,"tfjs-backend-cpu":Pue,"tfjs-backend-webgl":Mue,"tfjs-backend-wasm":zue};var Y8=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var J8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,Q8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,eI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,tI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,nI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var nx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},sI=class{constructor(t,n,s){he(this,"uniform",{});he(this,"attribute",{});he(this,"gl");he(this,"id");he(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),nx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);nx(n,"uniform",this.uniform),nx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function rI(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Vn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(y,x){if(!(y===l.width&&x===l.height)){if(l.width=y,l.height=x,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(y,x){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let v=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,v);let k=d.createTexture();return d.bindTexture(d.TEXTURE_2D,k),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,y,x,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,k,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(y){return r[y]=r[y]||h(l.width,l.height),r[y]}function m(y=0){var k,C;if(!i)return;let x=null,b=null,v=!1;e===0?x=t:x=((k=f(s))==null?void 0:k.texture)||null,e++,n&&!(y&u.INTERMEDIATE)?(b=null,v=e%2==0):(s=(s+1)%2,b=((C=f(s))==null?void 0:C.fbo)||null),d.bindTexture(d.TEXTURE_2D,x),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,v?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(y){if(c[y])return i=c[y],d.useProgram((i==null?void 0:i.id)||null),i;i=new sI(d,Y8,y);let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*x),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*x),c[y]=i,i}let A={colorMatrix:y=>{let x=new Float32Array(y);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?Q8:J8,v=g(b);d.uniform1fv(v==null?void 0:v.uniform.m,x),m()},brightness:y=>{let x=(y||0)+1;A.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:y=>{let x=(y||0)*2/3+1,b=(x-1)*-.5;A.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:y=>{let x=(y||0)+1,b=-128*(x-1);A.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:y=>{y=(y||0)/180*Math.PI;let x=Math.cos(y),b=Math.sin(y),v=.213,k=.715,C=.072;A.colorMatrix([v+x*(1-v)+b*-v,k+x*-k+b*-k,C+x*-C+b*(1-C),0,0,v+x*-v+b*.143,k+x*(1-k)+b*.14,C+x*-C+b*-.283,0,0,v+x*-v+b*-(1-v),k+x*-k+b*k,C+x*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:y=>{let x=new Float32Array(y),b=1/l.width,v=1/l.height,k=g(nI);d.uniform1fv(k==null?void 0:k.uniform.m,x),d.uniform2f(k==null?void 0:k.uniform.px,b,v),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:y=>{let x=y||1;A.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:y=>{let x=y||1;A.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:y=>{let x=y/7/l.width,b=y/7/l.height,v=g(tI);d.uniform2f(v==null?void 0:v.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(v==null?void 0:v.uniform.px,x,0),m()},pixelate:y=>{let x=y/l.width,b=y/l.height,v=g(eI);d.uniform2f(v==null?void 0:v.uniform.size,x,b),m()}};this.add=function(y){let x=Array.prototype.slice.call(arguments,1),b=A[y];a.push({func:b,args:x})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(y){p(y.width,y.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,y);for(let x=0;x<a.length;x++){n=x===a.length-1;let b=a[x];b.func.apply(this,b.args||[])}return l},this.draw=function(y){return this.add("brightness",0),this.apply(y)}}var D0=2048,at=null,Vt=null,$a=null,Rt;function Vn(e,t){let n;if(be.browser)if(be.worker)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof be.Canvas!="undefined"?n=new be.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function sx(e,t){let n=t||Vn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function Gu(e,t,n=!0){if(!e)return t.debug&&oe("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof be.Canvas!="undefined"&&e instanceof be.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ge){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:Zs(e),canvas:t.filter.return?Vt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&oe("input stream is not ready"),{tensor:null,canvas:at};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&oe("cannot determine input dimensions"),{tensor:null,canvas:at};let a=s,o=r;if(a>D0&&(a=D0,o=Math.trunc(a*r/s)),o>D0&&(o=D0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!at||(at==null?void 0:at.width)!==a||(at==null?void 0:at.height)!==o)&&(at=Vn(a,o));let i=at.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,at==null?void 0:at.width,at==null?void 0:at.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,at==null?void 0:at.width,at==null?void 0:at.height),(!Vt||at.width!==Vt.width||(at==null?void 0:at.height)!==(Vt==null?void 0:Vt.height))&&(Vt=Vn(at.width,at.height)),t.filter.enabled&&be.webgl.supported){if(Rt||(Rt=be.browser?new rI:null),be.filter=!!Rt,!Rt)return{tensor:null,canvas:at};Rt.reset(),t.filter.brightness!==0&&Rt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Rt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Rt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Rt.add("blur",t.filter.blur),t.filter.saturation!==0&&Rt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Rt.add("hue",t.filter.hue),t.filter.negative&&Rt.add("negative"),t.filter.sepia&&Rt.add("sepia"),t.filter.vintage&&Rt.add("brownie"),t.filter.sepia&&Rt.add("sepia"),t.filter.kodachrome&&Rt.add("kodachrome"),t.filter.technicolor&&Rt.add("technicolor"),t.filter.polaroid&&Rt.add("polaroid"),t.filter.pixelate!==0&&Rt.add("pixelate",t.filter.pixelate),Rt.get()>0?Vt=Rt.apply(at):Vt=Rt.draw(at)}else sx(at,Vt),Rt&&(Rt=null),be.filter=!!Rt;if(!n)return{tensor:null,canvas:Vt};if(!Vt)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(be.browser&&Ms)l=Ms?Ms.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Lt(p,[e.height,e.width,c],"int32")}else if((!$a||Vt.width!==$a.width||(Vt==null?void 0:Vt.height)!==($a==null?void 0:$a.height))&&($a=Vn(Vt.width,Vt.height)),Ms&&be.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ms.fromPixels(Vt):($a=sx(Vt),l=Ms.fromPixels($a));else{let f=sx(Vt).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Lt(m,[a,o,c])}if(c===4){let p=mu(l,[0,0,0],[-1,-1,3]);Y(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=de(l,"float32"),d=Bt(u,0);return Y([l,u]),{tensor:d,canvas:t.filter.return?Vt:null}}}var rx=0,ax=1,ox=0,Bue=async e=>{let t=48,n=_e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=Se(n),i=await o.data();return Y(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(ox===0){let o=fe();await r();let i=fe();await s();let l=fe();ox=i-o<l-i?1:2}let a=ox===1?await r():await s();return Y(n),a};async function aI(e,t){if(e.cacheSensitivity===0)return!1;let n=await Bue(t),s=100*(Math.max(n,rx)/Math.min(n,rx)-1);rx=n;let r=s<Math.max(e.cacheSensitivity,ax);return ax=s>10*e.cacheSensitivity?0:s,r=r&&ax>0,r}var oI=class{constructor(){he(this,"browser");he(this,"node");he(this,"worker");he(this,"platform","");he(this,"agent","");he(this,"backends",[]);he(this,"initial");he(this,"filter");he(this,"tfjs");he(this,"offscreen");he(this,"perfadd",!1);he(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});he(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});he(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});he(this,"cpu",{model:void 0,flags:[]});he(this,"kernels",[]);he(this,"Canvas");he(this,"Image");he(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:Uc},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){var s;this.backends=Object.keys(as().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Ys()==="wasm"&&(this.wasm.simd=await ne().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await ne().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Vn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Ys()==="webgl"||Ys()==="humangl")){let r=Ar().gpgpu!=="undefined"?await Ar().getGPGPUContext().gl:null;r&&(this.webgl.version=r.getParameter(r.VERSION),this.webgl.renderer=r.getParameter(r.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(s=await navigator.gpu.requestAdapter())==null?void 0:s.name),this.kernels=Or(Ys()).map(r=>r.kernelName.toLowerCase())}async updateCPU(){var n;let t={model:"",flags:[]};if(this.node&&((n=this.platform)==null?void 0:n.startsWith("linux"))){let s=ra("fs");try{let r=s.readFileSync("/proc/cpuinfo").toString();for(let a of r.split(`
|
|
`))a.startsWith("model name")&&(t.model=a.match(/:(.*)/g)[0].replace(":","").trim()),a.startsWith("flags")&&(t.flags=a.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch(r){}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},be=new oI;var ix="2.4.1";var Oa;var ode=Number.MAX_SAFE_INTEGER;async function iI(e){return be.initial&&(Oa=null),Oa?e.debug&&oe("cached model:",Oa.modelUrl):(Oa=await Qe(tt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Oa||!Oa.modelUrl?oe("load model failed:",e.face.agegenderrace.modelPath):e.debug&&oe("load model:",Oa.modelUrl)),Oa}var sn,_0=[],lx=Number.MAX_SAFE_INTEGER,lI=0,uI=0;async function cI(e){var t,n;return be.initial&&(sn=null),sn?e.debug&&oe("cached model:",sn.modelUrl):(sn=await Qe(tt(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!sn||!sn.modelUrl?oe("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&oe("load model:",sn.modelUrl)),sn}async function ux(e,t,n,s){var o,i;if(!sn)return null;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>fe()-uI,a=lx<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&lI===s&&_0[n]?(lx++,_0[n]):(lx=0,new Promise(async l=>{let c=_e.resizeBilinear(e,[(sn==null?void 0:sn.inputs[0].shape)?sn.inputs[0].shape[2]:0,(sn==null?void 0:sn.inputs[0].shape)?sn.inputs[0].shape[1]:0],!1),u=sn==null?void 0:sn.predict(c),d=(await u.data())[0];_0[n]=Math.round(100*d)/100,lI=s,uI=fe(),Y([c,u]),l(_0[n])}))}var Er={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},cx={count:468,mouth:13,symmetryLine:[13,Er.midwayBetweenEyes[0]]},Kd={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},dx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Zd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],_i=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Vue=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Uue=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Gue=[33,133,362,263,1,78,308],pde=Vue.map(e=>Zd[e]),hde=Uue.map(e=>Zd[e]),fde=Gue.map(e=>Zd[e]);var dI=e=>({startPoint:Fe(e,[0,0],[-1,2]),endPoint:Fe(e,[0,2],[-1,2])});var Yd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],F0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],px=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],hx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],pI=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},fx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return _e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Jd=(e,t=1.5)=>{let n=F0(e),s=Yd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},Qd=e=>{let t=F0(e),n=Yd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},$0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},O0=[[1,0,0],[0,1,0],[0,0,1]],Hue=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),jue=(e,t)=>Hue(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var hI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Fi=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},que=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},fI=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Fi(e[r],que(t,a)))}return n},mI=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=hI(t[0],t[1]),o=fI(a,r),i=hI(-t[0],-t[1]);return fI(o,i)},Xue=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Fi(t[0],n),-Fi(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Kue=(e,t)=>[Fi(e,t[0]),Fi(e,t[1])];function gI(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function AI(e,t,n,s,r){let a=Yd({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?mI(n,[0,0]):O0,l=n!==0?o.map(d=>[...Kue(d,i),d[2]]):o,c=n!==0?Xue(s):O0,u=[...F0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Fi(u,c[0])),Math.round(d[1]+Fi(u,c[1])),Math.round(d[2]||0)])}function mx(e,t,n){let s=e.landmarks.length>=cx.count?cx.symmetryLine:Kd.symmetryLine,r=jue(e.landmarks[s[0]],e.landmarks[s[1]]),a=F0({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=_e.rotateWithOffset(t,r,0,o),l=mI(-r,a),c=fx({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=me(c,255);return Y(c),Y(i),[r,l,u]}var yI=6,Es,gx=[],xI=null,Rs=0,ep=()=>Rs;async function bI(e){var t,n;return be.initial&&(Es=null),Es?e.debug&&oe("cached model:",Es.modelUrl):(Es=await Qe(tt(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Es||!Es.modelUrl?oe("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&oe("load model:",Es.modelUrl)),Rs=Es.inputs[0].shape?Es.inputs[0].shape[2]:0,Rs===-1&&(Rs=64),gx=gI(Rs),xI=Qs(gx),Es}function Zue(e){let t=Fe(e,[0,1],[-1,2]),n=le(t,xI),s=Fe(e,[0,3],[-1,2]),r=me(s,Rs),a=me(n,Rs),o=me(r,2),i=xe(a,o),l=le(a,o),c=B(i,Rs),u=B(l,Rs);return iu([c,u],1)}async function vI(e,t){var c,u,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=j(()=>{let h=_e.resizeBilinear(e,[Rs,Rs]),f=xe(me(h,127.5),.5),m=Es==null?void 0:Es.execute(f),g;if(Array.isArray(m)){let b=m.sort((N,D)=>N.size-D.size),v=gt([b[0],b[2]],2),k=gt([b[1],b[3]],2),C=gt([k,v],1);g=rt(C,0)}else g=rt(m);let A=Zue(g),y=Fe(g,[0,0],[-1,1]),x=rt(Kn(y));return[g,A,x]}),a=await _e.nonMaxSuppressionAsync(s,r,((c=t.face.detector)==null?void 0:c.maxDetected)||0,((u=t.face.detector)==null?void 0:u.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();Y(a);let i=[],l=await r.data();for(let h=0;h<o.length;h++){let f=l[o[h]];if(f>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let m=Fe(s,[o[h],0],[1,-1]),g=j(()=>U(rt(Fe(n,[o[h],yI-1],[1,-1])),[yI,-1]));i.push({box:dI(m),landmarks:g,anchor:gx[o[h]],confidence:f}),Y(m)}}return Y(n),Y(s),Y(r),{boxes:i,scaleFactor:[e.shape[2]/Rs,e.shape[1]/Rs]}}var xx={};Fp(xx,{connected:()=>yx,kpt:()=>Ax});var Ax=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],yx={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var wI={initial:!0},rn=[null,null],Pa=[[0,0],[0,0]],bx=Number.MAX_SAFE_INTEGER,vx,P0=null,Ma=[[0,0],[0,0],[0,0],[0,0]],kI=0;async function II(e){var t,n,s;if(wI.initial&&(rn[0]=null),!rn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){rn[0]=await Qe(tt(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(rn[0].modelSignature.inputs);Pa[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Pa[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!rn[0]||!rn[0].modelUrl?oe("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&oe("load model:",rn[0].modelUrl)}else e.debug&&rn[0]&&oe("cached model:",rn[0].modelUrl);return rn[0]}async function SI(e){var t;if(wI.initial&&(rn[1]=null),rn[1])e.debug&&oe("cached model:",rn[1].modelUrl);else{rn[1]=await Qe(tt(e.modelBasePath,e.body.modelPath||""));let n=Object.values(rn[1].modelSignature.inputs);Pa[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Pa[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?vx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:vx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!rn[1]||!rn[1].modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",rn[1].modelUrl)}return rn[1]}function Yue(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function Jue(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Ma=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=ks(e,Ma),t.resize=_e.resizeBilinear(t.pad,[Pa[1][0],Pa[1][1]]);let n=me(t.resize,255);return Object.keys(t).forEach(s=>Y(t[s])),n}function Que(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Ma[2][0]+Ma[2][1])/t[0]-Ma[2][0],n.position[1]*(t[1]+Ma[1][0]+Ma[1][1])/t[1]-Ma[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var CI=e=>1-1/(1+Math.exp(e));async function ece(e,t,n){var h;let s={};s.input=await Jue(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await((h=rn[1])==null?void 0:h.execute(s.input,vx));let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=CI(o[l*f+3]),g=CI(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,y=[o[l*f+0]/Pa[1][0],o[l*f+1]/Pa[1][1],o[l*f+2]+0],x=[Math.trunc(n[0]*y[0]),Math.trunc(n[1]*y[1]),y[2]];i.push({part:Ax[f],positionRaw:y,position:x,score:A})}if(a<(t.body.minConfidence||0))return null;let c=Que(i,n),u=Yue(c,[n[0],n[1]]);Object.keys(s).forEach(f=>Y(s[f]));let d={};for(let[f,m]of Object.entries(yx)){let g=[];for(let A=0;A<m.length-1;A++){let y=c.find(b=>b.part===m[A]),x=c.find(b=>b.part===m[A+1]);y&&x&&y.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&g.push([y.position,x.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function wx(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>fe()-kI,r=bx<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&P0!==null?bx++:(P0=await ece(e,t,n),kI=fe(),bx=0),P0?[P0]:[]}var Hu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Us,$i=0,M0=[],TI=0,kx=Number.MAX_SAFE_INTEGER;async function NI(e){if(be.initial&&(Us=null),Us)e.debug&&oe("cached model:",Us.modelUrl);else{ju(["floormod"],e),Us=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Us.modelSignature.inputs);$i=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Us||!Us.modelUrl?oe("load model failed:",e.object.modelPath):e.debug&&oe("load model:",Us.modelUrl)}return Us}async function tce(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=rt(e);Y(e);let o=pn(a,6,1);Y(a);let i=bn([o[1],o[0],o[3],o[2]],1),l=rt(i);Y(i);let c=rt(o[4]),u=rt(o[5]);o.forEach(f=>Y(f));let d=await _e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Y(l),Y(c),Y(u);let p=await d.data();Y(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=Hu[g].label,[y,x]=[r[0][f][0]/$i,r[0][f][1]/$i],b=[y,x,r[0][f][2]/$i-y,r[0][f][3]/$i-x],v=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:v,boxRaw:b})}return s}async function Ix(e,t){let n=(t.object.skipTime||0)>fe()-TI,s=kx<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&M0.length>0?(kx++,M0):(kx=0,!be.kernels.includes("mod")||!be.kernels.includes("sparsetodense")?M0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=_e.resizeBilinear(e,[$i,$i]),i=t.object.enabled?Us==null?void 0:Us.execute(o,["tower_0/detections"]):null;TI=fe(),Y(o);let l=await tce(i,a,t);M0=l,r(l)}))}var Tx={};Fp(Tx,{connected:()=>Cx,kpt:()=>Sx});var Sx=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Cx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var an,EI=0,Un={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Nx=Number.MAX_SAFE_INTEGER;async function Ex(e){return be.initial&&(an=null),an?e.debug&&oe("cached model:",an.modelUrl):(an=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!an||!an.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",an.modelUrl)),an}function nce(e,t){let[n,s]=e.shape;return j(()=>{let r=(i,l)=>xe(i,B(me(i,Re(l,"int32")),Re(l,"int32"))),a=U(e,[s*n]),o=$n(a,0).dataSync()[0];if(o>t){let i=vs(a,0),l=r(i,n).dataSync()[0],c=me(i,Re(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function Rx(e,t){let n=(t.body.skipTime||0)>fe()-EI,s=Nx<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Un.keypoints).length>0?(Nx++,[Un]):(Nx=0,new Promise(async r=>{var d;let a=j(()=>{if(!(an==null?void 0:an.inputs[0].shape))return null;let p=_e.resizeBilinear(e,[an.inputs[0].shape[2],an.inputs[0].shape[1]],!1);return B(p,2).sub(1)}),o;if(t.body.enabled&&(o=await(an==null?void 0:an.predict(a))),EI=fe(),Y(a),o){Un.keypoints.length=0;let p=o.squeeze();Y(o);let h=p.unstack(2);Y(p);for(let f=0;f<h.length;f++){let[m,g,A]=nce(h[f],t.body.minConfidence);A>(((d=t.body)==null?void 0:d.minConfidence)||0)&&Un.keypoints.push({score:Math.round(100*A)/100,part:Sx[f],positionRaw:[m/an.inputs[0].shape[2],g/an.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/an.inputs[0].shape[2]),Math.round(e.shape[1]*g/an.inputs[0].shape[1])]})}h.forEach(f=>Y(f))}Un.score=Un.keypoints.reduce((p,h)=>h.score>p?h.score:p,0);let i=Un.keypoints.map(p=>p.position[0]),l=Un.keypoints.map(p=>p.position[1]);Un.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=Un.keypoints.map(p=>p.positionRaw[0]),u=Un.keypoints.map(p=>p.positionRaw[1]);Un.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[p,h]of Object.entries(Cx)){let f=[];for(let m=0;m<h.length-1;m++){let g=Un.keypoints.find(y=>y.part===h[m]),A=Un.keypoints.find(y=>y.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}Un.annotations[p]=f}r([Un])}))}var sce=["angry","disgust","fear","happy","sad","surprise","neutral"],on,z0=[],RI=0,DI=0,Dx=Number.MAX_SAFE_INTEGER,_x=[.2989,.587,.114];async function _I(e){var t,n;return be.initial&&(on=null),on?e.debug&&oe("cached model:",on.modelUrl):(on=await Qe(tt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!on||!on.modelUrl?oe("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&oe("load model:",on.modelUrl)),on}async function Fx(e,t,n,s){var o,i;if(!on)return null;let r=Dx<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>fe()-DI;return t.skipAllowed&&a&&r&&RI===s&&z0[n]&&z0[n].length>0?(Dx++,z0[n]):(Dx=0,new Promise(async l=>{var u,d;let c=[];if((u=t.face.emotion)==null?void 0:u.enabled){let p=_e.resizeBilinear(e,[(on==null?void 0:on.inputs[0].shape)?on.inputs[0].shape[2]:0,(on==null?void 0:on.inputs[0].shape)?on.inputs[0].shape[1]:0],!1),[h,f,m]=pn(p,3,3);Y(p);let g=B(h,_x[0]),A=B(f,_x[1]),y=B(m,_x[2]);Y(h),Y(f),Y(m);let x=Ph([g,A,y]);Y(g),Y(A),Y(y);let b=j(()=>B(xe(x,.5),2));Y(x);let v=await(on==null?void 0:on.predict(b));DI=fe();let k=await v.data();Y(v);for(let C=0;C<k.length;C++)k[C]>(((d=t.face.emotion)==null?void 0:d.minConfidence)||0)&&c.push({score:Math.min(.99,Math.trunc(100*k[C])/100),emotion:sce[C]});c.sort((C,N)=>N.score-C.score),Y(b)}z0[n]=c,RI=s,l(c)}))}var Gs,za=0,rce=2.3,$x=Er.leftEyeLower0,Ox=Er.rightEyeLower0,qu={leftBounds:[$x[0],$x[$x.length-1]],rightBounds:[Ox[0],Ox[Ox.length-1]]},Xu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function FI(e){var t,n;return be.initial&&(Gs=null),Gs?e.debug&&oe("cached model:",Gs.modelUrl):(Gs=await Qe(tt(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!Gs||!Gs.modelUrl?oe("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&oe("load model:",Gs.modelUrl)),za=Gs.inputs[0].shape?Gs.inputs[0].shape[2]:0,za===-1&&(za=64),Gs}function L0(e,t,n,s){for(let r=0;r<dx.length;r++){let{key:a,indices:o}=dx[r],i=Er[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var ace=e=>{let t=e[qu.leftBounds[0]][2],n=e[qu.rightBounds[0]][2];return t-n},$I=(e,t,n,s,r=!1,a)=>{let o=Qd(Jd($0([e[n],e[s]]),rce)),i=Yd(o),l=_e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[za,za]);if(r&&be.kernels.includes("flipleftright")){let c=_e.flipLeftRight(l);Y(l),l=c}return{box:o,boxSize:i,crop:l}},OI=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Xu.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/za:o/za)*n[0]+t.startPoint[0],i/za*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Xu.index)}},PI=(e,t,n)=>{let s=e[Er[`${n}EyeUpper0`][Xu.upperCenter]][2],r=e[Er[`${n}EyeLower0`][Xu.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function MI(e,t,n,s){if(!Gs)return n.debug&&oe("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=$I(e,t,qu.leftBounds[0],qu.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=$I(e,t,qu.rightBounds[0],qu.rightBounds[1],!0,s),u=gt([o,c]);Y(o),Y(c);let d=Gs.predict(u);Y(u);let p=await d.data();Y(d);let h=p.slice(0,Xu.numCoordinates*3),{rawCoords:f,iris:m}=OI(h,r,a,!0),g=p.slice(Xu.numCoordinates*3),{rawCoords:A,iris:y}=OI(g,i,l),x=ace(e);Math.abs(x)<30?(L0(e,f,"left",null),L0(e,A,"right",null)):x<1?L0(e,f,"left",["EyeUpper0","EyeLower0"]):L0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=PI(e,m,"left"),v=PI(e,y,"right");return e.concat(b).concat(v)}var Rr=[],Hs=null,ur=0,Px=Number.MAX_SAFE_INTEGER,zI=0,LI=0;async function BI(e,t){var i,l,c,u,d,p,h,f,m,g,A;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>fe()-zI,s=Px<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);if(!t.skipAllowed||!n||!s||LI===0){let y=await vI(e,t);zI=fe(),Rr=[];for(let x of y.boxes){let b=await x.box.startPoint.data(),v=await x.box.endPoint.data(),k=await x.landmarks.array();Rr.push({startPoint:b,endPoint:v,landmarks:k,confidence:x.confidence})}y.boxes.forEach(x=>Y([x.box.startPoint,x.box.endPoint,x.landmarks]));for(let x=0;x<Rr.length;x++){let b=pI({startPoint:Rr[x].startPoint,endPoint:Rr[x].endPoint},y.scaleFactor),v=Jd(b),k=Qd(v);Rr[x]={...k,confidence:Rr[x].confidence,landmarks:Rr[x].landmarks}}Px=0}else Px++;let r=[],a=[],o=0;for(let y of Rr){let x=0,b,v={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(((c=t.face.detector)==null?void 0:c.rotation)&&((u=t.face.mesh)==null?void 0:u.enabled)&&be.kernels.includes("rotatewithoffset"))[x,b,v.tensor]=mx(y,e,ur);else{b=O0;let k=fx({startPoint:y.startPoint,endPoint:y.endPoint},e,((d=t.face.mesh)==null?void 0:d.enabled)?[ur,ur]:[ep(),ep()]);v.tensor=me(k,255),Y(k)}if(v.boxScore=Math.round(100*y.confidence)/100,(p=t.face.mesh)==null?void 0:p.enabled)if(!Hs)t.debug&&oe("face mesh detection requested, but model is not loaded");else{let[k,C,N]=Hs.execute(v.tensor);Y(k);let D=(await C.data())[0];Y(C);let P=U(N,[-1,3]),E=await P.array();if(Y(N),Y(P),D<(((h=t.face.detector)==null?void 0:h.minConfidence)||1))y.confidence=D;else{((f=t.face.iris)==null?void 0:f.enabled)&&(E=await MI(E,v.tensor,t,ur)),v.mesh=AI(E,y,x,b,ur),v.meshRaw=v.mesh.map(F=>[F[0]/(e.shape[2]||0),F[1]/(e.shape[1]||0),(F[2]||0)/ur]),y={...Jd($0(v.mesh),1.5),confidence:y.confidence};for(let F of Object.keys(Er))v.annotations[F]=Er[F].map(T=>v.mesh[T]);((m=t.face.detector)==null?void 0:m.rotation)&&t.face.mesh.enabled&&((g=t.face.description)==null?void 0:g.enabled)&&be.kernels.includes("rotatewithoffset")&&(Y(v.tensor),[x,b,v.tensor]=mx(y,e,ur)),v.box=px(y,e),v.boxRaw=hx(y,e),v.score=Math.round(100*D||100*y.confidence||0)/100,v.faceScore=Math.round(100*D)/100,y={...Qd(y),confidence:y.confidence,faceConfidence:D}}}else{v.box=px(y,e),v.boxRaw=hx(y,e),v.score=Math.round(100*y.confidence||0)/100,v.mesh=y.landmarks.map(k=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*k[0]/ep(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*k[1]/ep()]),v.meshRaw=v.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/ur]);for(let k of Object.keys(Kd))v.annotations[k]=[v.mesh[Kd[k]]]}r.push(v),a.push(y)}return((A=t.face.mesh)==null?void 0:A.enabled)&&(Rr=a.filter(y=>{var x;return y.confidence>(((x=t.face.detector)==null?void 0:x.minConfidence)||0)})),LI=r.length,r}async function WI(e){var t,n;return be.initial&&(Hs=null),Hs?e.debug&&oe("cached model:",Hs.modelUrl):(Hs=await Qe(tt(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!Hs||!Hs.modelUrl?oe("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&oe("load model:",Hs.modelUrl)),ur=Hs.inputs[0].shape?Hs.inputs[0].shape[2]:0,ur===-1&&(ur=64),Hs}var VI=_i,UI=Zd;var Gn,B0=[],GI=0,HI=0,Mx=Number.MAX_SAFE_INTEGER;async function jI(e){var n,s;let t=tt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return be.initial&&(Gn=null),Gn?e.debug&&oe("cached model:",t):(Gn=await Qe(t),Gn?e.debug&&oe("load model:",t):oe("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Gn}function zx(e){return j(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!(Gn==null?void 0:Gn.inputs[0].shape))return null;let r=n.shape.length===3?_e.cropAndResize(Bt(n,0),s,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):_e.cropAndResize(n,s,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]);return B(r,255)})}async function Lx(e,t,n,s){var o,i,l,c;if(!Gn)return null;let r=Mx<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>fe()-GI;return t.skipAllowed&&r&&a&&HI===s&&((l=B0[n])==null?void 0:l.age)&&((c=B0[n])==null?void 0:c.age)>0?(Mx++,B0[n]):(Mx=0,new Promise(async u=>{var p,h;let d={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)==null?void 0:p.enabled){let f=zx(e),m=await(Gn==null?void 0:Gn.predict(f));GI=fe(),Y(f);let A=await(await m.find(D=>D.shape[1]===1)).data(),y=Math.trunc(200*Math.abs(A[0]-.5))/100;y>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(d.gender=A[0]<=.5?"female":"male",d.genderScore=Math.min(.99,y));let x=vs(m.find(D=>D.shape[1]===100),1),b=(await x.data())[0];Y(x);let k=await m.find(D=>D.shape[1]===100).data();d.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let C=m.find(D=>D.shape[1]===1024),N=C?await C.data():[];d.descriptor=Array.from(N),m.forEach(D=>Y(D))}B0[n]=d,HI=s,u(d)}))}function W0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function tp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function qI(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return _e.cropAndResize(t,a,[0],n)}function XI(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function V0(e,t=1.5){let n=tp(e),s=W0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function U0(e){let t=tp(e),n=W0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function oce(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function KI(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return oce(n)}var ZI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function La(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function ice(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function YI(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(La(e[r],ice(t,a)))}return n}function Bx(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=ZI(t[0],t[1]),o=YI(a,r),i=ZI(-t[0],-t[1]);return YI(o,i)}function JI(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-La(t[0],n),-La(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Wx(e,t){return[La(e,t[0]),La(e,t[1])]}var QI=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Vx=class{constructor(t){he(this,"model");he(this,"anchors");he(this,"anchorsTensor");he(this,"inputSize");he(this,"inputSizeTensor");he(this,"doubleInputSizeTensor");this.model=t,this.anchors=QI.map(n=>[n.x,n.y]),this.anchorsTensor=Qs(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=jt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=jt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return j(()=>{let n=Fe(t,[0,0],[-1,2]),s=Fe(t,[0,2],[-1,2]),r=le(me(n,this.inputSizeTensor),this.anchorsTensor),a=me(s,this.doubleInputSizeTensor),o=B(xe(r,a),this.inputSizeTensor),i=B(le(r,a),this.inputSizeTensor);return iu([o,i],1)})}normalizeLandmarks(t,n){return j(()=>{let s=le(me(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=rt(s.batched),s.scores=j(()=>rt(Kn(Fe(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=Fe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await _e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=Fe(s.norm,[i,0],[1,-1]),c=j(()=>U(this.normalizeLandmarks(Fe(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))Y(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=j(()=>xe(me(_e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Y(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();Y(l.box),Y(l.palmLandmarks),i.push(XI({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};var lce=5,eS=1.65,tS=[0,5,9,13,17,1,2],uce=0,cce=2,nS=0,Ux=class{constructor(t,n){he(this,"handDetector");he(this,"handPoseModel");he(this,"inputSize");he(this,"storedBoxes");he(this,"skipped");he(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Wx([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return V0(U0(r),lce)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=V0(U0(n),eS);s.palmLandmarks=[];for(let r=0;r<tS.length;r++)s.palmLandmarks.push(t[tS[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=W0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Bx(s,[0,0]),c=i.map(h=>[...Wx(h,l),h[2]]),u=JI(r),d=[...tp(n),1],p=[La(d,u[0]),La(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>fe()-nS,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?KI(c.palmLandmarks[uce],c.palmLandmarks[cce]):0,d=tp(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&be.kernels.includes("rotatewithoffset")?_e.rotateWithOffset(t,u,0,p):t.clone(),f=Bx(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=qI(m,h,[this.inputSize,this.inputSize]),A=me(g,255);Y(g),Y(h);let[y,x]=await this.handPoseModel.predict(A);nS=fe(),Y(A);let b=(await y.data())[0];if(Y(y),b>=n.hand.minConfidence/4){let v=U(x,[-1,3]),k=await v.array();Y(x),Y(v);let C=this.transformRawCoords(k,m,u,f),N=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...N,confidence:b};let D={landmarks:C,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:N.startPoint,bottomRight:N.endPoint}};i.push(D)}else this.storedBoxes[l]=null;Y(x)}else{let u=V0(U0(c),eS),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var qe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>qe.nameMapping[e],getPoints:e=>qe.pointsMapping[e]},ns={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ns.nameMapping[e]},je={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>je.nameMapping[e]},G0=class{constructor(t){he(this,"name");he(this,"curls");he(this,"directions");he(this,"weights");he(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var Ba=new G0("thumbs up");Ba.addCurl(qe.thumb,ns.none,1);Ba.addDirection(qe.thumb,je.verticalUp,1);Ba.addDirection(qe.thumb,je.diagonalUpLeft,.25);Ba.addDirection(qe.thumb,je.diagonalUpRight,.25);for(let e of[qe.index,qe.middle,qe.ring,qe.pinky])Ba.addCurl(e,ns.full,1),Ba.addDirection(e,je.horizontalLeft,1),Ba.addDirection(e,je.horizontalRight,1);var Zt=new G0("victory");Zt.addCurl(qe.thumb,ns.half,.5);Zt.addCurl(qe.thumb,ns.none,.5);Zt.addDirection(qe.thumb,je.verticalUp,1);Zt.addDirection(qe.thumb,je.diagonalUpLeft,1);Zt.addCurl(qe.index,ns.none,1);Zt.addDirection(qe.index,je.verticalUp,.75);Zt.addDirection(qe.index,je.diagonalUpLeft,1);Zt.addCurl(qe.middle,ns.none,1);Zt.addDirection(qe.middle,je.verticalUp,1);Zt.addDirection(qe.middle,je.diagonalUpLeft,.75);Zt.addCurl(qe.ring,ns.full,1);Zt.addDirection(qe.ring,je.verticalUp,.2);Zt.addDirection(qe.ring,je.diagonalUpLeft,1);Zt.addDirection(qe.ring,je.horizontalLeft,.2);Zt.addCurl(qe.pinky,ns.full,1);Zt.addDirection(qe.pinky,je.verticalUp,.2);Zt.addDirection(qe.pinky,je.diagonalUpLeft,1);Zt.addDirection(qe.pinky,je.horizontalLeft,.2);Zt.setWeight(qe.index,2);Zt.setWeight(qe.middle,2);var sS=[Ba,Zt];var dce=.7,Oi={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function rS(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function aS(e,t){if(!e||!t)return[0,0];let n=rS(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=rS(e[1],e[2],t[1],t[2]);return[n,s]}function oS(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function pce(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Oi.NO_CURL_START_LIMIT?A=ns.none:g>Oi.HALF_CURL_START_LIMIT?A=ns.half:A=ns.full,A}function iS(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=je.horizontalLeft:r=je.horizontalRight:s===Math.abs(t)?t>0?r=je.horizontalLeft:r=je.horizontalRight:n>0?r=je.horizontalLeft:r=je.horizontalRight,r}function lS(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=je.verticalDown:r=je.verticalUp:s===Math.abs(t)?t<0?r=je.verticalDown:r=je.verticalUp:n<0?r=je.verticalDown:r=je.verticalUp,r}function hce(e,t,n,s,r,a,o,i){let l,c=lS(e,t,n,s),u=iS(r,a,o,i);return c===je.verticalUp?u===je.horizontalLeft?l=je.diagonalUpLeft:l=je.diagonalUpRight:u===je.horizontalLeft?l=je.diagonalDownLeft:l=je.diagonalDownRight,l}function fce(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Oi.DISTANCE_VOTE_POWER:m>.66?h+=Oi.DISTANCE_VOTE_POWER:f+=Oi.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+c*c),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],C=n[1];x===g?(k=n[0],C=n[1]):x===y&&(b=t[0],v=t[1]);let P=aS([b,v],[k,C]),E=oS(P,Oi.TOTAL_ANGLE_VOTE_POWER);p+=E[0],h+=E[1],f+=E[2];for(let T of s){let M=oS(T,Oi.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let F;return p===Math.max(p,h,f)?F=lS(l,i,c,d):f===Math.max(h,f)?F=iS(a,r,o,u):F=hce(l,i,c,d,a,r,o,u),F}function uS(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of qe.all){let o=qe.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=aS(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of qe.all){let o=a===qe.thumb?1:0,i=qe.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=pce(l,c,u),p=fce(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function H0(e){if(!e||e.length===0)return null;let t=uS(e),n={};for(let s of qe.all)n[qe.getName(s)]={curl:ns.getName(t.curls[s]),direction:je.getName(t.directions[s])};return n}function cS(e){let t=[];if(!e||e.length===0)return t;let n=uS(e);for(let s of sS){let r=s.matchAgainst(n.curls,n.directions);r>=dce&&t.push({name:s.name,confidence:r})}return t}var dS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},qr,Xr,pS;async function Gx(e,t){let n=await pS.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(dS))a[u]=dS[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=H0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function Hx(e){var n,s,r,a,o,i;be.initial&&(qr=null,Xr=null),!qr||!Xr?([qr,Xr]=await Promise.all([e.hand.enabled?Qe(tt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?Qe(tt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!qr||!qr.modelUrl?oe("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&oe("load model:",qr.modelUrl),!Xr||!Xr.modelUrl?oe("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&oe("load model:",Xr.modelUrl))):(e.debug&&oe("cached model:",qr.modelUrl),e.debug&&oe("cached model:",Xr.modelUrl));let t=new Vx(qr);return pS=new Ux(t,Xr),[qr,Xr]}function Pi(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function hS(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function j0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function jx(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var kt=[null,null],mce=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Wa=[[0,0],[0,0]],gce=["hand","fist","pinch","point","face","tip","pinchtip"],fS=4,mS=1.6,Ace=512,yce=1.4,q0=Number.MAX_SAFE_INTEGER,qx=0,Kr=[0,0],Ut={boxes:[],hands:[]},gS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function AS(e){var t,n;if(be.initial&&(kt[0]=null),kt[0])e.debug&&oe("cached model:",kt[0].modelUrl);else{ju(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),kt[0]=await Qe(tt(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(kt[0].modelSignature.inputs);Wa[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,Wa[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!kt[0]||!kt[0].modelUrl?oe("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&oe("load model:",kt[0].modelUrl)}return kt[0]}async function yS(e){var t,n;if(be.initial&&(kt[1]=null),kt[1])e.debug&&oe("cached model:",kt[1].modelUrl);else{kt[1]=await Qe(tt(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(kt[1].modelSignature.inputs);Wa[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,Wa[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!kt[1]||!kt[1].modelUrl?oe("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&oe("load model:",kt[1].modelUrl)}return kt[1]}async function xce(e,t){let n=[];if(!e||!kt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Ace),o=Math.round(a*r/8)*8;s.resize=_e.resizeBilinear(e,[a,o]),s.cast=de(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await kt[0].executeAsync(s.cast,mce),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=On(s.scores,1);Y(i[fS]),i.splice(fS,1),s.filtered=bn(i,1),Y(i),s.max=$n(s.filtered,1),s.argmax=vs(s.filtered,1);let l=0;s.nms=await _e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=Fe(s.boxes,p,1),f=await h.data();Y(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=j0(m,yce),A=jx(g),y=[Math.trunc(m[0]*Kr[0]),Math.trunc(m[1]*Kr[1]),Math.trunc(m[2]*Kr[0]),Math.trunc(m[3]*Kr[1])],x=u[p],b=gce[d[p]],v={id:l++,score:x,box:y,boxRaw:g,boxCrop:A,label:b};n.push(v)}return Object.keys(s).forEach(p=>Y(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Xx(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&kt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=_e.cropAndResize(e,[t.boxCrop],[0],[Wa[1][0],Wa[1][1]],"bilinear"),r.cast=de(r.crop,"float32"),r.div=me(r.cast,255),[r.score,r.keypoints]=kt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=U(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/Wa[1][1],u[1]/Wa[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[Kr[0]*(u[0]+t.boxRaw[0]),Kr[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=H0(s.keypoints);for(let u of Object.keys(gS))s.annotations[u]=gS[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>Y(r[i]))}return s}async function Kx(e,t){var r,a;if(!kt[0]||!kt[1]||!((r=kt[0])==null?void 0:r.inputs[0].shape)||!((a=kt[1])==null?void 0:a.inputs[0].shape))return[];Kr=[e.shape[2]||0,e.shape[1]||0],q0++;let n=(t.hand.skipTime||0)>fe()-qx,s=q0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Ut.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>fe()-qx,l=q0<3*(t.hand.skipFrames||0);t.skipAllowed&&Ut.hands.length===t.hand.maxDetected?Ut.hands=await Promise.all(Ut.boxes.map(u=>Xx(e,u,t))):t.skipAllowed&&i&&l&&Ut.hands.length>0?Ut.hands=await Promise.all(Ut.boxes.map(u=>Xx(e,u,t))):(Ut.boxes=await xce(e,t),qx=fe(),Ut.hands=await Promise.all(Ut.boxes.map(u=>Xx(e,u,t))),q0=0);let c=[...Ut.boxes];if(Ut.boxes.length=0,t.cacheSensitivity>0)for(let u=0;u<Ut.hands.length;u++){let d=hS(Ut.hands[u].keypoints,Kr);if(d.box[2]/(e.shape[2]||1)>.05&&d.box[3]/(e.shape[1]||1)>.05&&Ut.hands[u].fingerScore&&Ut.hands[u].fingerScore>(t.hand.minConfidence||0)){let p=j0(d.box,mS),h=j0(d.boxRaw,mS),f=jx(h);Ut.boxes.push({...c[u],box:p,boxRaw:h,boxCrop:f})}}for(let u=0;u<Ut.hands.length;u++){let d=Pi(Ut.hands[u].keypoints,Kr);Ut.hands[u].box=d.box,Ut.hands[u].boxRaw=d.boxRaw}o(Ut.hands)})}var Qx={};Fp(Qx,{connected:()=>K0,horizontal:()=>Zx,kpt:()=>X0,relative:()=>Jx,vertical:()=>Yx});var X0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Zx=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Yx=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Jx=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],K0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xS=.005,gs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function e5(e){for(let t of Zx){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Yx){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Jx){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function bS(e){for(let t=0;t<e.length;t++)if(e[t]&&gs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-gs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-gs.keypoints[t].positionRaw[1])];n[0]<xS&&n[1]<xS?e[t]=gs.keypoints[t]:gs.keypoints[t]=e[t]}else gs.keypoints[t]=e[t];return e}function vS(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;gs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=ks(e,gs.padding),n.resize=_e.resizeBilinear(n.pad,[t,t]);let s=de(n.resize,"int32");return Object.keys(n).forEach(r=>Y(n[r])),s}function wS(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+gs.padding[2][0]+gs.padding[2][1])/t[0]-gs.padding[2][0],s.position[1]*(t[1]+gs.padding[1][0]+gs.padding[1][1])/t[1]-gs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Pi(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Nn,Z0=0,t5=Number.MAX_SAFE_INTEGER,Mi={boxes:[],bodies:[],last:0};async function kS(e){return be.initial&&(Nn=null),Nn?e.debug&&oe("cached model:",Nn.modelUrl):(ju(["size"],e),Nn=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!Nn||!Nn.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",Nn.modelUrl)),Z0=Nn.inputs[0].shape?Nn.inputs[0].shape[2]:0,Z0===-1&&(Z0=256),Nn}async function bce(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:X0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Pi(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(K0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return e5(u),i.push(u),i}async function vce(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:X0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Pi(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(K0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(y=>y.part===h[m]),A=l.find(y=>y.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};e5(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function n5(e,t){if(!Nn||!(Nn==null?void 0:Nn.inputs[0].shape))return[];t.skipAllowed||(Mi.boxes.length=0),t5++;let n=(t.body.skipTime||0)>fe()-Mi.last,s=t5<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Mi.bodies:new Promise(async r=>{let a={};t5=0,a.input=vS(e,Z0),a.res=await(Nn==null?void 0:Nn.predict(a.input)),Mi.last=fe();let o=await a.res.array();Mi.bodies=a.res.shape[2]===17?await bce(o,t,e,[0,0,1,1]):await vce(o,t,e,[0,0,1,1]);for(let i of Mi.bodies)wS(i,[e.shape[2]||1,e.shape[1]||1]),bS(i.keypoints);Object.keys(a).forEach(i=>Y(a[i])),r(Mi.bodies)})}var As,Y0=[],IS=0,s5=Number.MAX_SAFE_INTEGER,J0=2.5;async function SS(e){if(!As||be.initial){As=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(As.modelSignature.inputs);if(As.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!As.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!As||!As.modelUrl?oe("load model failed:",e.object.modelPath):e.debug&&oe("load model:",As.modelUrl)}else e.debug&&oe("cached model:",As.modelUrl);return As}async function wce(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])j(async()=>{var g,A;let u=c*13,d=(g=e.find(y=>y.shape[1]===u**2&&y.shape[2]===Hu.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===u**2&&y.shape[2]<Hu.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%u))/u,k=(.5+Math.trunc(y/u))/u,C=f[y].map(G=>G*(u/c/t)),[N,D]=[v-J0/c*C[0],k-J0/c*C[1]],[P,E]=[v+J0/c*C[2]-N,k+J0/c*C[3]-D],F=[N,D,P,E];F=F.map(G=>Math.max(0,Math.min(G,1)));let T=[F[0]*n[0],F[1]*n[1],F[2]*n[0],F[3]*n[1]],M={id:r++,score:Math.round(100*b)/100,class:x+1,label:Hu[x].label,box:T.map(G=>Math.trunc(G)),boxRaw:F};a.push(M)}}});e.forEach(c=>Y(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await _e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),Y(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function r5(e,t){let n=(t.object.skipTime||0)>fe()-IS,s=s5<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Y0.length>0?(s5++,Y0):(s5=0,!be.kernels.includes("mod")||!be.kernels.includes("sparsetodense")?Y0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=_e.resizeBilinear(e,[As.inputSize,As.inputSize],!1),i=me(o,255),l=i.transpose([0,3,1,2]);Y(i),Y(o);let c;t.object.enabled&&(c=await As.predict(l)),IS=fe(),Y(l);let u=await wce(c,As.inputSize,a,t);Y0=u,r(u)}))}var np=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],kce=np.length,sp=np.reduce((e,t,n)=>(e[t]=n,e),{}),Ice=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],rhe=Ice.map(([e,t])=>[sp[e],sp[t]]),CS=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function TS(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function NS(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var a5=class{constructor(t,n){he(this,"priorityQueue");he(this,"numberOfElements");he(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function o5(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+kce)}}function i5(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=o5(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function l5(e,t,n){return e<t?t:e>n?n:e}function ES(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function u5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ys,Sce=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],Q0=1,Ku=16,Cce=50**2;function RS(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:l5(Math.round(A.y/Ku),0,y-1),x:l5(Math.round(A.x/Ku),0,x-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=u5(t.position,p);for(let A=0;A<o;A++){let y=l(f,c,u),x=o5(y.y,y.x,n,r);f=u5({x:y.x*Ku,y:y.y*Ku},{x:x.x,y:x.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:np[n],score:g}}function Tce(e,t,n,s,r){let a=CS.map(([p,h])=>[sp[p],sp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=i5(e.part,Ku,n);u[e.part.id]={score:e.score,part:np[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=RS(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=RS(p,u[h],f,t,n,s))}return u}function Nce(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-Q0,0),c=Math.min(n+Q0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-Q0,0),p=Math.min(s+Q0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function Ece(e,t){let[n,s,r]=t.shape,a=new a5(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||Nce(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function DS(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?ES(n,t,a.y,a.x)<=Cce:!1})}function Rce(e,t){return t.reduce((s,{position:r,score:a},o)=>(DS(e,r,o)||(s+=a),s),0)/t.length}function Dce(e,t,n,s,r,a){let o=[],i=Ece(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=i5(l.part,Ku,e);if(DS(o,c,l.part.id))continue;let u=Tce(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=Rce(o,u),p=TS(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function c5(e,t){let n=j(()=>{if(!ys.inputs[0].shape)return[];let o=_e.resizeBilinear(e,[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]),i=xe(me(de(o,"float32"),127.5),1),c=ys.execute(i,Sce).map(u=>rt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Y(o);let r=await Dce(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ys.inputs[0].shape?NS(r,[e.shape[1],e.shape[2]],[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]):[]}async function _S(e){return!ys||be.initial?(ys=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!ys||!ys.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",ys.modelUrl)):e.debug&&oe("cached model:",ys.modelUrl),ys}var Ds,d5=!1;async function p5(e){return!Ds||be.initial?(Ds=await Qe(tt(e.modelBasePath,e.segmentation.modelPath||"")),!Ds||!Ds.modelUrl?oe("load model failed:",e.segmentation.modelPath):e.debug&&oe("load model:",Ds.modelUrl)):e.debug&&oe("cached model:",Ds.modelUrl),Ds}async function FS(e,t,n){var m,g;if(d5)return{data:[],canvas:null,alpha:null};d5=!0,Ds||await p5(n);let s=Gu(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=_e.resizeBilinear(s.tensor,[Ds.inputs[0].shape?Ds.inputs[0].shape[1]:0,Ds.inputs[0].shape?Ds.inputs[0].shape[2]:0],!1),Y(s.tensor),o.norm=me(o.resize,255),o.res=Ds.predict(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ci(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=_e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=_e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(be.node&&!be.Canvas&&typeof ImageData=="undefined")return n.debug&&oe("canvas support missing"),Object.keys(o).forEach(A=>Y(o[A])),{data:i,canvas:null,alpha:null};let l=Vn(r,a);await Ms.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Vn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Vn(r,a);let A=Gu(t,n);Y(A.tensor);let y=f.getContext("2d");y.drawImage(A.canvas,0,0,f.width,f.height),y.drawImage(d,0,0)}return Object.keys(o).forEach(A=>Y(o[A])),d5=!1,{data:i,canvas:f||d,alpha:l}}var h5=class{constructor(){he(this,"age",null);he(this,"agegenderrace",null);he(this,"blazeposedetect",null);he(this,"blazepose",null);he(this,"centernet",null);he(this,"efficientpose",null);he(this,"embedding",null);he(this,"emotion",null);he(this,"facedetect",null);he(this,"faceiris",null);he(this,"facemesh",null);he(this,"faceres",null);he(this,"gender",null);he(this,"handpose",null);he(this,"handskeleton",null);he(this,"handtrack",null);he(this,"movenet",null);he(this,"nanodet",null);he(this,"posenet",null);he(this,"segmentation",null);he(this,"antispoof",null)}};function f5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function $S(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,k,C,N,D,P,E,F,T,M,G;be.initial&&f5(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Hx(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Hx(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=bI(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=WI(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=FI(e.config)),e.config.face.enabled&&((i=e.config.face.antispoof)==null?void 0:i.enabled)&&!e.models.antispoof&&(e.models.antispoof=cI(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((c=(l=e.config.hand.detector)==null?void 0:l.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handtrack=AS(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((d=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:d.includes("handtrack"))&&(e.models.handskeleton=yS(e.config)),e.config.body.enabled&&!e.models.posenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("posenet"))&&(e.models.posenet=_S(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=Ex(e.config)),e.config.body.enabled&&!e.models.blazepose&&((A=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=SI(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((y=e.config.body.detector)==null?void 0:y.modelPath)&&((b=(x=e.config.body)==null?void 0:x.modelPath)==null?void 0:b.includes("blazepose"))&&(e.models.blazeposedetect=II(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((k=(v=e.config.body)==null?void 0:v.modelPath)==null?void 0:k.includes("efficientpose"))&&(e.models.efficientpose=Ex(e.config)),e.config.body.enabled&&!e.models.movenet&&((N=(C=e.config.body)==null?void 0:C.modelPath)==null?void 0:N.includes("movenet"))&&(e.models.movenet=kS(e.config)),e.config.object.enabled&&!e.models.nanodet&&((P=(D=e.config.object)==null?void 0:D.modelPath)==null?void 0:P.includes("nanodet"))&&(e.models.nanodet=SS(e.config)),e.config.object.enabled&&!e.models.centernet&&((F=(E=e.config.object)==null?void 0:E.modelPath)==null?void 0:F.includes("centernet"))&&(e.models.centernet=NI(e.config)),e.config.face.enabled&&((T=e.config.face.emotion)==null?void 0:T.enabled)&&!e.models.emotion&&(e.models.emotion=_I(e.config)),e.config.face.enabled&&((M=e.config.face.description)==null?void 0:M.enabled)&&!e.models.faceres&&(e.models.faceres=jI(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=p5(e.config)),e.config.face.enabled&&((G=e.config.face.agegenderrace)==null?void 0:G.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=iI(e.config));for await(let H of Object.keys(e.models))e.models[H]&&typeof e.models[H]!="undefined"&&(e.models[H]=await e.models[H])}async function OS(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&oe("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&oe("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&oe("model validation:",n,i)}}}var Ot={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function _ce(){let e=Ot.gl;!e||(Ot.extensions=e.getSupportedExtensions())}async function PS(e){var t;if(e.config.backend==="humangl"&&(Ot.name in as().registry&&(!Ot.gl||!Ot.gl.getParameter(Ot.gl.VERSION))&&(oe("error: humangl backend invalid context"),f5(e)),!gA(Ot.name))){try{Ot.canvas=await Vn(100,100)}catch(s){oe("error: cannot create canvas:",s);return}try{Ot.gl=(t=Ot.canvas)==null?void 0:t.getContext("webgl2",Ot.webGLattr),Ot.canvas&&(Ot.canvas.addEventListener("webglcontextlost",async s=>{throw oe("error: humangl:",s.type),oe("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),Ot.canvas.addEventListener("webglcontextrestored",s=>{oe("error: humangl context restored:",s)}),Ot.canvas.addEventListener("webglcontextcreationerror",s=>{oe("error: humangl context create:",s)}))}catch(s){oe("error: cannot get WebGL context:",s);return}try{l0(2,Ot.gl)}catch(s){oe("error: cannot set WebGL context:",s);return}try{let s=new A0(Ot.gl);ru(Ot.name,()=>new zu(s),Ot.priority)}catch(s){oe("error: cannot register WebGL backend:",s);return}try{Or("webgl").forEach(r=>{let a={...r,backendName:Ot.name};da(a)})}catch(s){oe("error: cannot update WebGL backend registration:",s);return}let n=Ar().getGPGPUContext?Ar().getGPGPUContext().gl:null;if(n)oe(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{oe("error: no current gl context:",n,Ot.gl);return}try{fr.set("WEBGL_VERSION",2)}catch(s){oe("error: cannot set WebGL backend flags:",s);return}_ce(),oe("backend registered:",Ot.name)}}async function em(e,t=!1){if(e.state="backend",t||be.initial||e.config.backend&&e.config.backend.length>0&&Ys()!==e.config.backend){let n=fe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&oe("running inside web worker"),be.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&oe("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),be.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&oe(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),be.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")oe("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&oe("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await PS(e);let s=Object.keys(as().registryFactory);if(e.config.debug&&oe("available backends:",s),s.includes(e.config.backend)||(oe(`error: backend ${e.config.backend} not found in registry`),e.config.backend=be.node?"tensorflow":"webgl",e.config.debug&&oe(`override: setting backend ${e.config.backend}`)),e.config.debug&&oe("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&oe("wasm path:",e.config.wasmPath),typeof(Di==null?void 0:Di.setWasmPaths)!="undefined")await K8(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await ne().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await ne().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&oe(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&oe("warning: wasm simd support is not enabled")}try{await t3(e.config.backend),await $h()}catch(r){return oe("error: cannot set backend:",e.config.backend,r),!1}}if(Ys()==="humangl"&&(fr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),fr.set("WEBGL_CPU_FORWARD",!0),fr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),fr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(oe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),fr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Ar().getGPGPUContext)){let s=await Ar().getGPGPUContext().gl;e.config.debug&&oe(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Ys()==="webgpu",e3(),await $h(),e.performance.backend=Math.trunc(fe()-n),e.config.backend=Ys(),be.updateBackend()}return!0}function ju(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&oe("kernelFunc",n,t.backend)}};da(s)}be.kernels=Or(Ys()).map(n=>n.kernelName.toLowerCase())}var Zr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},zi=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},Zu=e=>Math.round(e*180/Math.PI);function m5(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function rp(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function MS(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Fce(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){MS(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function zS(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function g5(e,t,n){let s=Sn(Zr,n);if(!(!t||!e)&&s.drawGestures){let r=zi(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function A5(e,t,n){var a,o,i,l,c;let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&rp(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${Zu(u.rotation.angle.roll)}\xB0 yaw:${Zu(u.rotation.angle.yaw)}\xB0 pitch:${Zu(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${Zu(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)m5(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<_i.length/3;d++){let p=[_i[d*3+0],_i[d*3+1],_i[d*3+2]].map(h=>u.mesh[h]);MS(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*Zu(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*Zu(u.rotation.angle.pitch)/90,h=new Path2D(`
|
|
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
|
|
C
|
|
${d} ${u.box[1]},
|
|
${d} ${u.box[1]+u.box[3]},
|
|
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
|
|
C
|
|
${u.box[0]} ${p},
|
|
${u.box[0]+u.box[2]} ${p},
|
|
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
|
|
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];zS(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];zS(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function y5(e,t,n){var a;let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(rp(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,m5(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)Fce(r,l,s)}}async function x5(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,rp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,m5(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function b5(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,rp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function LS(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=zi(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,rp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function BS(e,t){if(!e||!t)return;zi(t).drawImage(e,0,0)}async function WS(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=fe(),r=Sn(Zr,n),a=Promise.all([A5(e,t.face,r),y5(e,t.body,r),x5(e,t.hand,r),b5(e,t.object,r),g5(e,t.gesture,r)]);return t.performance.draw=be.perfadd?(t.performance.draw||0)+Math.trunc(fe()-s):Math.trunc(fe()-s),a}var $ce=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},VS=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,C,N,D]=g,P,E,F;return b<1?b>-1?(F=Math.asin(b),E=Math.atan2(-C,A),P=Math.atan2(-k,v)):(F=-Math.PI/2,E=-Math.atan2(N,D),P=0):(F=Math.PI/2,E=Math.atan2(N,D),P=0),isNaN(P)&&(P=0),isNaN(E)&&(E=0),isNaN(F)&&(F=0),{pitch:2*-P,yaw:2*-E,roll:2*-F}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?$ce(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var v5=async(e,t)=>{var p,h,f,m;let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=fe();let d=await BI(t,e.config);if(e.performance.face=be.perfadd?(e.performance.face||0)+Math.trunc(fe()-n):Math.trunc(fe()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let g=0;g<d.length;g++){if(e.analyze("Get Face"),!d[g].tensor||d[g].tensor.isDisposedInternal){oe("Face object is disposed:",d[g].tensor);continue}let A=VS(d[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?Fx(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:emotion",n=fe(),o=e.config.face.emotion.enabled?await Fx(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.emotion=be.perfadd?(e.performance.emotion||0)+Math.trunc(fe()-n):Math.trunc(fe()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?ux(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:antispoof",n=fe(),l=e.config.face.antispoof.enabled?await ux(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.antispoof=be.perfadd?(e.performance.antispoof||0)+Math.trunc(fe()-n):Math.trunc(fe()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?Lx(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:description",n=fe(),c=e.config.face.description.enabled?await Lx(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.embedding=be.perfadd?(e.performance.embedding||0)+Math.trunc(fe()-n):Math.trunc(fe()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(p=d[g])==null?void 0:p.annotations)==null?void 0:h.leftEyeIris)&&((m=(f=d[g])==null?void 0:f.annotations)==null?void 0:m.rightEyeIris)&&(delete d[g].annotations.leftEyeIris,delete d[g].annotations.rightEyeIris);let y=d[g].annotations&&d[g].annotations.leftEyeIris&&d[g].annotations.leftEyeIris[0]&&d[g].annotations.rightEyeIris&&d[g].annotations.rightEyeIris[0]&&d[g].annotations.leftEyeIris.length>0&&d[g].annotations.rightEyeIris.length>0&&d[g].annotations.leftEyeIris[0]!==null&&d[g].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[g].annotations.leftEyeIris[3][0]-d[g].annotations.leftEyeIris[1][0]),Math.abs(d[g].annotations.rightEyeIris[4][1]-d[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,x=e.config.face.detector.return?rt(d[g].tensor):null;Y(d[g].tensor),d[g].tensor&&delete d[g].tensor,u.push({...d[g],id:g,age:c==null?void 0:c.age,gender:c==null?void 0:c.gender,genderScore:c==null?void 0:c.genderScore,embedding:c==null?void 0:c.descriptor,emotion:o,real:l,iris:y!==0?Math.trunc(500/y/11.7)/100:0,rotation:A,tensor:x}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var US=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},GS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},HS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},jS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=cS(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Oe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function qS(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,k,C,N,D,P,E,F,T,M,G,H;let n=fe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Oe.canvas=e.canvas,!Oe.body||e.body.length!==Oe.body.length)Oe.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((J,ee)=>((r-1)*Oe.body[z].box[ee]+J)/r),Q=e.body[z].boxRaw.map((J,ee)=>((r-1)*Oe.body[z].boxRaw[ee]+J)/r),Z=e.body[z].keypoints.map((J,ee)=>({score:J.score,part:J.part,position:[Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].position[0]+J.position[0])/r:J.position[0],Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].position[1]+J.position[1])/r:J.position[1]],positionRaw:[Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].positionRaw[0]+J.positionRaw[0])/r:J.position[0],Oe.body[z].keypoints[ee]?((r-1)*Oe.body[z].keypoints[ee].positionRaw[1]+J.positionRaw[1])/r:J.position[1]]})),te={},se={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?se=Tx:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?se=xx:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(se=Qx);for(let[J,ee]of Object.entries(se.connected)){let ce=[];for(let pe=0;pe<ee.length-1;pe++){let ve=Z.find(Te=>Te.part===ee[pe]),ke=Z.find(Te=>Te.part===ee[pe+1]);ve&&ke&&ve.score>(t.body.minConfidence||0)&&ke.score>(t.body.minConfidence||0)&&ce.push([ve.position,ke.position])}te[J]=ce}Oe.body[z]={...e.body[z],box:X,boxRaw:Q,keypoints:Z,annotations:te}}if(!Oe.hand||e.hand.length!==Oe.hand.length)Oe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((se,J)=>((r-1)*Oe.hand[z].box[J]+se)/r),Q=e.hand[z].boxRaw.map((se,J)=>((r-1)*Oe.hand[z].boxRaw[J]+se)/r);Oe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Oe.hand[z].keypoints=e.hand[z].keypoints);let Z=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((se,J)=>se.map((ee,ce)=>((r-1)*(Oe.hand[z].keypoints[J][ce]||1)+(ee||0))/r)):[],te={};if(Object.keys(Oe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Oe.hand[z].annotations=e.hand[z].annotations,te=Oe.hand[z].annotations;else if(e.hand[z].annotations)for(let se of Object.keys(e.hand[z].annotations))te[se]=e.hand[z].annotations[se]&&e.hand[z].annotations[se][0]?e.hand[z].annotations[se].map((J,ee)=>J.map((ce,pe)=>((r-1)*Oe.hand[z].annotations[se][ee][pe]+ce)/r)):null;Oe.hand[z]={...e.hand[z],box:X,boxRaw:Q,keypoints:Z,annotations:te}}if(!Oe.face||e.face.length!==Oe.face.length)Oe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((te,se)=>((r-1)*Oe.face[z].box[se]+te)/r),Q=e.face[z].boxRaw.map((te,se)=>((r-1)*Oe.face[z].boxRaw[se]+te)/r),Z={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};Z.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,Z.angle={roll:((r-1)*(((f=(h=Oe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((y=(A=Oe.face[z].rotation)==null?void 0:A.angle)==null?void 0:y.yaw)||0)+(((b=(x=e.face[z].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(v=Oe.face[z].rotation)==null?void 0:v.angle)==null?void 0:k.pitch)||0)+(((N=(C=e.face[z].rotation)==null?void 0:C.angle)==null?void 0:N.pitch)||0))/r},Z.gaze={bearing:((r-1)*(((P=(D=Oe.face[z].rotation)==null?void 0:D.gaze)==null?void 0:P.bearing)||0)+(((F=(E=e.face[z].rotation)==null?void 0:E.gaze)==null?void 0:F.bearing)||0))/r,strength:((r-1)*(((M=(T=Oe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:M.strength)||0)+(((H=(G=e.face[z].rotation)==null?void 0:G.gaze)==null?void 0:H.strength)||0))/r},Oe.face[z]={...e.face[z],rotation:Z,box:X,boxRaw:Q}}if(!Oe.object||e.object.length!==Oe.object.length)Oe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((Z,te)=>((r-1)*Oe.object[z].box[te]+Z)/r),Q=e.object[z].boxRaw.map((Z,te)=>((r-1)*Oe.object[z].boxRaw[te]+Z)/r);Oe.object[z]={...e.object[z],box:X,boxRaw:Q}}if(e.persons){let z=e.persons;if(!Oe.persons||z.length!==Oe.persons.length)Oe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)Oe.persons[X].box=z[X].box.map((Q,Z)=>((r-1)*Oe.persons[X].box[Z]+Q)/r)}e.gesture&&(Oe.gesture=e.gesture);let a=fe();return e.performance&&(Oe.performance={...e.performance,interpolate:Math.round(a-n)}),Oe}function tm(e,t,n={order:2,multiplier:20}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}function XS(e,t,n={order:2,multiplier:20}){let s=tm(e,t,n),r=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function KS(e,t,n={order:2,multiplier:20,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=tm(e,t[a],n);if(o<s&&(s=o,r=a),s<(n.threshold||0))break}return s=!n.order||n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function ZS(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,k;let a=0,o=[];for(let C of e){let N={id:a++,face:C,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let M of t)C.box[0]>M.box[0]&&C.box[0]<M.box[0]+M.box[2]&&C.box[1]+C.box[3]>M.box[1]&&C.box[1]+C.box[3]<M.box[1]+M.box[3]&&(N.body=M);if(N.body)for(let M of n)M.box[0]+M.box[2]>N.body.box[0]&&M.box[0]+M.box[2]<N.body.box[0]+N.body.box[2]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=M),M.box[0]<N.body.box[0]+N.body.box[2]&&M.box[0]>N.body.box[0]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=M);for(let M of s)M.face!==void 0&&M.face===C.id?(i=N.gestures)==null||i.push(M):M.iris!==void 0&&M.iris===C.id?(l=N.gestures)==null||l.push(M):M.body!==void 0&&M.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(M):M.hand!==void 0&&M.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(M):M.hand!==void 0&&M.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(M));let D=[],P=[],E=M=>{M&&M.length===4&&(D.push(M[0],M[0]+M[2]),P.push(M[1],M[1]+M[3]))};E((A=N.face)==null?void 0:A.box),E((y=N.body)==null?void 0:y.box),E((b=(x=N.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=N.hands)==null?void 0:v.right)==null?void 0:k.box);let F=Math.min(...D),T=Math.min(...P);N.box=[F,T,Math.max(...D)-F,Math.max(...P)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var nm=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,sm=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function Oce(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(nm);break;case"body":case"full":n=await t(sm);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Pce(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+nm;break;case"full":case"body":n="data:image/jpeg;base64,"+sm;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:be.Image&&(s=new be.Image),s.onload=async()=>{let r=Vn(s.naturalWidth,s.naturalHeight);if(!r)oe("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function Mce(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(nm)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(sm)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&oe("Warmup tfjs-node not loaded");return s}async function YS(e,t){let n=fe();if(e.state="warmup",t&&(e.config=Sn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await Oce(e):typeof Image!="undefined"||be.Canvas!==void 0?s=await Pce(e):s=await Mce(e);let a=fe();e.config.debug&&oe("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Yu,ap,op,rm,zce=class{constructor(t){he(this,"version");he(this,"config");he(this,"result");he(this,"state");he(this,"process");he(this,"tf");he(this,"env");he(this,"draw");he(this,"models");he(this,"events");he(this,"faceTriangulation");he(this,"faceUVMap");he(this,"performance");dc(this,Yu,void 0);dc(this,ap,void 0);dc(this,op,void 0);he(this,"gl");he(this,"analyze",(...t)=>{if(!cc(this,ap))return;let n=this.tf.engine().state.numTensors,s=cc(this,Yu);pc(this,Yu,n);let r=n-s;r!==0&&oe(...t,r)});dc(this,rm,t=>{if(!cc(this,op))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});he(this,"similarity",XS);he(this,"distance",tm);he(this,"match",KS);he(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=be,qa.wasmPath=Uc.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Uc}/dist/`,qa.modelBasePath=be.browser?"../models/":"file://models/",qa.backend=be.browser?"humangl":"tensorflow",this.version=ix,Object.defineProperty(this,"version",{value:ix}),this.config=JSON.parse(JSON.stringify(qa)),Object.seal(this.config),t&&(this.config=Sn(this.config,t)),this.tf=Di,this.state="idle",pc(this,Yu,0),pc(this,ap,!1),pc(this,op,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new h5,this.draw={options:Zr,canvas:(n,s)=>BS(n,s),face:(n,s,r)=>A5(n,s,r),body:(n,s,r)=>y5(n,s,r),hand:(n,s,r)=>x5(n,s,r),gesture:(n,s,r)=>g5(n,s,r),object:(n,s,r)=>b5(n,s,r),person:(n,s,r)=>LS(n,s,r),all:(n,s,r)=>WS(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=VI,this.faceUVMap=UI,this.gl=Ot,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(qa)),this.config.backend=t}validate(t){return Dg(qa,t||this.config)}now(){return fe()}image(t,n=!0){return Gu(t,this.config,n)}async segmentation(t,n){return FS(t,n,this.config)}enhance(t){return zx(t)}async init(){await em(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=fe(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Sn(this.config,t)),this.env.initial&&(this.config.debug&&oe(`version: ${this.version}`),this.config.debug&&oe(`tfjs version: ${this.tf.version_core}`),await em(this)||oe("error: backend check failed"),await $h(),this.env.browser&&(this.config.debug&&oe("configuration:",this.config),this.config.debug&&oe("tf flags:",this.tf.ENV.flags))),await $S(this),this.env.initial&&this.config.debug&&oe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await OS(this),this.emit("load"));let a=Math.trunc(fe()-n);a>(this.performance.load||0)&&(this.performance.load=this.env.perfadd?(this.performance.load||0)+a:a)}next(t=this.result){return qS(t,this.config)}async warmup(t){return YS(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,A,y,x,b,v,k,C,N,D,P,E,F,T,M,G,H,z,X,Q,Z,te;this.state="config";let r;this.config=Sn(this.config,n),this.state="check";let a=cc(this,rm).call(this,t);a&&(oe(a,t),s({error:a}));let o=fe();await em(this),await this.load(),r=fe(),this.state="image";let i=Gu(t,this.config);if(this.process=i,this.performance.image=this.env.perfadd?(this.performance.image||0)+Math.trunc(fe()-r):Math.trunc(fe()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&oe("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=fe(),this.config.skipAllowed=await aI(this.config,i.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipAllowed&&this.performance.cached++,this.performance.changed=this.env.perfadd?(this.performance.changed||0)+Math.trunc(fe()-r):Math.trunc(fe()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?v5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=fe(),l=this.config.face.enabled?await v5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?Sn(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(((g=this.config.body.modelPath)==null?void 0:g.includes("posenet"))?c=this.config.body.enabled?c5(i.tensor,p):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?c=this.config.body.enabled?wx(i.tensor,p):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("efficientpose"))?c=this.config.body.enabled?Rx(i.tensor,p):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("movenet"))&&(c=this.config.body.enabled?n5(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=fe(),((b=this.config.body.modelPath)==null?void 0:b.includes("posenet"))?c=this.config.body.enabled?await c5(i.tensor,p):[]:((v=this.config.body.modelPath)==null?void 0:v.includes("blazepose"))?c=this.config.body.enabled?await wx(i.tensor,p):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("efficientpose"))?c=this.config.body.enabled?await Rx(i.tensor,p):[]:((C=this.config.body.modelPath)==null?void 0:C.includes("movenet"))&&(c=this.config.body.enabled?await n5(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Sn(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?(((D=(N=this.config.hand.detector)==null?void 0:N.modelPath)==null?void 0:D.includes("handdetect"))?u=this.config.hand.enabled?Gx(i.tensor,h):[]:((E=(P=this.config.hand.detector)==null?void 0:P.modelPath)==null?void 0:E.includes("handtrack"))&&(u=this.config.hand.enabled?Kx(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=fe(),((T=(F=this.config.hand.detector)==null?void 0:F.modelPath)==null?void 0:T.includes("handdetect"))?u=this.config.hand.enabled?await Gx(i.tensor,h):[]:((G=(M=this.config.hand.detector)==null?void 0:M.modelPath)==null?void 0:G.includes("handtrack"))&&(u=this.config.hand.enabled?await Kx(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((H=this.config.object.modelPath)==null?void 0:H.includes("nanodet"))?d=this.config.object.enabled?r5(i.tensor,this.config):[]:((z=this.config.object.modelPath)==null?void 0:z.includes("centernet"))&&(d=this.config.object.enabled?Ix(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=fe(),((X=this.config.object.modelPath)==null?void 0:X.includes("nanodet"))?d=this.config.object.enabled?await r5(i.tensor,this.config):[]:((Q=this.config.object.modelPath)==null?void 0:Q.includes("centernet"))&&(d=this.config.object.enabled?await Ix(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=fe(),f=[...GS(l),...US(c),...jS(u),...HS(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(fe()-r):Math.trunc(fe()-r)),this.performance.total=Math.trunc(fe()-o);let m=((te=(Z=this.process)==null?void 0:Z.tensor)==null?void 0:te.shape)||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return ZS(l,c,u,f,m)}},Y(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Yu=new WeakMap,ap=new WeakMap,op=new WeakMap,rm=new WeakMap;export{zce as Human,zce as default,qa as defaults,be as env};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|