mirror of https://github.com/vladmandic/human
4950 lines
1.3 MiB
4950 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var q4=Object.create,th=Object.defineProperty,X4=Object.getPrototypeOf,K4=Object.prototype.hasOwnProperty,Z4=Object.getOwnPropertyNames,Y4=Object.getOwnPropertyDescriptor;var N1=e=>th(e,"__esModule",{value:!0});var ug=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Jn=(e,t)=>{for(var n in t)th(e,n,{get:t[n],enumerable:!0})},J4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Z4(t))!K4.call(e,r)&&r!=="default"&&th(e,r,{get:()=>t[r],enumerable:!(n=Y4(t,r))||n.enumerable});return e},nh=e=>J4(N1(th(e!=null?q4(X4(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var Zv=ug(Kv=>{N1(Kv);Jn(Kv,{MediaPipeFaceMesh:()=>t2,load:()=>Qre});var t2=class{constructor(t,n,r,a){this.facePipeline=new e2(t,n,r,a),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():null,o=s.rawCoords,l={};if(i&&i.length>0)for(let h of Object.keys(Ur))l[h]=Ur[h].map(d=>i[d]);let u=n.face.mesh.returnRawData&&s.box?{topLeft:s.box.startPoint,bottomRight:s.box.endPoint}:null,c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-s.box.startPoint[0],Math.min(t.shape[1],s.box.endPoint[1])-s.box.startPoint[1]]:0;a.push({confidence:s.faceConfidence||s.boxConfidence||0,boxConfidence:s.boxConfidence,faceConfidence:s.faceConfidence,box:c,mesh:i,boxRaw:u,meshRaw:o,annotations:l,image:s.image?nr(s.image):null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},ki=[null,null,null];async function Qre(e){ki=await Promise.all([!ki[0]&&e.face.enabled?Vv(e):null,!ki[1]&&e.face.mesh.enabled?Nt(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!ki[2]&&e.face.iris.enabled?Nt(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new t2(ki[0],ki[1],ki[2],e);return e.face.mesh.enabled&&e.debug&&Te(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Te(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}Kv.triangulation=vi});var n0=ug(k2=>{N1(k2);Jn(k2,{NUM_KEYPOINTS:()=>oae,connectedPartIndices:()=>uae,partChannels:()=>hae,partIds:()=>I2,partNames:()=>iae,poseChain:()=>cae});var iae=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],oae=k2.partNames.length,I2=k2.partNames.reduce((e,t,n)=>(e[t]=n,e),{}),lae=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],uae=lae.map(([e,t])=>[I2[e],I2[t]]),cae=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],hae=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Te(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var rh={};Jn(rh,{Abs:()=>Bi,Acos:()=>Vi,Acosh:()=>Ui,AdadeltaOptimizer:()=>Ed,AdagradOptimizer:()=>Cd,AdamOptimizer:()=>Rd,AdamaxOptimizer:()=>Fd,Add:()=>ga,AddN:()=>Ja,All:()=>uh,Any:()=>ch,ArgMax:()=>Qa,ArgMin:()=>Ql,Asin:()=>Hi,Asinh:()=>ji,Atan:()=>Gi,Atan2:()=>Xi,Atanh:()=>qi,AvgPool:()=>es,AvgPool3D:()=>eu,AvgPool3DGrad:()=>dh,AvgPoolGrad:()=>hh,BackendWasm:()=>Xb,BatchMatMul:()=>ts,BatchToSpaceND:()=>tu,Bincount:()=>ph,BroadcastTo:()=>kg,Callback:()=>L7,CallbackList:()=>z3,Cast:()=>ns,Ceil:()=>rs,ClipByValue:()=>xa,Complex:()=>fh,ComplexAbs:()=>nu,Concat:()=>Ki,Conv2D:()=>as,Conv2DBackpropFilter:()=>mh,Conv2DBackpropInput:()=>ss,Conv3D:()=>ru,Conv3DBackpropFilterV2:()=>Ah,Conv3DBackpropInputV2:()=>yh,Cos:()=>is,Cosh:()=>Zi,CropAndResize:()=>Yi,Cumsum:()=>os,CustomCallback:()=>L3,DataStorage:()=>sh,DenseBincount:()=>gh,DepthToSpace:()=>Ji,DepthwiseConv2dNative:()=>ls,DepthwiseConv2dNativeBackpropFilter:()=>xh,DepthwiseConv2dNativeBackpropInput:()=>wh,Diag:()=>_h,Dilation2D:()=>au,Dilation2DBackpropFilter:()=>vh,Dilation2DBackpropInput:()=>bh,ENV:()=>Ya,EarlyStopping:()=>B7,Elu:()=>Qi,EluGrad:()=>kh,Environment:()=>bg,Equal:()=>to,Erf:()=>eo,Exp:()=>cs,ExpandDims:()=>no,Expm1:()=>ro,FFT:()=>Ih,Fill:()=>su,FlipLeftRight:()=>ao,Floor:()=>hs,FloorDiv:()=>ds,FromPixels:()=>Lh,FusedBatchNorm:()=>ps,FusedConv2D:()=>js,FusedDepthwiseConv2D:()=>Gs,GPGPUContext:()=>Kd,GatherNd:()=>io,GatherV2:()=>so,GraphModel:()=>yv,Greater:()=>oo,GreaterEqual:()=>fs,History:()=>P3,IFFT:()=>Nh,Identity:()=>ms,Imag:()=>Sh,InputSpec:()=>Gt,IsFinite:()=>lo,IsInf:()=>uo,IsNan:()=>co,KernelBackend:()=>Zl,LRN:()=>lu,LRNGrad:()=>Eh,LayerVariable:()=>F3,LayersModel:()=>sa,LeakyRelu:()=>As,Less:()=>ho,LessEqual:()=>po,LinSpace:()=>Th,Log:()=>ys,Log1p:()=>fo,LogSoftmax:()=>Ig,LogicalAnd:()=>mo,LogicalNot:()=>iu,LogicalOr:()=>ou,MathBackendCPU:()=>Dd,MathBackendWebGL:()=>bl,Max:()=>gs,MaxPool:()=>ws,MaxPool3D:()=>uu,MaxPool3DGrad:()=>Rh,MaxPoolGrad:()=>Ch,MaxPoolWithArgmax:()=>Fh,Maximum:()=>xs,Mean:()=>_s,Min:()=>bs,Minimum:()=>vs,MirrorPad:()=>cu,Mod:()=>Ao,MomentumOptimizer:()=>Md,Multinomial:()=>Mh,Multiply:()=>ks,Neg:()=>yo,NonMaxSuppressionV3:()=>xo,NonMaxSuppressionV4:()=>wo,NonMaxSuppressionV5:()=>_o,NotEqual:()=>go,OP_SCOPE_SUFFIX:()=>Dg,OneHot:()=>Is,OnesLike:()=>bo,Optimizer:()=>ta,Pack:()=>vo,PadV2:()=>Ns,Pool:()=>lk,Pow:()=>Ss,Prelu:()=>Ts,Prod:()=>ko,RMSPropOptimizer:()=>$d,RNN:()=>Br,Range:()=>hu,Rank:()=>P1,Real:()=>$h,RealDiv:()=>us,Reciprocal:()=>Io,Reduction:()=>ln,Relu:()=>Es,Relu6:()=>Rs,Reshape:()=>No,ResizeBilinear:()=>Cs,ResizeBilinearGrad:()=>Dh,ResizeNearestNeighbor:()=>du,ResizeNearestNeighborGrad:()=>Oh,Reverse:()=>Fs,RotateWithOffset:()=>Wo,Round:()=>Ms,Rsqrt:()=>$s,SGDOptimizer:()=>Hu,ScatterNd:()=>So,Select:()=>To,Selu:()=>Eo,Sequential:()=>Fl,Sigmoid:()=>Ds,Sign:()=>Fo,Sin:()=>Os,Sinh:()=>Ro,Slice:()=>Co,Softmax:()=>Ls,Softplus:()=>Mo,SpaceToBatchND:()=>pu,SparseToDense:()=>zh,SplitV:()=>$o,Sqrt:()=>zs,Square:()=>fu,SquaredDifference:()=>Ws,Step:()=>_a,StridedSlice:()=>Oo,Sub:()=>Bs,Sum:()=>Ps,SymbolicTensor:()=>_r,Tan:()=>Do,Tanh:()=>Vs,Tensor:()=>Ze,TensorBuffer:()=>$t,Tile:()=>wa,TopK:()=>zo,Transpose:()=>Us,Unique:()=>Ph,Unpack:()=>Po,UnsortedSegmentSum:()=>mu,Variable:()=>bu,ZerosLike:()=>Lo,_FusedMatMul:()=>Hs,abs:()=>Ot,acos:()=>hf,acosh:()=>df,add:()=>se,addN:()=>Yo,all:()=>Jh,any:()=>Nu,argMax:()=>Su,argMin:()=>pf,asin:()=>ff,asinh:()=>mf,atan:()=>Af,atan2:()=>yf,atanh:()=>gf,avgPool:()=>Eu,avgPool3d:()=>_f,backend:()=>A5,backend_util:()=>C,basicLSTMCell:()=>DI,batchNorm:()=>Qs,batchNorm2d:()=>w5,batchNorm3d:()=>_5,batchNorm4d:()=>b5,batchToSpaceND:()=>Cu,bincount:()=>v5,booleanMaskAsync:()=>BT,broadcastTo:()=>Ru,browser:()=>Xo,buffer:()=>Le,callbacks:()=>Xte,cast:()=>me,ceil:()=>bf,clipByValue:()=>gn,clone:()=>nr,complex:()=>ba,concat:()=>rt,concat1d:()=>k5,concat2d:()=>el,concat3d:()=>I5,concat4d:()=>N5,constraints:()=>s3,conv1d:()=>ed,conv2d:()=>Yr,conv2dTranspose:()=>td,conv3d:()=>kf,conv3dTranspose:()=>aN,copyRegisteredKernels:()=>hk,cos:()=>Fu,cosh:()=>nd,cosineWindow:()=>Yf,cumsum:()=>rd,customGrad:()=>Rr,data:()=>gv,denseBincount:()=>T5,deprecationWarn:()=>uf,depthToSpace:()=>If,depthwiseConv2d:()=>tl,deregisterOp:()=>Zte,device_util:()=>jh,diag:()=>dN,dilation2d:()=>Nf,disableDeprecationWarnings:()=>Z9,dispose:()=>Ee,disposeVariables:()=>Y9,div:()=>ge,divNoNan:()=>Sf,dot:()=>E5,dropout:()=>Z5,elu:()=>nl,enableDebugMode:()=>K9,enableProdMode:()=>X9,enclosingPowerOfTwo:()=>Y5,engine:()=>Er,env:()=>J,equal:()=>Sa,erf:()=>Tf,exp:()=>jn,expandDims:()=>Tn,expm1:()=>Ef,eye:()=>Cf,fft:()=>Vu,fill:()=>Mu,findBackend:()=>cf,findBackendFactory:()=>rI,floor:()=>rl,floorDiv:()=>Yh,forceHalfFloat:()=>o_,fused:()=>Ra,gather:()=>ei,gatherND:()=>K5,gather_util:()=>tf,getBackend:()=>tI,getGradient:()=>O1,getKernel:()=>Wh,getKernelsForBackend:()=>Vo,gpgpu_util:()=>Rw,grad:()=>BN,grads:()=>VN,greater:()=>rr,greaterEqual:()=>Ea,ifft:()=>ll,imag:()=>ad,image:()=>Ge,inTopKAsync:()=>JT,initializers:()=>d3,input:()=>I3,io:()=>yn,irfft:()=>wd,isFinite:()=>C5,isInf:()=>R5,isNaN:()=>F5,keep:()=>Vt,kernel_impls:()=>Or,layers:()=>k3,leakyRelu:()=>$u,less:()=>sd,lessEqual:()=>ti,linalg:()=>ux,linspace:()=>M5,loadGraphModel:()=>Nt,loadLayersModel:()=>fte,localResponseNormalization:()=>Rf,log:()=>En,log1p:()=>id,logSigmoid:()=>O5,logSoftmax:()=>ld,logSumExp:()=>$f,logicalAnd:()=>ar,logicalNot:()=>Ou,logicalOr:()=>ud,logicalXor:()=>L5,losses:()=>pC,matMul:()=>He,math:()=>Jg,max:()=>Gn,maxPool:()=>Du,maxPool3d:()=>Of,maxPoolWithArgmax:()=>W5,maximum:()=>Fr,mean:()=>bt,memory:()=>Zh,metrics:()=>D7,min:()=>sl,minimum:()=>il,mirrorPad:()=>Df,mod:()=>zf,model:()=>dte,models:()=>z7,moments:()=>cd,movingAverage:()=>HT,mul:()=>P,multiRNNCell:()=>yS,multinomial:()=>B5,neg:()=>_t,nextFrame:()=>Od,norm:()=>kd,notEqual:()=>ri,oneHot:()=>qo,ones:()=>Mr,onesLike:()=>Cn,op:()=>O,outerProduct:()=>bS,pad:()=>Jr,pad1d:()=>IS,pad2d:()=>SS,pad3d:()=>ES,pad4d:()=>RS,pool:()=>V5,pow:()=>Qr,prelu:()=>Pu,print:()=>Gg,prod:()=>hd,profile:()=>Hn,rand:()=>WS,randomGamma:()=>HS,randomNormal:()=>U5,randomUniform:()=>ol,range:()=>dd,ready:()=>eI,real:()=>Lu,reciprocal:()=>Wf,registerBackend:()=>Zo,registerCallbackConstructor:()=>mte,registerGradient:()=>Ng,registerKernel:()=>qs,registerOp:()=>Kte,regularizers:()=>P7,relu:()=>$r,relu6:()=>pd,removeBackend:()=>nI,reshape:()=>j,reverse:()=>Rn,reverse1d:()=>QS,reverse2d:()=>tT,reverse3d:()=>rT,reverse4d:()=>sT,rfft:()=>Uu,round:()=>Bf,rsqrt:()=>fd,scalar:()=>be,scatterND:()=>X5,scatter_util:()=>nf,selu:()=>md,separableConv2d:()=>Vf,sequential:()=>pte,serialization:()=>re,setBackend:()=>Q9,setPlatform:()=>aI,setWasmPath:()=>uZ,setWasmPaths:()=>cZ,setWebGLContext:()=>jd,setdiff1dAsync:()=>H5,shared:()=>tm,sigmoid:()=>Sn,sign:()=>Uf,signal:()=>dC,sin:()=>Ad,sinh:()=>yd,slice:()=>Ce,slice1d:()=>gd,slice2d:()=>Hf,slice3d:()=>xd,slice4d:()=>Wu,slice_util:()=>on,softmax:()=>Bu,softplus:()=>al,spaceToBatchND:()=>zu,sparseToDense:()=>Zf,spectral:()=>hC,split:()=>Jt,sqrt:()=>Qt,square:()=>it,squaredDifference:()=>_d,squeeze:()=>Ca,stack:()=>Fn,step:()=>ul,stridedSlice:()=>jf,sub:()=>Ae,sum:()=>Se,sumOutType:()=>Hh,tan:()=>Gf,tanh:()=>Qo,tensor:()=>mr,tensor1d:()=>Ut,tensor2d:()=>wn,tensor3d:()=>Xh,tensor4d:()=>RT,tensor5d:()=>FT,tensor6d:()=>MT,tensor_util:()=>fr,test_util:()=>p5,tidy:()=>B,tile:()=>Ta,time:()=>J9,topk:()=>qf,train:()=>si,transpose:()=>nt,truncatedNormal:()=>bd,unique:()=>vd,unregisterGradient:()=>ck,unregisterKernel:()=>uk,unsortedSegmentSum:()=>Xf,unstack:()=>sr,upcastType:()=>tr,util:()=>v,valueAndGrad:()=>UN,valueAndGrads:()=>HN,variable:()=>j5,variableGrads:()=>$5,version:()=>Ore,version_converter:()=>Kne,version_core:()=>q9,version_cpu:()=>Lx,version_layers:()=>wA,version_wasm:()=>Zb,version_webgl:()=>i_,webgl:()=>CP,webgl_util:()=>sw,where:()=>xn,whereAsync:()=>Kf,zeros:()=>Et,zerosLike:()=>Ve});var Q4=Object.create,ah=Object.defineProperty,e8=Object.getPrototypeOf,t8=Object.prototype.hasOwnProperty,n8=Object.getOwnPropertyNames,r8=Object.getOwnPropertyDescriptor,a8=e=>ah(e,"__esModule",{value:!0}),Je=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),De=(e,t)=>{for(var n in t)ah(e,n,{get:t[n],enumerable:!0})},s8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of n8(t))!t8.call(e,r)&&r!=="default"&&ah(e,r,{get:()=>t[r],enumerable:!(n=r8(t,r))||n.enumerable});return e},Pi=e=>s8(a8(ah(e!=null?Q4(e8(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),i8=Je(()=>{}),o8=Je((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),l8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),u8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),c8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],_=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,_=Math.max(_,d.length)),f=0,A=-32;A<_;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S1=Je(()=>{}),p8=Je((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,b(n)]:w==null?_():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(b(M.S),n),(x.pass||N||function(L,W,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(r[l]=L,W):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=m;function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,H=T.i,X=T.j,G=T.S;L--;)W=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+W])+(G[X]=W)];return T.i=H,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function _(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),b(w)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=S1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),f8=Je((e,t)=>{var n=o8(),r=l8(),a=u8(),s=c8(),i=h8(),o=d8(),l=p8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),m8=Je((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),A8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),y8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),g8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),x8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],_=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,_=Math.max(_,d.length)),f=0,A=-32;A<_;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_8=Je((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,b(n)]:w==null?_():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(b(M.S),n),(x.pass||N||function(L,W,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(r[l]=L,W):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=m;function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,H=T.i,X=T.j,G=T.S;L--;)W=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+W])+(G[X]=W)];return T.i=H,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function _(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),b(w)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=S1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),b8=Je((e,t)=>{var n=m8(),r=A8(),a=y8(),s=g8(),i=x8(),o=w8(),l=_8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Kl=Je(()=>{}),v8=Je(()=>{}),k8=Je(()=>{}),I8=Je((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=We&&Zt(Q.buffer),dn}function i(){return Q.buffer!=We&&Zt(Q.buffer),xt}function o(){return Q.buffer!=We&&Zt(Q.buffer),pn}function l(){return Q.buffer!=We&&Zt(Q.buffer),Bn}function u(){return Q.buffer!=We&&Zt(Q.buffer),sn}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},m;for(m in c)c.hasOwnProperty(m)&&(p[m]=c[m]);var f=[],A="./this.program",y=function(I,S){throw S},g=!1,_=!1,b=!1,w=!1;g=typeof window=="object",_=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!g&&!b&&!_;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(We=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,M,D,L,W,U;if(b){_?N=Kl().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return W||(W=require("fs")),U||(U=Kl()),I=U.normalize(I),W.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),pe(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Xl))throw I}),process.on("unhandledRejection",Gr),y=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var H;try{H=v8()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=H.Worker}else w?(typeof read!="undefined"&&(E=function(I){return read(I)}),D=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),pe(typeof S=="object"),S)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||_)&&(_?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(E=function(I,S){return W||(W=require("fs")),U||(U=Kl()),I=U.normalize(I),W.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),pe(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},_&&(D=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),M=function(I,S,z){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}z()},q.onerror=z,q.send(null)}),L=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=k8().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(c[m]=p[m]);p=null,c.arguments&&(f=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(y=c.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var ie=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Gr("no native wasm support detected");var Q,he,oe=!1,fe;function pe(I,S){I||Gr("Assertion failed: "+S)}function ve(I){var S=c["_"+I];return pe(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function Ie(I,S,z,q,de){var le={string:function(An){var zi=0;if(An!=null&&An!==0){var lg=(An.length<<2)+1;zi=$i(lg),et(An,zi,lg)}return zi},array:function(An){var zi=$i(An.length);return Xe(An,zi),zi}};function ue(An){return S==="string"?Me(An):S==="boolean"?Boolean(An):An}var we=ve(I),tt=[],Wt=0;if(q)for(var Ft=0;Ft<q.length;Ft++){var ma=le[z[Ft]];ma?(Wt===0&&(Wt=ql()),tt[Ft]=ma(q[Ft])):tt[Ft]=q[Ft]}var Di=we.apply(null,tt);return Di=ue(Di),Wt!==0&&Mi(Wt),Di}function Fe(I,S,z,q){z=z||[];var de=z.every(function(ue){return ue==="number"}),le=S!=="string";return le&&de&&!q?ve(I):function(){return Ie(I,S,z,arguments,q)}}function Oe(I,S,z){for(var q=S+z,de="";!(S>=q);){var le=I[S++];if(!le)return de;if(!(le&128)){de+=String.fromCharCode(le);continue}var ue=I[S++]&63;if((le&224)==192){de+=String.fromCharCode((le&31)<<6|ue);continue}var we=I[S++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|we:le=(le&7)<<18|ue<<12|we<<6|I[S++]&63,le<65536)de+=String.fromCharCode(le);else{var tt=le-65536;de+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return de}function Me(I,S){return I?Oe(i(),I,S):""}function Qe(I,S,z,q){if(!(q>0))return 0;for(var de=z,le=z+q-1,ue=0;ue<I.length;++ue){var we=I.charCodeAt(ue);if(we>=55296&&we<=57343){var tt=I.charCodeAt(++ue);we=65536+((we&1023)<<10)|tt&1023}if(we<=127){if(z>=le)break;S[z++]=we}else if(we<=2047){if(z+1>=le)break;S[z++]=192|we>>6,S[z++]=128|we&63}else if(we<=65535){if(z+2>=le)break;S[z++]=224|we>>12,S[z++]=128|we>>6&63,S[z++]=128|we&63}else{if(z+3>=le)break;S[z++]=240|we>>18,S[z++]=128|we>>12&63,S[z++]=128|we>>6&63,S[z++]=128|we&63}}return S[z]=0,z-de}function et(I,S,z){return Qe(I,i(),S,z)}function st(I){for(var S=0,z=0;z<I.length;++z){var q=I.charCodeAt(z);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++z)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function Xe(I,S){s().set(I,S)}function ht(I,S){return I%S>0&&(I+=S-I%S),I}var We,dn,xt,Wn,Kt,pn,Bn,Nn,sn;function Zt(I){We=I,c.HEAP8=dn=new Int8Array(I),c.HEAP16=Wn=new Int16Array(I),c.HEAP32=pn=new Int32Array(I),c.HEAPU8=xt=new Uint8Array(I),c.HEAPU16=Kt=new Uint16Array(I),c.HEAPU32=Bn=new Uint32Array(I),c.HEAPF32=Nn=new Float32Array(I),c.HEAPF64=sn=new Float64Array(I)}var Ir=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,We=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Ir/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(We=Q.buffer),Ir=We.byteLength,Zt(We);var Zn,Yn=[],ua=[],Hr=[],ca=[],Ni=[],pr=!1,Fc=!1;x||ua.push({func:function(){Xc()}}),x&&(pr=!0);function h0(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Oc(c.preRun.shift());Ti(Yn)}}function Mc(){pr=!0,Ti(ua)}function d0(){x||Ti(Hr)}function $c(){x||(Fc=!0)}function fn(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)p0(c.postRun.shift());Ti(Ni)}}function Oc(I){Yn.unshift(I)}function p0(I){Ni.unshift(I)}var jr=0,ha=null,Ga=null;function f0(I){pe(!x,"addRunDependency cannot be used in a pthread worker"),jr++,c.monitorRunDependencies&&c.monitorRunDependencies(jr)}function m0(I){if(jr--,c.monitorRunDependencies&&c.monitorRunDependencies(jr),jr==0&&(ha!==null&&(clearInterval(ha),ha=null),Ga)){var S=Ga;Ga=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Gr(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),oe=!0,fe=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function Dc(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var Si="data:application/octet-stream;base64,";function zc(I){return Dc(I,Si)}var A0="file://";function Pc(I){return Dc(I,A0)}var mn="tfjs-backend-wasm-threaded-simd.wasm";zc(mn)||(mn=T(mn));function y0(I){try{if(I==mn&&te)return new Uint8Array(te);if(D)return D(I);throw"both async and sync fetching of the wasm failed"}catch(S){Gr(S)}}function Lc(){if(!te&&(g||_)){if(typeof fetch=="function"&&!Pc(mn))return fetch(mn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+mn+"'";return I.arrayBuffer()}).catch(function(){return y0(mn)});if(M)return new Promise(function(I,S){M(mn,function(z){I(new Uint8Array(z))},S)})}return Promise.resolve().then(function(){return y0(mn)})}function g0(){var I={a:l1};function S(ue,we){var tt=ue.exports;if(c.asm=tt,Zn=c.asm.F,he=we,!x){var Wt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Ft){ke.loadWasmModuleToWorker(Ft,function(){--Wt||m0("wasm-instantiate")})})}}x||f0("wasm-instantiate");function z(ue){S(ue.instance,ue.module)}function q(ue){return Lc().then(function(we){return WebAssembly.instantiate(we,I)}).then(ue,function(we){G("failed to asynchronously prepare wasm: "+we),Gr(we)})}function de(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!zc(mn)&&!Pc(mn)&&typeof fetch=="function"?fetch(mn,{credentials:"same-origin"}).then(function(ue){var we=WebAssembly.instantiateStreaming(ue,I);return we.then(z,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(z)})}):q(z)}if(c.instantiateWasm)try{var le=c.instantiateWasm(I,S);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return de().catch(d),{}}var Wc={8991:function(I,S){setTimeout(function(){ng(I,S)},0)}};function x0(){ke.initRuntime()}function Ti(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var z=S.func;typeof z=="number"?S.arg===void 0?Zn.get(z)():Zn.get(z)(S.arg):z(S.arg===void 0?null:S.arg)}}function Ei(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var z=Atomics.load(o(),Oi>>2),q=0;if(z==I){var de=Atomics.compareExchange(o(),Oi>>2,z,0);if(de==z&&(--S,q=1,S<=0))return 1}var le=Atomics.notify(o(),I>>2,S);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}c._emscripten_futex_wake=Ei;function w0(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=ke.pthreads[I];S.worker.terminate(),ke.freeThreadData(S),ke.runningWorkers.splice(ke.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function _0(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=ke.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function b0(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=ke.pthreads[I];if(S){var z=S.worker;ke.returnWorkerToPool(z)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S<I;++S)ke.allocateUnusedWorker()},initRuntime:function(){for(var I=Xa(228),S=0;S<228/4;++S)l()[I/4+S]=0;o()[I+12>>2]=I;var z=I+152;o()[z>>2]=z;for(var q=Xa(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),Qc(I,!_,1),tg(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();x&&Fi()&&eg()},threadExit:function(I){var S=Fi();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ke.runExitHandlers(),Ei(S+0,2147483647),Qc(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var I=Fi();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),Ei(I+0,2147483647),Qc(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in ke.pthreads){var S=ke.pthreads[I];S&&S.worker&&ke.returnWorkerToPool(S.worker)}ke.pthreads={};for(var z=0;z<ke.unusedWorkers.length;++z){var q=ke.unusedWorkers[z];q.terminate()}ke.unusedWorkers=[];for(var z=0;z<ke.runningWorkers.length;++z){var q=ke.runningWorkers[z],S=q.pthread;ke.freeThreadData(S),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(I){if(I){if(I.threadInfoStruct){var S=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,Gl(S),Gl(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Gl(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[I.pthread.threadInfoStruct],ke.unusedWorkers.push(I),ke.runningWorkers.splice(ke.runningWorkers.indexOf(I),1),ke.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[og>>2]=0;try{I()}finally{o()[og>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(z){var q=z.data,de=q.cmd;if(I.pthread&&(ke.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Fi()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")v1();else if(de==="spawnThread")Gc(z.data);else if(de==="cleanupThread")b0(q.thread);else if(de==="killThread")w0(q.thread);else if(de==="cancelThread")_0(q.thread);else if(de==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")G("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ue=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);ue&&ke.returnWorkerToPool(I)}else if(de==="exitProcess")try{G4(q.returnCode)}catch(we){if(we instanceof Xl)return;throw we}else de==="cancelDone"?ke.returnWorkerToPool(I):de==="objectTransfer"?ke.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):G("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){G("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},b&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:he})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()<S;);}};function v0(I,S){sg(I,S),Mi(I)}c.establishStackSpace=v0;function k0(){return ie}c.getNoExitRuntime=k0;function I0(I,S){return Zn.get(I)(S)}c.invokeEntryPoint=I0;function N0(I,S,z,q){Gr("Assertion failed: "+Me(I)+", at: "+[S?Me(S):"unknown filename",z,q?Me(q):"unknown function"])}function S0(I,S){var z=_main(I,S)}var qa;b?qa=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?qa=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?qa=dateNow:qa=function(){return performance.now()};function T0(I){return o()[J2()>>2]=I,I}function E0(I,S){if(x)return da(1,1,I,S)}function C0(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=ke.pthreads[I],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function R0(){Gr()}function F0(I,S,z){var q=z0(S,z);return Wc[I].apply(null,q)}function M0(I,S){}function $0(I,S,z){if(I<=0||I>s().length||I&!0)return-28;if(g){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),de=q+z,le=Atomics.exchange(o(),Oi>>2,I);;){if(q=performance.now(),q>de)return le=Atomics.exchange(o(),Oi>>2,0),-73;if(le=Atomics.exchange(o(),Oi>>2,0),le==0)break;if(v1(),Atomics.load(o(),I>>2)!=S)return-6;le=Atomics.exchange(o(),Oi>>2,I)}return 0}else{var ue=Atomics.wait(o(),I>>2,S,z);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function O0(I,S,z){i().copyWithin(I,S,S+z)}function D0(){return b?require("os").cpus().length:navigator.hardwareConcurrency}function da(I,S){for(var z=arguments.length-2,q=ql(),de=z,le=$i(de*8),ue=le>>3,we=0;we<z;we++){var tt=arguments[2+we];u()[ue+we]=tt}var Wt=ag(I,de,le,S);return Mi(q),Wt}var Wl=[],Bl=[];function z0(I,S){Bl.length=0;var z;for(S>>=2;z=i()[I++];){var q=z<105;q&&S&1&&S++,Bl.push(q?u()[S++>>1]:o()[S]),++S}return Bl}function P0(I,S,z){Wl.length=S;for(var q=z>>3,de=0;de<S;de++)Wl[de]=u()[q+de];var le=I<0,ue=le?Wc[-I-1]:o1[I];return ue.apply(null,Wl)}function L0(){return i().length}function W0(I){try{return Q.grow(I-We.byteLength+65535>>>16),Zt(Q.buffer),1}catch(S){}}function B0(I){var S=L0();if(I<=S)return!1;var z=2147483648;if(I>z)return!1;for(var q=1;q<=4;q*=2){var de=S*(1+.2/q);de=Math.min(de,I+100663296);var le=Math.min(z,ht(Math.max(I,de),65536)),ue=W0(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var I=Pe.eventHandlers.length-1;I>=0;--I)Pe._removeHandler(I);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(ca.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,z){function q(ue,we){if(ue.length!=we.length)return!1;for(var tt in ue)if(ue[tt]!=we[tt])return!1;return!0}for(var de in Pe.deferredCalls){var le=Pe.deferredCalls[de];if(le.targetFunction==I&&q(le.argsList,z))return}Pe.deferredCalls.push({targetFunction:I,precedence:S,argsList:z}),Pe.deferredCalls.sort(function(ue,we){return ue.precedence<we.precedence})},removeDeferredCalls:function(I){for(var S=0;S<Pe.deferredCalls.length;++S)Pe.deferredCalls[S].targetFunction==I&&(Pe.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var I=0;I<Pe.deferredCalls.length;++I){var S=Pe.deferredCalls[I];Pe.deferredCalls.splice(I,1),--I,S.targetFunction.apply(null,S.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,S){for(var z=0;z<Pe.eventHandlers.length;++z)Pe.eventHandlers[z].target==I&&(!S||S==Pe.eventHandlers[z].eventTypeString)&&Pe._removeHandler(z--)},_removeHandler:function(I){var S=Pe.eventHandlers[I];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Pe.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var S=function(q){++Pe.inEventHandler,Pe.currentEventHandler=I,Pe.runDeferredCalls(),I.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=S,I.target.addEventListener(I.eventTypeString,S,I.useCapture),Pe.eventHandlers.push(I),Pe.registerRemoveEventListeners();else for(var z=0;z<Pe.eventHandlers.length;++z)Pe.eventHandlers[z].target==I.target&&Pe.eventHandlers[z].eventTypeString==I.eventTypeString&&Pe._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(I,S,z,q,de){var le=ql(),ue=$i(12);o()[ue>>2]=z,o()[ue+4>>2]=q,o()[ue+8>>2]=de,k1(0,I,637534208,S,q,ue),Mi(le)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function V0(I){var S=st(I)+1,z=Xa(S);return et(I,z,S),z}function U0(I,S,z,q){var de=ql(),le=$i(12),ue=0;S&&(ue=V0(S)),o()[le>>2]=ue,o()[le+4>>2]=z,o()[le+8>>2]=q,k1(0,I,657457152,0,ue,le),Mi(de)}function H0(I,S,z,q){S=S?Me(S):"",U0(I,S,z,q)}function j0(I){return I>2?Me(I):I}var G0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function q0(I){I=j0(I);var S=G0[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function Vl(I){return q0(I)}function Bc(I,S,z){var q=Vl(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);de=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=S,q.height=z,de&&q.GLctxObject.GLctx.viewport(0,0,S,z)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return H0(ue,I,S,z),1}else return-4;return 0}function Vc(I,S,z){return x?da(2,1,I,S,z):Bc(I,S,z)}function X0(I,S,z){var q=Vl(I);return q?Bc(I,S,z):Vc(I,S,z)}function K0(I){}function Z0(I,S){}function Y0(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(z,q){S.vertexAttribDivisorANGLE(z,q)},I.drawArraysInstanced=function(z,q,de,le){S.drawArraysInstancedANGLE(z,q,de,le)},I.drawElementsInstanced=function(z,q,de,le,ue){S.drawElementsInstancedANGLE(z,q,de,le,ue)},1}function J0(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(z){S.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){S.bindVertexArrayOES(z)},I.isVertexArray=function(z){return S.isVertexArrayOES(z)},1}function Q0(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(z,q){S.drawBuffersWEBGL(z,q)},1}function e1(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var Ye={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){Ye.lastError||(Ye.lastError=I)},getNewId:function(I){for(var S=Ye.counter++,z=I.length;z<S;z++)I[z]=null;return S},getSource:function(I,S,z,q){for(var de="",le=0;le<S;++le){var ue=q?o()[q+le*4>>2]:-1;de+=Me(o()[z+le*4>>2],ue<0?void 0:ue)}return de},createContext:function(I,S){var z=I.getContext("webgl",S);if(!z)return 0;var q=Ye.registerContext(z,S);return q},registerContext:function(I,S){var z=Xa(8);o()[z+4>>2]=Fi();var q={handle:z,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),Ye.contexts[z]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Ye.initExtensions(q),z},makeContextCurrent:function(I){return Ye.currentContext=Ye.contexts[I],c.ctx=pa=Ye.currentContext&&Ye.currentContext.GLctx,!(I&&!pa)},getContext:function(I){return Ye.contexts[I]},deleteContext:function(I){Ye.currentContext===Ye.contexts[I]&&(Ye.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Ye.contexts[I].GLctx.canvas),Ye.contexts[I]&&Ye.contexts[I].GLctx.canvas&&(Ye.contexts[I].GLctx.canvas.GLctxObject=void 0),Gl(Ye.contexts[I].handle),Ye.contexts[I]=null},initExtensions:function(I){if(I||(I=Ye.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;Y0(S),J0(S),Q0(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),e1(S);var z=S.getSupportedExtensions()||[];z.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=Ye.programs[I],z=Ye.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,de=pa.getProgramParameter(S,35718),le=0;le<de;++le){var ue=pa.getActiveUniform(S,le),we=ue.name;z.maxUniformLength=Math.max(z.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var tt=pa.getUniformLocation(S,we);if(tt){var Wt=Ye.getNewId(Ye.uniforms);q[we]=[ue.size,Wt],Ye.uniforms[Wt]=tt;for(var Ft=1;Ft<ue.size;++Ft){var ma=we+"["+Ft+"]";tt=pa.getUniformLocation(S,ma),Wt=Ye.getNewId(Ye.uniforms),Ye.uniforms[Wt]=tt}}}}},t1=["default","low-power","high-performance"];function n1(I,S){var z=S>>2,q=o()[z+(24>>2)],de={alpha:!!o()[z+(0>>2)],depth:!!o()[z+(4>>2)],stencil:!!o()[z+(8>>2)],antialias:!!o()[z+(12>>2)],premultipliedAlpha:!!o()[z+(16>>2)],preserveDrawingBuffer:!!o()[z+(20>>2)],powerPreference:t1[q],failIfMajorPerformanceCaveat:!!o()[z+(28>>2)],majorVersion:o()[z+(32>>2)],minorVersion:o()[z+(36>>2)],enableExtensionsByDefault:o()[z+(40>>2)],explicitSwapControl:o()[z+(44>>2)],proxyContextToMainThread:o()[z+(48>>2)],renderViaOffscreenBackBuffer:o()[z+(52>>2)]},le=Vl(I);if(!le||de.explicitSwapControl)return 0;var ue=Ye.createContext(le,de);return ue}function r1(I,S){return n1(I,S)}var Ci={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var z=Ci.buffers[I];S===0||S===10?((I===1?X:G)(Oe(z,0)),z.length=0):z.push(S)},varargs:void 0,get:function(){Ci.varargs+=4;var I=o()[Ci.varargs-4>>2];return I},getStr:function(I){var S=Me(I);return S},get64:function(I,S){return I}};function Uc(I){return x?da(3,1,I):0}function Hc(I,S,z,q,de){if(x)return da(4,1,I,S,z,q,de)}function jc(I,S,z,q){if(x)return da(5,1,I,S,z,q);for(var de=0,le=0;le<z;le++){for(var ue=o()[S+le*8>>2],we=o()[S+(le*8+4)>>2],tt=0;tt<we;tt++)Ci.printChar(I,i()[ue+tt]);de+=we}return o()[q>>2]=de,0}function a1(I){var S=ke.threadExitHandlers.pop();I&&S()}function s1(I,S){ke.threadExitHandlers.push(function(){Zn.get(I)(S)})}function Gc(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=ke.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(S);for(var z=Xa(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var de=I.stackBase+I.stackSize,le=ke.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),I.detached),Atomics.store(l(),ue+(100>>2),z),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),I.stackSize),Atomics.store(l(),ue+(76>>2),de),Atomics.store(l(),ue+(104>>2),I.stackSize),Atomics.store(l(),ue+(104+8>>2),de),Atomics.store(l(),ue+(104+12>>2),I.detached);var we=Q2(),tt=we+40;Atomics.store(l(),ue+(172>>2),tt),S.pthread=le;var Wt={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Wt.time=performance.now(),S.postMessage(Wt,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function i1(I,S,z,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var de=[],le=0;if(x&&(de.length===0||le))return rg(687865856,I,S,z,q);if(le)return le;var ue=0,we=0,tt=0;S&&S!=-1?(ue=o()[S>>2],ue+=81920,we=o()[S+8>>2],tt=o()[S+12>>2]!==0):ue=2097152;var Wt=we==0;Wt?we=ig(16,ue):(we-=ue,pe(we>0));for(var Ft=Xa(228),ma=0;ma<228>>2;++ma)l()[(Ft>>2)+ma]=0;o()[I>>2]=Ft,o()[Ft+12>>2]=Ft;var Di=Ft+152;o()[Di>>2]=Di;var An={stackBase:we,stackSize:ue,allocatedOwnStack:Wt,detached:tt,startRoutine:z,pthread_ptr:Ft,arg:q,transferList:de};return x?(An.cmd="spawnThread",postMessage(An,de)):Gc(An),0}function qc(I){if(x)return da(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return T0(28),-1}x||ke.initMainThreadBlock();var pa,o1=[null,E0,Vc,Uc,Hc,jc,qc],l1={e:N0,r:S0,x:C0,b:R0,y:F0,j:M0,c:$0,d:Ei,f:qa,p:O0,z:D0,u:P0,q:B0,v:X0,i:K0,t:Z0,w:r1,m:Uc,n:Hc,g:jc,o:x0,a:Q||c.wasmMemory,k:a1,l:s1,h:i1,s:qc},Y2=g0(),Xc=c.___wasm_call_ctors=function(){return(Xc=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},u1=c._init=function(){return(u1=c._init=c.asm.B).apply(null,arguments)},c1=c._register_tensor=function(){return(c1=c._register_tensor=c.asm.C).apply(null,arguments)},h1=c._dispose_data=function(){return(h1=c._dispose_data=c.asm.D).apply(null,arguments)},d1=c._dispose=function(){return(d1=c._dispose=c.asm.E).apply(null,arguments)},p1=c._Abs=function(){return(p1=c._Abs=c.asm.G).apply(null,arguments)},f1=c._Add=function(){return(f1=c._Add=c.asm.H).apply(null,arguments)},m1=c._AddN=function(){return(m1=c._AddN=c.asm.I).apply(null,arguments)},A1=c._ArgMax=function(){return(A1=c._ArgMax=c.asm.J).apply(null,arguments)},y1=c._AvgPool=function(){return(y1=c._AvgPool=c.asm.K).apply(null,arguments)},g1=c._BatchMatMul=function(){return(g1=c._BatchMatMul=c.asm.L).apply(null,arguments)},x1=c._Ceil=function(){return(x1=c._Ceil=c.asm.M).apply(null,arguments)},w1=c._ClipByValue=function(){return(w1=c._ClipByValue=c.asm.N).apply(null,arguments)},_1=c._Conv2D=function(){return(_1=c._Conv2D=c.asm.O).apply(null,arguments)},Kc=c._Conv2DBackpropInput=function(){return(Kc=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},Zc=c._Cos=function(){return(Zc=c._Cos=c.asm.Q).apply(null,arguments)},Ul=c._CropAndResize=function(){return(Ul=c._CropAndResize=c.asm.R).apply(null,arguments)},Ri=c._Cumsum=function(){return(Ri=c._Cumsum=c.asm.S).apply(null,arguments)},b1=c._DepthToSpace=function(){return(b1=c._DepthToSpace=c.asm.T).apply(null,arguments)},Hl=c._DepthwiseConv2dNative=function(){return(Hl=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},ne=c._Exp=function(){return(ne=c._Exp=c.asm.W).apply(null,arguments)},Ne=c._FlipLeftRight=function(){return(Ne=c._FlipLeftRight=c.asm.X).apply(null,arguments)},Ke=c._Floor=function(){return(Ke=c._Floor=c.asm.Y).apply(null,arguments)},kt=c._FloorDiv=function(){return(kt=c._FloorDiv=c.asm.Z).apply(null,arguments)},ft=c._FusedBatchNorm=function(){return(ft=c._FusedBatchNorm=c.asm._).apply(null,arguments)},Be=c._FusedConv2D=function(){return(Be=c._FusedConv2D=c.asm.$).apply(null,arguments)},Ue=c._FusedDepthwiseConv2D=function(){return(Ue=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},Yt=c._Gather=function(){return(Yt=c._Gather=c.asm.ba).apply(null,arguments)},qr=c._GatherNd=function(){return(qr=c._GatherNd=c.asm.ca).apply(null,arguments)},Xr=c._Greater=function(){return(Xr=c._Greater=c.asm.da).apply(null,arguments)},Yc=c._GreaterEqual=function(){return(Yc=c._GreaterEqual=c.asm.ea).apply(null,arguments)},jl=c._LeakyRelu=function(){return(jl=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Vn=c._Less=function(){return(Vn=c._Less=c.asm.ga).apply(null,arguments)},fa=c._LessEqual=function(){return(fa=c._LessEqual=c.asm.ha).apply(null,arguments)},Jc=c._Log=function(){return(Jc=c._Log=c.asm.ia).apply(null,arguments)},t4=c._LogicalAnd=function(){return(t4=c._LogicalAnd=c.asm.ja).apply(null,arguments)},n4=c._Max=function(){return(n4=c._Max=c.asm.ka).apply(null,arguments)},r4=c._MaxPool=function(){return(r4=c._MaxPool=c.asm.la).apply(null,arguments)},a4=c._Maximum=function(){return(a4=c._Maximum=c.asm.ma).apply(null,arguments)},s4=c._Mean=function(){return(s4=c._Mean=c.asm.na).apply(null,arguments)},i4=c._Min=function(){return(i4=c._Min=c.asm.oa).apply(null,arguments)},o4=c._Minimum=function(){return(o4=c._Minimum=c.asm.pa).apply(null,arguments)},l4=c._Multiply=function(){return(l4=c._Multiply=c.asm.qa).apply(null,arguments)},u4=c._Neg=function(){return(u4=c._Neg=c.asm.ra).apply(null,arguments)},c4=c._NonMaxSuppressionV3=function(){return(c4=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},h4=c._NonMaxSuppressionV4=function(){return(h4=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},d4=c._NonMaxSuppressionV5=function(){return(d4=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},p4=c._NotEqual=function(){return(p4=c._NotEqual=c.asm.va).apply(null,arguments)},f4=c._OneHot=function(){return(f4=c._OneHot=c.asm.wa).apply(null,arguments)},m4=c._PadV2=function(){return(m4=c._PadV2=c.asm.xa).apply(null,arguments)},A4=c._Pow=function(){return(A4=c._Pow=c.asm.ya).apply(null,arguments)},y4=c._Prelu=function(){return(y4=c._Prelu=c.asm.za).apply(null,arguments)},g4=c._Prod=function(){return(g4=c._Prod=c.asm.Aa).apply(null,arguments)},x4=c._RealDiv=function(){return(x4=c._RealDiv=c.asm.Ba).apply(null,arguments)},w4=c._Relu=function(){return(w4=c._Relu=c.asm.Ca).apply(null,arguments)},_4=c._Relu6=function(){return(_4=c._Relu6=c.asm.Da).apply(null,arguments)},b4=c._ResizeBilinear=function(){return(b4=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},v4=c._Reverse=function(){return(v4=c._Reverse=c.asm.Fa).apply(null,arguments)},k4=c._RotateWithOffset=function(){return(k4=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},I4=c._Round=function(){return(I4=c._Round=c.asm.Ha).apply(null,arguments)},N4=c._Rsqrt=function(){return(N4=c._Rsqrt=c.asm.Ia).apply(null,arguments)},S4=c._ScatterNd=function(){return(S4=c._ScatterNd=c.asm.Ja).apply(null,arguments)},T4=c._SelectV2=function(){return(T4=c._SelectV2=c.asm.Ka).apply(null,arguments)},E4=c._Sigmoid=function(){return(E4=c._Sigmoid=c.asm.La).apply(null,arguments)},C4=c._Sin=function(){return(C4=c._Sin=c.asm.Ma).apply(null,arguments)},R4=c._Softmax=function(){return(R4=c._Softmax=c.asm.Na).apply(null,arguments)},F4=c._Sqrt=function(){return(F4=c._Sqrt=c.asm.Oa).apply(null,arguments)},M4=c._Square=function(){return(M4=c._Square=c.asm.Pa).apply(null,arguments)},$4=c._SquaredDifference=function(){return($4=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},O4=c._Step=function(){return(O4=c._Step=c.asm.Ra).apply(null,arguments)},D4=c._StridedSlice=function(){return(D4=c._StridedSlice=c.asm.Sa).apply(null,arguments)},z4=c._Sub=function(){return(z4=c._Sub=c.asm.Ta).apply(null,arguments)},P4=c._Sum=function(){return(P4=c._Sum=c.asm.Ua).apply(null,arguments)},L4=c._Tanh=function(){return(L4=c._Tanh=c.asm.Va).apply(null,arguments)},W4=c._Tile=function(){return(W4=c._Tile=c.asm.Wa).apply(null,arguments)},B4=c._TopK=function(){return(B4=c._TopK=c.asm.Xa).apply(null,arguments)},V4=c._Transpose=function(){return(V4=c._Transpose=c.asm.Ya).apply(null,arguments)},U4=c.__FusedMatMul=function(){return(U4=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},Xa=c._malloc=function(){return(Xa=c._malloc=c.asm._a).apply(null,arguments)},Gl=c._free=function(){return(Gl=c._free=c.asm.$a).apply(null,arguments)},J2=c.___errno_location=function(){return(J2=c.___errno_location=c.asm.ab).apply(null,arguments)},Q2=c._emscripten_get_global_libc=function(){return(Q2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},Fi=c._pthread_self=function(){return(Fi=c._pthread_self=c.asm.cb).apply(null,arguments)},eg=c.___pthread_tsd_run_dtors=function(){return(eg=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},v1=c._emscripten_main_thread_process_queued_calls=function(){return(v1=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},H4=c._emscripten_current_thread_process_queued_calls=function(){return(H4=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},tg=c._emscripten_register_main_browser_thread_id=function(){return(tg=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},ng=c.__emscripten_do_dispatch_to_thread=function(){return(ng=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},rg=c._emscripten_sync_run_in_main_thread_4=function(){return(rg=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},ag=c._emscripten_run_in_main_runtime_thread_js=function(){return(ag=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},k1=c.__emscripten_call_on_thread=function(){return(k1=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},j4=c._emscripten_tls_init=function(){return(j4=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},Qc=c.__emscripten_thread_init=function(){return(Qc=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},ql=c.stackSave=function(){return(ql=c.stackSave=c.asm.nb).apply(null,arguments)},Mi=c.stackRestore=function(){return(Mi=c.stackRestore=c.asm.ob).apply(null,arguments)},$i=c.stackAlloc=function(){return($i=c.stackAlloc=c.asm.pb).apply(null,arguments)},sg=c._emscripten_stack_set_limits=function(){return(sg=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},ig=c._memalign=function(){return(ig=c._memalign=c.asm.rb).apply(null,arguments)},og=c.__emscripten_allow_main_runtime_queued_calls=9880,Oi=c.__emscripten_main_thread_futex=11368;c.cwrap=Fe,c.PThread=ke,c.PThread=ke,c.wasmMemory=Q,c.ExitStatus=Xl;var eh;function Xl(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Ga=function I(){eh||I1(),eh||(Ga=I)};function I1(I){if(I=I||f,jr>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(h0(),jr>0)return;function S(){eh||(eh=!0,c.calledRun=!0,!oe&&(Mc(),d0(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),fn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=I1;function G4(I,S){if(!(S&&ie&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new Xl(I);ie||(ke.terminateAllThreads(),fe=I,$c(),c.onExit&&c.onExit(I),oe=!0),y(I,new Xl(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(ie=!1,ke.initWorker()),I1(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),N8=Je((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,ne){throw ne},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var _,b,w,x,N,T;f?(m?y=Kl().dirname(y)+"/":y=__dirname+"/",_=function(K,ne){return N||(N=require("fs")),T||(T=Kl()),K=T.normalize(K),N.readFileSync(K,ne?null:"utf8")},w=function(K){var ne=_(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof b1))throw K}),process.on("unhandledRejection",pr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(_=function(K){return read(K)}),w=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",_=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),b=function(K,ne,Ne){var Ke=new XMLHttpRequest;Ke.open("GET",K,!0),Ke.responseType="arraybuffer",Ke.onload=function(){if(Ke.status==200||Ke.status==0&&Ke.response){ne(Ke.response);return}Ne()},Ke.onerror=Ne,Ke.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var D;s.wasmBinary&&(D=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&pr("no native wasm support detected");var W,U=!1,H;function X(K,ne){K||pr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ke,kt){var ft={string:function(Vn){var fa=0;if(Vn!=null&&Vn!==0){var Jc=(Vn.length<<2)+1;fa=Ul(Jc),he(Vn,fa,Jc)}return fa},array:function(Vn){var fa=Ul(Vn.length);return oe(Vn,fa),fa}};function Be(Vn){return ne==="string"?ie(Vn):ne==="boolean"?Boolean(Vn):Vn}var Ue=G(K),Yt=[],qr=0;if(Ke)for(var Xr=0;Xr<Ke.length;Xr++){var Yc=ft[Ne[Xr]];Yc?(qr===0&&(qr=Kc()),Yt[Xr]=Yc(Ke[Xr])):Yt[Xr]=Ke[Xr]}var jl=Ue.apply(null,Yt);return jl=Be(jl),qr!==0&&Zc(qr),jl}function Y(K,ne,Ne,Ke){Ne=Ne||[];var kt=Ne.every(function(Be){return Be==="number"}),ft=ne!=="string";return ft&&kt&&!Ke?G(K):function(){return ee(K,ne,Ne,arguments,Ke)}}var ae=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(K,ne,Ne){for(var Ke=ne+Ne,kt=ne;K[kt]&&!(kt>=Ke);)++kt;if(kt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,kt));for(var ft="";ne<kt;){var Be=K[ne++];if(!(Be&128)){ft+=String.fromCharCode(Be);continue}var Ue=K[ne++]&63;if((Be&224)==192){ft+=String.fromCharCode((Be&31)<<6|Ue);continue}var Yt=K[ne++]&63;if((Be&240)==224?Be=(Be&15)<<12|Ue<<6|Yt:Be=(Be&7)<<18|Ue<<12|Yt<<6|K[ne++]&63,Be<65536)ft+=String.fromCharCode(Be);else{var qr=Be-65536;ft+=String.fromCharCode(55296|qr>>10,56320|qr&1023)}}return ft}function ie(K,ne){return K?te(Ie,K,ne):""}function Q(K,ne,Ne,Ke){if(!(Ke>0))return 0;for(var kt=Ne,ft=Ne+Ke-1,Be=0;Be<K.length;++Be){var Ue=K.charCodeAt(Be);if(Ue>=55296&&Ue<=57343){var Yt=K.charCodeAt(++Be);Ue=65536+((Ue&1023)<<10)|Yt&1023}if(Ue<=127){if(Ne>=ft)break;ne[Ne++]=Ue}else if(Ue<=2047){if(Ne+1>=ft)break;ne[Ne++]=192|Ue>>6,ne[Ne++]=128|Ue&63}else if(Ue<=65535){if(Ne+2>=ft)break;ne[Ne++]=224|Ue>>12,ne[Ne++]=128|Ue>>6&63,ne[Ne++]=128|Ue&63}else{if(Ne+3>=ft)break;ne[Ne++]=240|Ue>>18,ne[Ne++]=128|Ue>>12&63,ne[Ne++]=128|Ue>>6&63,ne[Ne++]=128|Ue&63}}return ne[Ne]=0,Ne-kt}function he(K,ne,Ne){return Q(K,Ie,ne,Ne)}function oe(K,ne){ve.set(K,ne)}function fe(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var pe,ve,Ie,Fe,Oe,Me,Qe,et,st;function Xe(K){pe=K,s.HEAP8=ve=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=Me=new Int32Array(K),s.HEAPU8=Ie=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var ht=s.INITIAL_MEMORY||16777216,We,dn=[],xt=[],Wn=[],Kt=[],pn=!1;xt.push({func:function(){Lc()}});function Bn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ir(s.preRun.shift());ha(dn)}function Nn(){pn=!0,ha(xt)}function sn(){ha(Wn)}function Zt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Zn(s.postRun.shift());ha(Kt)}function Ir(K){dn.unshift(K)}function Zn(K){Kt.unshift(K)}var Yn=0,ua=null,Hr=null;function ca(K){Yn++,s.monitorRunDependencies&&s.monitorRunDependencies(Yn)}function Ni(K){if(Yn--,s.monitorRunDependencies&&s.monitorRunDependencies(Yn),Yn==0&&(ua!==null&&(clearInterval(ua),ua=null),Hr)){var ne=Hr;Hr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function pr(K){s.onAbort&&s.onAbort(K),K+="",M(K),U=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function Fc(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var h0="data:application/octet-stream;base64,";function Mc(K){return Fc(K,h0)}var d0="file://";function $c(K){return Fc(K,d0)}var fn="tfjs-backend-wasm.wasm";Mc(fn)||(fn=g(fn));function Oc(K){try{if(K==fn&&D)return new Uint8Array(D);if(w)return w(K);throw"both async and sync fetching of the wasm failed"}catch(ne){pr(ne)}}function p0(){if(!D&&(p||m)){if(typeof fetch=="function"&&!$c(fn))return fetch(fn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+fn+"'";return K.arrayBuffer()}).catch(function(){return Oc(fn)});if(b)return new Promise(function(K,ne){b(fn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return Oc(fn)})}function jr(){var K={a:mn};function ne(Be,Ue){var Yt=Be.exports;s.asm=Yt,W=s.asm.g,Xe(W.buffer),We=s.asm.m,Ni("wasm-instantiate")}ca("wasm-instantiate");function Ne(Be){ne(Be.instance)}function Ke(Be){return p0().then(function(Ue){return WebAssembly.instantiate(Ue,K)}).then(Be,function(Ue){M("failed to asynchronously prepare wasm: "+Ue),pr(Ue)})}function kt(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Mc(fn)&&!$c(fn)&&typeof fetch=="function"?fetch(fn,{credentials:"same-origin"}).then(function(Be){var Ue=WebAssembly.instantiateStreaming(Be,K);return Ue.then(Ne,function(Yt){return M("wasm streaming compile failed: "+Yt),M("falling back to ArrayBuffer instantiation"),Ke(Ne)})}):Ke(Ne)}if(s.instantiateWasm)try{var ft=s.instantiateWasm(K,ne);return ft}catch(Be){return M("Module.instantiateWasm callback failed with error: "+Be),!1}return kt().catch(o),{}}function ha(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?We.get(Ne)():We.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function Ga(){pr()}function f0(K,ne,Ne){Ie.copyWithin(K,ne,ne+Ne)}function m0(){return Ie.length}function Gr(K){try{return W.grow(K-pe.byteLength+65535>>>16),Xe(W.buffer),1}catch(ne){}}function Dc(K){var ne=m0(),Ne=2147483648;if(K>Ne)return!1;for(var Ke=1;Ke<=4;Ke*=2){var kt=ne*(1+.2/Ke);kt=Math.min(kt,K+100663296);var ft=Math.min(Ne,fe(Math.max(K,kt),65536)),Be=Gr(ft);if(Be)return!0}return!1}var Si={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Si.buffers[K];ne===0||ne===10?((K===1?E:M)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Si.varargs+=4;var K=Me[Si.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function zc(K){return 0}function A0(K,ne,Ne,Ke,kt){}function Pc(K,ne,Ne,Ke){for(var kt=0,ft=0;ft<Ne;ft++){for(var Be=Me[ne+ft*8>>2],Ue=Me[ne+(ft*8+4)>>2],Yt=0;Yt<Ue;Yt++)Si.printChar(K,Ie[Be+Yt]);kt+=Ue}return Me[Ke>>2]=kt,0}var mn={a:Ga,d:f0,e:Dc,f:zc,c:A0,b:Pc},y0=jr(),Lc=s.___wasm_call_ctors=function(){return(Lc=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},g0=s._init=function(){return(g0=s._init=s.asm.i).apply(null,arguments)},Wc=s._register_tensor=function(){return(Wc=s._register_tensor=s.asm.j).apply(null,arguments)},x0=s._dispose_data=function(){return(x0=s._dispose_data=s.asm.k).apply(null,arguments)},Ti=s._dispose=function(){return(Ti=s._dispose=s.asm.l).apply(null,arguments)},Ei=s._Abs=function(){return(Ei=s._Abs=s.asm.n).apply(null,arguments)},w0=s._Add=function(){return(w0=s._Add=s.asm.o).apply(null,arguments)},_0=s._AddN=function(){return(_0=s._AddN=s.asm.p).apply(null,arguments)},b0=s._ArgMax=function(){return(b0=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},v0=s._BatchMatMul=function(){return(v0=s._BatchMatMul=s.asm.s).apply(null,arguments)},k0=s._Ceil=function(){return(k0=s._Ceil=s.asm.t).apply(null,arguments)},I0=s._ClipByValue=function(){return(I0=s._ClipByValue=s.asm.u).apply(null,arguments)},N0=s._Conv2D=function(){return(N0=s._Conv2D=s.asm.v).apply(null,arguments)},S0=s._Conv2DBackpropInput=function(){return(S0=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},qa=s._Cos=function(){return(qa=s._Cos=s.asm.x).apply(null,arguments)},T0=s._CropAndResize=function(){return(T0=s._CropAndResize=s.asm.y).apply(null,arguments)},E0=s._Cumsum=function(){return(E0=s._Cumsum=s.asm.z).apply(null,arguments)},C0=s._DepthToSpace=function(){return(C0=s._DepthToSpace=s.asm.A).apply(null,arguments)},R0=s._DepthwiseConv2dNative=function(){return(R0=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},F0=s._Equal=function(){return(F0=s._Equal=s.asm.C).apply(null,arguments)},M0=s._Exp=function(){return(M0=s._Exp=s.asm.D).apply(null,arguments)},$0=s._FlipLeftRight=function(){return($0=s._FlipLeftRight=s.asm.E).apply(null,arguments)},O0=s._Floor=function(){return(O0=s._Floor=s.asm.F).apply(null,arguments)},D0=s._FloorDiv=function(){return(D0=s._FloorDiv=s.asm.G).apply(null,arguments)},da=s._FusedBatchNorm=function(){return(da=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Wl=s._FusedConv2D=function(){return(Wl=s._FusedConv2D=s.asm.I).apply(null,arguments)},Bl=s._FusedDepthwiseConv2D=function(){return(Bl=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},z0=s._Gather=function(){return(z0=s._Gather=s.asm.K).apply(null,arguments)},P0=s._GatherNd=function(){return(P0=s._GatherNd=s.asm.L).apply(null,arguments)},L0=s._Greater=function(){return(L0=s._Greater=s.asm.M).apply(null,arguments)},W0=s._GreaterEqual=function(){return(W0=s._GreaterEqual=s.asm.N).apply(null,arguments)},B0=s._LeakyRelu=function(){return(B0=s._LeakyRelu=s.asm.O).apply(null,arguments)},Pe=s._Less=function(){return(Pe=s._Less=s.asm.P).apply(null,arguments)},V0=s._LessEqual=function(){return(V0=s._LessEqual=s.asm.Q).apply(null,arguments)},U0=s._Log=function(){return(U0=s._Log=s.asm.R).apply(null,arguments)},H0=s._LogicalAnd=function(){return(H0=s._LogicalAnd=s.asm.S).apply(null,arguments)},j0=s._Max=function(){return(j0=s._Max=s.asm.T).apply(null,arguments)},G0=s._MaxPool=function(){return(G0=s._MaxPool=s.asm.U).apply(null,arguments)},q0=s._Maximum=function(){return(q0=s._Maximum=s.asm.V).apply(null,arguments)},Vl=s._Mean=function(){return(Vl=s._Mean=s.asm.W).apply(null,arguments)},Bc=s._Min=function(){return(Bc=s._Min=s.asm.X).apply(null,arguments)},Vc=s._Minimum=function(){return(Vc=s._Minimum=s.asm.Y).apply(null,arguments)},X0=s._Multiply=function(){return(X0=s._Multiply=s.asm.Z).apply(null,arguments)},K0=s._Neg=function(){return(K0=s._Neg=s.asm._).apply(null,arguments)},Z0=s._NonMaxSuppressionV3=function(){return(Z0=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},Y0=s._NonMaxSuppressionV4=function(){return(Y0=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},J0=s._NonMaxSuppressionV5=function(){return(J0=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},Q0=s._NotEqual=function(){return(Q0=s._NotEqual=s.asm.ca).apply(null,arguments)},e1=s._OneHot=function(){return(e1=s._OneHot=s.asm.da).apply(null,arguments)},Ye=s._PadV2=function(){return(Ye=s._PadV2=s.asm.ea).apply(null,arguments)},t1=s._Pow=function(){return(t1=s._Pow=s.asm.fa).apply(null,arguments)},n1=s._Prelu=function(){return(n1=s._Prelu=s.asm.ga).apply(null,arguments)},r1=s._Prod=function(){return(r1=s._Prod=s.asm.ha).apply(null,arguments)},Ci=s._RealDiv=function(){return(Ci=s._RealDiv=s.asm.ia).apply(null,arguments)},Uc=s._Relu=function(){return(Uc=s._Relu=s.asm.ja).apply(null,arguments)},Hc=s._Relu6=function(){return(Hc=s._Relu6=s.asm.ka).apply(null,arguments)},jc=s._ResizeBilinear=function(){return(jc=s._ResizeBilinear=s.asm.la).apply(null,arguments)},a1=s._Reverse=function(){return(a1=s._Reverse=s.asm.ma).apply(null,arguments)},s1=s._RotateWithOffset=function(){return(s1=s._RotateWithOffset=s.asm.na).apply(null,arguments)},Gc=s._Round=function(){return(Gc=s._Round=s.asm.oa).apply(null,arguments)},i1=s._Rsqrt=function(){return(i1=s._Rsqrt=s.asm.pa).apply(null,arguments)},qc=s._ScatterNd=function(){return(qc=s._ScatterNd=s.asm.qa).apply(null,arguments)},pa=s._SelectV2=function(){return(pa=s._SelectV2=s.asm.ra).apply(null,arguments)},o1=s._Sigmoid=function(){return(o1=s._Sigmoid=s.asm.sa).apply(null,arguments)},l1=s._Sin=function(){return(l1=s._Sin=s.asm.ta).apply(null,arguments)},Y2=s._Softmax=function(){return(Y2=s._Softmax=s.asm.ua).apply(null,arguments)},Xc=s._Sqrt=function(){return(Xc=s._Sqrt=s.asm.va).apply(null,arguments)},u1=s._Square=function(){return(u1=s._Square=s.asm.wa).apply(null,arguments)},c1=s._SquaredDifference=function(){return(c1=s._SquaredDifference=s.asm.xa).apply(null,arguments)},h1=s._Step=function(){return(h1=s._Step=s.asm.ya).apply(null,arguments)},d1=s._StridedSlice=function(){return(d1=s._StridedSlice=s.asm.za).apply(null,arguments)},p1=s._Sub=function(){return(p1=s._Sub=s.asm.Aa).apply(null,arguments)},f1=s._Sum=function(){return(f1=s._Sum=s.asm.Ba).apply(null,arguments)},m1=s._Tanh=function(){return(m1=s._Tanh=s.asm.Ca).apply(null,arguments)},A1=s._Tile=function(){return(A1=s._Tile=s.asm.Da).apply(null,arguments)},y1=s._TopK=function(){return(y1=s._TopK=s.asm.Ea).apply(null,arguments)},g1=s._Transpose=function(){return(g1=s._Transpose=s.asm.Fa).apply(null,arguments)},x1=s.__FusedMatMul=function(){return(x1=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},w1=s._malloc=function(){return(w1=s._malloc=s.asm.Ha).apply(null,arguments)},_1=s._free=function(){return(_1=s._free=s.asm.Ia).apply(null,arguments)},Kc=s.stackSave=function(){return(Kc=s.stackSave=s.asm.Ja).apply(null,arguments)},Zc=s.stackRestore=function(){return(Zc=s.stackRestore=s.asm.Ka).apply(null,arguments)},Ul=s.stackAlloc=function(){return(Ul=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Y;var Ri;function b1(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Hr=function K(){Ri||Hl(),Ri||(Hr=K)};function Hl(K){if(K=K||c,Yn>0||(Bn(),Yn>0))return;function ne(){Ri||(Ri=!0,s.calledRun=!0,!U&&(Nn(),sn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Zt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=Hl,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Hl(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),S8=Je((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),T8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),E8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),C8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),R8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],_=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,_=Math.max(_,d.length)),f=0,A=-32;A<_;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),F8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M8=Je((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,b(r)]:w==null?_():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(b(M.S),r),(x.pass||N||function(L,W,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(a[l]=L,W):L})(D,E,"global"in x?x.global:this==a,x.state)}function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,H=T.i,X=T.j,G=T.S;L--;)W=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+W])+(G[X]=W)];return T.i=H,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function _(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(T){var x=n.navigator,N=x&&x.plugins;return[+new Date,n,N,n.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=m;try{p=S1()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):a["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),cg=Je((e,t)=>{var n=S8(),r=T8(),a=E8(),s=C8(),i=R8(),o=F8(),l=M8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),$8=Je(()=>{}),O8="3.2.0",D8="3.2.0",z8="3.2.0",P8="3.2.0",L8="3.2.0",W8=1e-7,B8=1e-4,sh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Zl=class{refCount(e){return Qn("refCount")}incRef(e){return Qn("incRef")}timerAvailable(){return!0}time(e){return Qn("time")}read(e){return Qn("read")}readSync(e){return Qn("readSync")}numDataIds(){return Qn("numDataIds")}disposeData(e,t){return Qn("disposeData")}write(e,t,n){return Qn("write")}move(e,t,n,r,a){return Qn("move")}memory(){return Qn("memory")}floatPrecision(){return Qn("floatPrecision")}epsilon(){return this.floatPrecision()===32?W8:B8}dispose(){return Qn("dispose")}};function Qn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function hg(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function V8(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Yl(e,t,n){return Math.max(e,Math.min(t,n))}function U8(e){return e%2==0?e:e+1}function H8(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function j8(e,t){let n=Math.random();return t*n+(1-n)*e}function G8(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function rn(e,t,n=""){F(Kr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ka(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Za(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let r=0;r<e.length;++r)Za(e[r],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function q8(e){return e.length===0}function Kr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Bt(e){return e%1==0}function X8(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function K8(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Z8(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return hg(t),t}function Jl(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function Y8(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function J8(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function er(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Bt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function dg(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:er(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function pg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function fg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function mg(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function Ag(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function Q8(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function T1(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function yg(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Aa(e){return typeof e=="string"||e instanceof String}function gg(e){return typeof e=="boolean"}function xg(e){return typeof e=="number"}function ih(e){return Array.isArray(e)?ih(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":xg(e)?"float32":Aa(e)?"string":gg(e)?"bool":"float32"}function ya(e){return!!(e&&e.constructor&&e.call&&e.apply)}function oh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Li(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function wg(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=wg(e+o*i,s,n)}return r}function Wi(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return wg(0,e,t)}function E1(e,t){let n=lh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function lh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function ek(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return Wi(e,new Float32Array(n));if(t==="int32")return Wi(e,new Int32Array(n));if(t==="bool")return Wi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function C1(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function tk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function nk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function R1(e){return e&&e.then&&typeof e.then=="function"}var _g="tfjsflags",bg=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(R1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=rk(this.global.location.search);_g in e&&e[_g].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=ak(n,r)})}};function rk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(sk(t,r[0],r[1]),r.join("="))),t}function sk(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function ak(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return Ya}var Ya=null;function ik(e){Ya=e}var F1;function vg(){if(F1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");F1=e}return F1}function ok(){let e=vg();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function M1(e,t){let n=ok();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Bi="Abs",Vi="Acos",Ui="Acosh",ga="Add",Ja="AddN",uh="All",ch="Any",Qa="ArgMax",Ql="ArgMin",Hi="Asin",ji="Asinh",Gi="Atan",qi="Atanh",Xi="Atan2",es="AvgPool",hh="AvgPoolGrad",eu="AvgPool3D",dh="AvgPool3DGrad",ts="BatchMatMul",tu="BatchToSpaceND",ph="Bincount",kg="BroadcastTo",ns="Cast",rs="Ceil",xa="ClipByValue",fh="Complex",nu="ComplexAbs",Ki="Concat",as="Conv2D",mh="Conv2DBackpropFilter",ss="Conv2DBackpropInput",ru="Conv3D",Ah="Conv3DBackpropFilterV2",yh="Conv3DBackpropInputV2",is="Cos",Zi="Cosh",os="Cumsum",Yi="CropAndResize",gh="DenseBincount",Ji="DepthToSpace",ls="DepthwiseConv2dNative",xh="DepthwiseConv2dNativeBackpropFilter",wh="DepthwiseConv2dNativeBackpropInput",_h="Diag",au="Dilation2D",bh="Dilation2DBackpropInput",vh="Dilation2DBackpropFilter",us="RealDiv",Qi="Elu",kh="EluGrad",eo="Erf",to="Equal",cs="Exp",no="ExpandDims",ro="Expm1",Ih="FFT",su="Fill",ao="FlipLeftRight",hs="Floor",ds="FloorDiv",ps="FusedBatchNorm",so="GatherV2",io="GatherNd",oo="Greater",fs="GreaterEqual",ms="Identity",Nh="IFFT",Sh="Imag",lo="IsFinite",uo="IsInf",co="IsNan",As="LeakyRelu",ho="Less",po="LessEqual",Th="LinSpace",ys="Log",fo="Log1p",mo="LogicalAnd",iu="LogicalNot",ou="LogicalOr",Ig="LogSoftmax",lu="LRN",Eh="LRNGrad",gs="Max",xs="Maximum",ws="MaxPool",Ch="MaxPoolGrad",uu="MaxPool3D",Rh="MaxPool3DGrad",Fh="MaxPoolWithArgmax",_s="Mean",bs="Min",vs="Minimum",cu="MirrorPad",Ao="Mod",Mh="Multinomial",ks="Multiply",yo="Neg",go="NotEqual",xo="NonMaxSuppressionV3",wo="NonMaxSuppressionV4",_o="NonMaxSuppressionV5",bo="OnesLike",Is="OneHot",vo="Pack",Ns="PadV2",lk="Pool",Ss="Pow",Ts="Prelu",ko="Prod",hu="Range",$h="Real",Io="Reciprocal",Es="Relu",No="Reshape",du="ResizeNearestNeighbor",Oh="ResizeNearestNeighborGrad",Cs="ResizeBilinear",Dh="ResizeBilinearGrad",Rs="Relu6",Fs="Reverse",Ms="Round",$s="Rsqrt",So="ScatterNd",To="Select",Eo="Selu",Co="Slice",Os="Sin",Ro="Sinh",Fo="Sign",Ds="Sigmoid",Mo="Softplus",zs="Sqrt",Ps="Sum",pu="SpaceToBatchND",$o="SplitV",Ls="Softmax",Ws="SquaredDifference",fu="Square",Bs="Sub",zh="SparseToDense",Oo="StridedSlice",Do="Tan",Vs="Tanh",wa="Tile",zo="TopK",Us="Transpose",Ph="Unique",Po="Unpack",mu="UnsortedSegmentSum",Lo="ZerosLike",_a="Step",Lh="FromPixels",Wo="RotateWithOffset",Hs="_FusedMatMul",js="FusedConv2D",Gs="FusedDepthwiseConv2D",Bo=M1("kernelRegistry",()=>new Map),Au=M1("gradRegistry",()=>new Map);function Wh(e,t){let n=$1(e,t);return Bo.get(n)}function O1(e){return Au.get(e)}function Vo(e){let t=Bo.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function qs(e){let{kernelName:t,backendName:n}=e,r=$1(t,n);Bo.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Bo.set(r,e)}function Ng(e){let{kernelName:t}=e;Au.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Au.set(t,e)}function uk(e,t){let n=$1(e,t);if(!Bo.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Bo.delete(n)}function ck(e){if(!Au.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Au.delete(e)}function hk(e,t){Vo(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});qs(r)})}function $1(e,t){return`${t}_${e}`}var v={};De(v,{arraysEqual:()=>Kr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>C1,assertNonNull:()=>Ka,assertShapesMatch:()=>rn,bytesFromStringArray:()=>yg,bytesPerElement:()=>T1,checkConversionForErrors:()=>mg,clamp:()=>Yl,computeStrides:()=>Li,createScalarValue:()=>dk,createShuffledIndices:()=>Z8,decodeString:()=>Vh,distSquared:()=>G8,encodeString:()=>gu,fetch:()=>pk,flatten:()=>Za,getArrayFromDType:()=>fg,getTypedArrayFromDType:()=>pg,hasEncodingLoss:()=>Q8,indexToLoc:()=>nk,inferDtype:()=>ih,inferFromImplicitShape:()=>J8,isBoolean:()=>gg,isFunction:()=>ya,isInt:()=>Bt,isNumber:()=>xg,isPromise:()=>R1,isScalarShape:()=>q8,isString:()=>Aa,isTypedArray:()=>an,isValidDtype:()=>Ag,locToIndex:()=>tk,makeOnesTypedArray:()=>E1,makeZerosNestedTypedArray:()=>ek,makeZerosTypedArray:()=>lh,nearestDivisor:()=>oh,nearestLargerEven:()=>U8,now:()=>yu,parseAxisParam:()=>er,randUniform:()=>j8,repeatedTry:()=>Y8,rightPad:()=>Jl,shuffle:()=>hg,shuffleCombo:()=>V8,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>K8,squeezeShape:()=>dg,sum:()=>H8,tanh:()=>X8,toNestedArray:()=>Wi,toTypedArray:()=>Bh});function dk(e,t){return t==="string"?gu(e):Bh([e],t)}function fk(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Bh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Za(e)),J().getBool("DEBUG")&&mg(e,t),fk(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function yu(){return J().platform.now()}function pk(e,t){return J().platform.fetch(e,t)}function gu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function Vh(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var yk=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new Ak)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=yu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:yu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(u=>{mk(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function mk(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var Ak=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?Jl(`${r}ms`,9):r.error,o=Jl(e,25),l=t.rank,u=t.size,c=Jl(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let m=p.shape||t.shape,f=m.length;h+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function gk(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let m=0;m<t.length;m++)if(r[d.id]){u.outputs.forEach(f=>r[f.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function xk(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Kr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var Sg=20,xu=3,D1=7;function _k(e,t,n,r){let a=Li(t),s=wk(e,t,n,a),i=t.length,o=Uh(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function wk(e,t,n,r){let a=Mt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?_u(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],wu(l[c+h],0,n).length)}return i}function wu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(D1))} + ${parseFloat(e[1].toFixed(D1))}j`:Aa(e)?r=`'${e}'`:n==="bool"?r=Tg(e):r=parseFloat(e.toFixed(D1)).toString(),Jl(r,t)}function Tg(e){return e===0?"false":"true"}function Uh(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=_u(e);return[wu(f[0],0,n)]}return n==="bool"?[Tg(e[0])]:[e[0].toString()]}if(l===1){if(o>Sg){let A=xu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-xu)*i,o*i));return n==="complex64"&&(y=_u(y),g=_u(g)),["["+y.map((_,b)=>wu(_,a[b],n)).join(", ")+", ..., "+g.map((_,b)=>wu(_,a[o-xu+b],n)).join(", ")+"]"]}let f=n==="complex64"?_u(e):Array.from(e);return["["+f.map((A,y)=>wu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>Sg){for(let f=0;f<xu;f++){let A=f*h,y=A+h;d.push(...Uh(e.slice(A,y),u,n,c,a,!1))}d.push("...");for(let f=o-xu;f<o;f++){let A=f*h,y=A+h;d.push(...Uh(e.slice(A,y),u,n,c,a,f===o-1))}}else for(let f=0;f<o;f++){let A=f*h,y=A+h;d.push(...Uh(e.slice(A,y),u,n,c,a,f===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+p;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function _u(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var $t=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||fg(t,this.size),this.strides=Li(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Nr().makeTensor(this.values,this.shape,this.dtype)}},Nr=null,Uo=null,bk=null;function vk(e){Nr=e}function kk(e){Uo=e}function Ik(e){bk=e}var Ze=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=Li(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Uo.buffer(this.shape,this.dtype,e)}bufferSync(){return Uo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wi(this.shape,e)}arraySync(){return Wi(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Nr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Vh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Nr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Vh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Nr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Nr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Uo.print(this,e)}clone(){return this.throwIfDisposed(),Uo.clone(this)}toString(e=!1){let t=this.dataSync();return _k(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Uo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Nr().makeVariable(this,e,t,n)}};Object.defineProperty(Ze,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return M1("Tensor",()=>Ze)}Z();var bu=class extends Ze{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Kr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Nr().disposeTensor(this),this.dataId=e.dataId,Nr().incRef(this,null)}dispose(){Nr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(bu,Symbol.hasInstance,{value:e=>e instanceof Ze&&e.assign!=null&&e.assign instanceof Function});var fr={};De(fr,{assertTypesMatch:()=>Eg,getTensorsInContainer:()=>z1,isTensorInList:()=>Nk,makeTypesMatch:()=>wt});var P1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(P1||(P1={}));var L1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(L1||(L1={}));var W1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(W1||(W1={}));var B1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(B1||(B1={}));var V1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(V1||(V1={}));var Sk={float32:B1,int32:L1,bool:W1,complex64:V1};function tr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return Sk[e][t]}function Hh(e){return tr(e,"int32")}function wt(e,t){if(e.dtype===t.dtype)return[e,t];let n=tr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Eg(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function Nk(e,t){return t.some(n=>n.id===e.id)}function z1(e){let t=[],n=new Set;return Cg(e,t,n),t}function Cg(e,t,n){if(e==null)return;if(e instanceof Ze){t.push(e);return}if(!Tk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),Cg(s,t,n))}}function Tk(e){return Array.isArray(e)||typeof e=="object"}function U1(e){return e.kernelName!=null}var Rg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},vu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Rg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new yk(this.backendInstance),!0}setupRegisteredKernels(){Vo(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Vo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Zl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return vu.nextTensorId++}nextVariableId(){return vu.nextVariableId++}clone(e){let t=$.runKernel(ms,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ns,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Wh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=U1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(U1(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=Wh(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let _=g.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:x,dtype:N}=b;return this.makeTensorFromDataId(w,x,N)});if(r){let b=this.getTensorsForGradient(p,m,_);n=this.saveTensorsForBackwardMode(b)}return _}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:c}=e,h=U1(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=O1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Aa(e[0])&&(a=e.map(o=>gu(o)));let s=r.write(a,t,n),i=new Ze(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=yg(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Ze(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new bu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*T1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof bu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*T1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=O1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=lh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=z1(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Ze,()=>"The result y returned by f() must be a tensor.");let s=gk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?Ek(a.shape):n,xk(i,s,l=>this.tidy(l),Ck);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(ya(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Ze),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Ze,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(ya(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Ze),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=yu(),n=await this.backend.time(e);return n.wallMs=yu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Rg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};vu.nextTensorId=0;vu.nextVariableId=0;function Ek(e){let t=E1(Mt(e),"float32");return $.makeTensor(t,e,"float32")}function Fg(){let e=vg();if(e._tfengine==null){let t=new bg(e);e._tfengine=new vu(t)}return ik(e._tfengine.ENV),vk(()=>e._tfengine),e._tfengine}var $=Fg();function Ck(e,t){let n={a:e,b:t};return $.runKernel(ga,n)}var jh={};De(jh,{isBrowser:()=>Mg,isMobile:()=>Rk});function Fk(){return typeof navigator!="undefined"&&navigator!=null}function Rk(){if(Fk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Mg(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Sr=J();Sr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Sr.registerFlag("IS_BROWSER",()=>Mg());Sr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Sr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Sr.registerFlag("PROD",()=>!1);Sr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Sr.getBool("DEBUG"));Sr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Sr.registerFlag("IS_TEST",()=>!1);Sr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Tr(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||an(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&$g(e,r,[]),r}function $g(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)$g(e[a],r,n.concat(a))}function Og(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof Ze)return Og(r,e.dtype,t,n),e;let a=ih(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),Og(r,a,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Tr(e,a);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Bh(e,a):Za(e,[],!0);return $.makeTensor(i,s,a)}function ku(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var Dg="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Dg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return R1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Mk(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");rn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(fh,a)}var ba=O({complex_:Mk});function va(e,t,n,r){if(r==null&&(r=ih(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){C1(t);let a=Mt(t),s=Mt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Mt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Bh(e,r):Za(e,[],!0),$.makeTensor(e,t,r)}function mr(e,t,n){let r=Tr(e,n);return va(e,t,r,n)}var H1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Gh=4;async function Ok(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Gh*d.length,m=new Uint8Array(p),f=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=Gh,m.set(y,f),f+=y.length}h(m)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:$k(s),specs:n}}function zg(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Mt(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=H1[h.dtype],p=e.slice(a,a+u*d),m=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=Dk()),c=r(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Mt(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+Gh))[0];a+=Gh;let m=new Uint8Array(e.slice(a,a+p));c.push(m),a+=p}}else{let h=H1[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),m=new Float32Array(c.length/2);for(let y=0;y<p.length;y++)p[y]=c[y*2],m[y]=c[y*2+1];let f=mr(p,l,"float32"),A=mr(m,l,"float32");n[i]=ba(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=mr(c,l,o))}return n}function $k(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var j1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Pg(e){return j1?Buffer.byteLength(e):new Blob([e]).size}function zk(e){if(j1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function Pk(e){if(j1){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function G1(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Lg(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Iu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Pg(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Pg(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Lk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function Wk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Bk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Dk(){let e=Lk(),t=Wk(),n=Bk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var It=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return It.instance==null&&(It.instance=new It),It.instance}static registerSaveRouter(e){It.getInstance().saveRouters.push(e)}static registerLoadRouter(e){It.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return It.getHandlers(e,"save")}static getLoadHandlers(e,t){return It.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?It.getInstance().loadRouters:It.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Vk=e=>It.registerSaveRouter(e),Uk=e=>It.registerLoadRouter(e),Hk=e=>It.getSaveHandlers(e),jk=(e,t)=>It.getLoadHandlers(e,t),q1="tensorflowjs",X1=1,Xs="models_store",ka="model_info_store";function Wg(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function K1(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(ka,{keyPath:"modelPath"})}var Ks=class{constructor(e){if(this.indexedDB=Wg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(q1,X1);a.onupgradeneeded=()=>K1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Iu(t),o=s.transaction(ka,"readwrite"),l=o.objectStore(ka),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(Xs,"readwrite");let h=c.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(ka);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Ks.URL_SCHEME="indexeddb://";var Bg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ks.URL_SCHEME)?Gk(e.slice(Ks.URL_SCHEME.length)):null;It.registerSaveRouter(Bg);It.registerLoadRouter(Bg);function Gk(e){return new Ks(e)}function qk(e){return e.startsWith(Ks.URL_SCHEME)?e.slice(Ks.URL_SCHEME.length):e}var Xk=class{constructor(){this.indexedDB=Wg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(q1,X1);n.onupgradeneeded=()=>K1(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(ka,"readonly"),s=a.objectStore(ka).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=qk(e),new Promise((t,n)=>{let r=this.indexedDB.open(q1,X1);r.onupgradeneeded=()=>K1(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(ka,"readwrite"),i=s.objectStore(ka),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(Xs,"readwrite");let h=l.objectStore(Xs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},Zr="/",Ho="tensorflowjs_models",Vg="info",Kk="model_topology",Zk="weight_specs",Yk="weight_data",Jk="model_metadata";function Ug(e){return{info:[Ho,e,Vg].join(Zr),topology:[Ho,e,Kk].join(Zr),weightSpecs:[Ho,e,Zk].join(Zr),weightData:[Ho,e,Yk].join(Zr),modelMetadata:[Ho,e,Jk].join(Zr)}}function Qk(e){let t=e.split(Zr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Zr)}function e9(e){return e.startsWith(Zs.URL_SCHEME)?e.slice(Zs.URL_SCHEME.length):e}var Zs=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ug(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Iu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,zk(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=Pk(s),t}};Zs.URL_SCHEME="localstorage://";var Hg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zs.URL_SCHEME)?t9(e.slice(Zs.URL_SCHEME.length)):null;It.registerSaveRouter(Hg);It.registerLoadRouter(Hg);function t9(e){return new Zs(e)}var n9=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ho+Zr,n=Zr+Vg;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=Qk(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=e9(e);let t=Ug(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},jo="://",Un=class{constructor(){this.managers={}}static getInstance(){return Un.instance==null&&(Un.instance=new Un),Un.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(jo)&&(e=e.slice(0,e.indexOf(jo))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Un.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function qh(e){if(e.indexOf(jo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Un.getSchemes().join(",")}`);return{scheme:e.split(jo)[0],path:e.split(jo)[1]}}async function jg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=It.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=It.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=qh(e).scheme,l=qh(e).path,u=o===qh(e).scheme,c=await a.load();n&&u&&await Un.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Un.getManager(o).removeModel(l),h.modelArtifactsInfo}async function r9(){let e=Un.getSchemes(),t={};for(let n of e){let r=await Un.getManager(n).listModels();for(let a in r){let s=n+jo+a;t[s]=r[a]}}return t}async function a9(e){let t=qh(e);return Un.getManager(t.scheme).removeModel(t.path)}async function s9(e,t){return jg(e,t,!1)}async function i9(e,t){return jg(e,t,!0)}var o9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new o9);try{Un.registerManager(Zs.URL_SCHEME,new n9)}catch(e){}try{Un.registerManager(Ks.URL_SCHEME,new Xk)}catch(e){}}var l9={importFetch:()=>i8()},Z1,u9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Z1==null&&(Z1=l9.importFetch()),Z1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new u9);function Le(e,t="float32",n){return t=t||"float32",C1(e),new $t(e,t,n)}function c9(e,t){let n=R(e,"x","cast");if(!Ag(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ns,r,a)}var me=O({cast_:c9});function h9(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(ms,t)}var nr=O({clone_:h9});function Gg(e,t=!1){console.log(e.toString(t))}Fg();var d9={buffer:Le,cast:me,clone:nr,print:Gg};kk(d9);var yn={};De(yn,{browserFiles:()=>p9,browserHTTPRequest:()=>m9,concatenateArrayBuffers:()=>G1,copyModel:()=>s9,decodeWeights:()=>zg,encodeWeights:()=>Ok,fromMemory:()=>A9,getLoadHandlers:()=>jk,getModelArtifactsInfoForJSON:()=>Iu,getSaveHandlers:()=>Hk,http:()=>J1,isHTTPScheme:()=>Y1,listModels:()=>r9,loadWeights:()=>f9,moveModel:()=>i9,registerLoadRouter:()=>Uk,registerSaveRouter:()=>Vk,removeModel:()=>a9,weightsLoaderFactory:()=>qg,withSaveHandler:()=>y9});var g9="model",x9=".json",w9=".weights.bin";function Xg(e){return new Promise(t=>setTimeout(t)).then(e)}var Go=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Go.URL_SCHEME)&&(e=e.slice(Go.URL_SCHEME.length)),(e==null||e.length===0)&&(e=g9),this.modelTopologyFileName=e+x9,this.weightDataFileName=e+w9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Xg(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Xg(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Iu(e)}}}};Go.URL_SCHEME="downloads://";var _9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:c,weightData:G1(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Lg(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Lg(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},v9=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Go.URL_SCHEME)?b9(e.slice(Go.URL_SCHEME.length)):null;It.registerSaveRouter(v9);function b9(e="model"){return new Go(e)}function p9(e){return new _9(e)}function Kg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Zg(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Kg(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Kg(i,t.onProgress,o,l)}async function f9(e,t="",n,r){return qg(a=>Zg(a,{requestInit:r}))(e,t,n)}function qg(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=H1[y]*Mt(A.shape),_=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((b,w)=>{b===A.name&&(_(),i[w]=!0)}):_(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let _=0;_<m;_++)f+=c[d+_].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let _=0;_<m;_++){let b=new Uint8Array(c[d+_]);y.set(b,g),g+=b.byteLength}s[p].forEach(_=>{let b=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),w=zg(b,[_.manifestEntry]);for(let x in w)h[x]=w[x]}),d+=m}),h}}var k9="application/octet-stream",I9="application/json",Q1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:I9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:k9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Iu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=N9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Zg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,G1(l)]}};Q1.URL_SCHEME_REGEX=/^https?:\/\//;function N9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Y1(e){return e.match(Q1.URL_SCHEME_REGEX)!=null}var Yg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Y1(r)):n=Y1(e),n)return J1(e,t)}return null};It.registerSaveRouter(Yg);It.registerLoadRouter(Yg);function J1(e,t){return new Q1(e,t)}function m9(e,t){return J1(e,t)}var ef=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},S9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function A9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new ef(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ef({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ef({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function y9(e){return new S9(e)}var Jg={};De(Jg,{confusionMatrix:()=>T9});function E9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=wt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ts,i,o)}var He=O({matMul_:E9});function C9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Is,a,s)}var qo=O({oneHot_:C9});function R9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Us,r,a)}var nt=O({transpose_:R9});function F9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=qo(me(r,"int32"),n),i=qo(me(a,"int32"),n),o=nt(s),l=He(o,i);return me(l,"int32")}var T9=O({confusionMatrix_:F9}),Xo={};De(Xo,{fromPixels:()=>$9,toPixels:()=>M9});function Xh(e,t,n){if(Ka(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Tr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return va(e,t,r,n)}var Ko;function O9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Wh(Lh,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(Lh,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(Ko==null&&(Ko=document.createElement("canvas").getContext("2d")),Ko.canvas.width=l,Ko.canvas.height=u,Ko.drawImage(e,0,0,l,u),c=Ko.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let m=0;m<t;++m)h[p*t+m]=c[p*4+m]}return Xh(h,[u,l,t],"int32")}async function M9(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Ze)){let u=n;n=me(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var $9=O({fromPixels_:O9}),tf={};De(tf,{prepareAndValidate:()=>Qg});function Qg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...Li(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var nf={};De(nf,{calculateShapes:()=>e5,validateInput:()=>af,validateUpdateShape:()=>rf});function rf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function af(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}rf(n,t,e)}function e5(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Mt(t.shape)/o,u=[...Li(n.slice(0,a)),1],c=Mt(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var on={};De(on,{assertParamsValid:()=>D9,computeFlatOffset:()=>P9,computeOutShape:()=>t5,getNormalizedAxes:()=>r5,isSliceContinous:()=>z9,maskToAxes:()=>Kh,parseSliceParams:()=>u5,sliceInfo:()=>L9,startForAxis:()=>o5,startIndicesWithElidedDims:()=>a5,stopForAxis:()=>l5,stopIndicesWithElidedDims:()=>s5,stridesForAxis:()=>i5,stridesWithElidedDims:()=>n5});function D9(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Kh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function t5(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function n5(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function c5(e,t,n){return n<=e?n:n-(t-1)}function h5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function r5(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],m=n+1;c=a5(i,p,m,r,e),h=s5(o,p,m,a,e),d=n5(s,p,m,e)}else for(let p=0;p<u;p++)c[p]=o5(i,r,s,e,p,l),h[p]=l5(o,a,s,e,p,l),d[p]=i5(s,p,l);return{begin:c,end:h,strides:d}}function a5(e,t,n,r,a){let s=[...a],i=h5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=c5(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function s5(e,t,n,r,a){let s=[...a],i=h5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=c5(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Yl(0,s[o],a[o])}return s}function i5(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function o5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Yl(0,i,l-1),i}function l5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Yl(0,i,l):i=Yl(-1,i,l-1),i}function z9(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function P9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function u5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function L9(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Kh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,m=Kh(o),f=e.slice();m.forEach(x=>{u[x]=0,c[x]=1,f.splice(x,0,1)});let{begin:A,end:y,strides:g}=r5(f,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let _=Kh(l);_.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=t5(u,c,h),w=b.filter((x,N)=>_.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:f,outShape:w}}var re={};De(re,{Serializable:()=>d5,SerializationMap:()=>Ys,registerClass:()=>Ia});var d5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ys=class{constructor(){this.classNameMap={}}static getMap(){return Ys.instance==null&&(Ys.instance=new Ys),Ys.instance}static register(e){Ys.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ia(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ys.register(e)}var p5={};De(p5,{TEST_EPSILON_FLOAT16:()=>f5,encodeStrings:()=>m5,expectArrayBuffersEqual:()=>j9,expectArraysClose:()=>W9,expectArraysEqual:()=>V9,expectNumbersClose:()=>U9,expectPromiseToFail:()=>B9,expectValuesInRange:()=>H9,testEpsilon:()=>sf});var G9=.001,f5=.1;function W9(e,t,n){return n==null&&(n=sf()),of(e,t,(r,a)=>lf(r,a,n))}function sf(){return $.backend.floatPrecision()===32?G9:f5}function of(e,t,n){let r=!0;if((an(e)||an(t))&&(r=!1),an(e)&&an(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Tr(e),o=Tr(t);if(!Kr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=an(e)?e:Za(e),s=an(t)?t:Za(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function B9(e,t){e().then(()=>t.fail(),()=>t())}function V9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Aa(e)||Aa(e[0])||Aa(t)||Aa(t[0])?of(e,n,(r,a)=>r==a):of(e,t,(r,a)=>lf(r,a,0))}function U9(e,t,n){if(n==null&&(n=sf()),!lf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function lf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function H9(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function j9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function m5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?m5(n):e[t]=gu(n)}return e}var q9="3.2.0";function X9(){J().set("PROD",!0)}function K9(){J().set("DEBUG",!0)}function Z9(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function uf(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}Ik(uf);function Y9(){$.disposeVariables()}function Er(){return $}function Zh(){return $.memory()}function Hn(e){return $.profile(e)}function B(e,t){return $.tidy(e,t)}function Ee(e){z1(e).forEach(t=>t.dispose())}function Vt(e){return $.keep(e)}function J9(e){return $.time(e)}function Q9(e){return $.setBackend(e)}function eI(){return $.ready()}function tI(){return $.backendName}function nI(e){$.removeBackend(e)}function cf(e){return $.findBackend(e)}function rI(e){return $.findBackendFactory(e)}function Zo(e,t,n=1){return $.registerBackend(e,t,n)}function A5(){return $.backend}function aI(e,t){J().setPlatform(e,t)}function sI(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(ga,a)}var se=O({add_:sI});function iI(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(ds,a)}var Yh=O({floorDiv_:iI});function oI(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=wt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Yh(n,r);let a={a:n,b:r},s={};return $.runKernel(us,a,s)}var ge=O({div_:oI});function lI(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(ks,a)}var P=O({mul_:lI});function uI(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(nu,n)}else{let n={x:t};return $.runKernel(Bi,n)}}var Ot=O({abs_:uI});function cI(e){let t={x:R(e,"x","acos")};return $.runKernel(Vi,t)}var hf=O({acos_:cI});function hI(e){let t={x:R(e,"x","acosh")};return $.runKernel(Ui,t)}var df=O({acosh_:hI});function dI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Kr(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(Ja,r)}var Yo=O({addN_:dI});function pI(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(uh,r,a)}var Jh=O({all_:pI});function fI(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(ch,r,a)}var Nu=O({any_:fI});function mI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(Qa,n,r)}var Su=O({argMax_:mI});function AI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(Ql,n,r)}var pf=O({argMin_:AI});function yI(e){let t={x:R(e,"x","asin")};return $.runKernel(Hi,t)}var ff=O({asin_:yI});function gI(e){let t={x:R(e,"x","asinh")};return $.runKernel(ji,t)}var mf=O({asinh_:gI});function xI(e){let t={x:R(e,"x","atan")};return $.runKernel(Gi,t)}var Af=O({atan_:xI});function wI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Xi,a)}var yf=O({atan2_:wI});function _I(e){let t={x:R(e,"x","atanh")};return $.runKernel(qi,t)}var gf=O({atanh_:_I});function bI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=y5(a);return Tu(e,o,n,s,r,null,null,l)}function g5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Qh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Tu(e,u,n,r,a,s,!1,i)}function vI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=xf(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return x5(e,c,n,r,a,!1,h,s)}function Tu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=Qh(n),[y,g]=Qh(r),_=Jo(d,y),b=Jo(p,g),{padInfo:w,outHeight:x,outWidth:N}=kI(a,u,c,f,A,_,b,s,o),T=i?m*h:m,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:_,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function x5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,_]=xf(n),[b,w,x]=xf(r),N=Jo(p,b),T=Jo(m,w),E=Jo(f,x),{padInfo:M,outDepth:D,outHeight:L,outWidth:W}=II(a,u,c,h,y,g,_,N,T,E,o),U=s?A*d:A,H;return i==="channelsFirst"?H=[l,U,D,L,W]:i==="channelsLast"&&(H=[l,D,L,W,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:W,outChannels:U,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:w,dilationWidth:x,inShape:e,outShape:H,filterShape:t}}function NI(e,t,n,r,a){r==null&&(r=wf(e,t,n));let s=e[0],i=e[1],o=Js((s-t+2*r)/n+1,a),l=Js((i-t+2*r)/n+1,a);return[o,l]}function SI(e,t,n,r,a,s){a==null&&(a=wf(e,t,r));let i=e[0],o=e[1],l=e[2],u=Js((i-t+2*a)/r+1,s),c=Js((o-t+2*a)/r+1,s),h=Js((l-t+2*a)/r+1,s);return[u,c,h,n]}function wf(e,t,n,r=1){let a=Jo(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function xf(e){return typeof e=="number"?[e,e,e]:e}function Jo(e,t){return t<=1?e:e+(e-1)*(t-1)}function kI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=NI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Js((t-s+d+p)/r+1,o),h=Js((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function II(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=SI([t,n,r,1],o,1,a,e,c);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+u-r,g=Math.floor(f/2),_=f-g,b=Math.floor(A/2),w=A-b,x=Math.floor(y/2),N=y-x;h={top:b,bottom:w,left:x,right:N,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function Js(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Na(e){let[t,n,r]=Qh(e);return t===1&&n===1&&r===1}function Cr(e,t){return Na(e)||Na(t)}function y5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function TI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(No,n,r)}var j=O({reshape_:TI});function EI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Cr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Bt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(es,u,c);return h=me(h,s.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Eu=O({avgPool_:EI});function CI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Bt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(eu,u,c);return h=me(h,o.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var _f=O({avgPool3d_:CI});function RI(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=ku(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return nr(n[0]);let r=n,a={axis:t};return $.runKernel(Ki,r,a)}var rt=O({concat_:RI});function FI(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Ds,t)}var Sn=O({sigmoid_:FI});function MI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Co,a,s)}var Ce=O({slice_:MI});function $I(e){let t={x:R(e,"x","tanh")};return $.runKernel(Vs,t)}var Qo=O({tanh_:$I});function OI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=rt([u,h],1),p=He(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Ce(m,[0,0],y),_=Ce(m,[0,A],y),b=Ce(m,[0,A*2],y),w=Ce(m,[0,A*3],y),x=se(P(Sn(g),Qo(_)),P(c,Sn(se(i,b)))),N=P(Qo(x),Sn(w));return[x,N]}var DI=O({basicLSTMCell_:OI});function zI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(tu,s,i)}var Cu=O({batchToSpaceND_:zI});function PI(e){let t;return e.rank===0||e.rank===1?t=j(e,[1,1,1,e.size]):e.rank===2?t=j(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function LI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:PI(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(ps,h,d);return j(p,i.shape)}var Qs=O({batchNorm_:LI});function WI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Qs(i,o,l,c,u,s)}var w5=O({batchNorm2d_:WI});function BI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Qs(i,o,l,c,u,s)}var _5=O({batchNorm3d_:BI});function VI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Qs(i,o,l,c,u,s)}var b5=O({batchNorm4d_:VI});function UI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(ph,s,i)}var v5=O({bincount_:UI});function HI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=j(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return nr(n);let i={x:n},o={reps:s};return $.runKernel(wa,i,o)}var Ru=O({broadcastTo_:HI});function jI(e){let t={x:R(e,"x","ceil")};return $.runKernel(rs,t)}var bf=O({ceil_:jI});function GI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(xa,a,s)}var gn=O({clipByValue_:GI});function qI(e){return rt(e,0)}var k5=O({concat1d_:qI});function XI(e,t){return rt(e,t)}var el=O({concat2d_:XI});function KI(e,t){return rt(e,t)}var I5=O({concat3d_:KI});function ZI(e,t){return rt(e,t)}var N5=O({concat4d_:ZI});function YI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Bt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(as,d,p);return c?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Yr=O({conv2d_:YI});function JI(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Bt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Cr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=j(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=j(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Yr(d,h,[1,n],r,"NHWC",[1,s],i);return c?j(p,[p.shape[2],p.shape[3]]):j(p,[p.shape[0],p.shape[2],p.shape[3]])}var ed=O({conv1d_:JI});function QI(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Bt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ss,d,p);return u?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var vf=O({conv2DBackpropInput_:QI});function eN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return vf(n,i,o,r,a,"NHWC",s)}var td=O({conv2dTranspose_:eN});function tN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Cr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(ru,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var kf=O({conv3d_:tN});function nN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(yh,c,h);return o?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var S5=O({conv3DBackpropInput_:nN});function rN(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return S5(n,s,i,r,a)}var aN=O({conv3dTranspose_:rN});function sN(e){let t={x:R(e,"x","cos")};return $.runKernel(is,t)}var Fu=O({cos_:sN});function iN(e){let t={x:R(e,"x","cosh")};return $.runKernel(Zi,t)}var nd=O({cosh_:iN});function oN(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(os,a,s)}var rd=O({cumsum_:oN});function lN(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(gh,i,o)}var T5=O({denseBincount_:lN});function uN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(Ji,o,l)}var If=O({depthToSpace_:uN});function cN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Bt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(ls,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var tl=O({depthwiseConv2d_:cN});function hN(e){let t={x:R(e,"x","diag")};return $.runKernel(_h,t)}var dN=O({diag_:hN});function pN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(au,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Nf=O({dilation2d_:pN});function fN(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function Dt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function mt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function mN(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(to,a)}var Sa=O({equal_:mN});function AN(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=mt(r.shape,a.shape),o=Ru(r,i),l=Ru(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&rn(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(To,u)}var xn=O({where_:AN});function yN(e){let t={x:R(e,"x","zerosLike")};return $.runKernel(Lo,t)}var Ve=O({zerosLike_:yN});function gN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=wt(n,r);let a=ge(n,r),s=Ve(a),i=Sa(r,s);return xn(i,s,a)}var Sf=O({divNoNan_:gN});function xN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=j(n,[1,-1]),o=j(r,[-1,1]),l=He(i,o);return j(l,[])}else if(n.rank===1&&r.rank===2){let i=j(n,[1,-1]),o=j(r,[r.shape[0],r.shape[1]]),l=He(i,o);return j(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=j(r,[-1,1]),o=He(n,i);return j(o,[o.size])}else{let i=j(r,[r.shape[0],r.shape[1]]);return He(n,i)}}var E5=O({dot_:xN});function wN(e){let t={x:R(e,"x","elu")};return $.runKernel(Qi,t)}var nl=O({elu_:wN});function _N(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let n={x:t};return $.runKernel(eo,n)}var Tf=O({erf_:_N});function bN(e){let t={x:R(e,"x","exp")};return $.runKernel(cs,t)}var jn=O({exp_:bN});function vN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(no,r,a)}var Tn=O({expandDims_:vN});function kN(e){let t={x:R(e,"x","expm1")};return $.runKernel(ro,t)}var Ef=O({expm1_:kN});function IN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(wa,r,a)}var Ta=O({tile_:IN});function NN(e,t,n,r="float32"){t==null&&(t=e);let a=Le([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=j(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ta(Tn(i,0),[n[0],1,1]);if(n.length===2)return Ta(Tn(Tn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ta(Tn(Tn(Tn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Cf=O({eye_:NN});function Mu(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(su,{},r)}function SN(e){let t={x:R(e,"x","floor")};return $.runKernel(hs,t)}var rl=O({floor_:SN});function TN(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(so,i,o)}var ei=O({gather_:TN});function EN(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(oo,a)}var rr=O({greater_:EN});function CN(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(fs,a)}var Ea=O({greaterEqual_:CN});function RN(e){let t={input:R(e,"input","imag")};return $.runKernel(Sh,t)}var ad=O({imag_:RN});function FN(e){let t={x:R(e,"x","isFinite")};return $.runKernel(lo,t)}var C5=O({isFinite_:FN});function MN(e){let t={x:R(e,"x","isInf")};return $.runKernel(uo,t)}var R5=O({isInf_:MN});function $N(e){let t={x:R(e,"x","isNaN")};return $.runKernel(co,t)}var F5=O({isNaN_:$N});function ON(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(As,n,r)}var $u=O({leakyRelu_:ON});function DN(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ho,a)}var sd=O({less_:DN});function zN(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(po,a)}var ti=O({lessEqual_:zN});function M5(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(Th,{},r)}function PN(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Bt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=j(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(lu,l,u);return o?j(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Rf=O({localResponseNormalization_:PN});function LN(e){let t={x:R(e,"x","log")};return $.runKernel(ys,t)}var En=O({log_:LN});function WN(e){let t={x:R(e,"x","log1p")};return $.runKernel(fo,t)}var id=O({log1p_:WN});function BN(e){return F(ya(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&rn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),od(i),i[0]})}}function VN(e){return F(ya(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=ku(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&rn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),od(i),i})}}function UN(e){return F(ya(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Ze,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Ze,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return od(r),{grad:r[0],value:a}}}function HN(e){return F(ya(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Ze),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Ze,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&rn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),od(r.grads),r}}function $5(e,t){F(ya(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof bu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Rr(e){return $.customGrad(e)}function od(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function jN(e){let t={x:R(e,"x","neg")};return $.runKernel(yo,t)}var _t=O({neg_:jN});function GN(e){let t={x:R(e,"x","softplus")};return $.runKernel(Mo,t)}var al=O({softplus_:GN});function qN(e){let t=R(e,"x","logSigmoid");return Rr(n=>({value:_t(al(_t(n))),gradFunc:r=>P(r,Sn(_t(n)))}))(t)}var O5=O({logSigmoid_:qN});function XN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(gs,r,a)}var Gn=O({max_:XN});function KN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Bs,a)}var Ae=O({sub_:KN});function ZN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=me(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Ps,a,s)}var Se=O({sum_:ZN});function YN(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Rr((r,a)=>{let s=!0,i=Gn(r,t,!0),o=Ae(r,i),l=Ae(me(o,"float32"),En(Se(jn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=jn(h);return Ae(u,P(Se(u,t,d),p))}}})(n)}var ld=O({logSoftmax_:YN});function Ff(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function D5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function z5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function ni(e,t){let n=t.map(r=>1);return D5(e,n,t)}function JN(e,t,n){F(Ff(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function P5(e,t){if(Ff(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Mf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function QN(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function eS(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=er(t,r.shape),s=Gn(r,a,!0),i=Ae(r,s),o=jn(i),l=Se(o,a),u=En(l),c=se(j(s,u.shape),u);if(n){let h=ni(c.shape,a);return j(c,h)}return c}var $f=O({logSumExp_:eS});function tS(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(mo,a)}var ar=O({logicalAnd_:tS});function nS(e){let t={x:R(e,"x","logicalNot","bool")};return $.runKernel(iu,t)}var Ou=O({logicalNot_:nS});function rS(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ou,a)}var ud=O({logicalOr_:rS});function aS(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return mt(n.shape,r.shape),ar(ud(e,t),Ou(ar(e,t)))}var L5=O({logicalXor_:aS});function sS(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Cr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Bt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(ws,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Du=O({maxPool_:sS});function iS(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Bt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(uu,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Of=O({maxPool3d_:iS});function oS(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Fh,s,i);return{result:o[0],indexes:o[1]}}var W5=O({maxPoolWithArgmax_:oS});function lS(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=wt(n,r),n.dtype==="bool"&&(n=me(n,"int32"),r=me(r,"int32")),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(xs,a)}var Fr=O({maximum_:lS});function uS(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(_s,r,a)}var bt=O({mean_:uS});function cS(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(bs,r,a)}var sl=O({min_:cS});function hS(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=wt(n,r),n.dtype==="bool"&&(n=me(n,"int32"),r=me(r,"int32")),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(vs,a)}var il=O({minimum_:hS});function dS(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(cu,i,s)}var Df=O({mirrorPad_:dS});function pS(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Ao,a)}var zf=O({mod_:pS});function fS(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var it=O({square_:fS});function mS(e,t=null,n=!1){e=R(e,"x","moments");let r=er(t,e.shape),a=bt(e,r,n),s=a.shape;n||(s=ni(a.shape,r));let i=it(Ae(me(e,"float32"),j(a,s))),o=bt(i,r,n);return{mean:a,variance:o}}var cd=O({moments_:mS});function AS(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=ku(n,"c","multiRNNCell"),i=ku(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var yS=O({multiRNNCell_:AS});function gS(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?j(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(Mh,o,l);return i===1?j(u,[u.size]):u}var B5=O({multinomial_:gS});function xS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(go,a)}var ri=O({notEqual_:xS});function Et(e,t="float32"){if(t==="complex64"){let r=Et(e,"float32"),a=Et(e,"float32");return ba(r,a)}let n=lh(Mt(e),t);return $.makeTensor(n,e,t)}function Mr(e,t="float32"){if(t==="complex64"){let r=Mr(e,"float32"),a=Et(e,"float32");return ba(r,a)}let n=E1(Mt(e),t);return $.makeTensor(n,e,t)}function wS(e){let t={x:R(e,"x","onesLike")};return $.runKernel(bo,t)}var Cn=O({onesLike_:wS});function _S(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=j(n,[-1,1]),s=j(r,[1,-1]);return He(a,s)}var bS=O({outerProduct_:_S});function vS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Ns,s,a)}var Jr=O({pad_:vS});function kS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jr(e,[t],n)}var IS=O({pad1d_:kS});function NS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var SS=O({pad2d_:NS});function TS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var ES=O({pad3d_:TS});function CS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var RS=O({pad4d_:CS});function FS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(pu,a,s)}var zu=O({spaceToBatchND_:FS});function OS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Cr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=g5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=$S([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,m]=MS([u.inHeight,u.inWidth],c,h),f=d?r:"valid",A=d?o:zu(o,c,p),y=(n==="avg"?()=>Eu(A,t,s,f):()=>Du(A,t,s,f))(),g=d?y:Cu(y,c,m);return l?j(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function MS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function $S(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var V5=O({pool_:OS});function DS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Ss,a)}var Qr=O({pow_:DS});function zS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Ts,a)}var Pu=O({prelu_:zS});function PS(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=me(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ko,a,s)}var hd=O({prod_:PS});function LS(e,t,n){let r=Mt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var WS=O({rand_:LS}),Pf=Pi(f8()),Lf=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Pf.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},BS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Pf.alea(a.toString()),this.randn=new Lf(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},VS=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Pf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function US(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new BS(t,n,r,a),i=Le(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var HS=O({randomGamma_:US});function jS(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Lf(t,n,r,!1,a),i=Le(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var U5=O({randomNormal_:jS});function GS(e,t=0,n=1,r="float32",a){let s=Le(e,r),i=new VS(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var ol=O({randomUniform_:GS});function dd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(hu,{},a)}function qS(e){let t={input:R(e,"input","real")};return $.runKernel($h,t)}var Lu=O({real_:qS});function XS(e){let t={x:R(e,"x","reciprocal")};return $.runKernel(Io,t)}var Wf=O({reciprocal_:XS});function KS(e){let t={x:R(e,"x","relu")};return $.runKernel(Es,t)}var $r=O({relu_:KS});function ZS(e){let t={x:R(e,"x","relu6")};return $.runKernel(Rs,t)}var pd=O({relu6_:ZS});function YS(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return $.runKernel(Fs,n,r)}var Rn=O({reverse_:YS});function JS(e){let t=R(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Rn(t,0)}var QS=O({reverse1d_:JS});function eT(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Rn(n,t)}var tT=O({reverse2d_:eT});function nT(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Rn(n,t)}var rT=O({reverse3d_:nT});function aT(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Rn(n,t)}var sT=O({reverse4d_:aT});function iT(e){let t={x:R(e,"x","round")};return $.runKernel(Ms,t)}var Bf=O({round_:iT});function oT(e){let t={x:R(e,"x","rsqrt")};return $.runKernel($s,t)}var fd=O({rsqrt_:oT});function be(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return va(e,[],[],t)}function lT(e){let t={x:R(e,"x","selu")};return $.runKernel(Eo,t)}var md=O({selu_:lT});function uT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let m=tl(c,l,r,a,i,s),f=Yr(m,u,1,"valid",i);return h?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Vf=O({separableConv2d_:uT});async function cT(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new $t([o],n.dtype),u=new $t([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var H5=cT;function hT(e){let t={x:R(e,"x","sign")};return $.runKernel(Fo,t)}var Uf=O({sign_:hT});function dT(e){let t={x:R(e,"x","sin")};return $.runKernel(Os,t)}var Ad=O({sin_:dT});function pT(e){let t={x:R(e,"x","sinh")};return $.runKernel(Ro,t)}var yd=O({sinh_:pT});function fT(e,t,n){let r=R(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ce(r,[t],[n])}var gd=O({slice1d_:fT});function mT(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var Hf=O({slice2d_:mT});function AT(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var xd=O({slice3d_:AT});function yT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var Wu=O({slice4d_:yT});function gT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Ls,r,a)}var Bu=O({softmax_:gT});function xT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Ih,t)}var Vu=O({fft_:xT});function wT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Nh,t)}var ll=O({ifft_:wT});function _T(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=j(e,[n,t]);r=ll(a)}else{let a=[n,2*(t-1)],s=j(Lu(e),[n,t]),i=j(ad(e),[n,t]),o=Rn(Ce(s,[0,1],[n,t-2]),1),l=P(Rn(Ce(i,[0,1],[n,t-2]),1),be(-1)),u=rt([s,o],1),c=rt([i,l],1),h=j(ba(u,c),[a[0],a[1]]);r=ll(h)}if(r=Lu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=j(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var wd=O({irfft_:_T});function bT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel($o,r,a)}var Jt=O({split_:bT});function vT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Ce(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=rt([e,Et(m)],e.shape.length-1),n=t}else a=e;let s=Ve(a),i=j(ba(a,s),[r,n]),o=Vu(i),l=Math.floor(n/2)+1,u=Lu(o),c=ad(o),h=Jt(u,[l,n-l],u.shape.length-1),d=Jt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,j(ba(h[0],d[0]),p)}var Uu=O({rfft_:vT});function kT(e){let t={x:R(e,"x","sqrt")};return $.runKernel(zs,t)}var Qt=O({sqrt_:kT});function IT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ws,a,s)}var _d=O({squaredDifference_:IT});function NT(e,t){let n=R(e,"x","squeeze");return j(n,dg(n.shape,t).newShape)}var Ca=O({squeeze_:NT});function ST(e,t=0){let n=ku(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(vo,r,a)}var Fn=O({stack_:ST});function TT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(_a,n,r)}var ul=O({step_:TT});function ET(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Oo,u,c)}var jf=O({stridedSlice_:ET});function CT(e){let t={x:R(e,"x","tan")};return $.runKernel(Do,t)}var Gf=O({tan_:CT});function Ut(e,t){Ka(e);let n=Tr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return va(e,null,n,t)}function wn(e,t,n){if(Ka(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Tr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return va(e,t,r,n)}function RT(e,t,n){if(Ka(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Tr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return va(e,t,r,n)}function FT(e,t,n){if(Ka(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Tr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return va(e,t,r,n)}function MT(e,t,n){if(Ka(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Tr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,va(e,t,r,n)}function $T(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(zo,s,i);return{values:o,indices:l}}var qf=O({topk_:$T});function OT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Lf(t,n,r,!0,a),i=Le(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var bd=O({truncatedNormal_:OT});function DT(e,t=0){let n=R(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(Ph,r,a);return{values:s,indices:i}}var vd=O({unique_:DT});function zT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Bt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(mu,s,i)}var Xf=O({unsortedSegmentSum_:zT});function PT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Po,r,a)}var sr=O({unstack_:PT});function j5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function G5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Le(e,"int32"),a=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function LT(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=G5(t.shape,n);return e!==t&&t.dispose(),r}var Kf=LT;async function WT(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),rn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=j(r,u),h=j(a,[-1]),d=await Kf(h),p=Ca(d,[1]),m=ei(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),m}var BT=WT;function VT(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=q5(e,t,n),s=a.shape;if(r){let i=er(n,e.shape);s=ni(a.shape,i)}return j(a,s)}function q5(e,t,n=null){if(e.rank===0)return Ot(e);if(e.rank!==1&&n===null)return q5(j(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Ot(e),n);if(t===Infinity)return Gn(Ot(e),n);if(t===-Infinity)return sl(Ot(e),n);if(t==="euclidean"||t===2)return Qt(Se(Qr(Ot(e),be(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Gn(Se(Ot(e),n[0]),n[1]-1);if(t===Infinity)return Gn(Se(Ot(e),n[1]),n[0]);if(t===-Infinity)return sl(Se(Ot(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Qt(Se(it(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var kd=O({norm_:VT});function UT(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");Eg(s,i),F(Kr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=be(1),u=Ae(l,o),c=P(Ae(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=ge(c,Ae(l,Qr(o,h)))}return se(s,c)}var HT=O({movingAverage_:UT});function jT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");af(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(So,s,i)}var X5=O({scatterND_:jT});function GT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function qT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);GT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(zh,o,l)}var Zf=O({sparseToDense_:qT});function XT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(io,r)}var K5=O({gatherND_:XT});function KT(e,t){if(t==null)return e.shape.slice();if(Kr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function ZT(e,t,n,r){let a=R(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ze?a.clone():a;let s=KT(a,n),i=1-t,o=ge(rl(se(ol(s,0,1,"float32",r),i)),i);return P(a,o)}var Z5=O({dropout_:ZT});function Y5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Yf(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return Ut(a,"float32")}async function YT(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),rn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=pg("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),m=[];for(let f=0;f<p.length;f++)m.push({value:p[f],index:f});m.sort((f,A)=>A.value-f.value),c[h]=0;for(let f=0;f<n;f++)if(m[f].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),mr(c,a.shape,"bool")}var JT=YT,Ra={};De(Ra,{conv2d:()=>QT,depthwiseConv2d:()=>eE,matMul:()=>tE});function nE(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Bt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(mh,h,d)}var Jf=O({conv2DBackpropFilter_:nE});function Id(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,ul(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Nd(e,t){let n=t,r=Dt(e.shape,t.shape);return r.length>0&&(n=Se(n,r)),j(n,e.shape)}function Sd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return $r(e);if(t==="elu")return nl(e);if(t==="relu6")return pd(e);if(t==="prelu")return Pu(e,n);if(t==="leakyrelu")return $u(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Td=(e,t)=>!(e>0)||t==="linear";function rE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Td($.state.gradientDepth,l)===!1){let w=Yr(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Sd(w,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Bt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Tu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=wt(A,h),mt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(w,x)=>{let[N,T,E,M]=x,D=Id(w,E,l);F(Na(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=vf(T.shape,D,N,n,r),W=Jf(T,D,N.shape,n,r),U=[L,W];if(M!=null){let H=Nd(M,D);U.push(H)}return U},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Rr((w,x,N)=>{let T=$.runKernel(js,_,b);return N([x,w,T]),m&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Rr((w,x,N,T)=>{let E=$.runKernel(js,_,b);return T([x,w,E,N]),m&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var QT=O({fusedConv2d_:rE});function aE(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(xh,u,c)}var J5=O({depthwiseConv2dNativeBackpropFilter_:aE});function sE(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(wh,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Q5=O({depthwiseConv2dNativeBackpropInput_:sE});function iE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Td($.state.gradientDepth,l)===!1){let w=tl(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Sd(w,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Cr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Bt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Tu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=wt(A,h),mt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(w,x)=>{F(Na(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,D=Id(w,E,l),L=Q5(T.shape,D,N,n,r,s,i),W=J5(T,D,N.shape,n,r,s,i);if(M!=null){let U=Nd(A,D);return[L,W,U]}return[L,W]},_={x:p,filter:d,bias:A,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Rr((w,x,N)=>{let T=$.runKernel(Gs,_,b);return N([x,w,T]),m&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Rr((w,x,N,T)=>{let E=$.runKernel(Gs,_,b);return T([x,w,E,N]),m&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var eE=O({fusedDepthwiseConv2d_:iE});function oE({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Td($.state.gradientDepth,s)===!1){let M=He(e,t,n,r);return a!=null&&(M=se(M,a)),Sd(M,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=wt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Mt(m),y=Mt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(Kr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),_=n?j(l,[A,c,d]):j(l,[A,d,c]),b=r?j(u,[y,p,h]):j(u,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=wt(w,l),mt(g,w.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=(M,D)=>{let[L,W,U,H]=D,X=Id(j(M,U.shape),U,s),G,ee;if(!n&&!r?(G=He(X,W,!1,!0),ee=He(L,X,!0,!1)):!n&&r?(G=He(X,W,!1,!1),ee=He(X,L,!0,!1)):n&&!r?(G=He(W,X,!1,!0),ee=He(L,X,!1,!1)):(G=He(W,X,!0,!0),ee=He(X,L,!0,!0)),a!=null){let Y=Nd(H,X);return[G,ee,Y]}else return[G,ee]},T={a:_,b,bias:w,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Rr((M,D,L)=>{let W=$.runKernel(Hs,T,E);return L([M,D,W]),{value:j(W,g),gradFunc:N}})(_,b):Rr((M,D,L,W)=>{let U=$.runKernel(Hs,T,E);return W([M,D,U,L]),{value:j(U,g),gradFunc:N}})(_,b,w)}var tE=O({fusedMatMul_:oE});function lE(e){return Yf(e,.54,.46)}var uE=O({hammingWindow_:lE});function cE(e){return Yf(e,.5,.5)}var ex=O({hannWindow_:cE});function hE(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ce(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=rt([Ce(e,s,t-o),Mu([o],a)]);i.push(l),s+=n}return i.length===0?wn([],[0,t]):j(rt(i),[i.length,t])}var tx=O({frame_:hE});function dE(e,t,n,r,a=ex){r==null&&(r=Y5(t));let s=tx(e,t,n),i=P(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Uu(Ce(i,[l,0],[1,t]),r));return rt(o)}var pE=O({stft_:dE});function fE(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Yi,c,h)}var mE=O({cropAndResize_:fE});function AE(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(ao,n,{})}var yE=O({flipLeftRight_:AE});function gE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Wo,s,i)}var xE=O({rotateWithOffset_:gE});function cl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function wE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=cl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(xo,{boxes:s,scores:i},l)}var _E=O({nonMaxSuppression_:wE});function vE(e,t,n){let r=bE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function bE(e,t,n){return IE(e,t,n||kE)}function kE(e,t){return e>t?1:e<t?-1:0}function IE(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function nx(e,t,n,r,a){return Qf(e,t,n,r,a,0)}function rx(e,t,n,r,a,s){return Qf(e,t,n,r,a,0,!1,s,!0)}function ax(e,t,n,r,a,s){return Qf(e,t,n,r,a,s,!0)}function Qf(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(sx);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y<a)break;let b=!1;for(let w=h.length-1;w>=_;--w){let x=NE(e,g,h[w]);if(x>=r){b=!0;break}if(A.score=A.score*SE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&vE(u,A,sx))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function NE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-u)*(d-c);if(p<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),_=Math.max(y-f,0)*Math.max(g-A,0);return _/(p+m-_)}function SE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function sx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function TE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=cl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=nx(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ut(h,"int32")}var EE=TE;function CE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=cl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(_o,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var RE=O({nonMaxSuppressionWithScore_:CE});async function FE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=cl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=ax(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ut(d,"int32"),selectedScores:Ut(p)}}var ME=FE;function $E(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=cl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(wo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var OE=O({nonMaxSuppressionPadded_:$E});async function DE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=cl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=rx(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ut(m,"int32"),validOutputs:be(f,"int32")}}var zE=DE;function PE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Cs,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var ix=O({resizeBilinear_:PE});function LE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(du,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var ox=O({resizeNearestNeighbor_:LE});function WE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=j(dd(0,s,1,"int32"),[-1,1]),l=dd(0,i,1,"int32"),u=Ae(o,l),c=ar(ti(u,be(+t,"int32")),Ea(u,be(-n,"int32"))),h=Et([s,i],r.dtype);return j(Fn(sr(j(r,[-1,s,i])).map(d=>xn(c,d,h))),a)}var BE=O({bandPart_:WE});function VE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Jt(e,e.shape[0],0).map(a=>Ca(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=P(Se(P(n[i],s)),n[i]);s=Ae(s,o)}return ge(s,kd(s,"euclidean"))}));return t?Fn(n,0):n}var UE=O({gramSchmidt_:VE});function HE(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return lx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=sr(j(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=lx(l,t);a.push(u),s.push(c)});let i=j(Fn(a,0),e.shape),o=j(Fn(s,0),e.shape);return[i,o]}}function lx(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Cf(n),s=nr(e),i=wn([[1]],[1,1]),o=nr(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Ce(s,[u,u],[n-u,1]),m=kd(p),f=Ce(s,[u,u],[1,1]),A=xn(rr(f,0),wn([[-1]]),wn([[1]])),y=Ae(f,P(A,m)),g=ge(p,y);g.shape[0]===1?o=nr(i):o=rt([i,Ce(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=_t(ge(He(A,y),m)),b=Ce(s,[u,0],[n-u,r]),w=P(_,o),x=nt(o);if(u===0)s=Ae(b,He(w,He(x,b)));else{let E=Ae(b,He(w,He(x,b)));s=rt([Ce(s,[0,0],[u,r]),E],0)}let N=nt(w),T=Ce(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=Ae(T,He(He(T,o),N));else{let E=Ae(T,He(He(T,o),N));a=rt([Ce(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Ee([c,h,d])}return!t&&n>r&&(a=Ce(a,[0,0],[n,r]),s=Ce(s,[0,0],[r,r])),[a,s]})}var jE=O({qr_:HE}),ln;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ln||(ln={}));function GE(e,t,n=ln.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===ln.NONE)return s;if(n===ln.SUM)return Se(s);if(n===ln.MEAN){if(a==null)return bt(s);{let i=r.size/a.size,o=ge(Se(s),Se(a));return i>1?ge(o,be(i)):o}}if(n===ln.SUM_BY_NONZERO_WEIGHTS){if(a==null)return ge(Se(s),be(r.size));{let i=P(a,Mr(r.shape)),o=me(Se(ri(i,be(0))),"float32");return ge(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ea=O({computeWeightedLoss_:GE});function qE(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),rn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Ot(Ae(a,s));return ea(o,i,r)}var XE=O({absoluteDifference_:qE});function KE(e,t,n,r,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),rn(s.shape,i.shape,"Error in cosineDistance: ");let l=be(1),u=Ae(l,Se(P(s,i),n,!0));return ea(u,o,a)}var ZE=O({cosineDistance_:KE});function YE(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),rn(a.shape,s.shape,"Error in hingeLoss: ");let o=be(1);a=Ae(P(be(2),a),o);let l=$r(Ae(o,P(a,s)));return ea(l,i,r)}var JE=O({hingeLoss_:YE});function QE(e,t,n,r=1,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),rn(s.shape,i.shape,"Error in huberLoss: ");let l=be(r),u=Ot(Ae(i,s)),c=il(u,l),h=Ae(u,c),d=se(P(be(.5),it(c)),P(l,h));return ea(d,o,a)}var eC=O({huberLoss_:QE});function tC(e,t,n,r=1e-7,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),rn(s.shape,i.shape,"Error in logLoss: ");let l=be(1),u=be(r),c=_t(P(s,En(se(i,u)))),h=P(Ae(l,s),En(se(Ae(l,i),u))),d=Ae(c,h);return ea(d,o,a)}var nC=O({logLoss_:tC});function rC(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),rn(a.shape,s.shape,"Error in meanSquaredError: ");let o=_d(a,s);return ea(o,i,r)}var aC=O({meanSquaredError_:rC});function sC(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");rn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=$r(r),s=P(r,n),i=id(jn(_t(Ot(r))));return se(Ae(a,s),i)}function iC(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),rn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=be(r),c=be(1),h=be(.5);s=se(P(s,Ae(c,u)),P(h,u))}let l=sC(s,i);return ea(l,o,a)}var oC=O({sigmoidCrossEntropy_:iC});function lC(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Rr((r,a,s)=>{let i=$f(a,[n],!0),o=Ae(me(a,"float32"),i);s([r,o]);let l=_t(P(o,r));return{value:Se(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=ni(u.shape,[n]);return[P(j(u,p),Ae(me(h,"float32"),jn(d))),P(j(u,p),Ae(jn(d),me(h,"float32")))]}}})(e,t)}function uC(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),rn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=be(r),c=be(1),h=be(s.shape[1]);s=se(P(s,Ae(c,u)),ge(u,h))}let l=lC(s,i);return ea(l,o,a)}var cC=O({softmaxCrossEntropy_:uC}),hC={fft:Vu,ifft:ll,rfft:Uu,irfft:wd},dC={hammingWindow:uE,hannWindow:ex,frame:tx,stft:pE},Ge={flipLeftRight:yE,resizeNearestNeighbor:ox,resizeBilinear:ix,rotateWithOffset:xE,cropAndResize:mE,nonMaxSuppression:_E,nonMaxSuppressionAsync:EE,nonMaxSuppressionWithScore:RE,nonMaxSuppressionWithScoreAsync:ME,nonMaxSuppressionPadded:OE,nonMaxSuppressionPaddedAsync:zE},ux={bandPart:BE,gramSchmidt:UE,qr:jE},pC={absoluteDifference:XE,computeWeightedLoss:ea,cosineDistance:ZE,hingeLoss:JE,huberLoss:eC,logLoss:nC,meanSquaredError:aC,sigmoidCrossEntropy:oC,softmaxCrossEntropy:cC},ta=class extends d5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Ee(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return $5(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:be(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ta,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Ed=class extends ta{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:B(()=>Ve(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:B(()=>Ve(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;B(()=>{let l=se(P(i,this.rho),P(it(s),1-this.rho)),u=P(ge(Qt(se(o,this.epsilon)),Qt(se(i,this.epsilon))),s),c=se(P(o,this.rho),P(it(u),1-this.rho));i.assign(l),o.assign(c);let h=se(P(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Ed.className="Adadelta";Ia(Ed);var Cd=class extends ta{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:B(()=>Mu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;B(()=>{let i=se(s,it(a));s.assign(i);let o=se(P(ge(a,Qt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Cd.className="Adagrad";Ia(Cd);var Rd=class extends ta{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=be(t).variable(),this.accBeta2=be(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=Ae(1,this.accBeta1),r=Ae(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:B(()=>Ve(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:B(()=>Ve(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=se(P(c,this.beta2),P(it(l),1-this.beta2)),p=ge(h,n),m=ge(d,r);u.assign(h),c.assign(d);let f=se(P(ge(p,se(Qt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(Qr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Qr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Rd.className="Adam";Ia(Rd);var Fd=class extends ta{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=be(0).variable(),this.accBeta1=be(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=Ae(1,this.accBeta1),r=ge(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Ve(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Ve(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=P(c,this.beta2),p=Ot(l),m=Fr(d,p);u.assign(h),c.assign(m);let f=se(P(ge(r,n),ge(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Fd.className="Adamax";Ia(Fd);var Hu=class extends ta{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];B(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(be(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Hu.className="SGD";Ia(Hu);var Md=class extends Hu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=be(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:B(()=>Ve(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&B(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Md.className="Momentum";Ia(Md);var $d=class extends ta{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:B(()=>Ve(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:B(()=>Ve(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:B(()=>Ve(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;B(()=>{let l=se(P(i,this.decay),P(it(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=se(P(u,this.decay),P(s,1-this.decay)),h=ge(P(s,this.learningRate),Qt(Ae(l,se(it(c),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=Ae(r,d);r.assign(p)}else{let u=se(P(i,this.decay),P(it(s),1-this.decay)),c=se(P(o,this.momentum),ge(P(s,this.learningRate),Qt(se(u,this.epsilon))));i.assign(u),o.assign(c);let h=Ae(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};$d.className="RMSProp";Ia($d);var ai=class{static sgd(e){return new Hu(e)}static momentum(e,t,n=!1){return new Md(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new $d(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Rd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Ed(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Fd(e,t,n,r,a)}static adagrad(e,t=.1){return new Cd(e,t)}},si={sgd:ai.sgd,momentum:ai.momentum,adadelta:ai.adadelta,adagrad:ai.adagrad,rmsprop:ai.rmsprop,adamax:ai.adamax,adam:ai.adam},fC=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Od(){return new Promise(e=>fC(()=>e()))}var C={};De(C,{ERF_A1:()=>IC,ERF_A2:()=>NC,ERF_A3:()=>SC,ERF_A4:()=>TC,ERF_A5:()=>EC,ERF_P:()=>kC,PARALLELIZE_THRESHOLD:()=>em,SELU_SCALE:()=>hx,SELU_SCALEALPHA:()=>cx,applyActivation:()=>Sd,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>JN,assertParamsConsistent:()=>mC,assignToTypedArray:()=>zC,axesAreInnerMostDims:()=>Ff,calculateShapes:()=>e5,combineLocations:()=>D5,complexWithEvenIndex:()=>$C,complexWithOddIndex:()=>OC,computeConv2DInfo:()=>Tu,computeConv3DInfo:()=>x5,computeDefaultPad:()=>wf,computeDilation2DInfo:()=>bI,computeOptimalWindowSize:()=>yC,computeOutAndReduceShapes:()=>z5,computeOutShape:()=>AC,computePool2DInfo:()=>g5,computePool3DInfo:()=>vI,convertConv2DDataFormat:()=>y5,eitherStridesOrDilationsAreOne:()=>Cr,expandShapeToKeepDim:()=>ni,exponent:()=>LC,exponents:()=>PC,fromStringArrayToUint8:()=>VC,fromUint8ToStringArray:()=>BC,getAxesPermutation:()=>P5,getBroadcastDims:()=>fN,getComplexWithIndex:()=>DC,getFusedBiasGradient:()=>Nd,getFusedDyActivation:()=>Id,getImageCenter:()=>gC,getInnerMostAxes:()=>QN,getPermuted:()=>wC,getReductionAxes:()=>Dt,getReshaped:()=>xC,getReshapedPermuted:()=>_C,getSliceBeginCoords:()=>bC,getSliceSize:()=>vC,getUndoAxesPermutation:()=>Mf,log:()=>RC,mergeRealAndImagArrays:()=>FC,prepareAndValidate:()=>Qg,prepareSplitSize:()=>WC,segment_util:()=>dx,shouldFuse:()=>Td,slice_util:()=>on,splitRealAndImagArrays:()=>MC,tupleValuesAreOne:()=>Na,upcastType:()=>tr,validateInput:()=>af,validateUpdateShape:()=>rf,warn:()=>CC});function mC(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function AC(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var em=30;function yC(e){return e<=em?e:oh(e,Math.floor(Math.sqrt(e)))}function gC(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function xC(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function wC(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function _C(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function bC(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function vC(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var cx=1.7580993408473768,hx=1.0507009873554805,kC=.3275911,IC=.254829592,NC=-.284496736,SC=1.421413741,TC=-1.453152027,EC=1.061405429;function CC(...e){J().getBool("IS_TEST")||console.warn(...e)}function RC(...e){J().getBool("IS_TEST")||console.log(...e)}function FC(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function MC(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function $C(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function OC(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function DC(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function zC(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function PC(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function LC(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function WC(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var dx={};De(dx,{collectGatherOpShapeInfo:()=>jC,computeOutShape:()=>HC,segOpComputeOptimalWindowSize:()=>UC});function UC(e,t){let n=!1,r;for(e<=em?(r=e,n=!0):r=oh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=oh(e,r+1);return r}function HC(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function jC(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function BC(e){try{return e.map(t=>Vh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function VC(e){return e.map(t=>gu(t))}var Or={};De(Or,{nonMaxSuppressionV3Impl:()=>nx,nonMaxSuppressionV4Impl:()=>rx,nonMaxSuppressionV5Impl:()=>ax,whereImpl:()=>G5});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var GC=Or.whereImpl,Dd=class extends Zl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new sh(this,Er())}nextDataId(){return Dd.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Er().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return GC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Dd.nextDataId=0;var tm={};De(tm,{addImpl:()=>fx,bincountImpl:()=>nm,bincountReduceImpl:()=>mx,ceilImpl:()=>Ax,concatImpl:()=>rm,expImpl:()=>yx,expm1Impl:()=>gx,floorImpl:()=>xx,gatherV2Impl:()=>wx,greaterImpl:()=>_x,lessImpl:()=>bx,linSpaceImpl:()=>vx,logImpl:()=>kx,maxImpl:()=>Ix,maximumImpl:()=>Nx,minimumImpl:()=>Sx,multiplyImpl:()=>am,negImpl:()=>Tx,notEqualImpl:()=>Ex,prodImpl:()=>Cx,rangeImpl:()=>im,rsqrtImpl:()=>Rx,simpleAbsImpl:()=>px,sliceImpl:()=>zd,squaredDifferenceImpl:()=>Fx,stridedSliceImpl:()=>Mx,subImpl:()=>$x,tileImpl:()=>Ox,topKImpl:()=>Dx,transposeImpl:()=>sm,uniqueImpl:()=>zx});function px(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var qC=e=>{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=px(a),n.makeOutput(r,t.shape,"float32")},XC={kernelName:Bi,backendName:"cpu",kernelFunc:qC};function Ct(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),m=v.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<c.length;++y)c[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<c.length;++y){let g=v.indexToLoc(y,o,l),_=g.slice(-h);f.forEach(N=>_[N]=0);let b=v.locToIndex(_,h,p),w=g.slice(-d);A.forEach(N=>w[N]=0);let x=v.locToIndex(w,d,m);c[y]=e(r[b],a[x])}return[c,i]}}function Mn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var KC={kernelName:fh,backendName:"cpu",kernelFunc:Mn};function Pd(e,t,n="float32"){if(n==="complex64"){let a=Pd(e,t,"float32"),s=Pd(e,t,"float32");return Mn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Dr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var ZC={kernelName:ms,backendName:"cpu",kernelFunc:Dr};function ii(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var YC={kernelName:$h,backendName:"cpu",kernelFunc:ii};function Fa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Dr({inputs:{x:a},backend:n});let i=Pd(n,a.shape,a.dtype),o=Fa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Mn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ii({inputs:{input:a},backend:n}),o=Fa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Dr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Ct((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var JC={kernelName:ns,backendName:"cpu",kernelFunc:Fa};function Ht(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Fa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Fa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,b=l.data.get(g.dataId).values,[w,x,N]=n(i.shape,o.shape,p,m,_,b),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",x),M=Mn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function om(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),_=n.length,b=v.computeStrides(n);if(p.length+m.length===0)for(let w=0;w<h.length;w++){let x=w%f.length,N=w%A.length,T=e(f[x*2],f[x*2+1],A[N*2],A[N*2+1]);h[w]=T.real,d[w]=T.imag}else for(let w=0;w<h.length;w++){let x=v.indexToLoc(w,u,c),N=x.slice(-y);p.forEach(L=>N[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-_);m.forEach(L=>E[L]=0);let M=v.locToIndex(E,_,b),D=e(f[T*2],f[T*2+1],A[M*2],A[M*2+1]);h[w]=D.real,d[w]=D.imag}return[h,d,o]}}var fx=Ct((e,t)=>e+t),QC=om((e,t,n,r)=>({real:e+n,imag:t+r})),ju=Ht(ga,fx,QC),eR={kernelName:ga,backendName:"cpu",kernelFunc:ju};function nm(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function mx(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Le([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function hl(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function at(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function dl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var Ax=hl(e=>Math.ceil(e)),tR=dl(rs,Ax),nR={kernelName:rs,backendName:"cpu",kernelFunc:tR};function rm(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var yx=hl(e=>Math.exp(e)),Px=dl(cs,yx),rR={kernelName:cs,backendName:"cpu",kernelFunc:Px},gx=hl(e=>Math.expm1(e)),aR=dl(ro,gx),sR={kernelName:ro,backendName:"cpu",kernelFunc:aR},xx=hl(e=>Math.floor(e)),iR=dl(hs,xx),oR={kernelName:hs,backendName:"cpu",kernelFunc:iR};function wx(e,t,n){let r=Le(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var _x=Ct((e,t)=>e>t?1:0),lR=Ht(oo,_x,null,"bool"),uR={kernelName:oo,backendName:"cpu",kernelFunc:lR},bx=Ct((e,t)=>e<t?1:0),cR=Ht(ho,bx,null,"bool"),hR={kernelName:ho,backendName:"cpu",kernelFunc:cR};function vx(e,t,n){let r=(t-e)/(n-1),a=v.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var kx=hl(e=>Math.log(e)),dR=dl(ys,kx),pR={kernelName:ys,backendName:"cpu",kernelFunc:dR};function Ix(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var Nx=Ct((e,t)=>Math.max(e,t)),fR=Ht(xs,Nx),mR={kernelName:xs,backendName:"cpu",kernelFunc:fR},Sx=Ct((e,t)=>Math.min(e,t)),AR=Ht(vs,Sx),yR={kernelName:vs,backendName:"cpu",kernelFunc:AR},am=Ct((e,t)=>e*t),gR=om((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),lm=Ht(ks,am,gR),xR={kernelName:ks,backendName:"cpu",kernelFunc:lm};function Tx(e,t,n){let r=v.createScalarValue(-1,n);return am([],t,r,e,n)}function wR(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Tx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var _R={kernelName:yo,backendName:"cpu",kernelFunc:wR},Ex=Ct((e,t)=>e!==t?1:0),bR=Ht(go,Ex,null,"bool"),vR={kernelName:go,backendName:"cpu",kernelFunc:bR};function sm(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;c<i;++c){let h=v.indexToLoc(c,s,o),d=new Array(h.length);for(let m=0;m<d.length;m++)d[m]=h[r[m]];let p=v.locToIndex(d,s,l);u[p]=e[c]}return u}function ir(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;_e(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=sm(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var kR={kernelName:Us,backendName:"cpu",kernelFunc:ir};function Cx(e,t,n,r){let[a,s]=C.computeOutAndReduceShapes(e,r),i=tr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function IR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=C.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=C.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:m,outShape:f,outDtype:A}=Cx(h.shape,h.dtype,p,c),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var NR={kernelName:ko,backendName:"cpu",kernelFunc:IR};function im(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Rx=hl(e=>1/Math.sqrt(e)),SR=dl($s,Rx),TR={kernelName:$s,backendName:"cpu",kernelFunc:SR};function zd(e,t,n,r,a){let s=on.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=on.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Le(r,a,l),c=Le(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((m,f)=>m+t[f]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function oi(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=on.parseSliceParams(a,s,i);on.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=zd(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var ER={kernelName:Co,backendName:"cpu",kernelFunc:oi},Fx=Ct((e,t)=>{let n=e-t;return n*n}),CR=Ht(Ws,Fx),RR={kernelName:Ws,backendName:"cpu",kernelFunc:CR};function Mx(e,t,n,r){let a=Le(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var $x=Ct((e,t)=>e-t),FR=om((e,t,n,r)=>({real:e-n,imag:t-r})),um=Ht(Bs,$x,FR),MR={kernelName:Bs,backendName:"cpu",kernelFunc:um};function Ox(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Le(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function Dx(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*r),u=v.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),m=[];for(let g=0;g<p.length;g++)m.push({value:p[g],index:g});m.sort((g,_)=>_.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=u.subarray(f,f+r);for(let g=0;g<r;g++)A[g]=m[g].value,y[g]=m[g].index}let c=t.slice();return c[c.length-1]=r,[Le(c,n,l),Le(c,"int32",u)]}function zx(e,t,n,r){let a=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<a;m++)s[0]*=n[m];s[1]=n[a];for(let m=a+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[a]),l=new $t(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let m=0;m<n[a];m++){let f;if(c)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new $t(h,r);u.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,m,y),A,f,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var Lx="3.2.0";Zo("cpu",()=>new Dd,1);var Wx=at(Qi,e=>e>=0?e:Math.exp(e)-1),$R={kernelName:Qi,backendName:"cpu",kernelFunc:Wx};function Bx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var OR={kernelName:As,backendName:"cpu",kernelFunc:Bx},DR=Ct((e,t)=>e<0?t*e:e);function Vx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=DR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var zR={kernelName:Ts,backendName:"cpu",kernelFunc:Vx},Ux=at(Es,e=>Math.max(0,e)),PR={kernelName:Es,backendName:"cpu",kernelFunc:Ux},Hx=at(Rs,e=>Math.min(Math.max(0,e),6)),LR={kernelName:Rs,backendName:"cpu",kernelFunc:Hx};function cm(e,t,n,r,a){if(n==="linear")return Dr({inputs:{x:t},backend:e});if(n==="relu")return Ux({inputs:{x:t},backend:e});if(n==="elu")return Wx({inputs:{x:t},backend:e});if(n==="relu6")return Hx({inputs:{x:t},backend:e});if(n==="prelu")return Vx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Bx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function At(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var WR={kernelName:No,backendName:"cpu",kernelFunc:At};function jx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=At({inputs:{x:a},backend:n,attrs:{shape:b}}),N=At({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,W=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),H=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,ae,te]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ie=E*M,Q=Le([D,E,M],x.dtype),he=Q.values,oe=n.blockSize;for(let fe=0;fe<D;fe++)for(let pe=0;pe<E;pe+=oe)for(let ve=0;ve<M;ve+=oe)for(let Ie=0;Ie<T;Ie+=oe){let Fe=Math.min(pe+oe,E),Oe=Math.min(ve+oe,M),Me=Math.min(Ie+oe,T);for(let Qe=pe;Qe<Fe;Qe++)for(let et=ve;et<Oe;et++){let st=0;for(let Xe=Ie;Xe<Me;Xe++){let ht=Math.min(fe,A-1)*X,We=Math.min(fe,y-1)*te,dn=L[ht+Qe*G+Xe*ee],xt=W[Xe*Y+et*ae+We];st+=dn*xt}he[fe*ie+(Qe*M+et)]+=st}}return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(_,Q.dtype,Q.values)}var BR={kernelName:ts,backendName:"cpu",kernelFunc:jx};function VR(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,m,f=[];d=jx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=ju({inputs:{a:d,b:i},backend:n}),f.push(d),d=p),c&&(m=cm(n,d,c,o,h),f.push(d),d=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return d}var UR={kernelName:Hs,backendName:"cpu",kernelFunc:VR},HR=at(Vi,e=>Math.acos(e)),jR={kernelName:Vi,backendName:"cpu",kernelFunc:HR},GR=at(Ui,e=>Math.acosh(e)),qR={kernelName:Ui,backendName:"cpu",kernelFunc:GR};function XR(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Le(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var KR={kernelName:Ja,backendName:"cpu",kernelFunc:XR};function ZR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,_=f[g];for(let b=0;b<p;++b){let w=f[g+b];_=_&&w}m[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=At({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var YR={kernelName:uh,backendName:"cpu",kernelFunc:ZR};function JR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,_=f[g];for(let b=0;b<p;++b){let w=f[g+b];_=_||w}m[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=At({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var QR={kernelName:ch,backendName:"cpu",kernelFunc:JR};function eF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=ir({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*m,g=f[y],_=0;for(let b=0;b<m;++b){let w=f[y+b];w>g&&(g=w,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var tF={kernelName:Qa,backendName:"cpu",kernelFunc:eF};function nF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=ir({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*m,g=f[y],_=0;for(let b=0;b<m;++b){let w=f[y+b];w<g&&(g=w,_=b)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var rF={kernelName:Ql,backendName:"cpu",kernelFunc:nF},aF=at(Hi,e=>Math.asin(e)),sF={kernelName:Hi,backendName:"cpu",kernelFunc:aF},iF=at(ji,e=>Math.asinh(e)),oF={kernelName:ji,backendName:"cpu",kernelFunc:iF},lF=at(Gi,e=>Math.atan(e)),uF={kernelName:Gi,backendName:"cpu",kernelFunc:lF},cF=Ct((e,t)=>Math.atan2(e,t)),hF=Ht(Xi,cF),dF={kernelName:Xi,backendName:"cpu",kernelFunc:hF},pF=at(qi,e=>Math.atanh(e)),fF={kernelName:qi,backendName:"cpu",kernelFunc:pF};function hm(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let b=0;b<a.batchSize;++b){let w=b*y,x=b*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),D=Math.min(a.inHeight,c+E),L=w+T*g;for(let W=0;W<a.outWidth;++W){let U=W*o-p,H=Math.max(0,U),X=Math.min(a.inWidth,h+U),G=m,ee=0,Y=0;for(let te=M;te<D;te+=l){let ie=x+te*r[1];for(let Q=H;Q<X;Q+=u){let he=ie+Q*r[2],oe=e[he+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+W*_+N;A[ae]=s==="avg"?ee/Y:G}}}return f}function Gx(e,t,n,r,a=!1,s=!1){let i=Le(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Le(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let _=g*o-p,b=_;for(;b<0;)b+=u;let w=Math.min(r.inHeight,h+_);for(let x=0;x<r.outWidth;++x){let N=x*l-m,T=N;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,D=-1;for(let L=b;L<w;L+=u){let W=L-_;for(let U=T;U<E;U+=c){let H=U-N,X=f.get(A,L,U,y);X>M&&(M=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=W*d+H)}}i.set(D,A,g,x,y)}}return i}function qx(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Le(a.outShape,n),b=_.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*w,D=E*r[0];for(let L=0;L<a.inChannels;++L)for(let W=0;W<a.outDepth;++W){let U=W*i-f,H=U;for(;H<0;)H+=u;let X=Math.min(a.inDepth,d+U),G=M+W*x;for(let ee=0;ee<a.outHeight;++ee){let Y=ee*o-A,ae=Y;for(;ae<0;)ae+=c;let te=Math.min(a.inHeight,p+Y),ie=G+ee*N;for(let Q=0;Q<a.outWidth;++Q){let he=Q*l-y,oe=he;for(;oe<0;)oe+=h;let fe=Math.min(a.inWidth,m+he),pe=ie+Q*T,ve=g,Ie=0,Fe=0;for(let Me=H;Me<X;Me+=u){let Qe=D+Me*r[1];for(let et=ae;et<te;et+=c){let st=Qe+et*r[2];for(let Xe=oe;Xe<fe;Xe+=h){let ht=st+Xe*r[3],We=e[ht+L];if(s==="max"&&We>ve?ve=We:s==="avg"&&(Ie+=We,Fe++),isNaN(ve))break}if(isNaN(ve))break}if(isNaN(ve))break}let Oe=pe+L;b[Oe]=s==="avg"?Ie/Fe:ve}}}}return _}function mF(e,t){let n=Le(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,_=g;for(;_<0;)_+=i;let b=Math.min(t.inDepth,u+g);for(let w=0;w<t.outHeight;++w){let x=w*a-p,N=x;for(;N<0;)N+=o;let T=Math.min(t.inHeight,c+x);for(let E=0;E<t.outWidth;++E){let M=E*s-m,D=M;for(;D<0;)D+=l;let L=Math.min(t.inWidth,h+M),W=Number.NEGATIVE_INFINITY,U=-1;for(let H=_;H<b;H+=i){let X=H-g;for(let G=N;G<T;G+=o){let ee=G-x;for(let Y=D;Y<L;Y+=l){let ae=Y-M,te=e.get(f,H,G,Y,A);te>=W&&(W=te,U=X*c*h+ee*c+ae)}}}n.set(U,f,y,w,E,A)}}}return n}function AF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Dr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=hm(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var yF={kernelName:es,backendName:"cpu",kernelFunc:AF};function gF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;_e(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=qx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var xF={kernelName:eu,backendName:"cpu",kernelFunc:gF};function wF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;_e([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,m=c.filterDepth,f=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,_=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=w-1-c.padInfo.top,M=Le(s.shape,"float32"),D=1/(m*f*A),L=n.bufferSync(a);for(let W=0;W<c.batchSize;++W)for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.inDepth;++H)for(let X=0;X<c.inHeight;++X)for(let G=0;G<c.inWidth;++G){let ee=H-N,Y=X-E,ae=G-T,te=0;for(let ie=0;ie<b;ie+=y){let Q=(ee+ie)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let he=0;he<w;he+=g){let oe=(Y+he)/d;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<x;fe+=_){let pe=(ae+fe)/p;pe<0||pe>=c.outWidth||Math.floor(pe)!==pe||(te+=L.get(W,Q,oe,pe,U))}}}M.set(te*D,W,H,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var _F={kernelName:dh,backendName:"cpu",kernelFunc:wF};function bF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,_=g-1-c.padInfo.left,b=y-1-c.padInfo.top,w=Le(i.shape,"float32"),x=1/(p*m),N=n.data.get(a.dataId).values,T=Le(a.shape,"float32",N);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let D=0;D<c.inHeight;++D)for(let L=0;L<c.inWidth;++L){let W=D-b,U=L-_,H=0;for(let X=0;X<y;X+=f){let G=(W+X)/h;if(!(G<0||G>=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(U+ee)/d;Y<0||Y>=c.outWidth||Math.floor(Y)!==Y||(H+=T.get(E,G,Y,M))}}w.set(H*x,E,D,L,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var vF={kernelName:hh,backendName:"cpu",kernelFunc:bF};function kF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),A=m.length,y=p.length,g=d.length,_=h.length,b=0,w=0,x=0,N=0;for(let T=0;T<c.length;++T)f[T]=m[b++]+(c[T]-h[w++])*p[x++]/Math.sqrt(d[N++]+u),b>=A&&(b=0),w>=_&&(w=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var IF={kernelName:ps,backendName:"cpu",kernelFunc:kF};function NF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=At({inputs:{x:a},backend:n,attrs:{shape:l}}),m=ir({inputs:{x:p},backend:n,attrs:{perm:u}}),f=At({inputs:{x:m},backend:n,attrs:{shape:c}}),A=oi({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var SF={kernelName:tu,backendName:"cpu",kernelFunc:NF};function TF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=nm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var EF={kernelName:ph,backendName:"cpu",kernelFunc:TF},CF=at(xa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),RF={kernelName:xa,backendName:"cpu",kernelFunc:CF},FF=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},MF={kernelName:nu,backendName:"cpu",kernelFunc:FF};function pl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var $F={kernelName:Sh,backendName:"cpu",kernelFunc:pl};function fl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return Dr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(b=>ii({inputs:{input:b},backend:n})),A=o.map(b=>pl({inputs:{input:b},backend:n})),y=fl({inputs:f,backend:n,attrs:{axis:s}}),g=fl({inputs:A,backend:n,attrs:{axis:s}}),_=Mn({inputs:{real:y,imag:g},backend:n});return f.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let u=o.map(f=>{let A=v.sizeFromShape(f.shape.slice(s));return At({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,d=rm(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var OF={kernelName:Ki,backendName:"cpu",kernelFunc:fl};function Xx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;_e([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,_=d.dataFormat==="channelsLast",b=new $t(d.outShape,a.dtype),w=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=w[0],T=_?w[1]:w[2],E=_?w[2]:1,M=_?1:w[1],D=b.strides[0],L=_?b.strides[1]:b.strides[2],W=_?b.strides[2]:1,U=_?1:b.strides[1],H=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee<d.batchSize;++ee){let Y=ee*N,ae=ee*D;for(let te=0;te<d.outHeight;++te){let ie=ae+te*L,Q=te*d.strideHeight-g;for(let he=0;he<p;++he){let oe=Q+he*f;if(oe<0||oe>=d.inHeight)continue;let fe=he*x[0],pe=Y+oe*T;for(let ve=0;ve<d.outWidth;++ve){let Ie=ie+ve*W,Fe=ve*d.strideWidth-y;for(let Oe=0;Oe<m;++Oe){let Me=Fe+Oe*A;if(Me<0||Me>=d.inWidth)continue;let Qe=fe+Oe*x[1],et=pe+Me*E,st=Qe;for(let Xe=0;Xe<d.inChannels;++Xe){let ht=H[et+Xe*M];for(let We=0;We<d.outChannels;++We)G[Ie+We*U]+=ht*X[st+We];st+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,G)}var DF={kernelName:as,backendName:"cpu",kernelFunc:Xx};function zF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;_e([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:m,filterHeight:f,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new $t(d.filterShape,"float32"),_=d.padInfo.left,b=d.padInfo.top,w=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=new $t(a.shape,a.dtype,w),T=new $t(s.shape,s.dtype,x);for(let E=0;E<f;++E){let M=Math.max(0,Math.ceil((b-E)/p)),D=Math.min(d.outHeight,(d.inHeight+b-E)/p);for(let L=0;L<A;++L){let W=Math.max(0,Math.ceil((_-L)/m)),U=Math.min(d.outWidth,(d.inWidth+_-L)/m);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let G=0;for(let ee=0;ee<d.batchSize;++ee)for(let Y=M;Y<D;++Y){let ae=E+Y*p-b;for(let te=W;te<U;++te){let ie=L+te*m-_;y?G+=N.get(ee,ae,ie,H)*T.get(ee,Y,te,X):G+=N.get(ee,H,ae,ie)*T.get(ee,X,Y,te)}}g.set(G,E,L,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var PF={kernelName:mh,backendName:"cpu",kernelFunc:zF};function LF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;_e([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),d=v.computeStrides(a.shape),p=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),f=new $t(m.inShape,"float32"),A=f.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[_,b,w]=h,{batchSize:x,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:D,outChannels:L,outHeight:W,outWidth:U,strideHeight:H,strideWidth:X}=m;p=m.dataFormat;let G=N-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=p==="channelsLast",ae=f.strides[0],te=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],he=d[0],oe=Y?d[1]:d[2],fe=Y?d[2]:1,pe=Y?1:d[1];for(let ve=0;ve<x;++ve)for(let Ie=0;Ie<E;++Ie)for(let Fe=0;Fe<M;++Fe){let Oe=Fe-G,Me=Math.max(0,Math.ceil(Oe/H)),Qe=Math.min(W,(N+Oe)/H);for(let et=0;et<D;++et){let st=et-ee,Xe=Math.max(0,Math.ceil(st/X)),ht=Math.min(U,(T+st)/X),We=0;for(let xt=Me;xt<Qe;++xt){let Wn=xt*H-Oe;for(let Kt=Xe;Kt<ht;++Kt){let pn=Kt*X-st,Bn=he*ve+oe*xt+fe*Kt,Nn=_*(N-1-Wn)+b*(T-1-pn)+w*Ie;for(let sn=0;sn<L;++sn){let Zt=y[Bn+pe*sn],Ir=g[Nn+sn];We+=Zt*Ir}}}let dn=ae*ve+te*Fe+ie*et+Q*Ie;A[dn]=We}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var WF={kernelName:ss,backendName:"cpu",kernelFunc:LF};function BF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;_e([a,s],"conv3d");let u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:m,dilationWidth:f,padInfo:A}=u,y=A.front,g=A.left,_=A.top,b=new $t(u.outShape,a.dtype),w=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=b.values,T=v.computeStrides(a.shape),E=v.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let D=M*T[0],L=M*b.strides[0];for(let W=0;W<u.outDepth;++W){let U=L+W*b.strides[1],H=W*u.strideDepth-y;for(let X=0;X<c;++X){let G=H+X*p;if(G<0||G>=u.inDepth)continue;let ee=X*E[0],Y=D+G*T[1];for(let ae=0;ae<u.outHeight;++ae){let te=U+ae*b.strides[2],ie=ae*u.strideHeight-_;for(let Q=0;Q<h;++Q){let he=ie+Q*m;if(he<0||he>=u.inHeight)continue;let oe=ee+Q*E[1],fe=Y+he*T[2];for(let pe=0;pe<u.outWidth;++pe){let ve=te+pe*u.outChannels,Ie=pe*u.strideWidth-g;for(let Fe=0;Fe<d;++Fe){let Oe=Ie+Fe*f;if(Oe<0||Oe>=u.inWidth)continue;let Me=oe+Fe*E[2],Qe=fe+Oe*u.inChannels,et=Me;for(let st=0;st<u.inChannels;++st){let Xe=w[Qe+st];for(let ht=0;ht<u.outChannels;++ht)N[ve+ht]+=Xe*x[et+ht];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var VF={kernelName:ru,backendName:"cpu",kernelFunc:BF};function UF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;_e([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,m=h.strideWidth,f=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new $t(h.filterShape,"float32"),_=g.values,[b,w,x,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,D,L]=c,W=n.data.get(a.dataId).values,[U,H,X,G]=u,ee=h.padInfo.front,Y=h.padInfo.left,ae=h.padInfo.top;for(let te=0;te<f;++te){let ie=Math.max(0,Math.ceil((ee-te)/d)),Q=Math.min(h.outDepth,(h.inDepth+ee-te)/d),he=te*b;for(let oe=0;oe<A;++oe){let fe=Math.max(0,Math.ceil((ae-oe)/p)),pe=Math.min(h.outHeight,(h.inHeight+ae-oe)/p),ve=oe*w+he;for(let Ie=0;Ie<y;++Ie){let Fe=Math.max(0,Math.ceil((Y-Ie)/m)),Oe=Math.min(h.outWidth,(h.inWidth+Y-Ie)/m),Me=Ie*x+ve;for(let Qe=0;Qe<h.inChannels;++Qe){let et=Qe*N+Me;for(let st=0;st<h.outChannels;++st){let Xe=0;for(let ht=0;ht<h.batchSize;++ht){let We=ht*U,dn=ht*E;for(let xt=ie;xt<Q;++xt){let Wn=(te+xt*d-ee)*H+We,Kt=xt*M+dn;for(let pn=fe;pn<pe;++pn){let Bn=(oe+pn*p-ae)*X+Wn,Nn=pn*D+Kt;for(let sn=Fe;sn<Oe;++sn){let Zt=(Ie+sn*m-Y)*G+Bn,Ir=sn*L+Nn;Xe+=W[Zt+Qe]*T[Ir+st]}}}}_[et+st]=Xe}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var HF={kernelName:Ah,backendName:"cpu",kernelFunc:UF};function jF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;_e([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),d=new $t(h.inShape,"float32"),p=d.values,[m,f,A,y]=d.strides,g=n.data.get(a.dataId).values,[_,b,w,x]=u,N=n.data.get(s.dataId).values,[T,E,M,D]=c,{batchSize:L,filterDepth:W,filterHeight:U,filterWidth:H,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:ae,outDepth:te,outHeight:ie,outWidth:Q,strideDepth:he,strideHeight:oe,strideWidth:fe}=h,pe=W-1-h.padInfo.front,ve=U-1-h.padInfo.top,Ie=H-1-h.padInfo.left;for(let Fe=0;Fe<L;++Fe)for(let Oe=0;Oe<X;++Oe)for(let Me=0;Me<G;++Me){let Qe=Me-pe,et=Math.max(0,Math.ceil(Qe/he)),st=Math.min(te,(W+Qe)/he);for(let Xe=0;Xe<ee;++Xe){let ht=Xe-ve,We=Math.max(0,Math.ceil(ht/oe)),dn=Math.min(ie,(U+ht)/oe);for(let xt=0;xt<Y;++xt){let Wn=xt-Ie,Kt=Math.max(0,Math.ceil(Wn/fe)),pn=Math.min(Q,(H+Wn)/fe),Bn=0;for(let Nn=et;Nn<st;++Nn){let sn=Nn*he-Qe;for(let Zt=We;Zt<dn;++Zt){let Ir=Zt*oe-ht;for(let Zn=Kt;Zn<pn;++Zn){let Yn=Zn*fe-Wn,ua=_*Fe+b*Nn+w*Zt+x*Zn,Hr=T*(W-1-sn)+E*(U-1-Ir)+M*(H-1-Yn)+D*Oe;for(let ca=0;ca<ae;++ca){let Ni=g[ua+ca],pr=N[Hr+ca];Bn+=Ni*pr}}}}p[m*Fe+f*Me+A*Xe+y*xt+Oe]=Bn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var GF={kernelName:yh,backendName:"cpu",kernelFunc:jF},qF=at(is,e=>Math.cos(e)),XF={kernelName:is,backendName:"cpu",kernelFunc:qF},KF=at(Zi,e=>Math.cosh(e)),ZF={kernelName:Zi,backendName:"cpu",kernelFunc:KF};function YF(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Le([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,w=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N<m;N++){let T=N*4,E=g[T],M=g[T+1],D=g[T+2],L=g[T+3],W=_[N];if(W>=c)continue;let U=f>1?(D-E)*(h-1)/(f-1):0,H=A>1?(L-M)*(d-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<p;Y++){let ae=Y+ee*x[2]+X*x[1]+N*x[0];y.values[ae]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),ae=G-ee;for(let te=0;te<A;te++){let ie=A>1?M*(d-1)+te*H:.5*(M+L)*(d-1);if(ie<0||ie>d-1){for(let fe=0;fe<p;fe++){let pe=fe+te*x[2]+X*x[1]+N*x[0];y.values[pe]=u}continue}let Q=Math.floor(ie),he=Math.ceil(ie),oe=ie-Q;for(let fe=0;fe<p;fe++){let pe=fe+Q*w[2]+ee*w[1]+W*w[0],ve=b[pe];pe=fe+he*w[2]+ee*w[1]+W*w[0];let Ie=b[pe];pe=fe+Q*w[2]+Y*w[1]+W*w[0];let Fe=b[pe];pe=fe+he*w[2]+Y*w[1]+W*w[0];let Oe=b[pe],Me=ve+(Ie-ve)*oe,Qe=Fe+(Oe-Fe)*oe;pe=fe+te*x[2]+X*x[1]+N*x[0],y.values[pe]=Me+(Qe-Me)*ae}}}else for(let ee=0;ee<A;++ee){let Y=A>1?M*(d-1)+ee*H:.5*(M+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;ie<p;ie++){let Q=ie+ee*x[2]+X*x[1]+N*x[0];y.values[Q]=u}continue}let ae=Math.round(Y),te=Math.round(G);for(let ie=0;ie<p;ie++){let Q=ie+ae*w[2]+te*w[1]+W*w[0],he=ie+ee*x[2]+X*x[1]+N*x[0];y.values[he]=b[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var JF={kernelName:Yi,backendName:"cpu",kernelFunc:YF};function QF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;_e(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=ir({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=tr(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=m)for(let g=0;g<m;g++){let _=f(y,g);if(g===0)d[_]=i?0:p[_];else{let b=f(y,g-1);d[_]=i?p[b]+d[b]:p[_]+d[b]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let y=C.getUndoAxesPermutation(l),g=ir({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var eM={kernelName:os,backendName:"cpu",kernelFunc:QF};function tM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=nm(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=mx(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var nM={kernelName:gh,backendName:"cpu",kernelFunc:tM};function rM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let _=Math.floor(g/s),b=g%s;for(let w=0;w<d;++w){let x=Math.floor(w/s),N=w%s,T=(b*s+N)*p;for(let E=0;E<p;++E){let M=E+T+c*(x+u*(_+l*y));f[A++]=m[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,f)}var aM={kernelName:Ji,backendName:"cpu",kernelFunc:rM};function Kx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;_e([a,s],"depthwiseConv2DNative");let c=v.computeStrides(a.shape),h=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,_=g.left,b=g.top,w=p.outChannels/p.inChannels,x=new $t(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M<p.batchSize;++M){let D=M*c[0],L=M*x.strides[0];for(let W=0;W<p.outHeight;++W){let U=L+W*x.strides[1],H=W*p.strideHeight-_;for(let X=0;X<m;++X){let G=H+X*A;if(G<0||G>=p.inHeight)continue;let ee=X*h[0],Y=D+G*c[1];for(let ae=0;ae<p.outWidth;++ae){let te=U+ae*x.strides[2],ie=ae*p.strideWidth-b;for(let Q=0;Q<f;++Q){let he=ie+Q*y;if(he<0||he>=p.inWidth)continue;let oe=ee+Q*h[1],fe=Y+he*p.inChannels,pe=te,ve=oe;for(let Ie=0;Ie<p.inChannels;++Ie){let Fe=N[fe+Ie];for(let Oe=0;Oe<w;++Oe)E[pe+Oe]+=Fe*T[ve+Oe];pe+=w,ve+=w}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var sM={kernelName:ls,backendName:"cpu",kernelFunc:Kx};function iM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;_e([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:m,filterWidth:f}=h,A=new $t(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,_=h.outChannels/h.inChannels,b=n.data.get(a.dataId).values,w=new $t(a.shape,a.dtype,b),x=n.data.get(s.dataId).values,N=new $t(s.shape,s.dtype,x);for(let T=0;T<m;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let D=0;D<f;++D){let L=Math.max(0,Math.ceil((y-D)/p)),W=Math.min(h.outWidth,(h.inWidth+y-D)/p);for(let U=0;U<h.outChannels;++U){let H=Math.trunc(U/_),X=U%_,G=0;for(let ee=0;ee<h.batchSize;++ee)for(let Y=E;Y<M;++Y){let ae=T+Y*d-g;for(let te=L;te<W;++te){let ie=D+te*p-y;G+=w.get(ee,ae,ie,H)*N.get(ee,Y,te,U)}}A.set(G,T,D,H,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var oM={kernelName:xh,backendName:"cpu",kernelFunc:iM};function lM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;_e([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),d=v.computeStrides(s.shape),p=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),m=new $t(p.inShape,"float32"),f=m.values,[A,y,g]=m.strides,_=n.data.get(a.dataId).values,[b,w,x]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:D,filterHeight:L,filterWidth:W,inChannels:U,inHeight:H,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:ae,strideWidth:te}=p,ie=L-1-p.padInfo.top,Q=W-1-p.padInfo.left,he=G/U;for(let oe=0;oe<D;++oe)for(let fe=0;fe<U;++fe)for(let pe=0;pe<H;++pe){let ve=pe-ie,Ie=Math.max(0,Math.ceil(ve/ae)),Fe=Math.min(ee,(L+ve)/ae);for(let Oe=0;Oe<X;++Oe){let Me=Oe-Q,Qe=Math.max(0,Math.ceil(Me/te)),et=Math.min(Y,(W+Me)/te),st=0;for(let Xe=Ie;Xe<Fe;++Xe){let ht=Xe*ae-ve;for(let We=Qe;We<et;++We){let dn=We*te-Me,xt=b*oe+w*Xe+x*We,Wn=T*(L-1-ht)+E*(W-1-dn)+M*fe;for(let Kt=0;Kt<he;++Kt){let pn=fe*he+Kt,Bn=_[xt+pn],Nn=N[Wn+Kt];st+=Bn*Nn}}}f[A*oe+y*pe+g*Oe+fe]=st}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var uM={kernelName:wh,backendName:"cpu",kernelFunc:lM};function cM(e){let{inputs:t,backend:n}=e,{x:r}=t,a=v.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Le([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var hM={kernelName:_h,backendName:"cpu",kernelFunc:cM},dM={kernelName:au,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:b,strideWidth:w,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),L=M.length,W=v.getArrayFromDType(r.dtype,D);for(let U=0;U<p;++U)for(let H=0;H<y;++H){let X=H*b-_.top;for(let G=0;G<g;++G){let ee=G*w-_.left;for(let Y=0;Y<A;++Y){let ae=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<x;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let he=0;he<N;++he){let oe=ee+he*E;if(oe>=0&&oe<f){let fe=v.locToIndex([U,Q,oe,Y],c,v.computeStrides(r.shape)),pe=v.locToIndex([ie,he,Y],d,v.computeStrides(a.shape)),ve=u[fe]+h[pe];ve>ae&&(ae=ve)}}}let te=v.locToIndex([U,H,G,Y],L,v.computeStrides(M));W[te]=ae}}}return{dataId:l.write(v.toTypedArray(W,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},pM={kernelName:vh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${vh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L<d;++L)for(let W=0;W<A;++W){let U=W*_-g.top;for(let H=0;H<y;++H){let X=H*b-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,ae=0;for(let te=0;te<w;++te){let ie=U+te*N;if(ie>=0&&ie<p)for(let Q=0;Q<x;++Q){let he=X+Q*T;if(he>=0&&he<m){let oe=c[L][ie][he][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=te,ae=Q)}}}D[Y][ae][G]+=M[L][W][H][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},fM={kernelName:bh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:b,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${bh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L<d;++L)for(let W=0;W<A;++W){let U=W*_-g.top;for(let H=0;H<y;++H){let X=H*b-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=U<0?0:U,ae=X<0?0:X;for(let te=0;te<w;++te){let ie=U+te*N;if(ie>=0&&ie<p)for(let Q=0;Q<x;++Q){let he=X+Q*T;if(he>=0&&he<m){let oe=c[L][ie][he][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=ie,ae=he)}}}D[L][Y][ae][G]+=M[L][W][H][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function mM(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var AM={kernelName:kh,backendName:"cpu",kernelFunc:mM},yM=Ct((e,t)=>e===t?1:0),Zx=Ht(to,yM,null,"bool"),gM={kernelName:to,backendName:"cpu",kernelFunc:Zx},xM=C.ERF_P,wM=C.ERF_A1,_M=C.ERF_A2,bM=C.ERF_A3,vM=C.ERF_A4,kM=C.ERF_A5,IM=at(eo,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+xM*n);return t*(1-((((kM*r+vM)*r+bM)*r+_M)*r+wM)*r*Math.exp(-n*n))}),NM={kernelName:eo,backendName:"cpu",kernelFunc:IM};function Ld(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),At({inputs:{x:a},backend:n,attrs:{shape:o}})}var SM={kernelName:no,backendName:"cpu",kernelFunc:Ld},TM=Ct((e,t)=>e/t),dm=Ht(us,TM),pm={kernelName:us,backendName:"cpu",kernelFunc:dm};function Yx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let y=oi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=oi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),_=Mn({inputs:{real:y,imag:g},backend:n}),{real:b,imag:w}=EM(_,t,n),x=C.mergeRealAndImagArrays(b,w);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(x,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(_)}let p=n.makeTensorInfo(u,"float32",h),m=n.makeTensorInfo(u,"float32",d),f=Mn({inputs:{real:p,imag:m},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}function EM(e,t,n){let r=v.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(CM(r)){let o=fm(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",v.createScalarValue(r,"float32")),d=Dr({inputs:{x:h},backend:n}),p=pm.kernelFunc({inputs:{a:u,b:h},backend:n}),m=pm.kernelFunc({inputs:{a:c,b:d},backend:n}),f=n.data.get(p.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=RM(o,r,t);return C.splitRealAndImagArrays(l)}}function CM(e){return(e&e-1)==0}function fm(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Mn({inputs:{real:h,imag:d},backend:a}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=a.makeTensorInfo(y,"float32",f),_=a.makeTensorInfo(y,"float32",A),b=Mn({inputs:{real:g,imag:_},backend:a}),w=fm(l,u,i,r,a),x=w.real,N=w.imag,T=[x.length],E=a.makeTensorInfo(T,"float32",x),M=a.makeTensorInfo(T,"float32",N),D=Mn({inputs:{real:E,imag:M},backend:a}),L=fm(f,A,i,r,a),W=L.real,U=L.imag,H=[W.length],X=a.makeTensorInfo(H,"float32",W),G=a.makeTensorInfo(H,"float32",U),ee=Mn({inputs:{real:X,imag:G},backend:a}),Y=C.exponents(n,r),ae=[Y.real.length],te=a.makeTensorInfo(ae,"float32",Y.real),ie=a.makeTensorInfo(ae,"float32",Y.imag),Q=Mn({inputs:{real:te,imag:ie},backend:a}),he=lm({inputs:{a:Q,b:ee},backend:a}),oe=ju({inputs:{a:D,b:he},backend:a}),fe=um({inputs:{a:D,b:he},backend:a}),pe=ii({inputs:{input:oe},backend:a}),ve=ii({inputs:{input:fe},backend:a}),Ie=pl({inputs:{input:oe},backend:a}),Fe=pl({inputs:{input:fe},backend:a}),Oe=fl({inputs:[pe,ve],backend:a,attrs:{axis:0}}),Me=fl({inputs:[Ie,Fe],backend:a,attrs:{axis:0}}),Qe=a.data.get(Oe.dataId).values,et=a.data.get(Me.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(G),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(te),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(fe),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(Ie),a.disposeIntermediateTensorInfo(ve),a.disposeIntermediateTensorInfo(Fe),a.disposeIntermediateTensorInfo(Oe),a.disposeIntermediateTensorInfo(Me),{real:Qe,imag:et}}function RM(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(r,s,i,a)}return r}function FM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=At({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Yx(o,!1,n),u=At({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var MM={kernelName:Ih,backendName:"cpu",kernelFunc:FM};function mm(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(r));return $M(o,a,i),t.makeTensorInfo(r,i,o)}var OM={kernelName:su,backendName:"cpu",kernelFunc:mm};function $M(e,t,n){e.fill(t)}var DM={kernelName:ao,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let m=p*(l*u);for(let f=0;f<l;f++){let A=f*u;for(let y=0;y<u;y++){let g=[i,p,f,y][2],_=Math.round(l-g),b=d+m+A+y,w=c[b];if(_>=0&&_<l){let x=_*u,N=d+m+x+y;w=c[N]}s[b]=w}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},zM=Ct((e,t)=>Math.floor(e/t)),PM=Ht(ds,zM,null,"int32"),LM={kernelName:ds,backendName:"cpu",kernelFunc:PM};function WM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Xx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=ju({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=cm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var BM={kernelName:js,backendName:"cpu",kernelFunc:WM};function VM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Kx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=ju({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=cm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var UM={kernelName:Gs,backendName:"cpu",kernelFunc:VM};function HM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Le([u,c],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f<u;f++){let A=[],y=0;for(let g=0;g<o;g++){let _=p[f*o+g];y+=_*h[g],A.push(_)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<c;g++)d.values[f*c+g]=m[y*c+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var jM={kernelName:io,backendName:"cpu",kernelFunc:HM};function GM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;_e([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=v.sizeFromShape(s.shape),c=v.parseAxisParam(i,a.shape)[0],h=C.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=At({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=At({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),m=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],f=n.bufferSync(p),A=n.bufferSync(d),y=wx(A,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var qM={kernelName:so,backendName:"cpu",kernelFunc:GM},XM=Ct((e,t)=>e>=t?1:0),KM=Ht(fs,XM,null,"bool"),ZM={kernelName:fs,backendName:"cpu",kernelFunc:KM};function YM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=At({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Yx(o,!0,n),u=At({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var JM={kernelName:Nh,backendName:"cpu",kernelFunc:YM},QM=at(lo,e=>Number.isFinite(e)?1:0,"bool"),e$={kernelName:lo,backendName:"cpu",kernelFunc:QM},t$=at(uo,e=>Math.abs(e)===Infinity?1:0,"bool"),n$={kernelName:uo,backendName:"cpu",kernelFunc:t$},r$=at(co,e=>Number.isNaN(e)?1:0,"bool"),a$={kernelName:co,backendName:"cpu",kernelFunc:r$},s$=Ct((e,t)=>e<=t?1:0),i$=Ht(po,s$,null,"bool"),o$={kernelName:po,backendName:"cpu",kernelFunc:i$};function l$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=vx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var u$={kernelName:Th,backendName:"cpu",kernelFunc:l$},c$=at(fo,e=>Math.log1p(e)),h$={kernelName:fo,backendName:"cpu",kernelFunc:c$},d$=Ct((e,t)=>e&&t),p$=Ht(mo,d$,null,"bool"),f$={kernelName:mo,backendName:"cpu",kernelFunc:p$},m$=at(iu,e=>e?0:1,"bool"),A$={kernelName:iu,backendName:"cpu",kernelFunc:m$},y$=Ct((e,t)=>e||t),g$=Ht(ou,y$,null,"bool"),x$={kernelName:ou,backendName:"cpu",kernelFunc:g$};function w$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,c),_=0;for(;y<=g;y++){let b=h[y];_+=b*b}return _}for(let f=0;f<d;f++){let A=m(f),y=h[f]*Math.pow(i+o*A,-l);p[f]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var _$={kernelName:lu,backendName:"cpu",kernelFunc:w$};function b$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;_e(i,"LRNGrad");let h=v.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,m=n.data.get(a.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let _=g%d,b=g-_+Math.max(0,_-o),w=g-_+Math.min(d,_+o+1),x=0;for(let N=b;N<w;N++)x+=Math.pow(m[N],2);x=u*x+l;for(let N=b;N<w;N++){let T=-2*u*c*m[N]*f[g]/x;g===N&&(T+=Math.pow(x,-c)),T*=p[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var v$={kernelName:Eh,backendName:"cpu",kernelFunc:b$};function Jx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=v.parseAxisParam(s,l),h=c,d=C.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];p=sm(p,l,a.dtype,d,b),h=C.getInnerMostAxes(h.length,u),l=b}_e(a,"max"),C.assertAxesAreInnerMostDims("max",h,u);let[m,f]=C.computeOutAndReduceShapes(l,h),A=v.sizeFromShape(f),y=Ix(p,A,m,a.dtype),g=o.write(y,m,a.dtype),_=m;return i&&(_=C.expandShapeToKeepDim(m,c)),{dataId:g,shape:_,dtype:a.dtype}}var k$={kernelName:gs,backendName:"cpu",kernelFunc:Jx};function I$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Dr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=hm(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var N$={kernelName:ws,backendName:"cpu",kernelFunc:I$};function S$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;_e(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=qx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var T$={kernelName:uu,backendName:"cpu",kernelFunc:S$};function E$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;_e([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=mF(h,c),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,_=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,x=_-1-c.padInfo.front,N=w-1-c.padInfo.left,T=b-1-c.padInfo.top,E=Le(s.shape,"float32"),M=n.bufferSync(a);for(let D=0;D<c.batchSize;++D)for(let L=0;L<c.inChannels;++L)for(let W=0;W<c.inDepth;++W)for(let U=0;U<c.inHeight;++U)for(let H=0;H<c.inWidth;++H){let X=W-x,G=U-T,ee=H-N,Y=0;for(let ae=0;ae<_;ae+=A){let te=(X+ae)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let ie=0;ie<b;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let he=0;he<w;he+=g){let oe=(ee+he)/f;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;let fe=_*b*w-1-d.get(D,te,Q,oe,L),pe=ae*b*w+ie*w+he,ve=fe===pe?1:0;ve!==0&&(Y+=M.get(D,te,Q,oe,L)*ve)}}}E.set(Y,D,W,U,H,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var C$={kernelName:Rh,backendName:"cpu",kernelFunc:E$};function R$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,m=Le(d.outShape,o.dtype,Gx(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,_=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,x=_-1-d.padInfo.top,N=Le(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Le(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let D=0;D<d.inChannels;++D)for(let L=0;L<d.inHeight;++L)for(let W=0;W<d.inWidth;++W){let U=L-x,H=W-w,X=0;for(let G=0;G<_;G+=y){let ee=(U+G)/f;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<b;Y+=g){let ae=(H+Y)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let te=_*b-1-m.get(M,ee,ae,D),ie=G*b+Y,Q=te===ie?1:0;Q!==0&&(X+=E.get(M,ee,ae,D)*Q)}}N.set(X,M,L,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var F$={kernelName:Ch,backendName:"cpu",kernelFunc:R$};function M$(e,t,n,r,a){let s=v.computeStrides(t),i=hm(e,t,n,s,a,"max"),o=Gx(e,t,n,a,!0,r);return[i.values,o.values]}var $$={kernelName:Fh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=M$(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),m=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function Wd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Fa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Dr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=ir({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=C.computeOutAndReduceShapes(d.shape,h),f=C.upcastType(d.dtype,"int32"),A=Pd(n,p,f),y=v.sizeFromShape(m),g=n.data.get(A.dataId).values,_=n.data.get(d.dataId).values;for(let b=0;b<g.length;++b){let w=b*y,x=0;for(let N=0;N<y;++N)x+=_[w+N];g[b]=x}if(i){let b=C.expandShapeToKeepDim(A.shape,u),w=A;A=At({inputs:{x:A},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var O$={kernelName:Ps,backendName:"cpu",kernelFunc:Wd};function D$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=v.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=Fa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=dm({inputs:{a:d,b:h},backend:n});c.push(p);let m=Wd({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var z$={kernelName:_s,backendName:"cpu",kernelFunc:D$};function P$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,_=f[g];for(let b=0;b<p;++b){let w=f[g+b];w<_&&(_=w)}m[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=At({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var L$={kernelName:bs,backendName:"cpu",kernelFunc:P$};function W$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;_e(a,"mirrorPad");let o=s.map((g,_)=>g[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),u=s.map((g,_)=>g[0]+a.shape[_]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let g=0;g<m;g++){let _=v.indexToLoc(g,f,A);for(let w=0;w<f;w++)_[w]<l[w]?_[w]=l[w]*2-_[w]-c:_[w]>=u[w]&&(_[w]=(u[w]-1)*2-_[w]+c);_=_.map((w,x)=>w-l[x]);let b=v.locToIndex(_,d,p);y[g]=h[b]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var B$={kernelName:cu,backendName:"cpu",kernelFunc:W$},V$=Ct((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),U$=Ht(Ao,V$),H$={kernelName:Ao,backendName:"cpu",kernelFunc:U$},j$=Pi(b8());function Qx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Jx({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=At({inputs:{x:u},backend:n,attrs:{shape:c}}),d=um({inputs:{a,b:h},backend:n}),p=Px({inputs:{x:d},backend:n}),m=Wd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=At({inputs:{x:m},backend:n,attrs:{shape:c}}),A=dm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var G$={kernelName:Ls,backendName:"cpu",kernelFunc:Qx};function q$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:Qx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let m=0;m<u;++m){let f=m*c,A=new Float32Array(c-1);A[0]=h[f];for(let _=1;_<A.length;++_)A[_]=A[_-1]+h[f+_];let y=j$.alea(i.toString()),g=m*s;for(let _=0;_<s;++_){let b=y();p[g+_]=A.length;for(let w=0;w<A.length;w++)if(b<A[w]){p[g+_]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var X$={kernelName:Mh,backendName:"cpu",kernelFunc:q$},K$=Or.nonMaxSuppressionV3Impl;function Z$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;_e(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=K$(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Y$={kernelName:xo,backendName:"cpu",kernelFunc:Z$},J$=Or.nonMaxSuppressionV4Impl;function Q$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;_e(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=J$(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var eO={kernelName:wo,backendName:"cpu",kernelFunc:Q$},tO=Or.nonMaxSuppressionV5Impl;function nO(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;_e(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=tO(c,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var rO={kernelName:_o,backendName:"cpu",kernelFunc:nO};function aO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;_e(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var sO={kernelName:Is,backendName:"cpu",kernelFunc:aO};function Bd(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ii({inputs:{input:r},backend:n}),s=Bd({inputs:{x:a},backend:n}),i=pl({inputs:{input:r},backend:n}),o=Bd({inputs:{x:i},backend:n}),l=Mn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return mm({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var iO={kernelName:Lo,backendName:"cpu",kernelFunc:Bd};function ew(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ii({inputs:{input:r},backend:n}),s=ew({inputs:{x:a},backend:n}),i=pl({inputs:{input:r},backend:n}),o=Bd({inputs:{x:i},backend:n}),l=Mn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return mm({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var oO={kernelName:bo,backendName:"cpu",kernelFunc:ew};function tw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Ld({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Ld({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var lO={kernelName:vo,backendName:"cpu",kernelFunc:tw};function uO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<c;y++){let g=v.indexToLoc(y,h,d).map((b,w)=>b+l[w]),_=v.locToIndex(g,m,f);A[_]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var nw={kernelName:Ns,backendName:"cpu",kernelFunc:uO},cO=Ct((e,t)=>Math.pow(e,t)),hO=Ht(Ss,cO),dO={kernelName:Ss,backendName:"cpu",kernelFunc:hO};function pO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=im(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var fO={kernelName:hu,backendName:"cpu",kernelFunc:pO},mO=at(Io,e=>1/e),AO={kernelName:Io,backendName:"cpu",kernelFunc:mO};function yO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,m])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,b=y[0]/g[0],w=y[1]/g[1];for(let x=0;x<h;x++)for(let N=0;N<u;N++){let T;i?T=b*(N+.5)-.5:T=b*N;let E=Math.max(0,Math.floor(T)),M=T-E,D=Math.min(d-1,Math.ceil(T)),L=x*l[0]+E*l[1],W=x*l[0]+D*l[1];for(let U=0;U<c;U++){let H;i?H=w*(U+.5)-.5:H=w*U;let X=Math.max(0,Math.floor(H)),G=H-X,ee=Math.min(p-1,Math.ceil(H)),Y=L+X*l[2],ae=W+X*l[2],te=L+ee*l[2],ie=W+ee*l[2];for(let Q=0;Q<m;Q++){let he=f[Y+Q],oe=f[ae+Q],fe=f[te+Q],pe=f[ie+Q],ve=he+(fe-he)*G,Ie=oe+(pe-oe)*G,Fe=ve+(Ie-ve)*M;A[_++]=Fe}}}return n.makeTensorInfo([h,u,c,m],"float32",A)}var gO={kernelName:Cs,backendName:"cpu",kernelFunc:yO};function xO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;_e([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,m=new Float32Array(l*u*c*h),f=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],_=n.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let x=w*o[0];for(let N=0;N<d;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),D=x+E*o[1],L=x+M*o[1],W=T-E,U=1-W;for(let H=0;H<p;H++){let X=H*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),c-1),Y=X-G,ae=1-Y,te=D+G*o[2],ie=D+ee*o[2],Q=L+G*o[2],he=L+ee*o[2],oe=U*ae,fe=U*Y,pe=W*ae,ve=W*Y;for(let Ie=0;Ie<h;Ie++){let Fe=_[b++];m[te+Ie]+=Fe*oe,m[ie+Ie]+=Fe*fe,m[Q+Ie]+=Fe*pe,m[he+Ie]+=Fe*ve}}}}return n.makeTensorInfo([l,c,u,h],"float32",m)}var wO={kernelName:Dh,backendName:"cpu",kernelFunc:xO};function _O(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*m),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=y[0]/g[0],b=y[1]/g[1],w=0;for(let x=0;x<h;x++){let N=x*l[0];for(let T=0;T<u;T++){let E=i?_*(T+.5):_*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let D=N+M*l[1];for(let L=0;L<c;L++){let W=i?b*(L+.5):b*L,U=Math.min(p-1,s?Math.round(W):Math.floor(W));i&&(U=Math.max(0,U));let H=D+U*l[2];for(let X=0;X<m;X++){let G=f[H+X];A[w++]=G}}}}return n.makeTensorInfo([h,u,c,m],a.dtype,A)}var bO={kernelName:du,backendName:"cpu",kernelFunc:_O};function vO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;_e([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,m]=s.shape,f=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?c-1:c,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],_=y[0]/g[0],b=y[1]/g[1],w=1/_,x=1/b,N=Math.ceil(w)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let D=0;D<c;D++){let L=M+D*o[1],W=Math.floor(D*w),U=Math.floor(W-N/2);for(let H=0;H<h;H++){let X=L+H*o[2],G=Math.floor(H*x),ee=Math.floor(G-T/2);for(let Y=0;Y<d;Y++){let ae=0;for(let te=0;te<N;te++){let ie=te+U;if(ie<0||ie>=p)continue;let Q=M+ie*l[1],he=ie*_,oe=Math.min(c-1,i?Math.round(he):Math.floor(he));if(D===oe)for(let fe=0;fe<T;fe++){let pe=fe+ee;if(pe<0||pe>=m)continue;let ve=Q+pe*l[2],Ie=pe*b,Fe=Math.min(h-1,i?Math.round(Ie):Math.floor(Ie));H===Fe&&(ae+=A[ve+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var kO={kernelName:Oh,backendName:"cpu",kernelFunc:vO};function IO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Dr({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var NO={kernelName:Fs,backendName:"cpu",kernelFunc:IO},SO={kernelName:Wo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,m]=C.getImageCenter(i,c,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_<u;_++){let b=_*h*c*d;for(let w=0;w<c;w++){let x=w*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[u,w,N,E],D=M[2],L=M[1],W=(D-p)*y-(L-m)*A,U=(D-p)*A+(L-m)*y;W=Math.round(W+p),U=Math.round(U+m);let H=s;if(typeof s!="number"&&(E===3?H=f:H=s[E]),W>=0&&W<h&&U>=0&&U<c){let G=U*(h*d),ee=W*d,Y=b+G+ee+E;H=g[Y]}let X=b+x+T+E;l[X]=H}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},TO=at(Ms,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),EO={kernelName:Ms,backendName:"cpu",kernelFunc:TO};function rw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Le(n,t.dtype);let p=Le(c,t.dtype);p.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=h[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<a;y++)u?p.values[A*a+y]+=d[m*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[m*a+y]}return p}function CO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),m=n.bufferSync(s),f=rw(p,m,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var RO={kernelName:So,backendName:"cpu",kernelFunc:CO};function FO(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;_e([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=tr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<p;f++)o[m]===1?h[d++]=l[m]:h[d++]=u[m];return n.makeTensorInfo(a.shape,c,h)}var MO={kernelName:To,backendName:"cpu",kernelFunc:FO},$O=C.SELU_SCALEALPHA,OO=C.SELU_SCALE,DO=at(Eo,e=>e>=0?OO*e:$O*(Math.exp(e)-1)),zO={kernelName:Eo,backendName:"cpu",kernelFunc:DO},PO=at(Ds,e=>1/(1+Math.exp(-e))),LO={kernelName:Ds,backendName:"cpu",kernelFunc:PO},WO=at(Fo,e=>e<0?-1:e>0?1:0),BO={kernelName:Fo,backendName:"cpu",kernelFunc:WO},VO=at(Os,e=>Math.sin(e)),UO={kernelName:Os,backendName:"cpu",kernelFunc:VO},HO=at(Ro,e=>Math.sinh(e)),jO={kernelName:Ro,backendName:"cpu",kernelFunc:HO},GO=11920928955078125e-23,aw=Math.log(GO)+2,qO=at(Mo,e=>{let t=e>-aw,n=e<aw,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),XO={kernelName:Mo,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_e([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=nw.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(c.length,s.length,!1),d=C.getReshapedPermuted(u.shape,s,o,!1),p=At({inputs:{x:u},backend:n,attrs:{shape:c}}),m=ir({inputs:{x:p},backend:n,attrs:{perm:h}}),f=At({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}var ZO={kernelName:pu,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=C.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=rw(m,f,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var JO={kernelName:zh,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=oi({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var eD={kernelName:$o,backendName:"cpu",kernelFunc:QO},tD=at(zs,e=>Math.sqrt(e)),nD={kernelName:zs,backendName:"cpu",kernelFunc:tD},rD={kernelName:fu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},aD=at(_a,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),sD={kernelName:_a,backendName:"cpu",kernelFunc:aD};function iD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=At({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=oi({inputs:{x:_},backend:n,attrs:{begin:m,size:A}});b=At({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(_),N=Mx(g,x,f,m);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=At({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),w}var oD={kernelName:Oo,backendName:"cpu",kernelFunc:iD},lD=at(Do,e=>Math.tan(e)),uD={kernelName:Do,backendName:"cpu",kernelFunc:lD},cD=at(Vs,e=>Math.tanh(e)),hD={kernelName:Vs,backendName:"cpu",kernelFunc:cD};function dD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=Ox(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var pD={kernelName:wa,backendName:"cpu",kernelFunc:dD};function fD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=Dx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var mD={kernelName:zo,backendName:"cpu",kernelFunc:fD};function AD(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;_e(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=zx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var yD={kernelName:Ph,backendName:"cpu",kernelFunc:AD};function gD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let m=oi({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=At({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var xD={kernelName:Po,backendName:"cpu",kernelFunc:gD};function wD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;_e(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let m=0;m<h;++m){let f=Ld({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,c.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=Zx({inputs:{a:A,b:d},backend:n}),g=Fa({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),_=lm({inputs:{a:g,b:a},backend:n}),b=Wd({inputs:{x:_},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(A),c.push(y),c.push(g),c.push(_),c.push(b)}let p=tw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var _D={kernelName:mu,backendName:"cpu",kernelFunc:wD},bD=[UR,XC,jR,qR,eR,KR,YR,QR,tF,rF,sF,oF,uF,dF,fF,yF,xF,_F,vF,BR,IF,SF,EF,JC,nR,RF,KC,MF,OF,PF,WF,DF,HF,GF,VF,XF,ZF,JF,eM,nM,aM,sM,oM,uM,hM,dM,fM,pM,pm,$R,AM,gM,NM,rR,SM,sR,MM,OM,DM,oR,LM,BM,UM,jM,qM,uR,ZM,ZC,JM,$F,e$,n$,a$,OR,hR,o$,u$,pR,h$,f$,A$,x$,_$,v$,mR,N$,T$,C$,F$,$$,k$,z$,L$,yR,B$,H$,X$,xR,_R,Y$,eO,rO,vR,sO,oO,lO,nw,dO,zR,NR,fO,YC,AO,PR,LR,WR,gO,wO,bO,kO,NO,SO,EO,TR,RO,MO,zO,LO,BO,UO,jO,ER,G$,XO,ZO,JO,eD,nD,rD,RR,sD,oD,MR,O$,uD,hD,pD,mD,kR,yD,xD,_D,iO];for(let e of bD)qs(e);var sw={};De(sw,{assertNotComplex:()=>ml,bindCanvasToFramebuffer:()=>ID,bindColorTextureToFramebuffer:()=>Ud,bindTextureToProgramUniformSampler:()=>ww,bindTextureUnit:()=>yw,bindVertexBufferToProgramAttribute:()=>Am,callAndCheck:()=>xe,canBeRepresented:()=>iw,createFragmentShader:()=>uw,createFramebuffer:()=>Aw,createProgram:()=>cw,createStaticIndexBuffer:()=>pw,createStaticVertexBuffer:()=>dw,createTexture:()=>fw,createVertexShader:()=>lw,getBatchDim:()=>li,getExtensionOrThrow:()=>Gu,getFramebufferErrorMessage:()=>_w,getMaxTexturesInShader:()=>kw,getNumChannels:()=>vD,getProgramUniformLocation:()=>xw,getProgramUniformLocationOrThrow:()=>gw,getRowsCols:()=>ui,getShapeAs3D:()=>Hd,getTextureShapeFromLogicalShape:()=>bw,getWebGLDisjointQueryTimerVersion:()=>Iw,getWebGLErrorMessage:()=>ow,getWebGLMaxTextureSize:()=>vw,hasExtension:()=>qn,isCapableOfRenderingToFloatTexture:()=>Nw,isDownloadFloatTextureEnabled:()=>Sw,isReshapeFree:()=>Xu,isWebGLFenceEnabled:()=>Tw,isWebGLVersionEnabled:()=>gm,linkProgram:()=>hw,resetMaxTextureSize:()=>ND,resetMaxTexturesInShader:()=>SD,unbindColorTextureFromFramebuffer:()=>ym,unbindTextureUnit:()=>kD,validateFramebuffer:()=>qu,validateProgram:()=>Vd,validateTextureSize:()=>mw});var ci={},xm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function jd(e,t){ci[e]=t}function zr(e){if(!(e in ci)){let n=TD(e);if(n!==null)ci[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ci[e];return t.isContextLost()?(delete ci[e],zr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ci[e])}function ED(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function TD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=ED(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ci[e]},!1),e===1?t.getContext("webgl",xm)||t.getContext("experimental-webgl",xm):t.getContext("webgl2",xm)}var Ku;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Ku||(Ku={}));var Xn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Xn||(Xn={}));var en;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(en||(en={}));function Zu(e,t){return[t,e]}function CD(e,t){return e*t}function Yu(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Al(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function RD(e,t){let[n,r]=Al(e,t);return n*r*4}function wm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&FD(e),n}function FD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+ow(e,t))}var MD=596e-10,$D=65504;function iw(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||MD<Math.abs(e)&&Math.abs(e)<$D)}function ow(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Gu(e,t){return na(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function lw(e,t){let n=na(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function uw(e,t){let n=na(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw OD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var DD=/ERROR: [0-9]+:([0-9]+):/g;function OD(e,t){let n=DD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function cw(e){return na(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function hw(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Vd(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function dw(e,t){let n=na(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function pw(e,t){let n=na(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function vD(){return J().getNumber("WEBGL_VERSION")===2?1:4}function fw(e){return na(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function mw(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Aw(e){return na(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Am(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function yw(e,t,n){Ew(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function kD(e,t){Ew(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function gw(e,t,n){return na(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function xw(e,t,n){return e.getUniformLocation(t,n)}function ww(e,t,n,r){xe(e,()=>yw(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function ID(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Ud(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ym(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function qu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+_w(e,t))}function _w(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function na(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function Ew(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function li(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ui(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Hd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[li(e),...ui(e)]),t}function bw(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=li(e),s=2,i=2;return e.length&&([s,i]=ui(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function Gd(e){return e%2==0}function Xu(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Gd(n)&&Gd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Gd(e[0])&&Gd(t[0])}var qd,Xd;function vw(e){if(qd==null){let t=zr(e);qd=t.getParameter(t.MAX_TEXTURE_SIZE)}return qd}function ND(){qd=null}function SD(){Xd=null}function kw(e){if(Xd==null){let t=zr(e);Xd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Xd)}function Iw(e){if(e===0)return 0;let t,n=zr(e);return qn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:qn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function qn(e,t){return e.getExtension(t)!=null}function gm(e){try{if(zr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Nw(e){if(e===0)return!1;let t=zr(e);if(e===1){if(!qn(t,"OES_texture_float"))return!1}else if(!qn(t,"EXT_color_buffer_float"))return!1;return _m(t)}function Sw(e){if(e===0)return!1;let t=zr(e);if(e===1){if(!qn(t,"OES_texture_float")||!qn(t,"WEBGL_color_buffer_float"))return!1}else{if(qn(t,"EXT_color_buffer_float"))return _m(t);let n="EXT_color_buffer_half_float";if(qn(t,n)){let r=t.getExtension(n);return zD(t,r)}return!1}return _m(t)}function _m(e){let t=wm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function zD(e,t){let n=wm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Tw(e){return e!==2?!1:zr(e).fenceSync!=null}function ml(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Re=J();Re.registerFlag("HAS_WEBGL",()=>Re.getNumber("WEBGL_VERSION")>0);Re.registerFlag("WEBGL_VERSION",()=>gm(2)?2:gm(1)?1:0);Re.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Re.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Re.get("WEBGL_VERSION")===2);Re.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Re.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Re.registerFlag("WEBGL_PACK",()=>Re.getBool("HAS_WEBGL"));Re.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_CLIP",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Re.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_REDUCE",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_LAZILY_UNPACK",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_CONV_IM2COL",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>vw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>kw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Re.getNumber("WEBGL_VERSION");return e===0?0:Iw(e)});Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Re.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!jh.isMobile());Re.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Nw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Re.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Re.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Re.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Sw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Tw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Re.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Re.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Re.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function un(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function hi(e,t,n="index"){let r=v.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bm(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Cw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,PD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Ku.DENSE;let t=Yu(e),n=un();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},LD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Ku.DENSE;let t=Yu(e),n=un();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},WD=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Xn.DOWNLOAD;let t=un();this.outputShape=e,this.userCode=`
|
|
${Cw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},BD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Xn.DOWNLOAD;let t=un();this.outputShape=e,this.userCode=`
|
|
${Cw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},VD=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=un(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${bm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},UD=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=un(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${bm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${r.output} = ${o};
|
|
}
|
|
`}},Rw={};De(Rw,{bindVertexProgramAttributeStreams:()=>Ww,createBufferFromOutputTexture:()=>Uw,createFloat16MatrixTexture:()=>Dw,createFloat16PackedMatrixTexture:()=>Lw,createFloat32MatrixTexture:()=>Ow,createIndexBuffer:()=>$w,createPackedMatrixTexture:()=>Pw,createUnsignedBytesMatrixTexture:()=>zw,createVertexBuffer:()=>Mw,createVertexShader:()=>Fw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>jw,downloadFloat32MatrixFromBuffer:()=>Hw,downloadMatrixFromPackedOutputTexture:()=>qw,downloadPackedMatrixFromBuffer:()=>Gw,getInternalFormatForFloat16MatrixTexture:()=>km,getInternalFormatForFloat16PackedMatrixTexture:()=>Sm,getInternalFormatForFloat32MatrixTexture:()=>vm,getInternalFormatForPackedMatrixTexture:()=>Nm,getInternalFormatForUnsignedBytesMatrixTexture:()=>Im,uploadDenseMatrixToTexture:()=>Bw,uploadPixelDataToTexture:()=>Vw});function Fw(e){let t=un(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return lw(e,n)}function Mw(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return dw(e,t)}function $w(e){let t=new Uint16Array([0,1,2,2,1,3]);return pw(e,t)}function Ju(e,t,n,r,a,s){mw(t,n);let i=fw(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function vm(e){return e.internalFormatFloat}function Ow(e,t,n,r){let[a,s]=Zu(t,n);return Ju(e,a,s,vm(r),r.textureFormatFloat,e.FLOAT)}function km(e){return e.internalFormatHalfFloat}function Dw(e,t,n,r){let[a,s]=Zu(t,n);return Ju(e,a,s,km(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function Im(e){return e.downloadTextureFormat}function zw(e,t,n,r){let[a,s]=Zu(t,n);return Ju(e,a,s,Im(r),e.RGBA,e.UNSIGNED_BYTE)}function Nm(e){return e.internalFormatPackedFloat}function Pw(e,t,n,r){let[a,s]=Al(t,n);return Ju(e,a,s,Nm(r),e.RGBA,e.FLOAT)}function Sm(e){return e.internalFormatPackedHalfFloat}function Lw(e,t,n,r){let[a,s]=Al(t,n);return Ju(e,a,s,Sm(r),e.RGBA,r.textureTypeHalfFloat)}function Ww(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Am(e,t,"clipSpacePos",n,3,s,r)&&Am(e,t,"uv",n,2,s,a)}function Bw(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Vw(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Uw(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Hw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function jw(e,t,n,r){let[a,s]=Zu(t,n),i=4,o=new Uint8Array(CD(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Gw(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(RD(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function qw(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Kd=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,jd(t,e)):this.gl=zr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Gu(this.gl,a),qn(this.gl,s))this.textureHalfFloatExtension=Gu(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),qn(this.gl,r))this.colorBufferHalfFloatExtension=Gu(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",qn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(qn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Mw(this.gl),this.indexBuffer=$w(this.gl),this.framebuffer=Aw(this.gl),this.textureConfig=wm(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Ow(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Dw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),zw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Vw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Bw(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Lw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Pw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ym(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>jw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Gw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Hw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Uw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>qw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=uw(t,e),r=Fw(t),a=cw(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),hw(t,a),this.debug&&Vd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Ww(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Vd(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?gw(this.gl,e,t):xw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),ww(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Al(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Vd(this.gl,this.program),qu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Gu(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=HD(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ud(this.gl,e,this.framebuffer),this.debug&&qu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ud(this.gl,this.outputTexture,this.framebuffer),this.debug&&qu(this.gl)):ym(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Ud(r,e,this.framebuffer),this.debug&&qu(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function HD(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:Xw}=C;function QD(e,t,n,r){let a=[];e.forEach(p=>{let m=v.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
|
|
`),i=e.map(p=>jD(p,t,r)).join(`
|
|
`),o=t.texShape,l=un(),u=XD(l),c,h,d=YD(l);return t.isPacked?(c=GD(t.logicalShape,o),h=ZD(l)):(c=qD(t.logicalShape,o),h=KD(l)),r&&(d+=JD),[d,u,h,s,c,i,n].join(`
|
|
`)}function yl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return ez(e);case 1:return tz(e);case 2:return nz(e);case 3:return rz(e);case 4:return az(e);case 5:return sz(e);case 6:return iz(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Kw(e){switch(e.shapeInfo.logicalShape.length){case 0:return oz(e);case 1:return lz(e);case 2:return uz(e);case 3:return cz(e);default:return hz(e)}}function jD(e,t,n=!1){let r="";n?r+=Kw(e):r+=yl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=dz(e,t):r+=pz(e,t)),r}function GD(e,t){switch(e.length){case 0:return Zw();case 1:return fz(e,t);case 2:return yz(e,t);case 3:return mz(e,t);default:return Az(e,t)}}function qD(e,t){switch(e.length){case 0:return Zw();case 1:return gz(e,t);case 2:return vz(e,t);case 3:return xz(e,t);case 4:return wz(e,t);case 5:return _z(e,t);case 6:return bz(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function XD(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function KD(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function ZD(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function YD(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${kz}
|
|
${Iz}
|
|
${Nz}
|
|
`}var kz=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Iz=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Nz=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,JD=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function Zw(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function fz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function gz(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function mz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function xz(e,t){let n=hi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Az(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function wz(e,t){let n=hi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function _z(e,t){let n=hi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function bz(e,t){let n=hi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function yz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function vz(e,t){return v.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function di(e){return`offset${e}`}function oz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=un();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function ez(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=di(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function lz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=un();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${a[0]}, ${a[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function tz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${gl(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=di(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:a===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function uz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=un();if(a!=null&&v.arraysEqual(t,a))return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function nz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(t,a)){let h=a[0],d=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=v.squeezeShape(t),o=s;if(o.length<t.length){let h=xl(e,o),d=["row","col"];return`
|
|
${yl(h)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${wl(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let l=a[0],u=a[1],c=di(n);return u===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=xl(e,h),m=["b","row","col"];return`
|
|
${Kw(p)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${wl(m,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=un();return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function rz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=v.squeezeShape(t),l=i;if(l.length<t.length){let m=xl(e,l),f=["row","col","depth"];return`
|
|
${yl(m)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${wl(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${s}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=di(n);return`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} + depth + ${p};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function hz(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)h=`int b${m}, `+h,c*=t[n-m-1],d=`b${m} * ${c} + `+d;let p=un();return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${p.texture2D}(${r}, uv);
|
|
}
|
|
`}function az(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=v.squeezeShape(t);if(o.length<t.length){let m=xl(e,o),f=["row","col","depth","depth2"];return`
|
|
${yl(m)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${wl(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${a}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===a&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=di(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function sz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=xl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${yl(f)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${wl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${gl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=di(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function iz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let A=xl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${yl(A)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${wl(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],m=d[1];if(m===c&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=di(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function gl(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function dz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=Xw(e.shapeInfo.logicalShape,t.logicalShape),l=ot(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+u]}`).join(", ");let p="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${r}(${d});
|
|
${p}
|
|
}
|
|
`}function pz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ot(l),c=Xw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(f=>`coords.${p[f+h]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${r}(${m});
|
|
}
|
|
`}function ot(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function xl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function wl(e,t){return t.map(n=>e[n]).join(", ")}function Sz(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=QD(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let m=t.variableNames[p],f=!1;d[m]=e.getUniformLocation(u,m,f),d[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function Yw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Tz(e,t,n,r,a){Yw(t.inShapeInfos,n),Yw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(v.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function Ez(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:Cz,bincountImpl:Jw,bincountReduceImpl:Rz,ceilImpl:Fz,concatImpl:Mz,expImpl:$z,expm1Impl:Oz,floorImpl:Dz,gatherV2Impl:zz,greaterImpl:Pz,lessImpl:Lz,linSpaceImpl:Wz,logImpl:Bz,maxImpl:Vz,maximumImpl:Uz,minimumImpl:Hz,multiplyImpl:jz,negImpl:Gz,prodImpl:qz,rangeImpl:Xz,rsqrtImpl:Kz,simpleAbsImpl:Qw,sliceImpl:Zz,stridedSliceImpl:Yz,subImpl:Jz,tileImpl:Qz,topKImpl:eP,transposeImpl:Tm,uniqueImpl:tP}=tm;function e_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function cn(e,t){return t===1?[e]:e_(e,t)}function nP(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var iP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=cn("rc",t),r=ot(t),a=rP(t,e,n),s=aP(t,e[e.length-1],e[e.length-2],n),i=sP(e,n);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function oP(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function rP(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function aP(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
|
|
int r = ${a[0]};
|
|
int c = ${a[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function sP(e,t){let n=e.length,r=oP(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${r[0]}),
|
|
cEdge ? 0. : getA(${r[1]}),
|
|
rEdge ? 0. : getA(${r[2]}),
|
|
rEdge || cEdge ? 0. : getA(${r[3]})`}var t_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
|
|
${a}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${lP(t)}
|
|
${bm(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function lP(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var uP=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=r_(t,n),a=a_(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=n_(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===en.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===en.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===en.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=r_(n,r),s=a_(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=n_(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function cP(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function n_(e,t,n,r,a){let s=hP(t,r),i;if(a){let[l,u]=Al(e[0],e[1]);i=l*u}else{let[l,u]=Zu(e[0],e[1]);i=l*u}let o=cP(n,s);return i*o}function hP(e,t){switch(e){case en.PACKED_2X2_FLOAT32:return Nm(t);case en.PACKED_2X2_FLOAT16:return Sm(t);case en.UNPACKED_FLOAT32:return vm(t);case en.UNPACKED_FLOAT16:return km(t);case en.PACKED_4X1_UNSIGNED_BYTE:return Im(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function dP(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?en.PACKED_2X2_FLOAT32:en.UNPACKED_FLOAT32:e?en.PACKED_2X2_FLOAT16:en.UNPACKED_FLOAT16}function r_(e,t){if(e===Xn.UPLOAD)return en.PACKED_2X2_FLOAT32;if(e===Xn.RENDER||e==null)return dP(t);if(e===Xn.DOWNLOAD||e===Xn.PIXELS)return en.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function a_(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ma=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ar="if (isnan(x)) return x;",pP="return x;",s_="return abs(x);",fP="return (x >= 0.0) ? x : (exp(x) - 1.0);",mP=Ar+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,AP=Ar+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Zd="return x;",yP="return x;",gP=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,xP=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,wP=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,_l=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},_P=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=cn("rc",t),r=ot(t),a=nP(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},bP=Or.whereImpl,vP=1e-7,kP=1e-4,Em={};function IP(e){return e in Em||(Em[e]={}),Em[e]}var NP=128,SP=600;function TP(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*SP/1024/1024}var bl=class extends Zl{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=zr(J().getNumber("WEBGL_VERSION"));this.binaryCache=IP(J().getNumber("WEBGL_VERSION")),this.gpgpu=new Kd(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new uP(this.gpgpu),this.numMBBeforeWarning=TP(),this.texData=new sh(this,Er())}nextDataId(){return bl.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Xn.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Xn.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new _l(i,Zd):h=new Ma(i,Zd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=C.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new _l(r,Zd):p=new Ma(r,Zd);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...Yu(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];c=C.mergeRealAndImagArrays(m,f)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=v.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Er().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!iw(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=v.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...Yu(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=J().getBool("WEBGL_PACK")&&r===!0,i=s?Hd(t):t,o=s?new BD(i):new WD(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return J().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Er().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=NP){let n=this.getCPUBackend();return!J().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return bP(e.shape,t)}packedUnaryOp(e,t,n){let r=new _l(e.shape,t),a=this.compileAndRun(r,[e],n);return Er().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=Qw(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,s_,e.dtype);let t=new Ma(e.shape,s_),n=this.compileAndRun(t,[e]);return Er().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Er().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new _P(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new iP(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[li(e.shape),...ui(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[li(t),...ui(t)],s=new t_(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Hd(r),i;n?i=new LD(s):i=new PD(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Ku.DENSE){let f=Yu(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(s.shape)===0)return i.values=v.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&v.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!Xu(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=Ez(e,l,u),h=this.getAndSaveBinary(c,()=>Sz(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),Tz(this.gpgpu,h,l,u,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=v.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(be(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?vP:kP}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=bw(n,o),t.texShape=c),a!=null){let h=Hd(n),d,p=c[1],m=c[0],f=a instanceof Uint8Array;o?([p,m]=Al(c[0],c[1]),d=new UD(h,[m,p],f)):d=new VD(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=Xn.PIXELS:this.texData.get(A.dataId).usage=Xn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),_=this.texData.get(g.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=EP(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};bl.nextDataId=0;function EP(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var i_="3.2.0";function o_(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}jh.isBrowser()&&Zo("webgl",()=>new bl,2);var CP={forceHalfFloat:o_},l_=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,vl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Yd=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Qu=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ot(a)} coords = getOutputCoords();
|
|
`,a===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=cn("coords",a);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function $n(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var RP={kernelName:ms,backendName:"webgl",kernelFunc:$n};function $a(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=$n({inputs:{x:r},backend:n}),l=$n({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var FP={kernelName:fh,backendName:"webgl",kernelFunc:$a},u_="return (a < 0.) ? b * a : a;",c_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function MP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Qu(c_,a.shape,i.shape):new vl(u_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var $P={kernelName:As,backendName:"webgl",kernelFunc:MP},h_="return (a < 0.) ? b * a : a;",d_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function OP(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Qu(d_,r.shape,a.shape):new vl(h_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var DP={kernelName:Ts,backendName:"webgl",kernelFunc:OP},p_="if (isnan(x)) return x;",zP=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,PP=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new _l(i.shape,t):c=new Ma(i.shape,e),o.runWebGLProgram(c,[i],l)}}function tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(_=>{let[b,w]=_,x={dataId:b.dataId,dtype:b.dtype,shape:l.shape},N={dataId:w.dataId,dtype:w.dtype,shape:u.shape},T=new vl(e,l.shape,u.shape);return c.runWebGLProgram(T,[x,N],tr(b.dtype,w.dtype))}),g=$a({inputs:{real:A,imag:y},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(y),g}let h=s||tr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,y]=a(l.shape,u.shape,m.values,f.values,h),g=c.makeTensorInfo(y,h),_=c.texData.get(g.dataId);return _.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new Qu(t,l.shape,u.shape,n):p=new vl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function Jd(e,t=!1){if(e==="linear")return t?yP:pP;if(e==="relu")return t?xP:mP;if(e==="elu")return t?gP:fP;if(e==="relu6")return t?wP:AP;if(e==="prelu")return t?d_:h_;if(e==="leakyrelu")return t?c_:u_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var f_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",_="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${_};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${m[0]});
|
|
result += (${p[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},m_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},A_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},y_="return a * b;";function g_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=C.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new A_(m_.REAL,r.shape,a.shape),c=new A_(m_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),m=$a({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=jz(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Qu(y_,r.shape,a.shape):i=new vl(y_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var LP={kernelName:ks,backendName:"webgl",kernelFunc:g_};function WP(e,t,n){let r=[li(e.shape),...ui(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[li(t),...ui(t)],i=new t_(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!Xu(a.shape,l)&&!(c.texture!==null&&Xu(c.shape,l))?WP(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var BP={kernelName:No,backendName:"webgl",kernelFunc:ye},x_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},VP=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function UP(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function pi(e,t,n,r){let a=UP(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new x_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new x_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new VP({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var jP=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=ot(this.rank),a=HP(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function HP(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var GP=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ot(this.rank),a=e_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Qd(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new GP(e.shape,t):new jP(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function qP(e,t,n,r){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=Qd(e,l,r),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=C.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=C.expandShapeToKeepDim(h,i));let m=v.sizeFromShape(d),f=v.sizeFromShape(e.shape)/m,A=ye({inputs:{x:c},attrs:{shape:[f,m]},backend:r}),y=Hh(e.dtype),g=pi(A,y,"sum",r),_=ye({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),u&&r.disposeIntermediateTensorInfo(c),_}function Cm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return qP(a,s,i,n)}var XP={kernelName:Ps,backendName:"webgl",kernelFunc:Cm};function _n(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=Tm(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=Qd(a,s,i);return u}var KP={kernelName:Us,backendName:"webgl",kernelFunc:_n},w_=1e3;function ep({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],m=r?t.shape[c-2]:t.shape[c-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=v.sizeFromShape(f),g=v.sizeFromShape(A),_=y===g||y===1||g===1;v.assert(u>=2&&c>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let b=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);v.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],x=r?[g,m,d]:[g,d,m],N=ye({inputs:{x:e},backend:a,attrs:{shape:w}}),T=ye({inputs:{x:t},backend:a,attrs:{shape:x}}),E=[N,T],M=Math.max(y,g),D=n?N.shape[1]:N.shape[2],L=s!=null,W=i!=null,U=l==="leakyrelu",H=l!=null?Jd(l,!0):null,X=L||W||U||H!=null,G;if((p===1||m===1)&&D>w_&&X===!1){let Y=N,ae=T;n&&(Y=_n({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(Y)),r&&(ae=_n({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=ye({inputs:{x:Y},backend:a,attrs:{shape:[M,D,1]}}),E.push(Q));let he=m===1?2:1,oe=ae;ie&&(oe=ye({inputs:{x:ae},backend:a,attrs:{shape:[M,1,D]}}),E.push(oe));let fe=g_({inputs:{a:Q,b:oe},backend:a});G=Cm({inputs:{x:fe},backend:a,attrs:{axis:he,keepDims:!0}}),E.push(fe)}else{let Y=tr(e.dtype,t.dtype),ae=new f_(w,x,[M,p,m],n,r,L,H,W,U),te=[N,T];if(s!=null&&te.push(s),W&&te.push(i),U){let ie=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));te.push(ie),E.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=ye({inputs:{x:G},backend:a,attrs:{shape:b}});E.push(G);for(let Y of E)a.disposeIntermediateTensorInfo(Y);return ee}function ZP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return ep({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var YP={kernelName:Hs,backendName:"webgl",kernelFunc:ZP},__="return abs(x);";function JP(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Qw(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new _l(r.shape,__):a=new Ma(r.shape,__),n.runWebGLProgram(a,[r],r.dtype)}var QP={kernelName:Bi,backendName:"webgl",kernelFunc:JP},eL=Ar+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,tL=qe({opSnippet:eL}),nL={kernelName:Vi,backendName:"webgl",kernelFunc:tL},rL=Ar+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,aL=qe({opSnippet:rL}),sL={kernelName:Ui,backendName:"webgl",kernelFunc:aL},b_="return a + b;",iL=tn({opSnippet:b_,packedOpSnippet:b_,supportsComplex:!0,cpuKernelImpl:Cz}),oL={kernelName:ga,backendName:"webgl",kernelFunc:iL},lL=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},uL=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function tp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return $n({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=tp({inputs:r.slice(0,o),backend:n}),u=tp({inputs:r.slice(o),backend:n});return tp({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>tr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new uL(r[0].shape,s):new lL(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var cL={kernelName:Ja,backendName:"webgl",kernelFunc:tp};function hL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=pi(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var dL={kernelName:uh,backendName:"webgl",kernelFunc:hL};function pL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=pi(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var fL={kernelName:ch,backendName:"webgl",kernelFunc:pL},mL=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},AL=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ot(o),u=cn("coords",o),c,h;if(s===1){h=o+1;let N=ot(h);c=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(N=>"int "+N),f=cn("sourceLocR",h-1).concat("inIdx.r"),A=cn("sourceLocG",h-1).concat("inIdx.g"),y=cn("sourceLocB",h-1).concat("inIdx.b"),g=cn("sourceLocA",h-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",b=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,w=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,x=r?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${x}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function v_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new mL(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=v_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function k_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new AL(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=k_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function I_(e,t,n,r){let a=[n];if(C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,a),l=v.sizeFromShape(o),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=v_(e,u,r);s.push(c);let h=ye({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return k_(e,t,r)}function yL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=_n({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=I_(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var gL={kernelName:Qa,backendName:"webgl",kernelFunc:yL};function xL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=_n({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=I_(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var wL={kernelName:Ql,backendName:"webgl",kernelFunc:xL},_L=Ar+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,bL=qe({opSnippet:_L}),vL={kernelName:Hi,backendName:"webgl",kernelFunc:bL},kL=Ar+"return log(x + sqrt(x * x + 1.0));",IL=qe({opSnippet:kL}),NL={kernelName:ji,backendName:"webgl",kernelFunc:IL},SL=Ar+`
|
|
return atan(x);
|
|
`,TL=qe({opSnippet:SL}),EL={kernelName:Gi,backendName:"webgl",kernelFunc:TL},CL=zP+`
|
|
return atan(a, b);
|
|
`,RL=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+PP+`
|
|
return result;
|
|
`,FL=tn({opSnippet:CL,packedOpSnippet:RL}),ML={kernelName:Xi,backendName:"webgl",kernelFunc:FL},$L=Ar+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,OL=qe({opSnippet:$L}),DL={kernelName:qi,backendName:"webgl",kernelFunc:OL},ec=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?f:A:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,x=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${x}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
`}},Rm=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",_="0.0";if(g||(_="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
const float initializationValue = ${_};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${_});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function zL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ml(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return $n({inputs:{x:a},backend:n});let h=new ec(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var PL={kernelName:es,backendName:"webgl",kernelFunc:zL};function LL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new Rm(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var WL={kernelName:eu,backendName:"webgl",kernelFunc:LL},BL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},VL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function UL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new VL(d);return n.runWebGLProgram(p,[a],i.dtype)}var HL={kernelName:dh,backendName:"webgl",kernelFunc:UL};function jL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ml([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=new BL(c);return n.runWebGLProgram(h,[a],i.dtype)}var GL={kernelName:hh,backendName:"webgl",kernelFunc:jL};function qL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return ep({a,b:s,transposeA:i,transposeB:o,backend:n})}var XL={kernelName:ts,backendName:"webgl",kernelFunc:qL},KL=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},ZL=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},YL=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new ZL(r.shape,a.shape,s.shape,c,h,l):new KL(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},JL={kernelName:ps,backendName:"webgl",kernelFunc:YL},eW=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ot(this.rank),n=`uniform int start[${this.rank}];`,r=QL(this.rank),a,s=e.map((i,o)=>`sourceLoc.${Fm[o]} = start[${o}] + coords.${Fm[o]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Fm=["x","y","z","w","u","v"];function QL(e){if(e===1)return"sourceLoc";if(e<=6)return Fm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var tW=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ot(this.rank),n=cn("coords",this.rank),r=cn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${s};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function nW(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=on.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function tc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=on.parseSliceParams(a,s,i);if(on.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=Zz(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=on.isSliceContinous(a.shape,o,l);if(u||!c){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tW(l):new eW(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),nW(a,o,l,n)}var rW={kernelName:Co,backendName:"webgl",kernelFunc:tc},aW=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,_)=>g*_),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=[],m=ye({inputs:{x:a},backend:n,attrs:{shape:l}}),f=_n({inputs:{x:m},backend:n,attrs:{perm:u}}),A=ye({inputs:{x:f},backend:n,attrs:{shape:c}}),y=tc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},sW={kernelName:tu,backendName:"webgl",kernelFunc:aW};function iW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=Jw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var oW={kernelName:ph,backendName:"webgl",kernelFunc:iW},lW="return float(a != b);",N_=tn({opSnippet:lW,dtype:"bool"}),uW={kernelName:go,backendName:"webgl",kernelFunc:N_};function nc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return $n({inputs:{x:a.complexTensorInfos.real},backend:n})}var cW={kernelName:$h,backendName:"webgl",kernelFunc:nc},hW="return float(int(x));";function dW(e,t){let n=new Ma(e.shape,hW),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Mm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return $n({inputs:{x:a},backend:n});let i=Et(a.shape),o=Mm({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=$a({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=nc({inputs:{input:a},backend:n}),o=Mm({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=$n({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return dW(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=N_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var pW={kernelName:ns,backendName:"webgl",kernelFunc:Mm},S_="return ceil(x);",fW=qe({opSnippet:S_,packedOpSnippet:S_,cpuKernelImpl:Fz}),mW={kernelName:rs,backendName:"webgl",kernelFunc:fW},AW=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},yW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function gW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new yW(a.shape):o=new AW(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var xW={kernelName:xa,backendName:"webgl",kernelFunc:gW},wW=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function T_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function _W(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new wW(r.shape),i=[T_(r,a.complexTensorInfos.real),T_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var bW={kernelName:nu,backendName:"webgl",kernelFunc:_W},vW=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},kW=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=ot(r),s=cn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];h+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${np(i,l,f)}),
|
|
vec2(${np(u,l,f)}));
|
|
}`}let d=o.length,p=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${d}(${np(i,l,p)}),
|
|
vec2(${np(u,l,p)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[r-1]} = ${s[r-1]} + 1;
|
|
if (${s[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[r-2]} = ${s[r-2]} + 1;
|
|
if (${s[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[r-1]} = ${s[r-1]} - 1;
|
|
if (${s[r-2]} < ${n[r-2]} &&
|
|
${s[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function np(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function rp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return $n({inputs:{x:a.complexTensorInfos.imag},backend:n})}var IW={kernelName:Sh,backendName:"webgl",kernelFunc:rp};function kl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>nc({inputs:{input:m},backend:n})),c=e.map(m=>rp({inputs:{input:m},backend:n})),h=kl(u,t,n),d=kl(c,t,n),p=$a({inputs:{real:h,imag:d},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),c.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=E_(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=Mz(h,c,r,d),m=C.computeOutShape(e.map(A=>A.shape),t),f=n.makeTensorInfo(m,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),f}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=kl(e.slice(0,u),t,n),h=kl(e.slice(u),t,n),d=kl([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new kW(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=E_(e,t,n),i=new vW(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=ye({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function E_(e,t,n){let r=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function C_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return $n({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),kl(o,s,n)}var NW={kernelName:Ki,backendName:"webgl",kernelFunc:C_},R_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,_="",b="";n&&(r?_=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?_=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:_=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${_}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},SW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},TW=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=un(),A=h==="channelsLast",y=A?0:1,g=A?1:2,_="";for(let b=0;b<=1;b++)for(let w=0;w<=1;w++)_+=`
|
|
blockIndex = rc.y + ${w};
|
|
pos = rc.x + ${b};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${a}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${a}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${b*2+w}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${b*2+w}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${_}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function F_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&c>w_,_=l[2]%2!=0&&!!u.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ye({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),x=ye({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=ep({a:w,b:x,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ye({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(x),y.push(N)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},x=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Xu(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let N=ye({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=ep({a:w,b:N,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);v.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=x,E.shape=n.outShape,A=$n({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let b of y)r.disposeIntermediateTensorInfo(b);return A}function M_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*u*c,A=d*h,y=[f,A],g=!0,_=!1,b=[],w=ye({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),x=ye({inputs:{x:t},backend:r,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});b.push(w),b.push(x);let N=new TW(y,w.shape,n),T=r.runWebGLProgram(N,[w],"float32"),E=ye({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});b.push(T),b.push(E);let M=a!=null,D=s!=null,L=o==="leakyrelu",W=o?Jd(o,!0):null,U=new f_(E.shape,x.shape,[1,A,n.outChannels],g,_,M,W,D,L),H=[E,x];if(a&&H.push(a),D&&H.push(s),L){let Y=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));H.push(Y),b.push(Y)}let X=r.runWebGLProgram(U,H,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ye({inputs:{x:X},backend:r,attrs:{shape:G}});b.push(X);for(let Y of b)r.disposeIntermediateTensorInfo(Y);return ee}function EW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=F_({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=M_({x:a,filter:s,convInfo:d,backend:n});else{let f=new R_(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=ye({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var CW={kernelName:as,backendName:"webgl",kernelFunc:EW},RW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},FW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},MW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$W=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function OW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new RW(d);return n.runWebGLProgram(p,[a,s],"float32")}var DW={kernelName:mh,backendName:"webgl",kernelFunc:OW};function zW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new FW(d);return n.runWebGLProgram(p,[a,s],"float32")}var PW={kernelName:ss,backendName:"webgl",kernelFunc:zW};function LW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new SW(u);return n.runWebGLProgram(c,[a,s],"float32")}var WW={kernelName:ru,backendName:"webgl",kernelFunc:LW};function BW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=C.computeConv3DInfo(a.shape,l,i,1,o),c=new MW(u);return n.runWebGLProgram(c,[a,s],"float32")}var VW={kernelName:Ah,backendName:"webgl",kernelFunc:BW};function UW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=C.computeConv3DInfo(l,s.shape,o,1,i),c=new $W(u);return n.runWebGLProgram(c,[a,s],"float32")}var HW={kernelName:yh,backendName:"webgl",kernelFunc:UW},jW=p_+`
|
|
return cos(x);
|
|
`,GW=qe({opSnippet:jW}),qW={kernelName:is,backendName:"webgl",kernelFunc:GW},XW=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,KW=qe({opSnippet:XW}),ZW={kernelName:Zi,backendName:"webgl",kernelFunc:KW},YW=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,_,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${_};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},JW=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new YW(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},QW={kernelName:Yi,backendName:"webgl",kernelFunc:JW},D_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${$_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ot(r)} coords = getOutputCoords();
|
|
int end = ${O_(r,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${O_(r,"coords")} = idx;
|
|
val += getX(${$_(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function $_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function O_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function eB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=C.getAxesPermutation([s],l),c=a;u!=null&&(c=_n({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=C.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=c.shape[h],p=$n({inputs:{x:c},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new D_(c.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new D_(c.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=C.getUndoAxesPermutation(u),f=_n({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),f}return p}var tB={kernelName:os,backendName:"webgl",kernelFunc:eB};function nB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=Jw(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=Rz(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var rB={kernelName:gh,backendName:"webgl",kernelFunc:nB},aB=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function sB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new aB(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var iB={kernelName:Ji,backendName:"webgl",kernelFunc:sB},z_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},P_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=m,A="int xR; int xC; int xCOffset;";for(let b=0;b<p;b++)for(let w=0;w<m;w++)A+=`
|
|
vec4 xTexelR${b}C${w*2} = vec4(0.);
|
|
vec4 wR${b}C${w} = vec4(0.);
|
|
vec4 xR${b}C${w} = vec4(0.);`;for(let b=0;b<p;b++)for(let w=0;w<f;w++){let x=w*2;if(A+=`
|
|
xR = xRCorner + ${b*h};
|
|
xC = xCCorner + ${x*d};
|
|
`,c===1){if(x<m&&(l%2==1?A+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${b}C${x}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${b}C${x} = vec4(previous.zw, xTexelR${b}C${x}.xy);
|
|
} else {
|
|
xR${b}C${x} = vec4(0, 0, xTexelR${b}C${x}.xy);
|
|
}
|
|
`:A+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${x} = xTexelR${b}C${x};
|
|
`,x+1<m)){let N=l%2==0?v.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
`),A+=`
|
|
xR${b}C${x+1} = vec4(
|
|
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.xy);
|
|
`):A+=`
|
|
xCOffset = xC + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${b}C${x+1} = xTexelR${b}C${x+2};
|
|
`}}else x<m&&(A+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${b}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${x} = vec4(
|
|
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw);
|
|
`,x+1<m&&(A+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${b}C${x+1} = vec4(xTexelR${b}C${x+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${x} = vec4(
|
|
xTexelR${b}C${x}.xy, xTexelR${b}C${x+2}.xy);
|
|
`,x+1<m&&(A+=`
|
|
xR${b}C${x+1} = vec4(
|
|
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw);
|
|
`)),A+="}");x<m&&(A+=`
|
|
vec4 wTexelR${b}C${x} = getW(${b}, ${x}, d1, q);
|
|
wR${b}C${x} = vec4(wTexelR${b}C${x}.xz, wTexelR${b}C${x}.xz);
|
|
`,x+1<m&&(A+=`
|
|
vec4 wTexelR${b}C${x+1} = getW(${b}, ${x+1}, d1, q);
|
|
wR${b}C${x+1} =
|
|
vec4(wTexelR${b}C${x+1}.xz, wTexelR${b}C${x+1}.xz);`))}for(let b=0;b<p;b++)for(let w=0;w<m;w++)A+=`dotProd += xR${b}C${w} * wR${b}C${w};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,g="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd;
|
|
${_}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}};function oB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new P_(h):d=new z_(h),n.runWebGLProgram(d,[a,s],"float32")}var lB={kernelName:ls,backendName:"webgl",kernelFunc:oB},uB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function hB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new uB(h);return n.runWebGLProgram(d,[a,s],"float32")}var dB={kernelName:xh,backendName:"webgl",kernelFunc:hB};function pB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new cB(h);return n.runWebGLProgram(d,[a,s],"float32")}var fB={kernelName:wh,backendName:"webgl",kernelFunc:pB},mB=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function AB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=v.sizeFromShape(r.shape),i=ye({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new mB(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var yB={kernelName:_h,backendName:"webgl",kernelFunc:AB},gB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function xB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new gB(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var wB={kernelName:au,backendName:"webgl",kernelFunc:xB},_B="return (x >= 0.0) ? x : (exp(x) - 1.0);",bB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,vB=qe({opSnippet:_B,packedOpSnippet:bB}),kB={kernelName:Qi,backendName:"webgl",kernelFunc:vB},IB="return (b >= 1.0) ? a : a * (b + 1.0);",NB=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,SB=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Qu(NB,r.shape,a.shape):new vl(IB,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},TB={kernelName:kh,backendName:"webgl",kernelFunc:SB},EB=`
|
|
return vec4(equal(a, b));
|
|
`,CB="return float(a == b);",RB=tn({opSnippet:CB,packedOpSnippet:EB,dtype:"bool"}),FB={kernelName:to,backendName:"webgl",kernelFunc:RB},MB=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,$B=qe({opSnippet:MB}),OB={kernelName:eo,backendName:"webgl",kernelFunc:$B},L_="return exp(x);",W_=qe({opSnippet:L_,packedOpSnippet:L_,cpuKernelImpl:$z}),DB={kernelName:cs,backendName:"webgl",kernelFunc:W_};function $m(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ye({inputs:{x:s},backend:r,attrs:{shape:o}})}var zB={kernelName:no,backendName:"webgl",kernelFunc:$m},B_="return exp(x) - 1.0;",PB=qe({opSnippet:B_,packedOpSnippet:B_,cpuKernelImpl:Oz}),LB={kernelName:ro,backendName:"webgl",kernelFunc:PB},V_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function U_(e,t,n){let r=n.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ye({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new V_("real",l,t),c=new V_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),m=$a({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=ye({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function WB(e){let{inputs:t,backend:n}=e,{input:r}=t;return U_(r,!1,n)}var BB={kernelName:Ih,backendName:"webgl",kernelFunc:WB},VB=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Om(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new VB(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var UB={kernelName:su,backendName:"webgl",kernelFunc:Om},HB=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},jB={kernelName:ao,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new HB(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},H_="return floor(x);",GB=qe({opSnippet:H_,packedOpSnippet:H_,cpuKernelImpl:Dz}),qB={kernelName:hs,backendName:"webgl",kernelFunc:GB},XB=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,KB=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,ZB=tn({opSnippet:XB,packedOpSnippet:KB,dtype:"int32"}),YB={kernelName:ds,backendName:"webgl",kernelFunc:ZB},JB=class{constructor(e){this.variableNames=["A"];let t=un(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},QB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=un(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},tV={kernelName:Lh,backendName:"webgl",kernelFunc:eV},Il;function eV(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[u,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[c,u],d=[c,u,s];(o||i||l)&&(Il==null&&(Il=document.createElement("canvas").getContext("2d")),Il.canvas.width=u,Il.canvas.height=c,Il.drawImage(a,0,0,u,c),a=Il.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Xn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let m=J().getBool("WEBGL_PACK")?new QB(d):new JB(d),f=n.runWebGLProgram(m,[p],"int32");return n.disposeData(p.dataId),f}function nV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=C.convertConv2DDataFormat(c),A=C.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=F_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=M_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let b=i!=null,w=o!=null,x=p==="leakyrelu",N=p?Jd(p,!1):null,T=new R_(A,b,N,w,x),E=[a,s];if(i&&E.push(i),o&&E.push(o),x){let M=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let _=ye({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),_}var rV={kernelName:js,backendName:"webgl",kernelFunc:nV};function aV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?Jd(d,y):null,_=[a,s],b=i!=null,w=o!=null,x=d==="leakyrelu";if(b&&_.push(i),w&&_.push(o),x){let E=n.makeTensorInfo([],"float32",v.createScalarValue(p,"float32"));_.push(E),m.push(E)}let N;y?N=new P_(A,b,g,w,x):N=new z_(A,b,g,w,x);let T=n.runWebGLProgram(N,_,"float32");return m.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var sV={kernelName:Gs,backendName:"webgl",kernelFunc:aV},iV=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ot(t.length),a=ot(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function oV(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=C.prepareAndValidate(r,a),h=ye({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ye({inputs:{x:r},backend:n,attrs:{shape:[v.sizeFromShape(r.shape)/u,u]}}),p=new iV(i,c,[l,u]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var lV={kernelName:io,backendName:"webgl",kernelFunc:oV},cV=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ot(this.rank),r=uV(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function uV(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function hV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=v.sizeFromShape(s.shape),h=[],d=ye({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let m=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),_=n.bufferSync(d),b=zz(_,g,m);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let f=new cV(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=ye({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var dV={kernelName:so,backendName:"webgl",kernelFunc:hV},pV="return float(a > b);",fV=`
|
|
return vec4(greaterThan(a, b));
|
|
`,mV=tn({opSnippet:pV,packedOpSnippet:fV,cpuKernelImpl:Pz,dtype:"bool"}),AV={kernelName:oo,backendName:"webgl",kernelFunc:mV},yV="return float(a >= b);",gV=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,xV=tn({opSnippet:yV,packedOpSnippet:gV,dtype:"bool"}),wV={kernelName:fs,backendName:"webgl",kernelFunc:xV};function _V(e){let{inputs:t,backend:n}=e,{input:r}=t;return U_(r,!0,n)}var bV={kernelName:Nh,backendName:"webgl",kernelFunc:_V},vV="return float(!isnan(x) && !isinf(x));",kV=qe({opSnippet:vV,dtype:"bool"}),IV={kernelName:lo,backendName:"webgl",kernelFunc:kV},NV="return float(isinf(x));",SV=qe({opSnippet:NV,dtype:"bool"}),TV={kernelName:uo,backendName:"webgl",kernelFunc:SV},EV="return float(isnan(x));",CV=qe({opSnippet:EV,dtype:"bool"}),RV={kernelName:co,backendName:"webgl",kernelFunc:CV},FV="return float(a < b);",MV=`
|
|
return vec4(lessThan(a, b));
|
|
`,$V=tn({opSnippet:FV,packedOpSnippet:MV,cpuKernelImpl:Lz,dtype:"bool"}),OV={kernelName:ho,backendName:"webgl",kernelFunc:$V},DV="return float(a <= b);",zV=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,PV=tn({opSnippet:DV,packedOpSnippet:zV,dtype:"bool"}),LV={kernelName:po,backendName:"webgl",kernelFunc:PV};function WV(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Wz(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var BV={kernelName:Th,backendName:"webgl",kernelFunc:WV},VV=`if (x < 0.0) return NAN;
|
|
return log(x);`,UV=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,HV=qe({opSnippet:VV,packedOpSnippet:UV,cpuKernelImpl:Bz}),jV={kernelName:ys,backendName:"webgl",kernelFunc:HV},GV="return log(1.0 + x);",qV=qe({opSnippet:GV}),XV={kernelName:fo,backendName:"webgl",kernelFunc:qV},KV="return float(a >= 1.0 && b >= 1.0);",ZV=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,YV=tn({opSnippet:KV,packedOpSnippet:ZV,dtype:"bool"}),JV={kernelName:mo,backendName:"webgl",kernelFunc:YV},QV="return float(!(x >= 1.0));",eU=qe({opSnippet:QV}),tU={kernelName:iu,backendName:"webgl",kernelFunc:eU},nU="return float(a >= 1.0 || b >= 1.0);",rU=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,aU=tn({opSnippet:nU,packedOpSnippet:rU,dtype:"bool"}),sU={kernelName:ou,backendName:"webgl",kernelFunc:aU},iU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},oU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},lU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new oU(a.shape,s,i,o,l):new iU(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},uU={kernelName:lu,backendName:"webgl",kernelFunc:lU},cU=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},hU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new cU(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},dU={kernelName:Eh,backendName:"webgl",kernelFunc:hU};function pU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ye({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=pi(i,e.dtype,"max",r),l=ye({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function j_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,_=new Array(o);for(let x=0;x<_.length;x++)_[x]=a.shape[c[x]];let b=Tm(g,a.shape,a.dtype,c,_);p=n.makeTensorInfo(_,a.dtype);let w=n.texData.get(p.dataId);w.values=b}else p=Qd(a,c,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(d){let g=n.texData.get(p.dataId).values,_=Vz(g,v.sizeFromShape(f),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let b=n.texData.get(y.dataId);b.values=_}else y=pU(p,f,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var fU={kernelName:gs,backendName:"webgl",kernelFunc:j_},mU=l_+`
|
|
return max(a, b);
|
|
`,AU=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Yd+`
|
|
return result;
|
|
`,yU=tn({opSnippet:mU,packedOpSnippet:AU,cpuKernelImpl:Uz}),gU={kernelName:xs,backendName:"webgl",kernelFunc:yU};function xU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ml(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return $n({inputs:{x:a},backend:n});let h=new ec(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var wU={kernelName:ws,backendName:"webgl",kernelFunc:xU};function _U(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new Rm(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var bU={kernelName:uu,backendName:"webgl",kernelFunc:_U},vU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${h}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function IU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new Rm(d,"max",!0),m=n.runWebGLProgram(p,[i],i.dtype),f=new kU(d),A=n.runWebGLProgram(f,[a,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var NU={kernelName:Rh,backendName:"webgl",kernelFunc:IU};function SU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ml([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,m=new ec(d,"max",p),f=n.runWebGLProgram(m,[o],o.dtype),A=new vU(d),y=n.runWebGLProgram(A,[a,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var TU={kernelName:Ch,backendName:"webgl",kernelFunc:SU};function EU(e,t,n,r){let a=new ec(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new ec(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var CU={kernelName:Fh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,s,u,i),[h,d]=EU(r,o,c,l);return[h,d]}};function RU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ye({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=pi(i,"float32","mean",r),l=ye({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var FU={kernelName:_s,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let _=i.texData.get(m.dataId).values,b=new Array(o);for(let N=0;N<b.length;N++)b[N]=r.shape[c[N]];let w=Tm(_,r.shape,r.dtype,c,b);m=i.makeTensorInfo(b,r.dtype);let x=i.texData.get(m.dataId);x.values=w}else m=Qd(r,c,i);p.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,u),y=f;a&&(y=C.expandShapeToKeepDim(f,l));let g=RU(m,A,y,i);for(let _ of p)i.disposeIntermediateTensorInfo(_);return g}};function MU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=pi(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var $U={kernelName:bs,backendName:"webgl",kernelFunc:MU},OU=l_+`
|
|
return min(a, b);
|
|
`,DU=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Yd+`
|
|
return result;
|
|
`,zU=tn({opSnippet:OU,packedOpSnippet:DU,cpuKernelImpl:Hz}),PU={kernelName:vs,backendName:"webgl",kernelFunc:zU},LU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=ot(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},WU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=ot(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=cn("rc",r),l=cn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},BU=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new WU(r.shape,a,s):new LU(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},VU={kernelName:cu,backendName:"webgl",kernelFunc:BU},UU=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,HU=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Yd+`
|
|
return result;
|
|
`,jU=tn({opSnippet:UU,packedOpSnippet:HU}),GU={kernelName:Ao,backendName:"webgl",kernelFunc:jU},qU=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},XU=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,KU=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,G_=tn({opSnippet:XU,packedOpSnippet:KU,checkOutOfBounds:!0}),ZU={kernelName:us,backendName:"webgl",kernelFunc:G_},q_="return a - b;",X_=tn({opSnippet:q_,packedOpSnippet:q_,supportsComplex:!0,cpuKernelImpl:Jz}),YU={kernelName:Bs,backendName:"webgl",kernelFunc:X_};function K_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=v.parseAxisParam([s],a.shape),o=j_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=ye({inputs:{x:o},backend:n,attrs:{shape:l}}),c=X_({inputs:{a,b:u},backend:n}),h=W_({inputs:{x:c},backend:n}),d=Cm({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ye({inputs:{x:d},backend:n,attrs:{shape:l}}),m=G_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var JU={kernelName:Ls,backendName:"webgl",kernelFunc:K_};function QU(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:K_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new qU(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var eH={kernelName:Mh,backendName:"webgl",kernelFunc:QU},Z_="return -x;";function tH(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=Gz(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new _l(r.shape,Z_):a=new Ma(r.shape,Z_),n.runWebGLProgram(a,[r],r.dtype)}var nH={kernelName:yo,backendName:"webgl",kernelFunc:tH},rH=Or.nonMaxSuppressionV3Impl;function aH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=rH(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var sH={kernelName:xo,backendName:"webgl",kernelFunc:aH},iH=Or.nonMaxSuppressionV4Impl;function oH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=iH(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var lH={kernelName:wo,backendName:"webgl",kernelFunc:oH},uH=Or.nonMaxSuppressionV5Impl;function cH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=uH(c,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var hH={kernelName:_o,backendName:"webgl",kernelFunc:cH},dH=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},pH=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=v.sizeFromShape(a.shape),u=new dH(l,s,i,o),c=ye({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=ye({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},fH={kernelName:Is,backendName:"webgl",kernelFunc:pH};function ap(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=nc({inputs:{input:r},backend:n}),s=ap({inputs:{x:a},backend:n}),i=rp({inputs:{input:r},backend:n}),o=ap({inputs:{x:i},backend:n}),l=$a({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Om({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var mH={kernelName:Lo,backendName:"webgl",kernelFunc:ap};function Y_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=nc({inputs:{input:r},backend:n}),s=Y_({inputs:{x:a},backend:n}),i=rp({inputs:{input:r},backend:n}),o=ap({inputs:{x:i},backend:n}),l=$a({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Om({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var AH={kernelName:bo,backendName:"webgl",kernelFunc:Y_};function yH(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return $m({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=$m({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=C_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var gH={kernelName:vo,backendName:"webgl",kernelFunc:yH},xH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=ot(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},wH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=ot(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=cn("rc",r),l=cn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
|
|
if(${u}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
|
|
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let m=0,f=r===1?2:4;m<f;m++)p+=`
|
|
${h[m]}
|
|
if (${d}) {
|
|
result[${m}] = float(${n});
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=r===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},J_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wH(a.shape,s,i):new xH(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},_H={kernelName:Ns,backendName:"webgl",kernelFunc:J_},bH=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,vH=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Yd+`
|
|
return result;
|
|
`,kH=tn({opSnippet:bH,packedOpSnippet:vH}),IH={kernelName:Ss,backendName:"webgl",kernelFunc:kH};function NH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),c=u,h=C.getAxesPermutation(c,o),d=a;h!=null&&(d=_n({inputs:{x:a},backend:n,attrs:{perm:h}}),c=C.getInnerMostAxes(c.length,o),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=qz(d.shape,d.dtype,m,c);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(d.shape,c),A=v.sizeFromShape(f),y=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Hh(a.dtype),_=pi(y,g,"prod",n);p=ye({inputs:{x:_},backend:n,attrs:{shape:m}}),l.push(y),l.push(_)}if(i){l.push(p);let m=C.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var SH={kernelName:ko,backendName:"webgl",kernelFunc:NH},Q_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Xz(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},TH={kernelName:hu,backendName:"webgl",kernelFunc:Q_},EH="return 1.0 / x;",CH=qe({opSnippet:EH}),RH={kernelName:Io,backendName:"webgl",kernelFunc:CH},FH=Ar+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,MH=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,$H=qe({opSnippet:FH,packedOpSnippet:MH}),OH={kernelName:Es,backendName:"webgl",kernelFunc:$H},DH=Ar+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,zH=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,PH=qe({opSnippet:DH,packedOpSnippet:zH}),LH={kernelName:Rs,backendName:"webgl",kernelFunc:PH},WH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},BH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function VH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new BH(a.shape,l,u,s,i):new WH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var UH={kernelName:Cs,backendName:"webgl",kernelFunc:VH},HH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function jH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new HH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var GH={kernelName:Dh,backendName:"webgl",kernelFunc:jH},qH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function XH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new qH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var KH={kernelName:du,backendName:"webgl",kernelFunc:XH},ZH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function YH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new ZH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var JH={kernelName:Oh,backendName:"webgl",kernelFunc:YH},QH=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ot(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},ej=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=cn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ot(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(r.slice())};
|
|
if(${a}){
|
|
result.g = ${l(r.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(r.slice())};
|
|
if(${a}) {
|
|
result.a = ${c(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return $n({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ej(a.shape,o):new QH(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var nj={kernelName:Fs,backendName:"webgl",kernelFunc:tj},rj=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,u]=C.getImageCenter(r,a,s),c=l.toFixed(3),h=u.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${c}) * ${o} - (float(y) - ${h}) * ${i};
|
|
float coordYFloat = (float(x) - ${c}) * ${i} + (float(y) - ${h}) * ${o};
|
|
int coordX = int(round(coordXFloat + ${c}));
|
|
int coordY = int(round(coordYFloat + ${h}));
|
|
${d}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},aj={kernelName:Wo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new rj(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},sj=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,ij=qe({opSnippet:sj}),oj={kernelName:Ms,backendName:"webgl",kernelFunc:ij},lj="return inversesqrt(x);",uj=qe({opSnippet:lj,cpuKernelImpl:Kz}),cj={kernelName:$s,backendName:"webgl",kernelFunc:uj},eb=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ot(a.length),l=ot(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function hj(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ye({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),m=ye({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new eb(l,o,p.shape.length,m.shape.length,c,d),y=n.runWebGLProgram(A,[m,p,f],m.dtype),g=ye({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var dj={kernelName:So,backendName:"webgl",kernelFunc:hj},pj=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=ot(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function fj(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new pj(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],tr(a.dtype,s.dtype))}var mj={kernelName:To,backendName:"webgl",kernelFunc:fj},Aj=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,yj=qe({opSnippet:Aj}),gj={kernelName:Eo,backendName:"webgl",kernelFunc:yj},xj="return 1.0 / (1.0 + exp(-1.0 * x));",wj=qe({opSnippet:xj}),_j={kernelName:Ds,backendName:"webgl",kernelFunc:wj},bj=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,vj=qe({opSnippet:bj}),kj={kernelName:Fo,backendName:"webgl",kernelFunc:vj},Ij=p_+`
|
|
return sin(x);
|
|
`,Nj=qe({opSnippet:Ij}),Sj={kernelName:Os,backendName:"webgl",kernelFunc:Nj},Tj=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Ej=qe({opSnippet:Tj}),Cj={kernelName:Ro,backendName:"webgl",kernelFunc:Ej},Rj=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Fj=qe({opSnippet:Rj}),Mj={kernelName:Mo,backendName:"webgl",kernelFunc:Fj},$j=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],c=J_({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(c.shape,s,o,!1),d=C.getPermuted(h.length,s.length,!1),p=C.getReshapedPermuted(c.shape,s,o,!1),m=ye({inputs:{x:c},backend:n,attrs:{shape:h}}),f=_n({inputs:{x:m},backend:n,attrs:{perm:d}}),A=ye({inputs:{x:f},backend:n,attrs:{shape:p}});return u.push(c),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},Oj={kernelName:pu,backendName:"webgl",kernelFunc:$j};function Dj(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=C.calculateShapes(s,a,o),d=!1,p=new eb(u,l,a.shape.length,s.shape.length,c,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var zj={kernelName:zh,backendName:"webgl",kernelFunc:Dj};function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=tc({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,m})}var Lj={kernelName:$o,backendName:"webgl",kernelFunc:Pj},Wj="return sqrt(x);",Bj=qe({opSnippet:Wj}),Vj={kernelName:zs,backendName:"webgl",kernelFunc:Bj},Uj="return x * x;",Hj=qe({opSnippet:Uj}),jj={kernelName:fu,backendName:"webgl",kernelFunc:Hj},tb="return (a - b) * (a - b);",Gj=tn({opSnippet:tb,packedOpSnippet:tb}),qj={kernelName:Ws,backendName:"webgl",kernelFunc:Gj};function Xj({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Ar+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Ma(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var Kj={kernelName:_a,backendName:"webgl",kernelFunc:Xj},Zj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ot(n.length),s=ot(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Yj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=ye({inputs:{x:a},backend:n,attrs:{shape:y}}),b;if(p){let x=tc({inputs:{x:_},backend:n,attrs:{begin:m,size:A}});b=ye({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))b=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([_])){let x=n.texData.get(_.dataId).values,N=Le(_.shape,_.dtype,x),T=Yz(g,N,f,m);b=n.makeTensorInfo(g,_.dtype,T.values)}else{let x=new Zj(m,f,g);b=n.runWebGLProgram(x,[_],_.dtype)}let w=ye({inputs:{x:b},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(b),w}var Jj={kernelName:Oo,backendName:"webgl",kernelFunc:Yj},Qj="return tan(x);",eG=qe({opSnippet:Qj}),tG={kernelName:Do,backendName:"webgl",kernelFunc:eG},nG=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,rG=qe({opSnippet:nG}),aG={kernelName:Vs,backendName:"webgl",kernelFunc:rG},iG=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=ot(this.rank),a=sG(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function sG(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function nb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>v.decodeString(c)),l=Le(a.shape,a.dtype,o),u=Qz(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new iG(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var oG={kernelName:wa,backendName:"webgl",kernelFunc:nb};function lG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=eP(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var uG={kernelName:zo,backendName:"webgl",kernelFunc:lG};function cG(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ml(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=tP(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var hG={kernelName:Ph,backendName:"webgl",kernelFunc:cG};function dG(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let f=0;f<o;f++)f!==s&&(u[c++]=i.shape[f]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let A=tc({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=ye({inputs:{x:A},backend:n,attrs:{shape:u}});m[f]=y,h.push(A)}return h.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var pG={kernelName:Po,backendName:"webgl",kernelFunc:dG},fG=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function mG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=C.getAxesPermutation([u],o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(h.shape,u,i),p=v.sizeFromShape([h.shape[u]]),m=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Hh(a.dtype),A=(b,w,x,N,T)=>{let E=b.shape[0],M=b.shape[1],D=C.segment_util.segOpComputeOptimalWindowSize(M,T),L={windowSize:D,inSize:M,batchSize:E,numSegments:T},W=new fG(L,w),U=n.compileAndRun(W,[b,x],N);if(l.push(U),U.shape[1]===T)return U;let H=Q_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=nb({inputs:{x:H},backend:n,attrs:{reps:[M/D]}});return l.push(H),l.push(X),A(U,w,X,N,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=ye({inputs:{x:y},backend:n,attrs:{shape:d}}),_=g;if(c!=null){l.push(g);let b=C.getUndoAxesPermutation(c);_=_n({inputs:{x:_},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),_}var AG={kernelName:mu,backendName:"webgl",kernelFunc:mG},yG=[uU,dU,YP,QP,nL,sL,oL,cL,dL,fL,gL,wL,vL,NL,ML,EL,DL,WL,PL,HL,GL,XL,JL,sW,oW,pW,mW,xW,bW,FP,NW,DW,PW,CW,VW,HW,WW,qW,ZW,QW,tB,rB,iB,dB,fB,lB,yB,wB,kB,TB,FB,OB,DB,zB,LB,BB,UB,jB,qB,YB,tV,rV,sV,lV,dV,AV,wV,RP,bV,IW,IV,TV,RV,$P,OV,LV,BV,XV,jV,JV,tU,sU,fU,bU,wU,NU,TU,CU,gU,FU,$U,PU,VU,GU,eH,LP,nH,sH,lH,hH,uW,fH,AH,gH,_H,IH,DP,SH,TH,cW,ZU,RH,LH,OH,BP,UH,GH,KH,JH,nj,aj,oj,cj,dj,mj,gj,_j,kj,Sj,Cj,rW,JU,Mj,Oj,zj,Lj,Vj,jj,qj,Kj,Jj,YU,XP,tG,aG,oG,uG,KP,hG,pG,AG,mH];for(let e of yG)qs(e);var On;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(On||(On={}));var rc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(rc||(rc={}));var rb;function gG(e){rb=e.wasm.cwrap(Hs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function xG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=rc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=u?s.shape[1]:s.shape[2],_=a.shape[0],b=n.makeOutput([_,y,g],a.dtype),w=n.dataIdMap.get(b.dataId).id,x=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return rb(d,x,a.shape.length,p,N,s.shape.length,l,u,A,m,f,h||0,w),b}var wG={kernelName:Hs,backendName:"wasm",setupFunc:gG,kernelFunc:xG};function bn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var _G=bn(Bi);function hn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,c.shape),f=o.makeOutput(m,p);if(v.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),g=o.dataIdMap.get(f.dataId).id,_=()=>r(h,A,u.shape.length,d,y,c.shape.length,On[u.dtype],g);if(t&&u.dtype==="float32")return _(),f;let b=C.getBroadcastDims(u.shape,m),w=C.getBroadcastDims(c.shape,m),x=b.every((T,E)=>T===E),N=w.every((T,E)=>T===E);if(x&&N)return _(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var bG=!0,vG=hn(ga,bG),ab;function kG(e){ab=e.wasm.cwrap(Ja,null,["array","number","number","number"])}function IG(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return ab(s,a.length,On[r.dtype],i),r}var NG={kernelName:Ja,backendName:"wasm",setupFunc:kG,kernelFunc:IG};function sp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var SG={kernelName:ms,backendName:"wasm",kernelFunc:sp},sb;function TG(e){sb=e.wasm.cwrap(Us,null,["number","array","number","number","number","array","number"])}function ip(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=CG(t.x.shape,r.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=EG(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let m=sp({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return sb(c,p,l.shape.length,On[l.dtype],h,d,s.length),u}function EG(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function CG(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var RG={kernelName:Us,backendName:"wasm",kernelFunc:ip,setupFunc:TG};function Nl(e,t,n){let r=e.shape,a=e.shape.length,s=v.parseAxisParam(t,r),i=s,o=C.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=C.getInnerMostAxes(i.length,a),l=ip({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var ib;function FG(e){ib=e.wasm.cwrap(Qa,null,["number","number","number","number","number"])}function MG(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=Nl(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),m=t.dataIdMap.get(p.dataId).id,f=v.sizeFromShape(p.shape),A=l.shape[c[0]];return ib(o,On[l.dtype],f,A,m),h&&t.disposeData(u.dataId),p}var $G={kernelName:Qa,backendName:"wasm",kernelFunc:MG,setupFunc:FG},ob;function OG(e){ob=e.wasm.cwrap(es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function DG(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,y=c.strideHeight,g=c.strideWidth,_=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=r.makeOutput(c.outShape,"float32"),w=r.dataIdMap.get(b.dataId).id;return ob(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,_,w),b}var zG={kernelName:es,backendName:"wasm",setupFunc:OG,kernelFunc:DG};function yr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var PG={kernelName:No,backendName:"wasm",kernelFunc:yr},lb;function LG(e){lb=e.wasm.cwrap(ts,null,["number","array","number","number","array","number","number","number","number"])}function WG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=yr({inputs:{x:a},backend:n,attrs:{shape:b}}),N=yr({inputs:{x:s},backend:n,attrs:{shape:w}}),T=n.dataIdMap.get(x.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?x.shape[2]:x.shape[1],D=o?N.shape[1]:N.shape[2],L=Math.max(A,y),W=n.makeOutput([L,M,D],x.dtype),U=n.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(x.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return lb(T,H,x.shape.length,E,X,N.shape.length,i,o,U),n.disposeData(x.dataId),n.disposeData(N.dataId),W.shape=_,W}var BG={kernelName:ts,backendName:"wasm",setupFunc:LG,kernelFunc:WG};function op(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var VG={kernelName:ns,backendName:"wasm",kernelFunc:op},UG=bn(rs),ub;function HG(e){ub=e.wasm.cwrap(xa,null,["number","number","number","number"])}function jG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return ub(o,s,i,u),l}var GG={kernelName:xa,backendName:"wasm",setupFunc:HG,kernelFunc:jG};function cb(e){let{inputs:t,backend:n}=e,r=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>v.sizeFromShape(p.shape)>0);if(s.length===1)return sp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(C.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(_=>{let b=v.sizeFromShape(_.shape.slice(r));return yr({inputs:{x:_},backend:n,attrs:{shape:[-1,b]}})}),m=p.map(_=>({vals:n.readSync(_.dataId),shape:_.shape}));a=C.computeOutShape(p.map(_=>_.shape),1);let f=p[0].shape[0]===1,A=rm(m,a,t[0].dtype,f),y=C.computeOutShape(s.map(_=>_.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),p.forEach(_=>n.disposeData(_.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let m=v.sizeFromShape(p.shape.slice(r));return u+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let m=p*u;for(let f=0;f<h.length;f++){let A=c[f],y=p*A,g=h[f].subarray(y,y+A);d.set(g,m),m+=A}}return i}var qG={kernelName:Ki,backendName:"wasm",kernelFunc:cb},hb;function XG(e){hb=e.wasm.cwrap(as,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=C.convertConv2DDataFormat(d),m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,_=m.padInfo.bottom,b=m.padInfo.left,w=m.dilationHeight,x=m.dilationWidth,N=m.strideHeight,T=m.strideWidth,E=m.inChannels,M=m.outChannels,D=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let L=r.makeOutput(m.outShape,"float32"),W=r.dataIdMap.get(L.dataId).id;return hb(i,a.shape[0],a.shape[1],a.shape[2],o,f,A,y,g,_,b,D,w,x,N,T,E,M,W),L}var ZG={kernelName:as,backendName:"wasm",setupFunc:XG,kernelFunc:KG},db;function YG(e){db=e.wasm.cwrap(ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function JG(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:_,outChannels:b,outHeight:w,outWidth:x,strideHeight:N,strideWidth:T}=p,E=f-1-p.padInfo.top,M=A-1-p.padInfo.left,D=p.dataFormat==="channelsLast",L=v.computeStrides(p.inShape),W=v.computeStrides(a.shape),[U,H,X]=v.computeStrides(s.shape),G=L[0],ee=D?L[1]:L[2],Y=D?L[2]:1,ae=D?1:L[1],te=W[0],ie=D?W[1]:W[2],Q=D?W[2]:1,he=D?1:W[1],oe=t.makeOutput(p.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,pe=t.dataIdMap.get(a.dataId).id,ve=t.dataIdMap.get(s.dataId).id;return db(pe,ve,m,f,A,g,_,y,w,x,b,N,T,E,M,U,H,X,G,ee,Y,ae,te,ie,Q,he,fe),oe}var QG={kernelName:ss,backendName:"wasm",setupFunc:YG,kernelFunc:JG},eq=bn(is),Dm;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Dm||(Dm={}));var pb;function tq(e){pb=e.wasm.cwrap(Yi,null,["number","number","number","number","array","number","number","number","number","number"])}function nq(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=op({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,_=t.makeOutput(p,"float32"),b=t.dataIdMap.get(_.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return pb(A,y,g,c,w,h,d,Dm[a],s,b),f!=null&&t.disposeData(f.dataId),_}var rq={kernelName:Yi,backendName:"wasm",setupFunc:tq,kernelFunc:nq},fb;function aq(e){fb=e.wasm.cwrap(os,null,["number","number","number","number","number","number"])}function sq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),c=a;u!==null&&(c=ip({inputs:{x:a},attrs:{perm:u},backend:n}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],m=n.dataIdMap.get(c.dataId).id,f=n.dataIdMap.get(d.dataId).id;fb(m,i?1:0,o?1:0,p,f,On[a.dtype]);let A=d;if(u!==null){let y=C.getUndoAxesPermutation(u);A=ip({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var iq={kernelName:os,backendName:"wasm",setupFunc:aq,kernelFunc:sq},mb;function oq(e){mb=e.wasm.cwrap(Ji,null,["number","number","number","array","number","array","array","number","number"])}function lq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),_=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),b=t.dataIdMap.get(f.dataId).id;return mb(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,_,m.length,b),f}var uq={kernelName:Ji,backendName:"wasm",setupFunc:oq,kernelFunc:lq},Ab;function cq(e){Ab=e.wasm.cwrap(ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=C.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,_=p.padInfo.left,b=p.dilationHeight,w=p.dilationWidth,x=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let D=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(D.dataId).id;return Ab(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,_,M,b,w,x,N,T,E,L),D}var dq={kernelName:ls,backendName:"wasm",setupFunc:cq,kernelFunc:hq},pq=!1,fq=hn(to,pq,"bool"),mq=bn(cs);function zm(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yr({inputs:{x:a},backend:r,attrs:{shape:o}})}var Aq={kernelName:no,backendName:"wasm",kernelFunc:zm};function yq(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var gq={kernelName:su,backendName:"wasm",kernelFunc:yq},yb;function xq(e){yb=e.wasm.cwrap(ao,null,["number","number","number","number","number","number"])}function wq(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return yb(s,o,l,u,c,i),a}var _q={kernelName:ao,backendName:"wasm",kernelFunc:wq,setupFunc:xq},bq=bn(hs),vq=!1,kq=hn(ds,vq),gb;function Iq(e){gb=e.wasm.cwrap(ps,null,["number","number","number","number","number","number","number"])}function Nq(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return gb(c,h,d,p,m,a,A),f}var Sq={kernelName:ps,backendName:"wasm",setupFunc:Iq,kernelFunc:Nq},xb;function Tq(e){xb=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=rc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=f.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${_})`);b=Q.id}let w=f.filterHeight,x=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,E=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return xb(y,G,ee,Y,g,w,x,b,N,T,E,M,X,D,L,W,U,H,_,A,ie,m||0,te),ae}var Cq={kernelName:js,backendName:"wasm",setupFunc:Tq,kernelFunc:Eq},wb;function Rq(e){wb=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Fq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=rc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=f.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${_})`);b=Q.id}let w=f.filterHeight,x=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,E=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return wb(y,G,ee,Y,g,w,x,b,N,T,E,M,X,D,L,W,U,H,_,A,ie,m||0,te),ae}var Mq={kernelName:Gs,backendName:"wasm",setupFunc:Rq,kernelFunc:Fq},_b;function $q(e){_b=e.wasm.cwrap(io,null,["number","number","number","number","number","number","array","number"])}function Oq(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=tf.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return _b(d,On[r.dtype],p,i,h,o,m,f),u}var Dq={kernelName:io,backendName:"wasm",setupFunc:$q,kernelFunc:Oq},bb;function zq(e){bb=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Pq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=yr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),d=yr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],m=t.makeOutput(p,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let f=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,_=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(p)).buffer);return bb(A,On[a.dtype],_,f,y,u.batchSize,b,g),t.disposeData(c.dataId),t.disposeData(d.dataId),m.shape=u.outputShape,m}var Lq={kernelName:so,backendName:"wasm",setupFunc:zq,kernelFunc:Pq},Wq=!1,Bq=hn(oo,Wq,"bool"),Vq=!1,Uq=hn(fs,Vq,"bool"),vb;function Hq(e){vb=e.wasm.cwrap(As,null,["number","number","number"])}function jq(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;vb(a,n,i)}return s}var Gq={kernelName:As,backendName:"wasm",setupFunc:Hq,kernelFunc:jq},qq=!1,Xq=hn(ho,qq,"bool"),Kq=!1,Zq=hn(po,Kq,"bool"),Yq=bn(ys),Jq=!1,Qq=hn(mo,Jq,"bool"),kb;function eX(e){kb=e.wasm.cwrap(gs,null,["number, number, number"])}function tX(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=Nl(i,a,t);if(d){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let p=l.shape.length;C.assertAxesAreInnerMostDims("max",c,p);let[m,f]=C.computeOutAndReduceShapes(l.shape,c),A=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;kb(o,A,g)}if(d&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var nX={kernelName:gs,backendName:"wasm",setupFunc:eX,kernelFunc:tX},rX=!1,aX=hn(xs,rX),Ib;function sX(e){Ib=e.wasm.cwrap(ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function iX(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,y=c.dilationHeight,g=c.dilationWidth,_=c.strideHeight,b=c.strideWidth,w=c.inChannels,x=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return Ib(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,_,b,w,x,T),N}var oX={kernelName:ws,backendName:"wasm",setupFunc:sX,kernelFunc:iX},Nb;function lX(e){Nb=e.wasm.cwrap(_s,null,["number, number, number"])}function uX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t),m=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=op({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let _=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(_.dataId).id;Nb(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(_.shape,d);_.shape=b}return u.dtype!=="float32"&&t.disposeData(g.dataId),_}var cX={kernelName:_s,backendName:"wasm",setupFunc:lX,kernelFunc:uX},Sb;function hX(e){Sb=e.wasm.cwrap(bs,null,["number, number, number"])}function dX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t);if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",h,m);let[f,A]=C.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Sb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var pX={kernelName:bs,backendName:"wasm",setupFunc:hX,kernelFunc:dX},fX=!1,mX=hn(vs,fX),AX=!0,yX=hn(ks,AX),gX=bn(yo);function Pm(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var Tb;function xX(e){Tb=e.wasm.cwrap(xo,"number",["number","number","number","number","number"])}function wX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=Tb(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=Pm(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var _X={kernelName:xo,backendName:"wasm",setupFunc:xX,kernelFunc:wX},Eb;function bX(e){Eb=e.wasm.cwrap(wo,"number",["number","number","number","number","number","bool"])}function vX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Eb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=Pm(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var kX={kernelName:wo,backendName:"wasm",setupFunc:bX,kernelFunc:vX},Cb;function IX(e){Cb=e.wasm.cwrap(_o,"number",["number","number","number","number","number","number"])}function NX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Cb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=Pm(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var SX={kernelName:_o,backendName:"wasm",setupFunc:IX,kernelFunc:NX},TX=!1,EX=hn(go,TX,"bool"),Rb;function CX(e){Rb=e.wasm.cwrap(Is,null,["number","number","number","number","number"])}function RX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return Rb(c,s,i,o,u),l}var FX={kernelName:Is,backendName:"wasm",setupFunc:CX,kernelFunc:RX};function MX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var $X={kernelName:bo,backendName:"wasm",kernelFunc:MX};function OX(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return zm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=zm({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=cb({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeData(c.dataId)),u}var DX={kernelName:vo,backendName:"wasm",kernelFunc:OX},Fb;function zX(e){Fb=e.wasm.cwrap(Ns,null,["number","array","number","number","array","array","number","number"])}function PX(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return Fb(i,u,t.shape.length,On[t.dtype],d,p,a,l),o}var LX={kernelName:Ns,backendName:"wasm",kernelFunc:PX,setupFunc:zX},WX=!1,BX=hn(Ss,WX),Mb;function VX(e){Mb=e.wasm.cwrap(Ts,null,["number","number","number"])}function UX(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Mb(s,i,l),o}var HX={kernelName:Ts,backendName:"wasm",setupFunc:VX,kernelFunc:UX},$b;function jX(e){$b=e.wasm.cwrap(ko,null,["number","number","number","number"])}function GX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t),m=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;$b(l,y,On[g.dtype],_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var qX={kernelName:ko,backendName:"wasm",setupFunc:jX,kernelFunc:GX},XX=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=im(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},KX={kernelName:hu,backendName:"wasm",kernelFunc:XX},ZX=!0,YX=hn(us,ZX),JX=bn(Es),QX=bn(Rs),Ob;function eK(e){Ob=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number"])}function tK(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,m=[c,l,u,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=op({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(v.sizeFromShape(a.shape)===0)return g;let _=t.dataIdMap.get(g.dataId).id;return Ob(y,c,h,d,p,l,u,s?1:0,i?1:0,_),A!=null&&t.disposeData(A.dataId),g}var nK={kernelName:Cs,backendName:"wasm",setupFunc:eK,kernelFunc:tK},Db;function rK(e){Db=e.wasm.cwrap(Fs,null,["number","array","number","array","number","number"])}function aK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return sp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);Db(l,c,i.length,h,a.shape.length,u);let d=yr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var sK={kernelName:Fs,backendName:"wasm",kernelFunc:aK,setupFunc:rK},zb;function iK(e){zb=e.wasm.cwrap(Wo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function oK(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=C.getImageCenter(o,d,p),y=i===0,g=255,_=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],b=new Uint8Array(new Int32Array(_).buffer);return zb(u,h,d,p,m,s,f,A,b,_.length,c),l}var lK={kernelName:Wo,backendName:"wasm",kernelFunc:oK,setupFunc:iK},uK=bn(Ms),cK=bn($s),Pb;function hK(e){Pb=e.wasm.cwrap(So,null,["number","number","number","number","number","number","array","number","number"])}function dK(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=nf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Pb(p,m,On[s.dtype],l,u,c,f,d,A),o}var pK={kernelName:So,backendName:"wasm",setupFunc:hK,kernelFunc:dK},Lb;function fK(e){Lb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function mK(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:v.sizeFromShape(a.shape.slice(1));return Lb(i,o,l,p,c),u}var AK={kernelName:To,backendName:"wasm",kernelFunc:mK,setupFunc:fK},Wb;function yK(e){Wb=e.wasm.cwrap(Ds,null,["number","number"])}function gK(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||Wb(r,s),a}var xK={kernelName:"Sigmoid",backendName:"wasm",setupFunc:yK,kernelFunc:gK},wK=bn(Os);function lp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=on.parseSliceParams(t,n,r),o=on.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let m=on.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(m,m+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=zd(l,s,i,t.shape,t.dtype);return h.stringBytes=m,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)_K(l,c[0],d,s,i);else if(p===3)bK(l,c[0],c[1],d,s,i);else if(p===4)vK(l,c[0],c[1],c[2],d,s,i);else{let m=zd(l,s,i,t.shape,t.dtype);d.set(m)}return u}function _K(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function bK(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let m=d*t+p*n+u;r.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function vK(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],m=s[3];for(let f=l;f<h;f++)for(let A=u;A<d;A++)for(let y=c;y<p;y++){let g=f*t+A*n+y*r+m;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var kK={kernelName:Co,backendName:"wasm",kernelFunc:lp},Bb;function IK(e){Bb=e.wasm.cwrap(Ls,null,["number","number","number","number"])}function NK(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||Bb(a,i,o,l),s}var SK={kernelName:Ls,backendName:"wasm",setupFunc:IK,kernelFunc:NK};function TK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=lp({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var EK={kernelName:$o,backendName:"wasm",kernelFunc:TK},CK=bn(zs),RK=bn(fu),FK=!0,MK=hn(Ws,FK),Vb;function $K(e){Vb=e.wasm.cwrap(_a,null,["number","number","number"])}function OK(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Vb(i,a,l),o}var DK={kernelName:_a,backendName:"wasm",setupFunc:$K,kernelFunc:OK},Ub;function zK(e){Ub=e.wasm.cwrap(Oo,null,["number","array","number","array","array","array","array","array","number","number"])}function PK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=C.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=C.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let y=yr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:_,strides:b}=C.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,u,c);s=g,i=_,o=b;let w=C.slice_util.maskToAxes(d);w.forEach(M=>{i[M]=s[M]+1,o[M]=1});let x=C.slice_util.computeOutShape(s,i,o),N=x.filter((M,D)=>w.indexOf(D)===-1);if(o.every(M=>M===1)){let M=lp({inputs:{x:a},attrs:{begin:s,size:x},backend:t});t.disposeData(y.dataId);let D=yr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),D}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(y.dataId).id,D=new Uint8Array(new Int32Array(v.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(v.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;Ub(M,D,y.shape.length,L,W,U,H,X,N.length,G)}t.disposeData(y.dataId);let E=yr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var LK={kernelName:Oo,backendName:"wasm",setupFunc:zK,kernelFunc:PK},WK=!0,BK=hn(Bs,WK),Hb;function VK(e){Hb=e.wasm.cwrap(Ps,null,["number, number, number"])}function UK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t),m=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Hb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var HK={kernelName:Ps,backendName:"wasm",setupFunc:VK,kernelFunc:UK},jK=bn(Vs),jb;function GK(e){jb=e.wasm.cwrap(wa,null,["number","array","number","array","number","number"])}function qK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return jb(s,l,a.shape.length,u,o.length,On[c.dtype],h),c}var XK={kernelName:wa,backendName:"wasm",setupFunc:GK,kernelFunc:qK},Gb;function KK(e){Gb=e.wasm.cwrap(zo,null,["number","array","number","number","number","bool","number","number"])}var ZK=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Gb(i,o,r.shape.length,On[r.dtype],a,s,c,d),[u,h]},YK={kernelName:zo,backendName:"wasm",setupFunc:KK,kernelFunc:ZK};function JK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=lp({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:m})=>({dataId:p,dtype:m,shape:l}))}var QK={kernelName:Po,backendName:"wasm",kernelFunc:JK};function eZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var tZ={kernelName:Lo,backendName:"wasm",kernelFunc:eZ},nZ=[_G,vG,NG,$G,zG,BG,VG,UG,GG,qG,ZG,QG,eq,rq,iq,uq,dq,fq,mq,Aq,gq,_q,bq,kq,wG,Sq,Cq,Mq,Dq,Lq,Bq,Uq,SG,Gq,Xq,Zq,Yq,Qq,nX,aX,oX,cX,pX,mX,yX,gX,_X,kX,SX,EX,FX,$X,DX,LX,BX,HX,qX,KX,YX,JX,QX,PG,nK,sK,lK,cK,uK,pK,AK,xK,wK,kK,SK,EK,CK,RK,MK,DK,LK,BK,HK,jK,XK,YK,RG,QK,tZ];for(let e of nZ)qs(e);var Lm=J();Lm.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Lm.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Lm.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var qb=Pi(I8()),rZ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',aZ=Pi(N8()),Xb=class extends Zl{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new sh(this,Er())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(r)*v.bytesPerElement(n));return sZ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function iZ(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function Kb(e,t,n){if(up!=null)return up;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),ac!=null&&ac[r]!=null?ac[r]:n+r}async function oZ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=rZ,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?Kb(e,t,sc!=null?sc:l):l+o},Wm&&(a.instantiateWasm=iZ(Kb(e,t,sc!=null?sc:"")));let s=!1;a.onAbort=()=>{s||ic||(ic=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&up==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+qb.default.toString()],{type:"text/javascript"}),i=(0,qb.default)(a)):i=(0,aZ.default)(a),i.then(o=>{s=!0,ic=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function sZ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var lZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],up=null,sc=null,ac={},ic=!1,Wm=!1;function uZ(e,t=!1){if(uf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),ic)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");up=e,Wm=t}function cZ(e,t=!1){if(ic)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")sc=e;else{ac=e;let n=lZ.filter(r=>ac[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Wm=t}var Zb="3.2.0",hZ=2;Zo("wasm",async()=>{let{wasm:e}=await oZ();return new Xb(e)},hZ);Z().prototype.abs=function(){return this.throwIfDisposed(),Ot(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),hf(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),df(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Jh(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Nu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Su(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),pf(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),j(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),j(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),j(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),j(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),j(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),ff(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),mf(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),Af(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),yf(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),gf(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Eu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Cu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Qs(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ru(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),bf(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),gn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ze&&(e=[e]),rt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ed(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),td(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Yr(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Fu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),nd(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),rd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),If(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),tl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Nf(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Sf(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),E5(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),nl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Sa(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Tf(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),jn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Tn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Ef(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),Vu(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),rl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Yh(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),ei(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ea(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),rr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),ll(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),wd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),C5(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),R5(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),F5(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),$u(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),ti(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),sd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Rf(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),O5(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ld(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$f(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),En(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),id(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ar(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Ou(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),ud(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),L5(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),He(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Du(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Gn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Fr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),bt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),sl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Df(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),zf(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),kd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ri(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),qo(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Cn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),Jr(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),V5(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),Qr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Pu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),hd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Wf(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),$r(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),pd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),j(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),j(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),ix(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),ox(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Rn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),Uu(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Bf(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),fd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),md(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Vf(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Sn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Uf(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Ad(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),yd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Ce(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),Bu(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),al(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),zu(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Jt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Qt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),_d(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ca(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ze?[this,e]:[this,...e];return Fn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),ul(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),jf(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Gf(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),Qo(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ta(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),me(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),me(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),me(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),qf(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),nt(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),vd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Xf(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),sr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),xn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ve(this)};var Yb={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,ul(me(n,"float32"),-1))}}},dZ={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(me(n,"float32")),a=Qt(Ae(be(1),r));return _t(ge(e,a))}}}},pZ={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(Ae(it(me(n,"float32")),1));return ge(e,r)}}}},fZ={kernelName:ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=e,i=Dt(n.shape,a);return i.length>0&&(s=Se(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Dt(r.shape,a);return i.length>0&&(s=Se(s,i)),j(s,r.shape)}}}},mZ={kernelName:Ja,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},AZ={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ve(n)}}},yZ={kernelName:Ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ve(n)}}},gZ={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Qt(Ae(be(1),it(me(n,"float32")))))}}},xZ={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(se(be(1),it(me(n,"float32"))));return ge(e,r)}}}},wZ={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=P(e,ge(r,s)),o=Dt(n.shape,a);return o.length>0&&(i=Se(i,o)),j(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=_t(P(e,ge(n,s))),o=Dt(r.shape,a);return o.length>0&&(i=Se(i,o)),j(i,r.shape)}}}},_Z={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(it(me(n,"float32")),1))}}},bZ={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Ae(be(1),it(me(n,"float32"))))}}};function vZ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Bt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:u},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(dh,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var kZ=O({avgPool3dGrad_:vZ}),IZ={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>kZ(e,r,a,s,i,o)}}};function NZ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(hh,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var SZ=O({avgPoolGrad_:NZ}),TZ={kernelName:es,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>SZ(e,r,a,s,i)}}},EZ={kernelName:ts,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>He(e,a,!1,!0),b:()=>He(r,e,!0,!1)}:!s&&i?{a:()=>He(e,a,!1,!1),b:()=>He(e,r,!0,!1)}:s&&!i?{a:()=>He(a,e,!1,!0),b:()=>He(r,e,!1,!1)}:{a:()=>He(a,e,!0,!0),b:()=>He(e,r,!0,!0)}}},CZ={kernelName:tu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>zu(e,r,a)}}},RZ={kernelName:kg,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},FZ={kernelName:ns,gradFunc:e=>({x:()=>e.clone()})},MZ={kernelName:rs,gradFunc:e=>({x:()=>Ve(e)})},$Z={kernelName:xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>xn(ar(Ea(r,a),ti(r,s)),e,Ve(e))}}},OZ={kernelName:nu,inputsToSave:["x"],gradFunc:Yb.gradFunc},DZ={kernelName:Ki,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=er(a,t[0].shape)[0],i=r.map(o=>o[s]);return Jt(e,i,s).map(o=>()=>o)}},zZ={kernelName:as,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Na(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>vf(r.shape,e,a,i,o,l),filter:()=>Jf(r,e,a.shape,i,o,l)}}},PZ={kernelName:ss,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Yr(e,a,s,i,o,1,l),filter:()=>Jf(e,r,a.shape,s,i,o,l)}}};function LZ(e,t,n,r,a){let s=e;e.rank===4&&(s=j(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Ah,o,l)}var WZ=O({conv3DBackpropFilter_:LZ}),BZ={kernelName:ru,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Na(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>S5(i.shape,e,o,a,s),filter:()=>WZ(i,e,o.shape,a,s)}}},VZ={kernelName:is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(_t(Ad(me(n,"float32"))),e)}}},UZ={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(yd(me(n,"float32")),e)}}},HZ={kernelName:os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=P5([a],r.rank),l=rd(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},jZ={kernelName:ls,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Na(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Cr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Bt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Q5(l.shape,e,u,a,s,r,i),filter:()=>J5(l,e,u.shape,a,s,r,i)}}},GZ={kernelName:au,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(bh,s,n),filter:()=>$.runKernel(vh,i,n)}}},qZ={kernelName:Qi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(kh,r)}}},XZ={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(jn(_t(it(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,r)}}},KZ={kernelName:cs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},ZZ={kernelName:no,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>j(e,n.shape)}}},YZ={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,jn(n))}}},JZ={kernelName:hs,gradFunc:e=>({x:()=>Ve(e)})},QZ={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=ge(e,me(r,"float32")),i=Dt(n.shape,a);return i.length>0?j(Se(s,i),n.shape):s},b:()=>{let s=P(e,me(n,"float32")),i=Dt(r.shape,a);i.length>0&&(s=j(Se(s,i),r.shape));let o=it(r);return _t(ge(s,me(o,"float32")))}}}},eY={kernelName:ps,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?be(1):o,u=Dt(s.shape,a.shape),c=[];if(s.rank===1){for(let f=0;f<a.shape.length-1;++f)c.push(a.shape[f]);c.push(1)}let h=Ae(a,s),d=P(e,l),p=fd(se(i,be(r))),m=P(P(P(p,p),p),be(-.5));return{x:()=>s.rank===1?j(P(P(e,Ta(j(p,[1,1,1,s.shape[0]]),c)),l),a.shape):j(P(P(e,p),l),a.shape),mean:()=>{let f=P(P(p,be(-1)),d);return s.rank===1&&(f=Se(f,u)),j(f,s.shape)},variance:()=>{let f=P(P(m,h),d);return s.rank===1&&(f=Se(f,u)),j(f,s.shape)},scale:()=>{let f=P(h,p),A=P(e,f);return s.rank===1&&(A=Se(A,u)),j(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,u)),j(f,s.shape)}}}},tY={kernelName:so,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=er(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Jb(0,c),m=Jb(c+1,c+1+d),f=Qb([u,[l],h]),A=j(e,f),y=j(a,[l]),g=Qb([[c],p,m]),_=nt(A,g),b=Xf(_,y,r.shape[i]),w=Mf(g);return b=nt(b,w),b},indices:()=>a}}};function Jb(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Qb(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var nY={kernelName:fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Ve(n),b:()=>Ve(r)}}},rY={kernelName:ms,gradFunc:e=>({x:()=>me(e,"float32")})},aY={kernelName:lo,gradFunc:e=>({x:()=>Ve(e)})},sY={kernelName:uo,gradFunc:e=>({x:()=>Ve(e)})},iY={kernelName:co,gradFunc:e=>({x:()=>Ve(e)})},oY={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=rr(r,0);return{x:()=>xn(s,e,P(e,a))}}},lY={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(n,1))}}},uY={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,me(n,"float32"))}}},cY={kernelName:Ig,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=jn(r);return Ae(e,P(Se(e,a,s),i))}}}};function hY(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Eh,o,l)}var dY=O({localResponseNormalizationBackprop_:hY}),pY={kernelName:lu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>dY(r,a,e,s,i,o,l)}}};function e3(e,t,n,r){return t.rank<n.rank&&(t=j(t,ni(t.shape,r))),e.rank<n.rank&&(e=j(e,ni(e.shape,r))),{x:()=>P(e,me(Sa(n,t),e.dtype))}}var t3={kernelName:gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=er(a,s.shape),l=e3(e,i,s,o);return{x:()=>l.x()}}},fY={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,me(Ea(n,r),"float32")),b:()=>P(e,me(sd(n,r),"float32"))}}};function mY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),u=R(n,"output","maxPool3dGrad"),c=o,h=l,d=u,p=!1;l.rank===4&&(p=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=j(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=j(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Bt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:c,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(Rh,m,f);return p?j(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var AY=O({maxPool3dGrad_:mY}),yY={kernelName:uu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>AY(e,r,a,s,i,o,l)}}};function gY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),u=R(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Bt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Ch,c,h)}var xY=O({maxPoolGrad_:gY}),wY={kernelName:ws,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>xY(e,r,a,s,i,o)}}},_Y={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=er(a,r.shape),i=z5(r.shape,s)[1],o=Mt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=j(e,l);return ge(P(u,Mr(r.shape,"float32")),o)}}}},bY={kernelName:bs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=er(a,s.shape),l=e3(e,i,s,o);return{x:()=>l.x()}}},vY={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,me(ti(n,r),"float32")),b:()=>P(e,me(rr(n,r),"float32"))}}},kY={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ce(e,s,r.shape)}}},IY={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=Dt(n.shape,a);return s.length>0?j(Se(e,s),n.shape):e},b:()=>{let s=P(e,_t(rl(ge(n,r)))),i=Dt(r.shape,a);return i.length>0?j(Se(s,i),r.shape):s}}}},NY={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=P(e,me(r,"float32")),i=Dt(n.shape,a);return i.length>0?j(Se(s,i),n.shape):s},b:()=>{let s=P(e,me(n,"float32")),i=Dt(r.shape,a);return i.length>0?j(Se(s,i),r.shape):s}}}},SY={kernelName:yo,gradFunc:e=>({x:()=>_t(e)})},TY={kernelName:Is,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Et(n.shape,"float32")}}},EY={kernelName:bo,gradFunc:e=>({x:()=>Ve(e)})},CY={kernelName:vo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return sr(e,r).map(a=>()=>a)}},n3={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ce(e,s,r.shape)}}},RY={kernelName:Ss,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=mt(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=P(e,P(l,Qr(s,Ae(l,be(1))))),c=Dt(s.shape,o);return c.length>0&&(u=Se(u,c)),j(u,s.shape)},b:()=>{let l=rr(s,0),u=xn(l,En(s),Ve(s)),c=P(e,P(a,u)),h=Dt(i.shape,o);return h.length>0&&(c=Se(c,h)),j(c,i.shape)}}}},FY={kernelName:Ts,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=rr(n,0);return{x:()=>xn(a,e,P(e,r)),alpha:()=>{let s=xn(a,Ve(e),P(e,n)),i=Dt(r.shape,e.shape);return i.length>0&&(s=Se(s,i)),j(s,r.shape)}}}},MY={kernelName:us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=ge(e,me(r,"float32")),i=Dt(n.shape,a);return i.length>0?j(Se(s,i),n.shape):s},b:()=>{let s=P(e,me(n,"float32")),i=Dt(r.shape,a);i.length>0&&(s=j(Se(s,i),r.shape));let o=it(r);return _t(ge(s,me(o,"float32")))}}}},$Y={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,_t(it(n)))}}},OY={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(ti(n,6),ul(n));return{x:()=>P(e,me(r,"float32"))}}},DY={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,me(ul(n),"float32"))}}},zY={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,n.shape)}}},PY={kernelName:Cs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Dh,a,n)}}},LY={kernelName:du,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Oh,a,n)}}},WY={kernelName:Fs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=er(r,e.shape);return{x:()=>Rn(e,a)}}},BY={kernelName:Ms,gradFunc:e=>({x:()=>Ve(e)})},VY={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(ge(e,P(Qr(n,1.5),2)))}}},UY={kernelName:To,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>me(Ve(n),"float32"),t:()=>P(e,me(n,e.dtype)),e:()=>P(e,me(Ou(n),e.dtype))}}},HY={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=rr(n,be(0)),a=be(cx),s=be(hx),i=P(e,s),o=P(P(e,a),jn(me(n,"float32")));return xn(r,i,o)}}}},jY={kernelName:Ds,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,Ae(be(1),n)))}}},GY={kernelName:Fo,gradFunc:e=>({x:()=>Ve(e)})},qY={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Fu(me(n,"float32")),e)}}},XY={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(nd(me(n,"float32")),e)}}},KY={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=u5(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>Jr(e,u)}}},ZY={kernelName:Ls,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=P(e,r);return{logits:()=>Ae(i,P(Se(i,[a],s),r))}}},YY={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Sn(n))}}},r3={kernelName:pu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Cu(e,r,a)}}},a3={kernelName:$o,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},JY={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,P(Qt(me(n,"float32")),2))}}},QY={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(me(n,"float32"),2))}}},eJ={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=be(2);return{a:()=>P(e,P(a,Ae(n,r))),b:()=>P(e,P(a,Ae(r,n)))}}},tJ={kernelName:_a,gradFunc:e=>({x:()=>Ve(e)})},nJ={kernelName:Bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=e,i=Dt(n.shape,a);return i.length>0&&(s=Se(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Dt(r.shape,a);return i.length>0&&(s=Se(s,i)),j(_t(s),r.shape)}}}},rJ={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;er(s,r.shape).forEach(l=>{a[l]=1});let i=j(e,a),o=P(i,Mr(r.shape,"float32"));return{x:()=>o}}},aJ={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,it(Fu(n)))}}},sJ={kernelName:Vs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Ae(be(1),it(n)),e)}}},iJ={kernelName:wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Ve(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=se(s,Ce(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=se(s,Ce(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=se(s,Ce(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=se(s,Ce(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},oJ={kernelName:Us,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Mf(a);return{x:()=>nt(e,s)}}},lJ={kernelName:Po,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Fn(e,a)}}},cJ={kernelName:mu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>uJ(e,n)}}};function uJ(e,t){let n=Fr(t,Ve(t)),r=ei(e,n),a=Ea(t,be(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Tn(a,o+1);a=ar(a,Mr(r.shape,"bool"));let i=Ve(r);return xn(a,r,i)}var hJ={kernelName:Lo,gradFunc:e=>({x:()=>Ve(e)})},dJ=[Yb,dZ,pZ,fZ,mZ,AZ,yZ,gZ,xZ,wZ,_Z,bZ,IZ,TZ,EZ,CZ,RZ,FZ,MZ,$Z,OZ,DZ,PZ,zZ,BZ,VZ,UZ,HZ,jZ,GZ,MY,qZ,XZ,KZ,ZZ,YZ,QZ,JZ,eY,tY,nY,rY,aY,sY,iY,oY,lY,uY,cY,pY,t3,t3,fY,yY,wY,_Y,bY,vY,kY,IY,NY,SY,TY,EY,CY,n3,n3,RY,FY,$Y,OY,DY,zY,PY,LY,WY,BY,VY,UY,HY,jY,GY,qY,XY,KY,ZY,YY,r3,r3,a3,a3,JY,eJ,QY,tJ,nJ,rJ,aJ,sJ,iJ,oJ,lJ,cJ,hJ];for(let e of dJ)Ng(e);var s3={};De(s3,{maxNorm:()=>pJ,minMaxNorm:()=>AJ,nonNeg:()=>mJ,unitNorm:()=>fJ});var Bm;function zt(){return Bm==null&&(Bm=A5().epsilon()),Bm}function gr(){return"channelsLast"}var ra=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ra.prototype)}},xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},V=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,V.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},i3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,i3.prototype)}};function fi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Pr(e,t){if(!e)throw new i3(t)}function o3(e,t){let n=0;for(let r of e)r===t&&n++;return n}function vn(e){return e.length===1?e[0]:e}function dt(e){return Array.isArray(e)?e:[e]}function aa(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function mi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var or={};function Vm(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Um(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Um(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:Um(r))}}}function oc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in or)i=or[s];else if(i=t[s],i==null)throw new V(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${r}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in or?[o,l]=or.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(or))u[p]=or[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},or);for(let p of Object.keys(n))or[p]=n[p];Um(s.config);let d=l(o,s.config,n,a);return or=Object.assign({},h),d}else{let u=Object.assign({},or);for(let h of Object.keys(n))or[h]=n[h];let c=new o(s.config);return or=Object.assign({},u),c}}}function yJ(e,t){return e<t?-1:e>t?1:0}function cp(e,t){return-1*yJ(e,t)}function Oa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function gJ(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ai(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Hm(e,t,n=0,r=Infinity){return Pr(n>=0),Pr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function jt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>jt(n,`element ${r+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${l3(e)}.`)}function l3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>l3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function xJ(e,t){let n=v.now(),r;return(...a)=>{let s=v.now();return s-n<t||(n=s,r=e(...a)),r}}function u3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function jm(e,t){return B(()=>Qt(Se(P(e,e),t,!0)))}var lc=class extends re.Serializable{getConfig(){return{}}},Gm=class extends lc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=jm(e,this.axis),n=gn(t,0,this.maxValue);return P(e,ge(n,se(zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Gm.className="MaxNorm";re.registerClass(Gm);var qm=class extends lc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>ge(e,se(zt(),jm(e,this.axis))))}getConfig(){return{axis:this.axis}}};qm.className="UnitNorm";re.registerClass(qm);var Xm=class extends lc{apply(e){return $r(e)}};Xm.className="NonNeg";re.registerClass(Xm);var Km=class extends lc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=jm(e,this.axis),n=se(P(this.rate,gn(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,ge(n,se(zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Km.className="MinMaxNorm";re.registerClass(Km);var c3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return Vm(e)}function h3(e,t={}){return oc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in c3?c3[e]:e,config:{}};return h3(t)}else return e instanceof lc?e:h3(e)}function pJ(e){return new Gm(e)}function fJ(e){return new qm(e)}function mJ(){return new Xm}function AJ(e){return new Km(e)}var d3={};De(d3,{constant:()=>bJ,glorotNormal:()=>EJ,glorotUniform:()=>TJ,heNormal:()=>CJ,heUniform:()=>RJ,identity:()=>NJ,leCunNormal:()=>FJ,leCunUniform:()=>MJ,ones:()=>_J,orthogonal:()=>$J,randomNormal:()=>kJ,randomUniform:()=>vJ,truncatedNormal:()=>IJ,varianceScaling:()=>SJ,zeros:()=>wJ});var OJ=["channelsFirst","channelsLast"],DJ=["nearest","bilinear"],zJ=["valid","same","causal"],PJ=["max","avg"],LJ=["sum","mul","concat","ave"],Sl=new Map;function St(e){Ai(OJ,"DataFormat",e)}function WJ(e){Ai(DJ,"InterpolationFormat",e)}function Kn(e){Ai(zJ,"PaddingMode",e)}function p3(e){Ai(PJ,"PoolMode",e)}var uc=[],f3="/";function yi(e,t){uc.push(e);try{let n=t();return uc.pop(),n}catch(n){throw uc.pop(),n}}function BJ(){return uc.length===0?"":uc.join(f3)+f3}function A3(e){if(!m3(e))throw new Error("Not a valid tensor name: '"+e+"'");return BJ()+e}function y3(e){if(!m3(e))throw new Error("Not a valid tensor name: '"+e+"'");Sl.has(e)||Sl.set(e,0);let t=Sl.get(e);if(Sl.set(e,Sl.get(e)+1),t>0){let n=`${e}_${t}`;return Sl.set(n,1),n}else return e}var VJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function m3(e){return!!e.match(VJ)}function UJ(e){return e===parseInt(e.toString(),10)}function Da(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function g3(e){return e=Array.isArray(e)?new Float32Array(e):e,Ut(e)}function Tl(e){return sl(g3(e)).dataSync()[0]}function za(e){return Gn(g3(e)).dataSync()[0]}function wr(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function cc(e,t){return e.asType(t)}function hc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function HJ(e,t){return B(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=hc(e,1);return Zm(n,[1,t,1])})}function jJ(e){let t=[Da(e.shape)];return e.reshape(t)}function GJ(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Da(e.shape,1)];return e.reshape(t)}function gi(e,t,n){return B(()=>{switch(e.rank){case 1:return gd(e,t,n);case 2:return Hf(e,[t,0],[n,e.shape[1]]);case 3:return xd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Wu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ce(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ce(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Ym(e,t,n){return B(()=>{switch(e.rank){case 1:return gd(e,t,n);case 2:return Hf(e,[0,t],[e.shape[0],n]);case 3:return xd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Wu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function hp(e,t,n,r){return B(()=>{switch(e.rank){case 1:return gd(e,t,n);case 2:switch(r){case 1:return gi(e,t,n);case 2:return Ym(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return gi(e,t,n);case 2:return xd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Ym(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return gi(e,t,n);case 2:return Wu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Wu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Ym(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Jm(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function x3(e,t){switch(e.rank){case 1:return k5([e,t]);case 2:return el([e,t],0);case 3:return I5([e,t],0);case 4:return N5([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Zm(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ta(e,t)}function dp(e,t=0,n=1,r,a){return U5(e,t,n,r,a)}function Lr(e,t,n,r){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ra.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?Qm(e.rank,r,gr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Ra.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?Qm(e.rank,r,gr()):null,activation:n}).reshape(h)}}function w3(e,t,n){return B(()=>(Array.isArray(t)?t=Ut(t,"int32"):t=t.toInt(),ei(e,t,n)))}function dc(e){return P(e,e)}function Qm(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Wr(e,t,n){return B(()=>(n==null&&(n=gr()),St(n),e.add(Qm(e.rank,t,n))))}function qJ(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return nl(e)}function XJ(e){return B(()=>ge(e,Ot(e).add(1)))}function _3(e,t,n,r){return B(()=>Z5(e,t,n,r))}function KJ(e){return B(()=>{let t=se(.5,P(.2,e));return gn(t,0,1)})}function pc(e,t,n=!1){return n?e():t()}var ZJ=["fanIn","fanOut","fanAvg"],YJ=["normal","uniform","truncatedNormal"];function JJ(e){Ai(ZJ,"FanMode",e)}function QJ(e){Ai(YJ,"Distribution",e)}var lr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},eA=class extends lr{apply(e,t){return Et(e,t)}};eA.className="Zeros";re.registerClass(eA);var pp=class extends lr{apply(e,t){return Mr(e,t)}};pp.className="Ones";re.registerClass(pp);var tA=class extends lr{constructor(e){super();if(typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return B(()=>P(be(this.value),Mr(e,t)))}getConfig(){return{value:this.value}}};tA.className="Constant";re.registerClass(tA);var nA=class extends lr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ol(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};nA.className="RandomUniform";re.registerClass(nA);var rA=class extends lr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return dp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};rA.className="RandomNormal";re.registerClass(rA);var aA=class extends lr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return bd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};aA.className="TruncatedNormal";re.registerClass(aA);var sA=class extends lr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return B(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Cf(e[0]))})}getConfig(){return{gain:this.gain}}};sA.className="Identity";re.registerClass(sA);function eQ(e,t="channelsLast"){let n,r;if(St(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Da(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Da(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Da(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var kn=class extends lr{constructor(e){super();if(e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,JJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,QJ(this.distribution),this.seed=e.seed}apply(e,t){let n=eQ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return bd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return ol(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};kn.className="VarianceScaling";re.registerClass(kn);var fp=class extends kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return kn.className}};fp.className="GlorotUniform";re.registerClass(fp);var mp=class extends kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return kn.className}};mp.className="GlorotNormal";re.registerClass(mp);var Ap=class extends kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return kn.className}};Ap.className="HeNormal";re.registerClass(Ap);var yp=class extends kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return kn.className}};yp.className="HeUniform";re.registerClass(yp);var gp=class extends kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return kn.className}};gp.className="LeCunNormal";re.registerClass(gp);var xp=class extends kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return kn.className}};xp.className="LeCunNormal";re.registerClass(xp);var iA=class extends lr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return B(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=dp(n,0,1,"float32"),a=ux.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),P(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};iA.className="Orthogonal";re.registerClass(iA);var b3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function v3(e,t={}){return oc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function vt(e){return Vm(e)}function yt(e){if(typeof e=="string"){let t=e in b3?b3[e]:e;if(t==="GlorotNormal")return new mp;if(t==="GlorotUniform")return new fp;if(t==="HeNormal")return new Ap;if(t==="HeUniform")return new yp;if(t==="LeCunNormal")return new gp;if(t==="LeCunUniform")return new xp;{let n={};return n.className=t,n.config={},v3(n)}}else return e instanceof lr?e:v3(e)}function wJ(){return new eA}function _J(){return new pp}function bJ(e){return new tA(e)}function vJ(e){return new nA(e)}function kJ(e){return new rA(e)}function IJ(e){return new aA(e)}function NJ(e){return new sA(e)}function SJ(e){return new kn(e)}function TJ(e){return new fp(e)}function EJ(e){return new mp(e)}function CJ(e){return new Ap(e)}function RJ(e){return new yp(e)}function FJ(e){return new gp(e)}function MJ(e){return new xp(e)}function $J(e){return new iA(e)}var k3={};De(k3,{Layer:()=>je,RNN:()=>Br,RNNCell:()=>fc,activation:()=>AQ,add:()=>IQ,alphaDropout:()=>lee,average:()=>NQ,averagePooling1d:()=>oA,averagePooling2d:()=>lA,averagePooling3d:()=>uA,avgPool1d:()=>OQ,avgPool2d:()=>zQ,avgPool3d:()=>LQ,avgPooling1d:()=>DQ,avgPooling2d:()=>PQ,avgPooling3d:()=>WQ,batchNormalization:()=>FQ,bidirectional:()=>eee,concatenate:()=>SQ,conv1d:()=>lQ,conv2d:()=>uQ,conv2dTranspose:()=>cQ,conv3d:()=>hQ,convLstm2d:()=>ZQ,convLstm2dCell:()=>YQ,cropping2D:()=>pQ,dense:()=>yQ,depthwiseConv2d:()=>mQ,dot:()=>RQ,dropout:()=>gQ,elu:()=>nQ,embedding:()=>kQ,flatten:()=>wQ,gaussianDropout:()=>oee,gaussianNoise:()=>iee,globalAveragePooling1d:()=>BQ,globalAveragePooling2d:()=>VQ,globalMaxPool1d:()=>nee,globalMaxPool2d:()=>ree,globalMaxPooling1d:()=>N3,globalMaxPooling2d:()=>S3,gru:()=>HQ,gruCell:()=>jQ,input:()=>I3,inputLayer:()=>tQ,layerNormalization:()=>MQ,leakyReLU:()=>aQ,lstm:()=>GQ,lstmCell:()=>qQ,masking:()=>uee,maxPool1d:()=>aee,maxPool2d:()=>see,maxPooling1d:()=>T3,maxPooling2d:()=>E3,maxPooling3d:()=>UQ,maximum:()=>TQ,minimum:()=>EQ,multiply:()=>CQ,permute:()=>vQ,prelu:()=>sQ,reLU:()=>rQ,repeatVector:()=>_Q,reshape:()=>bQ,rnn:()=>JQ,separableConv2d:()=>dQ,simpleRNN:()=>XQ,simpleRNNCell:()=>KQ,softmax:()=>iQ,spatialDropout1d:()=>xQ,stackedRNNCells:()=>QQ,thresholdedReLU:()=>oQ,timeDistributed:()=>tee,upSampling2d:()=>fQ,zeroPadding2d:()=>$Q});var cee=0;function C3(){return cee++}var wp={};function _p(e=""){return e in wp||(wp[e]=0),wp[e]+=1,e+wp[e].toString()}function cA(e){return Array.isArray(e)&&Array.isArray(e[0])}function bp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function lt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function vp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var R3="Variable",F3=class{constructor(e,t="float32",n=R3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=C3(),n=n==null?R3:n,this.originalName=A3(n),this.name=y3(this.originalName),this.trainable_=r,this.constraint=a,this.val=j5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),hee(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function hee(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function hA(e){return e.map(t=>t.read())}function dA(e){e.forEach(t=>{t[0].write(t[1])})}var Gt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},_r=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=C3(),s!=null&&(this.originalName=A3(s),this.name=y3(this.originalName)),this.rank=t.length}},dee=0,kp=class{constructor(e,t){this.callArgs=t,this.id=dee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},pee=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=pee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=aa(n)+"_"+_p(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new xr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return vn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return vn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ra(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ra(`Layer ${this.name} is not connected, no input to return.`);return vn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ra(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ra(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return vn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=dt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=dt(e),r=!0;for(let s of n)if(!(s instanceof _r)){r=!1;break}let a=!0;for(let s of n)if(s instanceof _r){a=!1;break}if(r===a)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return yi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of dt(e))s.push(i.shape);this.build(vn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=dt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=vn(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=fee(e),i=this.computeOutputShape(s),o,l=mee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new _r(l,u,this,dt(e),t,this.name,c)):o=new _r(l,i,this,dt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ra(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ra(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new xr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return vp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return hA(e?this.trainableWeights:this.weights)}setWeights(e){B(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=hA(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}dA(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=yt("zeros"));let o=r.apply(t,n),l=new F3(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=dt(e);t=dt(t),n=dt(n),r=dt(r),a=bp(a),s=bp(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new kp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function fee(e){e=dt(e);let t=[];for(let n of e)t.push(n.shape);return vn(t)}function mee(e){return"float32"}function M3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=M3(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var El=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:_p("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new _r(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new kp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};El.className="InputLayer";re.registerClass(El);function $3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new El({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Pa(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Ee(r)}}function O3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var D3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(D3||(D3={}));var Aee=125,Cl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},z3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},yee=class extends Cl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=B(()=>se(this.totals[r],P(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:B(()=>{let r=P(ge(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},P3=class extends Cl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},L3=class extends Cl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=Aee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=xJ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Pa(n),r.push(this.yield(e,t,n))),r.push(Od()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Pa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Pa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Od()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Pa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Pa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Od()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Pa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Pa(e),await this.trainEnd(e))}};function W3(e,t){return e==null&&(e={}),e instanceof Cl?[e]:Array.isArray(e)&&e[0]instanceof Cl?e:dt(e).map(n=>new L3(n,t))}var ur=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ur.checkForDuplicate(t),ur.constructors[e]==null&&(ur.constructors[e]=[]),ur.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ur.constructors)ur.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){ur.constructors={}}static createCallbacks(e){let t=[];for(let n in ur.constructors){let r=+n;e>=r&&t.push(...ur.constructors[r])}return t.map(n=>new n)}};ur.constructors={};function B3(e,t,n,r,a,s,i,o,l){let u=new P3,c=[new yee,...ur.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new z3(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function br(e,t={},n=!1){return oc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Ip(e,t){return B(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(dc(e),t,!0),r=Mu(n.shape,zt()),a=Qt(Fr(n,r));return ge(e,a)})}function xi(e,t){return B(()=>bt(dc(Ae(t,e)),-1))}function Np(e,t){return B(()=>bt(Ot(Ae(t,e)),-1))}function Rl(e,t){return B(()=>{let n=Ae(e,t),r=gn(Ot(e),zt(),Number.MAX_VALUE),a=Ot(ge(n,r));return P(100,bt(a,-1))})}function gee(e,t){return B(()=>{let n=gn(t,zt(),Number.MAX_VALUE),r=En(se(1,n)),a=gn(e,zt(),Number.MAX_VALUE),s=En(se(1,a));return bt(dc(Ae(r,s)),-1)})}function xee(e,t){return B(()=>{let n=Fr(0,Ae(1,P(e,t)));return bt(dc(n),-1)})}function wee(e,t){return B(()=>{let n=Fr(0,Ae(1,P(e,t)));return bt(n,-1)})}function _ee(e,t){return B(()=>{let n=Se(P(e,t),-1),r=Gn(P(Ae(1,e),t),-1);return Fr(0,se(1,Ae(r,n)))})}function bee(e,t){return B(()=>{let n=Math.log(2),r=Ae(t,e),a=Ae(se(r,al(P(-2,r))),n);return bt(a,-1)})}function mc(e,t,n=!1){return B(()=>{if(n)t=Bu(t);else{let r=Se(t,t.shape.length-1,!0);t=ge(t,r)}return t=gn(t,zt(),1-zt()),_t(Se(P(e.toFloat(),En(t)),t.shape.length-1))})}function Sp(e,t,n=!1){return B(()=>{let r=rl(jJ(e)).toInt();t=gn(t,zt(),1-zt());let a=t.shape,s=qo(r,a[a.length-1]).reshape(a);return mc(s,t,n)})}function vee(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Tp(e,t){return B(()=>{let n;return n=gn(t,zt(),1-zt()),n=En(ge(n,Ae(1,n))),bt(vee(e,n),-1)})}function kee(e,t){return B(()=>{let n=gn(e,zt(),1),r=gn(t,zt(),1);return Se(P(e,En(ge(n,r))),-1)})}function Iee(e,t){return B(()=>{let n=En(se(zt(),t));return bt(Ae(t,P(e,n)),-1)})}function pA(e,t){return B(()=>{let n=Ip(e,-1),r=Ip(t,-1),a=P(n,r);return _t(Se(a,-1))})}var Ep={meanSquaredError:xi,meanAbsoluteError:Np,meanAbsolutePercentageError:Rl,meanSquaredLogarithmicError:gee,squaredHinge:xee,hinge:wee,categoricalHinge:_ee,logcosh:bee,categoricalCrossentropy:mc,sparseCategoricalCrossentropy:Sp,binaryCrossentropy:Tp,kullbackLeiblerDivergence:kee,poisson:Iee,cosineProximity:pA};function fA(e){if(typeof e=="string"){if(e in Ep)return Ep[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function mA(e,t){return B(()=>{let n=P(.5,Cn(t)),r=cc(rr(t,n),e.dtype);return bt(Sa(e,r),-1)})}function AA(e,t){return B(()=>cc(Sa(Su(e,-1),Su(t,-1)),"float32"))}function V3(e,t){return B(()=>ar(e.equal(1),t.equal(1)).sum().cast("float32"))}function Nee(e,t){return B(()=>ar(e.equal(1),t.equal(0)).sum().cast("float32"))}function See(e,t){return B(()=>ar(e.equal(0),t.equal(1)).sum().cast("float32"))}function U3(e,t){return B(()=>{let n=V3(e,t),r=See(e,t),a=n.add(r);return xn(rr(a,0),n.div(a),0).cast("float32")})}function Tee(e,t){return B(()=>{let n=V3(e,t),r=Nee(e,t),a=n.add(r);return xn(rr(a,0),n.div(a),0).cast("float32")})}function H3(e,t){return Tp(e,t)}function j3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Sa(e,t).asType("float32")}var Eee=xi,Cee=xi,Ree=Np,Fee=Np,Mee=Rl,$ee=Rl,yA=mc,Oee=pA,G3=Sp,Cp={binaryAccuracy:mA,categoricalAccuracy:AA,precision:U3,categoricalCrossentropy:yA,sparseCategoricalCrossentropy:G3,mse:Eee,MSE:Cee,mae:Ree,MAE:Fee,mape:Mee,MAPE:$ee,cosine:Oee};function Dee(e){if(typeof e=="string"&&e in Cp)return Cp[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Rp(e){if(Pr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Ep))if(Ep[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Cp))if(Cp[n]===e){t=n;break}return t!==void 0?t:e.name}}function zee(e){let t={Adagrad:()=>si.adagrad(.01),Adadelta:()=>si.adadelta(1,.95,zt()),Adam:()=>si.adam(.001,.9,.999,zt()),Adamax:()=>si.adamax(.002,.9,.999,zt(),0),RMSProp:()=>si.rmsprop(.001,.9,0,zt()),SGD:()=>si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}var q3=1*1024*1024;function X3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!gA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>q3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${q3}.`)}}function gA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!gA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!gA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Vee(e,t,n,r=console.log){let a=Lee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),Fp(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?Wee(o[c],n,r):Bee(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Pee(e),u=vp(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function Pee(e){let t;return e.collectedTrainableWeights!=null?t=vp(e.collectedTrainableWeights):t=vp(e.trainableWeights),t}function Lee(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Fp(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Wee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Fp(i,t,n)}function Bee(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],m=c.tensorIndices[h];s.push(`${d}[${p}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];Fp(u,t,r);for(let c=1;c<s.length;++c)Fp(["","","",s[c]],t,r)}function K3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Ac(e,t){if(e===null)return null;if(typeof e=="string")return mi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];K3(t,a,s)?n.push(s):n.push(Ac(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=mi(r);n[s]=Ac(a,s)}}return n}}function xA(e,t){if(e==null)return null;if(typeof e=="string")return aa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];K3(t,a,s)?n.push(s):n.push(xA(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=aa(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=xA(a,r)}return n}}var wA="3.2.0";function Uee(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var wi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof wi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Uee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof _r){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof _r){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},_A={},Z3={};function yc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(_A[c]==null){let m=Hee(i,t);h=m.sorted,d=m.recipientCounts,_A[c]=h,Z3[c]=d}h=_A[c],d={},a||Object.assign(d,Z3[c]);let p=new wi(t);for(let m=0;m<h.length;++m){if(r!=null){let E=Zh().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let f=h[m],A=f.sourceLayer;if(A instanceof El)continue;let y=[],g=[],_=[],b=!1;for(let E of f.inputs){let M=p.getValue(E),D=p.getMask(E);y.push(M),g.push(D),D!=null&&(b=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&_.push(M))}b&&(n=n||{},n.mask=g[0]);let w=dt(A.apply(y,n)),x=null;A.supportsMasking&&(x=A.computeMask(y,g));let N=jee(f),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],w[E],Array.isArray(x)?x[0]:x);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=w[E])}a||Ee(_)}return p.disposeMasks(),s?l:l[0]}function Hee(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=Y3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Y3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Gee(r)}}function Gee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Y3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function jee(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Vr=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=_p(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Oa(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Oa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let g=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex;Pr(_===0,"input layer has >1 nodes"),Pr(b===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof El))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,_,b,w,x)=>{(b==null||w==null||x==null)&&(b=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex);let N=b.inboundNodes[w];if(_.indexOf(N)!==-1)throw new xr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Vr.nodeKey(b,w)),b.id in s||(s[b.id]=Object.keys(s).length),_.indexOf(N)===-1&&_.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],D=N.inboundLayers[E],L=N.nodeIndices[E],W=N.tensorIndices[E];o(M,g,_,D,L,W)}for(g.push(N);_.indexOf(N)>=0;)_.splice(_.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],_=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,_),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],x=y.nodeIndices[b],N=w.inboundNodes[x],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(cp);this.layers=[];for(let y of p){let g=d[y];g.sort((_,b)=>{let w=s[_.id],x=s[b.id];return w<x?-1:w>x?1:0});for(let _ of g)_ instanceof Vr&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(cp);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let _=g.outboundLayer;if(_!=null){for(let b of g.inputTensors)if(m.indexOf(b)===-1)throw new xr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${_.name}". The following previous layers were accessed without issue: ${f}`);for(let b of g.outputTensors)m.push(b);f.push(_.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(_=>_===y).length;if(g!==1)throw new xr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new kp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${r} weights are not set: ${s}`)}dA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${wA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=xA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return B(()=>{e=dt(e);let n=new wi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return yc(this.outputs,n,t)})}computeMask(e,t){return B(()=>{e=dt(e);let n;return t==null?n=fi(null,e.length):n=dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=bp(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(cp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let c=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,_=n[g];c.push(_)}let h=u.computeOutputShape(vn(c)),d=bp(h),p=u.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${u.name}_${p}_${m}`;n[f]=d[m]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Pr(o in n),a.push(n[o])}return vn(a)}runInternalGraph(e,t){t==null&&(t=fi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(cp);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(u.callArgs!=null&&(m=u.callArgs),p.length===1){let[_,b]=p[0];m.mask==null&&(m.mask=b),y=dt(c.call(_,m)),g=dt(c.computeMask(_,b)),f=[_],A=[b]}else f=p.map(_=>_[0]),A=p.map(_=>_[1]),m.mask==null&&(m.mask=A),y=dt(c.call(f,m)),g=dt(c.computeMask(f,A));if(c.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<d.length;++_){let b=d[_],w=y[_],x=g[_];n[b.id]=[w,x]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Pr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Vr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Vr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return B(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Vr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=Vr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let m=[];for(let f=0;f<h.inboundLayers.length;f++){let A=h.inboundLayers[f],y=h.nodeIndices[f],g=h.tensorIndices[f],_=Vr.nodeKey(A,y),b=t[_];b==null&&(b=0),m.push([A.name,b,g,p])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Vr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Vr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let _ of A){let b=_[0],w=_[1],x=_[2];if(g=_[3]==null?{}:_[3],!(b in a)){i(f,A);return}let N=a[b];if(N.inboundNodes.length<=w){i(f,A);return}let T=N.inboundNodes[w];y.push(T.outputTensors[x])}y.length>0&&f.apply(vn(y),g)}function l(f){let A=f.name,y=br(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,c=t.layers;for(let f of c)l(f);for(;!gJ(s);)for(let f of c){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];Pr(A in a);let _=a[A].inboundNodes[y].outputTensors;h.push(_[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Pr(A in a);let _=a[A].inboundNodes[y].outputTensors;d.push(_[g])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function qee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function J3(e,t){return qee(e,t,"classWeight")}async function Q3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=B(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Ee(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ut(i,"float32")}else return null}function Xee(e,t){return P(e,t)}var Kee=32;function t7(e,t){let n,r,a=t;n=a.xs,r=a.ys,v.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=e7("input",e.inputNames,n),i=e7("output",e.outputNames,r),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function e7(e,t,n){if(n instanceof Ze)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Zee(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Jee(e,t,n){let r=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(n7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Zee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=W3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=B3(c,h,n.epochs,null,null,Yee(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await d.onEpochBegin(m);let y=0,g=0;for(r||(f=await t.iterator());r?y<n.batchesPerEpoch:!0;){let _=await f.next();if(r&&_.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(_.value!=null){let{xs:b,ys:w}=t7(e,_.value),x={};x.batch=g,x.size=b[0].shape[0],await d.onBatchBegin(g,x);let N=[];if(n.classWeight!=null){let M=J3(n.classWeight,e.outputNames);for(let D=0;D<M.length;++D)N.push(await Q3(w[D],null,M[D]))}let T=b.concat(w).concat(N),E=o(T);Ee(T);for(let M=0;M<l.length;++M){let D=l[M],L=E[M];x[D]=L,Vt(L)}await d.onBatchEnd(g,x),O3(x),g++,y++}if(r?y>=n.batchesPerEpoch:_.done){if(a){let b;n7(n.validationData)?b=dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=dt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Kee:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)A[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,A),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Yee(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function n7(e){return typeof e.iterator=="function"}function Qee(e){return typeof e.next=="function"}async function ete(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");v.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Qee(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=B(()=>{if(u.value){let{xs:c,ys:h}=t7(e,u.value),d=c.concat(h),p=B(()=>a(d));if(Ee(d),l===0)for(let f=0;f<p.length;++f)s.push(be(0));let m=d[0].shape[0];for(let f=0;f<p.length;++f){let A=p[f],y=s[f];s[f]=B(()=>se(s[f],P(m,A))),l>0&&Ee(y)}Ee(p),o+=m,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=ge(s[u],o),Ee(c)}return vn(s)}function bA(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function gc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>gi(r,t,n-t)):gi(e,t,n-t)}function vA(e,t){return B(()=>e==null?null:Array.isArray(e)?e.map(n=>vA(n,t)):w3(e,t.dtype==="int32"?t:t.toInt()))}function kA(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function tte(e,t,n,r,a,s,i,o,l,u,c,h,d,p,m){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=wr(0,A)),i==null&&(i=1);let{callbackList:g,history:_}=B3(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=_,await g.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<s;++b){await g.onEpochBegin(b);let w={};if(p!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new $e("batch shuffling is not implemneted yet");c&&v.shuffle(y);let x=Ut(y),N=kA(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),B(()=>{let M=N[T][0],D=N[T][1],L=gi(x,M,D-M);E.batch=T,E.size=D-M;let W=vA(n,L),U=t(W);for(let H=0;H<r.length;++H){let X=r[H],G=U[H];E[X]=G,Vt(G)}if(T===N.length-1&&f){let H=e.testLoop(l,u,a);for(let X=0;X<r.length;++X){let G=r[X],ee=H[X];Vt(ee),w["val_"+G]=ee}}}),await g.onBatchEnd(T,E),O3(E),e.stopTraining_)break}x.dispose()}if(await g.onEpochEnd(b,w),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function nte(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;bA(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let m=!1,f;if(r.validationData!=null&&r.validationData.length>0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let x=!0,N=await e.standardizeUserData(i,o,null,null,x,h);l=N[0],u=N[1],f=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let x=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=gc(a,x,N),a=gc(a,0,x),u=gc(s,x,N),s=gc(s,0,x),f=l.concat(u)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),_,b;m?(e.makeTestFunction(),_=e.testFunction,b=g.slice().concat(g.map(x=>"val_"+x))):(_=null,f=[],b=g.slice());let w=W3(r.callbacks,r.yieldEvery);return await tte(e,y,A,g,h,r.epochs,r.verbose,w,_,f,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,_i(a,t),_i(s,n),_i(l,i),_i(u,o),c!=null&&Ee(c)}}function r7(e){let t=[];e instanceof Ze&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(hc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function _i(e,t){if(e==null)return;let n=[];if(t instanceof Ze)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Ze)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function rte(e){return e instanceof Ze}function IA(e){return Array.isArray(e)}function a7(e){return!rte(e)&&!IA(e)}function s7(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(IA(e)&&e.length>0)i=!0;else if(a7(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(a7(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(IA(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=r7(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function ate(e,t,n){let r=Oa(e.map(s=>s.shape[0]));r.sort();let a=Oa(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!v.arraysEqual(r,a))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function ste(e,t,n){let r=[xi,Tp,mc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===mc&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function i7(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function ite(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var ote="layers-model",sa=class extends Vr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Vee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=zee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ta))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(fA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>fA(s))}else{let s=fA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],yi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=ite(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};yi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Tp?["accuracy","acc"].indexOf(d)!==-1?c=mA:["crossentropy","ce"].indexOf(d)!==-1&&(c=H3):this.lossFunctions[s]===Sp?["accuracy","acc"].indexOf(d)!==-1?c=j3:["crossentropy","ce"].indexOf(d)!==-1&&(c=G3):["accuracy","acc"].indexOf(d)!==-1?c=AA:["crossentropy","ce"].indexOf(d)!==-1&&(c=yA);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=c,u=l+f}else h=Dee(d),u=l+Rp(d);let p;yi(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;bA(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return vn(l)}finally{_i(s[0],e),_i(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),ete(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new V(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new wi;if(e instanceof Ze&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=yc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=fi(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return B(()=>{let r=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let a=kA(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)B(()=>{let o=a[i][0],l=a[i][1],u=gc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new wi(c);return yc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return vn(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=r7(e);i7(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return bA(r),this.predictLoop(n,r)}finally{_i(n,e)}}predictOnBatch(e){i7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new xr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Sp?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=s7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=s7(t,this.feedOutputNames,a,!1,"target"),ate(e,t,null),ste(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=J3(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await Q3(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return B(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new $e("Verbose mode is not implemented yet.");if(a!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=kA(s,n),l=Ut(wr(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=gi(l,c,h-c),p=vA(t,d),m=e(p);if(u===0)for(let f=0;f<m.length;++f)i.push(be(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],P(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=ge(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;o3(e,r)>1&&(a+=`_${o3(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new wi(u),h=yc(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let m=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(m=Xee(m,a[p]));let f=bt(m);t.push(f),p===0?d=m:d=se(d,m)}for(let p=0;p<this.metricsTensors.length;++p){let m;if(this.outputs.length>1&&p<this.outputs.length)m=t[p];else{let f=this.metricsTensors[p][0],A=this.metricsTensors[p][1];m=bt(f(r[A],h[A]))}Vt(m),s.push(m)}return d=bt(d),this.calculateLosses().forEach(p=>{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>B(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new wi(s),o=yc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=bt(u(a[l],o[l]));l===0?n=c:n=se(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=bt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return nte(this,e,t,n)}async fitDataset(e,t){return Jee(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),vn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Zh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Zh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=aa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>aa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=aa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[aa(Rp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>aa(Rp(e)));{let e={};for(let t in this.metrics)e[t]=aa(Rp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ac(e.optimizer_config),n=br(t),r;if(typeof e.loss=="string")r=mi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>mi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=mi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>mi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=mi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=yn.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await yn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:ote,generatedBy:`TensorFlow.js tfjs-layers v${wA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await yn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=yn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;X3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){X3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};sa.className="Model";re.registerClass(sa);var o7=class extends sa{};o7.className="Functional";re.registerClass(o7);async function lte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Ac(n),a=br(r,t);if(e.weightsManifest!=null){let s=await yn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Ee(s)}return a}async function cte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=yn.getLoadHandlers(e,t);if(n.length===0)n.push(yn.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return ute(e,void 0,t)}async function ute(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=br(Ac(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=hte(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Ee(u),Ee(c.map(h=>h.tensor))}return o}function hte(e,t){let n=yn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Fl=class extends sa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_p("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Fl||e instanceof sa,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=$3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=M3(this.outputs[0])}this.inboundNodes=[],new kp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(lt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new sa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Fl))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=br(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Fl.className="Sequential";re.registerClass(Fl);function dte(e){return new sa(e)}function pte(e){return new Fl(e)}function fte(e,t){return t==null&&(t={}),cte(e,t)}function I3(e){return $3(e)}function mte(e,t){ur.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},l7=class extends Dn{apply(e,t=1){return qJ(e,t)}};l7.className="elu";re.registerClass(l7);var u7=class extends Dn{apply(e){return md(e)}};u7.className="selu";re.registerClass(u7);var c7=class extends Dn{apply(e){return $r(e)}};c7.className="relu";re.registerClass(c7);var h7=class extends Dn{apply(e){return B(()=>il(6,$r(e)))}};h7.className="relu6";re.registerClass(h7);var d7=class extends Dn{apply(e){return e}};d7.className="linear";re.registerClass(d7);var p7=class extends Dn{apply(e){return Sn(e)}};p7.className="sigmoid";re.registerClass(p7);var f7=class extends Dn{apply(e){return KJ(e)}};f7.className="hardSigmoid";re.registerClass(f7);var m7=class extends Dn{apply(e){return al(e)}};m7.className="softplus";re.registerClass(m7);var A7=class extends Dn{apply(e){return XJ(e)}};A7.className="softsign";re.registerClass(A7);var y7=class extends Dn{apply(e){return Qo(e)}};y7.className="tanh";re.registerClass(y7);var NA=class extends Dn{apply(e,t=-1){return Bu(e,t)}};NA.className="softmax";re.registerClass(NA);var g7=class extends Dn{apply(e,t=-1){return ld(e,t)}};g7.className="logSoftmax";re.registerClass(g7);var x7=class extends Dn{apply(e,t=1){return B(()=>Sn(e.mul(t)).mul(e))}};x7.className="swish";re.registerClass(x7);function La(e){return e.getClassName()}function SA(e,t={}){return oc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Wa(e){if(e==null){let t={};return t.className="linear",t.config={},SA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},SA(t)}else return e instanceof Dn?e:SA(e)}function TA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var w7=class extends re.Serializable{},xc=class extends w7{constructor(e){super();TA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return B(()=>{let t=Et([1]);return this.hasL1&&(t=se(t,Se(P(this.l1,Ot(e))))),this.hasL2&&(t=se(t,Se(P(this.l2,dc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};xc.className="L1L2";re.registerClass(xc);function Ate(e){return TA(e),new xc({l1:e!=null?e.l1:null,l2:0})}function yte(e){return TA(e),new xc({l2:e!=null?e.l2:null,l1:0})}var _7={l1l2:"L1L2"};function ut(e){return Vm(e)}function b7(e,t={}){return oc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function gt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in _7?_7[e]:e,config:{}};return b7(t)}else return e instanceof w7?e:b7(e)}var EA=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=$r(e);return this.maxValue!=null&&(n=gn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};EA.className="ReLU";re.registerClass(EA);var CA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return $u(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};CA.className="LeakyReLU";re.registerClass(CA);var RA=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=yt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=gt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=lt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Gt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),Pu(e,this.alpha.read())}getConfig(){let e={alphaInitializer:vt(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};RA.className="PReLU";re.registerClass(RA);var FA=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};FA.className="ELU";re.registerClass(FA);var MA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return n.mul(cc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};MA.className="ThresholdedReLU";re.registerClass(MA);var $A=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new NA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};$A.className="Softmax";re.registerClass($A);function Ml(e,t,n){if(typeof e=="number")return fi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!UJ(a))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function vr(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Mp(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+za([n-t,0]);else if(r==="same")e=e*t;else throw new V(`Unsupport padding mode: ${r}.`);return e}function OA(e,t){return B(()=>(St(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function v7(e,t){return B(()=>(St(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function gte(e,t,n,r=1,a="valid",s,i=1){return B(()=>{if(s==null&&(s=gr()),St(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=ed(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Wr(o,n)),o})}function k7(e,t,n,r=[1,1],a="valid",s,i,o=null){return B(()=>{if(s==null&&(s=gr()),St(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=OA(e,s);if(a==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ra.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function xte(e,t,n,r=[1,1,1],a="valid",s,i){return B(()=>{if(s==null&&(s=gr()),St(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=v7(e,s);if(a==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=kf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Wr(o,n)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var DA=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",DA.verifyArgs(t),this.rank=e,jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ml(t.kernelSize,e,"kernelSize"),this.strides=Ml(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Kn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,St(this.dataFormat),this.activation=Wa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=yt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=gt(t.biasRegularizer),this.activityRegularizer=gt(t.activityRegularizer),this.dilationRate=Ml(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Pr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Hm(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:La(this.activation),useBias:this.useBias,biasInitializer:vt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},wc=class extends DA{constructor(e,t){super(e,t);this.kernel=null,wc.verifyArgs(t),this.filters=t.filters,jt(this.filters,"filters"),this.kernelInitializer=yt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=gt(t.kernelRegularizer)}build(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return B(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=u3(this.activation.getClassName());if(a!=null&&this.rank===2)n=k7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=gte(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=k7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=xte(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=lt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=vr(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:vt(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},_c=class extends wc{constructor(e){super(2,e);_c.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Hm(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};_c.className="Conv2D";re.registerClass(_c);var $p=class extends wc{constructor(e){super(3,e);$p.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};$p.className="Conv3D";re.registerClass($p);var zA=class extends _c{constructor(e){super(e);if(this.inputSpec=[new Gt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=lt(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Gt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{let n=ze(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Mp(o,h,u,this.padding),m=Mp(l,d,c,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=nt(n,[0,2,3,1]));let A=td(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=nt(A,[0,3,1,2])),this.bias!=null&&(A=Wr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=lt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Mp(t[r],o,s,this.padding),t[a]=Mp(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zA.className="Conv2DTranspose";re.registerClass(zA);var I7=class extends wc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=gt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=gt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=lt(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Gt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{e=ze(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),n=Vf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Wr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=nt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.pointwiseInitializer=vt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};I7.className="SeparableConv";var PA=class extends I7{constructor(e){super(2,e)}};PA.className="SeparableConv2D";re.registerClass(PA);var Op=class extends wc{constructor(e){super(1,e);Op.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Hm(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Op.className="Conv1D";re.registerClass(Op);var LA=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return B(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=hp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return hp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=hp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return hp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};LA.className="Cropping2D";re.registerClass(LA);var WA=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,WJ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return B(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=nt(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};WA.className="UpSampling2D";re.registerClass(WA);function wte(e,t,n=[1,1],r="valid",a,s){return B(()=>{a==null&&(a=gr()),St(a);let i=OA(e,a);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=tl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var BA=class extends DA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=yt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=gt(e.depthwiseRegularizer)}build(e){if(e=lt(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{e=ze(e);let n=wte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Wr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=vr(t,this.kernelSize[0],this.padding,this.strides[0]),s=vr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};BA.className="DepthwiseConv2D";re.registerClass(BA);function N7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function S7(e,t,n,r=!1,a,s,i=!1,o=!1){return B(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(wr(2,l));if(t=nt(t,u),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Tn(a,-1)),a=nt(a,u)),r&&(t=Rn(t,0),a!=null&&(a=Rn(a,0)));let c=[],h,d=n,p=t.shape[0],m=sr(t),f;a!=null&&(f=sr(a));for(let y=0;y<p;++y){let g=m[y],_=B(()=>e(g,d));if(a==null)h=_[0],d=_[1];else{let b=B(()=>{let w=f[y],x=Cn(w).sub(w),N=_[0].mul(w).add(d[0].mul(x)),T=d.map((E,M)=>_[1][M].mul(w).add(E.mul(x)));return{output:N,newStates:T}});h=b.output,d=b.newStates}o&&c.push(h)}let A;return o&&(A=Fn(c,1)),[h,A,d]})}var Br=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Dp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Gt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return wr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){cA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return B(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");cA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Gt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Gt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ra("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_=[Et([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_[0]=Et([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(a.shape,i))throw new V(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Vt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=N7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Gt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof _r){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=S7((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return B(()=>{let t=Et(e.shape);return t=Se(t,[1,2]),t=hc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Zm(t,[1,n]):t):this.cell.stateSize>1?[Zm(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Br.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=br(r,n);return new e(Object.assign(t,{cell:a}))}};Br.className="RNN";re.registerClass(Br);var fc=class extends je{},zp=class extends fc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=gt(e.kernelRegularizer),this.recurrentRegularizer=gt(e.recurrentRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Tl([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=lt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Lr(P(e,s),this.kernel.read()):a=Lr(e,this.kernel.read()),this.bias!=null&&(a=Wr(a,this.bias.read())),i!=null&&(n=P(n,i));let o=se(a,Lr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};zp.className="SimpleRNNCell";re.registerClass(zp);var VA=class extends Br{constructor(e){e.cell=new zp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};VA.className="SimpleRNN";re.registerClass(VA);var Pp=class extends fc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Wa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=gt(e.kernelRegularizer),this.recurrentRegularizer=gt(e.recurrentRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Tl([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=lt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let u=Lr(e,this.kernel.read());this.useBias&&(u=Wr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=Jt(c,[2*this.units,this.units],c.rank-1),p=Lr(r,h),[m,f,A]=Jt(u,3,u.rank-1),[y,g]=Jt(p,2,p.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let _=Lr(P(o,r),d);l=this.activation.apply(se(A,_));let b=se(P(i,r),P(se(1,_t(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),recurrentActivation:La(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Pp.className="GRUCell";re.registerClass(Pp);var UA=class extends Br{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Pp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};UA.className="GRU";re.registerClass(UA);var bc=class extends fc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Wa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=gt(e.kernelRegularizer),this.recurrentRegularizer=gt(e.recurrentRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Tl([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=lt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends lr{apply(i,o){let l=a.apply([s]),u=new pp().apply([s]),c=a.apply([s*2]);return x3(x3(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let h=Lr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,i[0])),h=se(h,Lr(r,this.recurrentKernel.read())),this.useBias&&(h=Wr(h,this.bias.read()));let[d,p,m,f]=Jt(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=se(P(l,a),P(o,this.activation.apply(m))),c=this.recurrentActivation.apply(f);let A=P(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),recurrentActivation:La(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};bc.className="LSTMCell";re.registerClass(bc);var HA=class extends Br{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new bc(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};HA.className="LSTM";re.registerClass(HA);var Dp=class extends fc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return B(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){cA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{yi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(br(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return hA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}dA(t)}};Dp.className="StackedRNNCells";re.registerClass(Dp);function Ba(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>_3(t(),n),i=()=>pc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var _te=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},T7=class extends Br{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Gt({ndim:5})]}call(e,t){return B(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return B(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Et(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ra("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_=[Et(a)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_[0]=Et(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Vt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=vr(l,r[0],a,s[0],i[0]),h=vr(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};T7.className="ConvRNN2D";var Lp=class extends bc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,jt(this.filters,"filters"),this.kernelSize=Ml(n,2,"kernelSize"),this.kernelSize.forEach(o=>jt(o,"kernelSize")),this.strides=Ml(r||1,2,"strides"),this.strides.forEach(o=>jt(o,"strides")),this.padding=a||"valid",Kn(this.padding),this.dataFormat=s||"channelsLast",St(this.dataFormat),this.dilationRate=Ml(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>jt(o,"dilationRate"))}build(e){var t;e=lt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends lr{apply(c,h){let d=l.apply([u]),p=Mr([u]),m=l.apply([u*2]);return Jm([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return B(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:P(ae[te],Y),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[_,b,w,x]=Jt(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?Jt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,_,N,this.padding),c=this.inputConv(c,b,T,this.padding),h=this.inputConv(h,w,E,this.padding),d=this.inputConv(d,x,M,this.padding);let[D,L,W,U]=Jt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,D),f=this.recurrentConv(f,L),A=this.recurrentConv(A,W),y=this.recurrentConv(y,U);let H=this.recurrentActivation.apply(se(u,m)),X=this.recurrentActivation.apply(se(c,f)),G=se(P(X,s),P(H,this.activation.apply(se(h,A)))),ee=P(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=_te(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Yr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Wr(a,n,this.dataFormat):a}recurrentConv(e,t){return Yr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Lp.className="ConvLSTM2DCell";re.registerClass(Lp);var jA=class extends T7{constructor(e){let t=new Lp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};jA.className="ConvLSTM2D";re.registerClass(jA);var Wp=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return pc(()=>_3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Wp.className="Dropout";re.registerClass(Wp);var GA=class extends Wp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};GA.className="SpatialDropout1D";re.registerClass(GA);var qA=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=gt(e.kernelRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.activityRegularizer=gt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=lt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=lt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e),r=u3(this.activation.getClassName()),a;return r!=null?a=Lr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Lr(n,this.kernel.read()),this.bias!=null&&(a=Wr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:La(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Dense";re.registerClass(qA);var XA=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=lt(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Da(e,1)]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return GJ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};XA.className="Flatten";re.registerClass(XA);var KA=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=Wa(e.activation)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:La(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Activation";re.registerClass(KA);var ZA=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return B(()=>(e=ze(e),HJ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="RepeatVector";re.registerClass(ZA);var YA=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else a*=l}let i=Da(e);if(s!==null){if(a===0||i%a!=0)throw new V(n);r[s]=i/a}else if(i!==a)throw new V(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};YA.className="Reshape";re.registerClass(YA);var JA=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=wr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Gt({ndim:this.dims.length+1})]}computeOutputShape(e){e=lt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return nt(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Permute";re.registerClass(JA);var QA=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Nu(ri(n,this.maskValue),r)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Nu(ri(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};QA.className="Masking";re.registerClass(QA);var ey=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(dt(e.inputLength))}this.inputDim=e.inputDim,jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,jt(this.outputDim,"outputDim"),this.embeddingsInitializer=yt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=gt(e.embeddingsRegularizer),this.activityRegularizer=gt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return B(()=>this.maskZero?(e=ze(e),ri(e,Ve(e))):null)}computeOutputShape(e){if(e=lt(e),this.inputLength==null)return[...e,this.outputDim];let t=dt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=cc(n,"int32")),w3(this.embeddings.read(),n.as1D()).reshape(lt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:vt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ey.className="Embedding";re.registerClass(ey);var bi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[lt(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Oa(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Oa(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return B(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=za(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=hc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Da(u.slice(1))));d=nt(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=wr(1,l).concat([0]);n.push(nt(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=nt(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(wr(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Oa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return B(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Tn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=ar(n,t[r]);return n})}},ty=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};ty.className="Add";re.registerClass(ty);var ny=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};ny.className="Multiply";re.registerClass(ny);var ry=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return P(1/e.length,t)})}};ry.className="Average";re.registerClass(ry);var ay=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Fr(t,e[n]);return t})}};ay.className="Maximum";re.registerClass(ay);var sy=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=il(t,e[n]);return t})}};sy.className="Minimum";re.registerClass(sy);var iy=class extends bi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return B(()=>Jm(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return B(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Cn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Tn(t[s],-1)):r.push(t[s]);let a=rt(r,this.axis);return Jh(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};iy.className="Concatenate";re.registerClass(iy);function vc(e,t){for(;e<0;)e+=t;return e}function bte(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return B(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var oy=class extends bi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new V(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>vc(a,e[s].shape.length)):r=[vc(this.axes,t.shape.length),vc(this.axes,n.shape.length)],this.normalize&&(t=Ip(t,r[0]),n=Ip(n,r[1])),bte(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[vc(this.axes,e.length),vc(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};oy.className="Dot";re.registerClass(oy);var ly=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return pc(()=>dp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};ly.className="GaussianNoise";re.registerClass(ly);var uy=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?pc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(dp(n.shape,1,r))},()=>n,t.training||!1):n})}};uy.className="GaussianDropout";re.registerClass(uy);var cy=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return pc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Ea(ol(n),this.rate);o=cc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>ze(e),t.training||!1)}return e})}};cy.className="AlphaDropout";re.registerClass(cy);function kc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=w5(e,t,n,r,a,s);else if(e.rank===3)i=_5(e,t,n,r,a,s);else if(e.rank===4)i=b5(e,t,n,r,a,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function vte(e,t,n,r,a=.001){return B(()=>{let s=cd(e,r),i=s.mean,o=s.variance;return[kc(e,i,o,n,t,a),i,o]})}function kte(e,t,n,r,a=.001){return B(()=>{let s=cd(e,r),i=s.mean,o=s.variance,l=[];for(let p of wr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[kc(e,u,c,d,h,a),i,o]})}function Ite(e,t,n,r,a=.001){return v.arraysEqual(r.slice().sort(),wr(0,e.rank-1))?vte(e,t,n,r,a):kte(e,t,n,r,a)}var hy=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.movingMeanInitializer=yt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=yt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=gt(e.betaRegularizer),this.gammaRegularizer=gt(e.gammaRegularizer)}build(e){e=lt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Gt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=wr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=fi(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!v.arraysEqual(u,wr(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,_=this.scale?this.gamma.read().reshape(l):null;return kc(r,A,y,g,_,this.epsilon)}else return kc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=Ite(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{B(()=>{let _=1-g,b=A.read(),w=b.sub(y).mul(_);A.write(b.sub(w))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),movingMeanInitializer:vt(this.movingMeanInitializer),movingVarianceInitializer:vt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hy.className="BatchNormalization";re.registerClass(hy);var dy=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.betaRegularizer=gt(e.betaRegularizer),this.gammaRegularizer=gt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=lt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Oa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return B(()=>{let s=!0,{mean:i,variance:o}=cd(n,this.axis,s),l=fi(1,a);for(let m of this.axis)l[m]=r[m];let u=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let m=0;m<a;++m)this.axis.indexOf(m)!==-1?(d.push(r[m]),p.push(1)):(d.push(1),p.push(r[m]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),kc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};dy.className="LayerNormalization";re.registerClass(dy);function Nte(e,t,n){return B(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=gr()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Jr(e,r)})}var py=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?gr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=lt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return B(()=>Nte(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};py.className="ZeroPadding2D";re.registerClass(py);function Bp(e,t,n,r,a,s){return B(()=>{St(a),p3(s),Kn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=OA(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Du(e,t,n,o):i=Eu(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function E7(e,t,n,r,a,s){return B(()=>{St(a),p3(s),Kn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=v7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Of(e,t,n,o):i=_f(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var C7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Kn(this.padding),this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){e=lt(e);let t=vr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return B(()=>{this.invokeCallHook(e,t),e=hc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ca(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},fy=class extends C7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Kn(r),Bp(e,t,n,r,a,"max")}};fy.className="MaxPooling1D";re.registerClass(fy);var my=class extends C7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Kn(r),Bp(e,t,n,r,a,"avg")}};my.className="AveragePooling1D";re.registerClass(my);var R7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),Kn(this.padding),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=vr(t,this.poolSize[0],this.padding,this.strides[0]),n=vr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ay=class extends R7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Kn(r),Bp(e,t,n,r,a,"max")}};Ay.className="MaxPooling2D";re.registerClass(Ay);var yy=class extends R7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Kn(r),Bp(e,t,n,r,a,"avg")}};yy.className="AveragePooling2D";re.registerClass(yy);var F7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),Kn(this.padding),this.inputSpec=[new Gt({ndim:5})]}computeOutputShape(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=vr(t,this.poolSize[0],this.padding,this.strides[0]),n=vr(n,this.poolSize[1],this.padding,this.strides[1]),r=vr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gy=class extends F7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Kn(r),E7(e,t,n,r,a,"max")}};gy.className="MaxPooling3D";re.registerClass(gy);var xy=class extends F7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Kn(r),E7(e,t,n,r,a,"avg")}};xy.className="AveragePooling3D";re.registerClass(xy);var M7=class extends je{constructor(e){super(e);this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},wy=class extends M7{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=ze(e);return bt(n,1)})}};wy.className="GlobalAveragePooling1D";re.registerClass(wy);var _y=class extends M7{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=ze(e);return Gn(n,1)})}};_y.className="GlobalMaxPooling1D";re.registerClass(_y);var $7=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},by=class extends $7{call(e,t){return B(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?bt(n,[1,2]):bt(n,[2,3])})}};by.className="GlobalAveragePooling2D";re.registerClass(by);var vy=class extends $7{call(e,t){return B(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Gn(n,[1,2]):Gn(n,[2,3])})}};vy.className="GlobalMaxPooling2D";re.registerClass(vy);var O7=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=br(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},ky=class extends O7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=lt(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=lt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return B(()=>(e=ze(e),S7((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ky.className="TimeDistributed";re.registerClass(ky);function Ste(e){Ai(LJ,"BidirectionalMergeMode",e)}var Tte="concat",Iy=class extends O7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=br(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=br(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Tte:e.mergeMode,Ste(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):vn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=N7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new Gt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof _r;for(let l of s)if(l instanceof _r!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Rn(a,1));let i;return this.mergeMode==="concat"?i=Jm([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=P(.5,se(r,a)):this.mergeMode==="mul"?i=P(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){yi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),yi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=br(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Iy.className="Bidirectional";re.registerClass(Iy);function tQ(e){return new El(e)}function nQ(e){return new FA(e)}function rQ(e){return new EA(e)}function aQ(e){return new CA(e)}function sQ(e){return new RA(e)}function iQ(e){return new $A(e)}function oQ(e){return new MA(e)}function lQ(e){return new Op(e)}function uQ(e){return new _c(e)}function cQ(e){return new zA(e)}function hQ(e){return new $p(e)}function dQ(e){return new PA(e)}function pQ(e){return new LA(e)}function fQ(e){return new WA(e)}function mQ(e){return new BA(e)}function AQ(e){return new KA(e)}function yQ(e){return new qA(e)}function gQ(e){return new Wp(e)}function xQ(e){return new GA(e)}function wQ(e){return new XA(e)}function _Q(e){return new ZA(e)}function bQ(e){return new YA(e)}function vQ(e){return new JA(e)}function kQ(e){return new ey(e)}function IQ(e){return new ty(e)}function NQ(e){return new ry(e)}function SQ(e){return new iy(e)}function TQ(e){return new ay(e)}function EQ(e){return new sy(e)}function CQ(e){return new ny(e)}function RQ(e){return new oy(e)}function FQ(e){return new hy(e)}function MQ(e){return new dy(e)}function $Q(e){return new py(e)}function oA(e){return new my(e)}function OQ(e){return oA(e)}function DQ(e){return oA(e)}function lA(e){return new yy(e)}function zQ(e){return lA(e)}function PQ(e){return lA(e)}function uA(e){return new xy(e)}function LQ(e){return uA(e)}function WQ(e){return uA(e)}function BQ(e){return new wy(e)}function VQ(e){return new by(e)}function N3(e){return new _y(e)}function S3(e){return new vy(e)}function T3(e){return new fy(e)}function E3(e){return new Ay(e)}function UQ(e){return new gy(e)}function HQ(e){return new UA(e)}function jQ(e){return new Pp(e)}function GQ(e){return new HA(e)}function qQ(e){return new bc(e)}function XQ(e){return new VA(e)}function KQ(e){return new zp(e)}function ZQ(e){return new jA(e)}function YQ(e){return new Lp(e)}function JQ(e){return new Br(e)}function QQ(e){return new Dp(e)}function eee(e){return new Iy(e)}function tee(e){return new ky(e)}var nee=N3,ree=S3,aee=T3,see=E3;function iee(e){return new ly(e)}function oee(e){return new uy(e)}function lee(e){return new cy(e)}function uee(e){return new QA(e)}var D7={};De(D7,{MAPE:()=>Lte,MSE:()=>Vte,binaryAccuracy:()=>Ete,binaryCrossentropy:()=>Cte,categoricalAccuracy:()=>Fte,categoricalCrossentropy:()=>Mte,cosineProximity:()=>Dte,mape:()=>Wte,meanAbsoluteError:()=>zte,meanAbsolutePercentageError:()=>Pte,meanSquaredError:()=>Bte,mse:()=>Ute,precision:()=>$te,recall:()=>Ote,sparseCategoricalAccuracy:()=>Rte});function Ete(e,t){return mA(e,t)}function Cte(e,t){return H3(e,t)}function Rte(e,t){return j3(e,t)}function Fte(e,t){return AA(e,t)}function Mte(e,t){return yA(e,t)}function $te(e,t){return U3(e,t)}function Ote(e,t){return Tee(e,t)}function Dte(e,t){return pA(e,t)}function zte(e,t){return Np(e,t)}function Pte(e,t){return Rl(e,t)}function Lte(e,t){return Rl(e,t)}function Wte(e,t){return Rl(e,t)}function Bte(e,t){return xi(e,t)}function Vte(e,t){return xi(e,t)}function Ute(e,t){return xi(e,t)}var z7={};De(z7,{modelFromJSON:()=>lte});var P7={};De(P7,{l1:()=>jte,l1l2:()=>Hte,l2:()=>Gte});function Hte(e){return new xc(e)}function jte(e){return Ate(e)}function Gte(e){return yte(e)}var L7=class extends Cl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof sa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Vp(e,t){return e<t}function W7(e,t){return e>t}var B7=class extends L7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Vp:this.mode==="max"?this.monitorFunc=W7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=W7:this.monitorFunc=Vp,this.monitorFunc===Vp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Vp?Infinity:-Infinity}async onEpochEnd(e,t){await Pa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function qte(e){return new B7(e)}var Xte={earlyStopping:qte},kr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(kr||(kr={}));var V7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(V7||(V7={}));var Ny={};function Kte(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ny[e]=n}function U7(e){return Ny[e]}function Zte(e){delete Ny[e]}function k(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return In(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>In(h,n,r,a));let u=In(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function In(e,t,n,r){let[a,s]=zn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Up(a,o)]);return i!==void 0?t[Up(a,i)][s]:void 0}function Yte(e,t,n){return t[Up(e,n.currentContextId)]}function ia(e,t){let[n,r]=zn(e);return[Up(n,t&&t.currentContextId),r]}function Up(e,t){return t?`${e}-${t}`:e}function zn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Hp(e,t,n){let r=k("pad",e,t,n);if(r==="explicit"){r=k("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function oa(e){return e.kept?e:nr(e)}var H7={};De(H7,{json:()=>Jte});var Jte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],j7={};De(j7,{json:()=>Qte});var Qte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],G7={};De(G7,{json:()=>ene});var ene=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],q7={};De(q7,{json:()=>tne});var tne=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],X7={};De(X7,{json:()=>nne});var nne=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],K7={};De(K7,{json:()=>rne});var rne=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Z7={};De(Z7,{json:()=>ane});var ane=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Y7={};De(Y7,{json:()=>sne});var sne=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],J7={};De(J7,{json:()=>ine});var ine=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],Q7={};De(Q7,{json:()=>one});var one=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],ev={};De(ev,{json:()=>lne});var lne=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],tv={};De(tv,{json:()=>une});var une=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nv={};De(nv,{json:()=>cne});var cne=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],rv={};De(rv,{json:()=>hne});var hne=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],av={};De(av,{json:()=>dne});var dne=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],sv={};De(sv,{json:()=>pne});var pne=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],iv={};De(iv,{json:()=>fne});var fne=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],lv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[H7,j7,G7,q7,X7,K7,Z7,ev,Q7,Y7,tv,nv,rv,av,sv,iv,J7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ia(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(c).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(c).forEach(m=>{let[f]=ia(m),A=i[f];A!=null&&(A.signatureKey=c[m],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=ia(m),A=i[f];A&&(A.signatureKey=u[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=U7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Sy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Sy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Oy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Oy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Ey(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Ey(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=$y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Ty(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ty(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=zy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=My(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=My(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Dy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Ry(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ry(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Fy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=ov(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ov(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=ia(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Cy(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=ia(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=ia(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function mne(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function uv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):mne(e);return t?n:n.toLowerCase()}function Sy(e,t,n,r=!1){let a=e[t];return a!=null?uv(a.s,r):n}function Ty(e,t,n){let r=e[t];return r?r.b:n}function Ey(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Cy(e){switch(typeof e=="string"&&(e=kr[e]),e){case kr.DT_FLOAT:return"float32";case kr.DT_INT32:case kr.DT_INT64:case kr.DT_INT8:case kr.DT_UINT8:return"int32";case kr.DT_BOOL:return"bool";case kr.DT_DOUBLE:return"float32";case kr.DT_STRING:return"string";default:return null}}function ov(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Ry(e,t,n){let r=e[t];return r&&r.type?Cy(r.type):n}function Fy(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Cy(a)):n}function cv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function My(e,t,n){let r=e[t];return r&&r.shape?cv(r.shape):n}function $y(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Oy(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>uv(s,r)):n}function Dy(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>cv(a)):n}function zy(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var Ane=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return In(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return In(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Ey(this.node.rawAttrs,e,t);if(n.s!=null)return Sy(this.node.rawAttrs,e,t);if(n.b!=null)return Ty(this.node.rawAttrs,e,t);if(n.shape!=null)return My(this.node.rawAttrs,e,t);if(n.type!=null)return Ry(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $y(this.node.rawAttrs,e,t);if(n.list.s!=null)return Oy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return zy(this.node.rawAttrs,e,t);if(n.list.type!=null)return Fy(this.node.rawAttrs,e,t)}return t}},yne=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Yo(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[zf(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[P(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[ge(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[Sf(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Yh(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[Ae(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[il(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Fr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[Qr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[_d(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gne=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ot(k("x",e,t,n))];case"Acos":return[hf(k("x",e,t,n))];case"Acosh":return[df(k("x",e,t,n))];case"Asin":return[ff(k("x",e,t,n))];case"Asinh":return[mf(k("x",e,t,n))];case"Atan":return[Af(k("x",e,t,n))];case"Atan2":return[yf(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[gf(k("x",e,t,n))];case"Ceil":return[bf(k("x",e,t,n))];case"Complex":return[ba(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[Fu(k("x",e,t,n))];case"Cosh":return[nd(k("x",e,t,n))];case"Elu":return[nl(k("x",e,t,n))];case"Erf":return[Tf(k("x",e,t,n))];case"Exp":return[jn(k("x",e,t,n))];case"Expm1":return[Ef(k("x",e,t,n))];case"Floor":return[rl(k("x",e,t,n))];case"Log":return[En(k("x",e,t,n))];case"Log1p":return[id(k("x",e,t,n))];case"Imag":return[ad(k("x",e,t,n))];case"Neg":return[_t(k("x",e,t,n))];case"Reciprocal":return[Wf(k("x",e,t,n))];case"Real":return[Lu(k("x",e,t,n))];case"Relu":return[$r(k("x",e,t,n))];case"Round":return[Bf(k("x",e,t,n))];case"Selu":return[md(k("x",e,t,n))];case"Sigmoid":return[Sn(k("x",e,t,n))];case"Sin":return[Ad(k("x",e,t,n))];case"Sign":return[Uf(k("x",e,t,n))];case"Sinh":return[yd(k("x",e,t,n))];case"Softplus":return[al(k("x",e,t,n))];case"Sqrt":return[Qt(k("x",e,t,n))];case"Square":return[it(k("x",e,t,n))];case"Tanh":return[Qo(k("x",e,t,n))];case"Tan":return[Gf(k("x",e,t,n))];case"ClipByValue":return[gn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[pd(k("x",e,t,n))];case"Rsqrt":return[fd(In(e.inputNames[0],t,n))];case"Prod":return[hd(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[$u(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[Pu(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function cr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];v.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function hv(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ic(e,t,n){let r=Py(e,n),a=!hv(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Py(s.shape,r)}),!hv(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Py(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var xne=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=be(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),cr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return mr([],[0].concat(this.elementShape));let n=this.readMany(e);return cr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Fn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return mr([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return cr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),rt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,sr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];B(()=>{t=j(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=j(Ce(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Nc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);cr(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=be(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Nc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);cr(e,this.elementShape,"TensorList shape mismatch: ");let r=Ic(this.elementShape,this.tensors,e);return B(()=>{let a=this.tensors.map(s=>j(s,r));return Fn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ic(this.elementShape,this.tensors,e),r=this.tensors.pop();return cr(r.shape,e,"TensorList shape mismatch: "),j(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(cr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);cr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Ic(this.elementShape,this.tensors,t);return j(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);cr(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);cr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Ic(this.elementShape,this.tensors,n);return e.length===0?mr([],[0].concat(r)):B(()=>{let a=e.map(s=>j(this.tensors[s],r));return Fn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);cr(this.elementShape,t,"TensorList shape mismatch: ");let n=Ic(this.elementShape,this.tensors,t);return this.size()===0?mr([],[0].concat(n)):B(()=>{let r=this.tensors.map(a=>j(a,n));return rt(r,0)})}};function wne(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);cr(a,t,"TensorList shape mismatch: ");let s=sr(e);return new Nc(s,t,r)}function _ne(e,t,n){return new Nc([],e,t,n)}function bne(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Nc([],n,e.dtype,r),i=sr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function vne(e,t,n){let r=0,a=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Py(s,n),o=r===0?0:e.size/r,l=B(()=>{let c=[];e=j(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],m=[1,t[h],o];c[h]=j(Ce(e,p,m),i)}return e.dispose(),c}),u=new Nc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var kne=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=k("thenBranch",e,t,n),a=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=k("body",e,t,n),a=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=k("pred",e,t,n);return[oa(r)]}case"Switch":{let r=k("pred",e,t,n),a=k("data",e,t,n);return a.kept||(a=oa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>In(a,t,n)!==void 0);if(r){let a=In(r,t,n);return[oa(a)]}return}case"Enter":{let r=k("frameName",e,t,n),a=k("tensor",e,t,n);return n.enterFrame(r),[oa(a)]}case"Exit":{let r=k("tensor",e,t,n);return n.exitFrame(),[oa(r)]}case"NextIteration":{let r=k("tensor",e,t,n);return n.nextIteration(),[oa(r)]}case"TensorArrayV3":{let r=k("size",e,t,n),a=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new xne(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,be(1)]}case"TensorArrayWriteV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=k("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=k("tensorArrayId",e,t,n),a=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[be(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=k("indices",e,t,n),a=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=bne(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=_ne(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=k("tensorListId",e,t,n),a=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=wne(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=k("tensorListId",e,t,n),a=n.getTensorList(r.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=k("tensorListId",e,t,n),a=k("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=vne(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function dv(e,t,n){let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",e,t,n),c=Hp(e,t,n),h=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[p,m]=k("args",e,t,n),f=k("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var Ine=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[ed(k("x",e,t,n),k("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=k("strides",e,t,n),a=Hp(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Yr(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=dv(e,t,n);return[Ra.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=dv(e,t,n);return[Ra.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),a=k("strides",e,t,n),s=Hp(e,t,n);return[td(k("x",e,t,n),k("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),a=Hp(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[tl(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[kf(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Eu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Du(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=W5(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[_f(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Of(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[Nf(k("x",e,t,n),k("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nne=(e,t,n)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),a=k("dtype",e,t,n),s=k("value",e,t,n);return[Mu(r,s,a)]}case"LinSpace":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("num",e,t,n);return[M5(r,a,s)]}case"Multinomial":{let r=k("logits",e,t,n),a=k("numSamples",e,t,n),s=k("seed",e,t,n);return[B5(r,a,s)]}case"OneHot":{let r=k("indices",e,t,n),a=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[qo(r,a,s,i)]}case"Ones":return[Mr(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[Cn(k("x",e,t,n))];case"RandomUniform":return[ol(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("step",e,t,n);return[dd(r,a,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),a=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[bd(r,a,s,k("dtype",e,t,n),i)]}case"Zeros":return[Et(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Ve(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ly(e,t,n){let r=k("boxes",e,t,n),a=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Sne=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Ly(e,t,n),u=await Ge.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ly(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Ge.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ly(e,t,n);return[await Ge.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=me(k("condition",e,t,n),"bool"),a=[await Kf(r)];return r.dispose(),a}case"ListDiff":return H5(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tne=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=k("x",e,t,n),a=k("k",e,t,n),s=k("sorted",e,t,n),i=qf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=k("x",e,t,n),a=vd(r);return[a.values,a.indices]}case"UniqueV2":{let r=k("x",e,t,n),a=k("axis",e,t,n),s=vd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ene=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[In(e.name,t,n)||r];case"Placeholder":return[In(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[oa(u)]}case"IdentityN":return k("x",e,t,n).map(u=>oa(u));case"Snapshot":let a=k("x",e,t,n);return[oa(a)];case"Shape":return[Ut(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>Ut(u.shape));case"Size":return[be(k("x",e,t,n).size,"int32")];case"Rank":return[be(k("x",e,t,n).rank,"int32")];case"NoOp":return[be(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cne=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=be(0),this.tensorMap=new Map,Vt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),B(()=>{let r=sr(t),a=n.length,s=r.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Vt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return B(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Fn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Rne=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new Cne(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fne=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ge.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ge.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=k("image",e,t,n),a=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Ge.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mne=(e,t,n)=>{switch(e.op){case"Equal":return[Sa(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[ri(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[rr(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Ea(k("a",e,t,n),k("b",e,t,n))];case"Less":return[sd(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[ti(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[ar(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Ou(k("a",e,t,n))];case"LogicalOr":return[ud(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[xn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$ne=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[He(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[nt(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ra.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},One=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Qs(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[Qs(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[Rf(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[Bu(k("x",e,t,n))];case"LogSoftmax":return[ld(k("x",e,t,n))];case"SparseToDense":return[Zf(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dne=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Gn(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[bt(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[sl(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Se(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Jh(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Nu(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[Su(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[pf(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[hd(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[rd(k("x",e,t,n),i,o,l)]}case"Bincount":let r=k("x",e,t,n),a=k("weights",e,t,n),s=k("size",e,t,n);return[v5(r,a,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[T5(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zne=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),a=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[ei(r,me(a,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),a=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[ei(s,me(i,"int32"),r,a)]}case"Reverse":{let r=k("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=k("x",e,t,n);return[Rn(s,a)]}case"ReverseV2":{let r=k("axis",e,t,n),a=k("x",e,t,n);return[Rn(a,r)]}case"Slice":{let r=k("begin",e,t,n),a=k("size",e,t,n);return[Ce(k("x",e,t,n),r,a)]}case"StridedSlice":{let r=k("begin",e,t,n),a=k("end",e,t,n),s=k("strides",e,t,n),i=k("beginMask",e,t,n),o=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),u=k("newAxisMask",e,t,n),c=k("shrinkAxisMask",e,t,n),h=k("x",e,t,n);return[jf(h,r,a,s,i,o,l,u,c)]}case"Pack":return B(()=>{let r=k("axis",e,t,n),a=k("tensors",e,t,n),s=a[0].shape,i=Ca(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(Ca(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:j(l,s)});return[Fn(o,r)]});case"Unpack":{let r=k("axis",e,t,n),a=k("tensor",e,t,n);return sr(a,r)}case"Tile":{let r=k("reps",e,t,n);return[Ta(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),a=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return Jt(s,a,r)}case"ScatterNd":{let r=k("indices",e,t,n),a=k("values",e,t,n),s=k("shape",e,t,n);return[X5(r,a,s)]}case"GatherNd":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[K5(r,a)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),a=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[Zf(r,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pne=(e,t,n)=>{switch(e.op){case"FFT":return[Vu(k("x",e,t,n))];case"IFFT":return[ll(k("x",e,t,n))];case"RFFT":return[Uu(k("x",e,t,n))];case"IRFFT":return[wd(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lne=(e,t,n)=>{switch(e.op){case"Cast":return[me(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[Tn(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[Ca(k("x",e,t,n),r)]}case"Reshape":return[j(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[Df(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[Jr(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),a=k("paddings",e,t,n);return[zu(k("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),a=k("crops",e,t,n);return[Cu(k("x",e,t,n),r,a)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),a=k("dataFormat",e,t,n).toUpperCase();return[If(k("x",e,t,n),r,a)]}case"BroadcastTo":return[Ru(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function pv(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return B(()=>yne(s,i,o));case"basic_math":return B(()=>gne(s,i,o));case"control":return kne(s,i,o);case"convolution":return B(()=>Ine(s,i,o));case"creation":return B(()=>Nne(s,i,o));case"dynamic":return Sne(s,i,o);case"evaluation":return B(()=>Tne(s,i,o));case"image":return B(()=>Fne(s,i,o));case"graph":return B(()=>Ene(s,i,o));case"logical":return B(()=>Mne(s,i,o));case"matrices":return B(()=>$ne(s,i,o));case"normalization":return B(()=>One(s,i,o));case"reduction":return B(()=>Dne(s,i,o));case"slice_join":return B(()=>zne(s,i,o));case"spectral":return B(()=>Pne(s,i,o));case"transformation":return B(()=>Lne(s,i,o));case"hash_table":return Rne(s,i,o,r);case"custom":let l=U7(s.op);if(l&&l.customExecutor)return l.customExecutor(new Ane(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var fv=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Av(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>zn(d)[0]),c=[];r!=null&&(c=r.map(d=>zn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((mv(d)||Wne(d)||Bne(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Vne(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>zn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Une=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Hne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],jne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function mv(e){return Une.indexOf(e.op)>=0}function Wne(e){return Hne.indexOf(e.op)>=0}function Bne(e){return jne.indexOf(e.op)>=0}var Wy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Wy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Av(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Vne(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[zn(c)[0]]),a=t.map(c=>zn(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return B(()=>{let c=new fv(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=zn(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;m<o.length;m++){let f=o[m];if(!h[f.name]){let A=pv(f,h,c,this._resourceManager);if(v.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);h[f.name]=A,this.checkTensorForDisposal(f.name,f,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(m=>In(m,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Yte(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new fv(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>In(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[zn(g)[0]]),i=n.map(g=>zn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=Av(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[_,b]=zn(g),w=[];w[b]=e[g],p[_]=w});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!mv(g)&&!In(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw c!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&k("isConstant",c.node,r,n)&&([h]=ia(c.node.name,n)),r[c.node.name]==null){let d=pv(c.node,r,n,this._resourceManager);h||([h]=ia(c.node.name,n));let p=n.currentContext;v.isPromise(d)?u.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ia(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!In(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!In(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=zn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=zn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Gne=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},qne="?tfjs-format=file",Xne="model.json",yv=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Gne}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=yn.browserHTTPRequest(e,this.loadOptions);else{let t=yn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(yn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=yn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Wy(lv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=lv.Instance.transformGraph(e.modelInitializer);this.initializer=new Wy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=yn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ze)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Nt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Xne}${qne}`);let n=new yv(e,t);return await n.load(),n}var Kne="3.2.0",gv={};De(gv,{CSVDataset:()=>wv,Dataset:()=>$l,FileDataSource:()=>_v,TextLineDataset:()=>xv,URLDataSource:()=>bv,array:()=>Zne,csv:()=>Jne,func:()=>Qne,generator:()=>ere,microphone:()=>nre,version_data:()=>rre,webcam:()=>tre,zip:()=>Yne});var are=Pi(cg()),sre=Pi(cg());function ire(e,t){return jp(e,t)}function jp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ol(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=jp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function ore(e,t=kv){return vv(e,t)}function vv(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ol(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=vv(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function kv(e){return e===null?null:Ol(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Iv(e,t){let n=new Map;jp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let s=await a;n.set(r,s)}}return jp(e,t,n)}function Ol(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ze))}function ure(e){return e==null||lre(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ze||v.isTypedArray(e)}function lre(e){return e===null||typeof e!="object"&&typeof e!="function"}function hre(e){return ire(e,cre)}function cre(e){return e instanceof Ze?{value:e.clone(),recurse:!1}:Ol(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Nv=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},By=class extends Nv{constructor(){super(By.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};By.INITIAL_CAPACITY=32;function Sv(e){return new dre(e)}function Vy(e){return new pre(e)}function fre(e,t){return new Tv(e,t)}function Are(e,t=Va.FAIL){return new mre(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new vre(this,e)}filter(e){return new _re(this,e)}map(e){return new bre(this,e)}mapAsync(e){return new Ev(this,e)}serialMapAsync(e){return new Ev(this,e).serial()}flatmap(e){return new kre(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new wre(this,e,t)}columnMajorBatch(e,t=!0,n=kv){return this.rowMajorBatch(e,t).map(r=>ore(r,n))}concatenate(e,t){return new Tv(Sv([this,e]),t)}take(e){return e<0||e==null?this:new xre(this,e)}skip(e){return e<0||e==null?this:new gre(this,e)}prefetch(e){return new Cv(this,e)}shuffle(e,t){return new Ire(this,e,t)}serial(){return new yre(this)}},dre=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:hre(e),done:!1}}},pre=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},yre=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},gre=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},xre=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},wre=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},_re=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},bre=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=fr.getTensorsInContainer(e.value),n=this.transform(e.value),r=fr.getTensorsInContainer(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},vre=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Ev=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=fr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=fr.getTensorsInContainer(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Uy=class extends qt{constructor(){super();this.outputQueue=new By,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},kre=class extends Uy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=fr.getTensorsInContainer(e.value),n=this.transform(e.value),r=fr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return!0}},Tv=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Va;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Va||(Va={}));var mre=class extends qt{constructor(e,t=Va.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await Iv(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Va.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Va.SHORTEST:return{value:null,done:!0};case Va.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Cv=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Nv(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Ire=class extends Cv{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=sre.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},$l=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Pn(async()=>(await n.iterator()).columnMajorBatch(e,t,Nre),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Pn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Pn(async()=>(await t.iterator()).filter(r=>B(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Pn(async()=>(await t.iterator()).map(n=>B(()=>e(n))),this.size)}mapAsync(e){let t=this;return Pn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Pn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Pn(async()=>{let r=Vy(async()=>({value:await t.iterator(),done:!1}));return fre(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Pn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=are.alea(t||v.now().toString());return Pn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Pn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};$l.MAX_BUFFER_SIZE=1e4;function Pn(e,t=null){return new class extends $l{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Zne(e){return Pn(async()=>Sv(e),e.length)}function Yne(e){if(!Ol(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Pn(async()=>{let n=await Iv(e,r=>{if(r instanceof $l)return{value:r.iterator(),recurse:!1};if(Ol(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Are(n,Va.SHORTEST)},t)}function Nre(e){if(e===null)return null;let t=e[0];return ure(t)?{value:Sre(e),recurse:!1}:{value:null,recurse:!0}}function Sre(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ze?Fn(e):mr(e)}var xv=class extends $l{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Gp='"',Sc=Symbol("out"),Rv=Symbol("field"),qp=Symbol("quote"),Hy=Symbol("quoteafterquote"),Fv=Symbol("quoteinquote"),wv=class extends $l{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new xv(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Sc;for(let i=0;i<a;i++)switch(s){case Sc:switch(e.charAt(i)){case Gp:r=i+1,s=qp;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Sc;break;default:s=Rv,r=i;break}break;case Rv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Sc,r=i+1;break;default:}break;case qp:switch(e.charAt(i)){case Gp:s=Hy;break;default:}break;case Hy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Sc,r=i+1;break;case Gp:s=qp;break;default:s=Fv;break}break;case Fv:switch(e.charAt(i)){case Gp:s=qp;break;default:}break;default:}if(s===Hy?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Mv=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Mv(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),mr(n,t)}},$v=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ut([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=wn([s,a,o,i],[1,4])}else this.cropBox=wn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new $v(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Xo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return B(()=>{let t=Tn(me(e,"float32"),0),n;n=Ge.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return j(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Ov=class{},Dv=class extends qt{split(e){return new Tre(this,e)}},Tre=class extends Dv{constructor(e,t){super();this.upstream=e,this.impl=new Ere(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Ere=class extends Uy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Rre=class extends qt{decodeUTF8(){return new Cre(this)}},Cre=class extends Dv{constructor(e){super();this.upstream=e,this.impl=new Fre(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Fre=class extends Uy{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=$8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},zv=class extends Rre{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function $re(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Mre(e));let a=await v.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new zv(s,t)}else throw new Error(a.statusText)}var Mre=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Pv(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var _v=class extends Ov{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Pv(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new zv(this.input,this.options)}},bv=class extends Ov{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Pv(this.url)?new _v(this.url,this.fileOptions).iterator():$re(this.url,this.fileOptions)}};function Jne(e,t={}){return new wv(new bv(e),t)}function Qne(e){let t=Vy(e);return Pn(async()=>t)}function ere(e){return Pn(async()=>{let t=await e();return Vy(()=>t.next())})}async function tre(e,t){return $v.create(e,t)}async function nre(e){return Mv.create(e)}var rre="3.2.0",Ore={tfjs:O8,"tfjs-core":D8,"tfjs-data":z8,"tfjs-layers":P8,"tfjs-converter":L8,"tfjs-backend-cpu":Lx,"tfjs-backend-webgl":i_,"tfjs-backend-wasm":Zb};var Ln={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Lv(){if(!cf(Ln.name)){Te("backend registration:",Ln.name);try{Ln.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ln.width,Ln.height):document.createElement("canvas")}catch(e){Te("error: cannot create canvas:",e);return}try{Ln.gl=Ln.canvas.getContext("webgl2",Ln.webGLattr)}catch(e){Te("error: cannot get WebGL2 context:",e);return}try{jd(2,Ln.gl)}catch(e){Te("error: cannot set WebGL2 context:",e);return}try{let e=new Kd(Ln.gl);Zo(Ln.name,()=>new bl(e),Ln.priority)}catch(e){Te("error: cannot register WebGL backend:",e);return}try{Vo("webgl").forEach(t=>{let n={...t,backendName:Ln.name};qs(n)})}catch(e){Te("error: cannot update WebGL backend registration:",e);return}try{Ya.set("WEBGL_VERSION",2)}catch(e){Te("error: cannot set WebGL backend flags:",e);return}Te("backend registered:",Ln.name)}}var Wv=6;function Dre(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var zre=e=>({startEndTensor:e,startPoint:Ce(e,[0,0],[-1,2]),endPoint:Ce(e,[0,2],[-1,2])});function Pre(e,t,n){let r=Ce(e,[0,1],[-1,2]),a=se(r,t),s=Ce(e,[0,3],[-1,2]),i=ge(s,n),o=ge(a,n),l=ge(i,2),u=Ae(o,l),c=se(o,l),h=P(u,n),d=P(c,n);return el([h,d],1)}var Bv=class{constructor(t,n){this.blazeFaceModel=t,this.width=n.face.detector.inputSize,this.height=n.face.detector.inputSize,this.anchorsData=Dre(n.face.detector.inputSize),this.anchors=wn(this.anchorsData),this.inputSize=Ut([this.width,this.height]),this.config=n,this.scaleFaces=.8}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=B(()=>{let h=t.resizeBilinear([this.width,this.height]),d=Ae(h.div(127.5),1),p=this.blazeFaceModel.predict(d),m;if(Array.isArray(p)){let g=p.sort((x,N)=>x.size-N.size),_=rt([g[0],g[2]],2),b=rt([g[1],g[3]],2);m=rt([b,_],1).squeeze(0)}else m=p.squeeze();let f=Pre(m,this.anchors,this.inputSize),A=Ce(m,[0,0],[-1,1]),y=Sn(A).squeeze();return[m,f,y]}),s=await Ge.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Ce(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;h<l.length;h++){let d=i[h],p=u[d];if(p>this.config.face.detector.minConfidence){let m=zre(l[h]),f=this.anchorsData[d],A=B(()=>Ce(n,[d,Wv-1],[1,-1]).squeeze().reshape([Wv,-1]));c.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),n.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.width,t.shape[1]/this.height]}}};async function Vv(e){let t=await Nt(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Bv(t,e);return e.debug&&Te(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function Uv(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Tc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Ec(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function jy(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ge.cropAndResize(t,s,[0],n)}function Xp(e,t=1.6){let n=Ec(e),r=Tc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Kp(e){let t=Ec(e),n=Tc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var Zp=[[1,0,0],[0,1,0],[0,0,1]];function Lre(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Hv(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Lre(n)}function jv(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Ua(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Wre(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function Gv(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ua(e[a],Wre(t,s)))}return n}function Gy(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=jv(t[0],t[1]),i=Gv(s,a),o=jv(-t[0],-t[1]);return Gv(i,o)}function qv(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ua(t[0],n),-Ua(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Xv(e,t){return[Ua(e,t[0]),Ua(e,t[1])]}var Ur={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},qy=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Xy=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],vi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Bre=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Vre=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Ure=[33,133,362,263,1,78,308],bce=Bre.map(e=>Xy[e]),vce=Vre.map(e=>Xy[e]),kce=Ure.map(e=>Xy[e]);var Hre=468,jre=13,Gre=[jre,Ur.midwayBetweenEyes[0]],qre=3,Xre=2,Kre=[qre,Xre],Ky=Ur.leftEyeLower0,Zy=[Ky[0],Ky[Ky.length-1]],Yy=Ur.rightEyeLower0,Jy=[Yy[0],Yy[Yy.length-1]],Zre=3,Yre=4,Jre=71,Qy=76;function Yp(e,t,n,r=null){for(let a=0;a<qy.length;a++){let{key:s,indices:i}=qy[a],o=Ur[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var e2=class{constructor(t,n,r,a){this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.meshWidth=a.face.mesh.inputSize,this.meshHeight=a.face.mesh.inputSize,this.irisSize=a.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Tc({startPoint:n.startPoint,endPoint:n.endPoint}),i=[s[0]/this.meshWidth,s[1]/this.meshHeight],o=t.map(d=>[i[0]*(d[0]-this.meshWidth/2),i[1]*(d[1]-this.meshHeight/2),d[2]]),l=r!==0?Gy(r,[0,0]):Zp,u=r!==0?o.map(d=>[...Xv(d,l),d[2]]):o,c=r!==0?qv(a):Zp,h=[...Ec({startPoint:n.startPoint,endPoint:n.endPoint}),1];return u.map(d=>[d[0]+Ua(h,c[0]),d[1]+Ua(h,c[1]),d[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Zy[0]][2],r=t[Jy[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=Kp(Xp(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Tc(i),l=Ge.cropAndResize(n,[[i.startPoint[1]/this.meshHeight,i.startPoint[0]/this.meshWidth,i.endPoint[1]/this.meshHeight,i.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return s&&(l=Ge.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<Qy;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(Jre)}}getAdjustedIrisCoords(t,n,r){let a=t[Ur[`${r}EyeUpper0`][Zre]][2],s=t[Ur[`${r}EyeLower0`][Yre]][2],i=(a+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Uv({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=Xp(o),u=Kp(l),c=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:c}}}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=B(()=>this.storedBoxes.map((i,o)=>{let l,u=0,c;if(n.face.detector.rotation){let[w,x]=i.landmarks.length>=Hre?Gre:Kre;u=Hv(i.landmarks[w],i.landmarks[x]);let N=Ec({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ge.rotateWithOffset(t,u,0,T);c=Gy(-u,N),l=jy({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshHeight,this.meshWidth]).div(255)}else{c=Zp;let w=t.clone();l=jy({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshHeight,this.meshWidth]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,confidence:i.confidence,image:l};let[,h,d]=this.meshDetector.predict(l),p=h.dataSync()[0];if(p<n.face.detector.minConfidence)return null;let f=j(d,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:x,crop:N}=this.getEyeBox(f,l,Zy[0],Zy[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(f,l,Jy[0],Jy[1]),L=this.irisModel.predict(rt([N,M])).dataSync(),W=L.slice(0,Qy*3),{rawCoords:U,iris:H}=this.getEyeCoords(W,w,x,!0),X=L.slice(Qy*3),{rawCoords:G,iris:ee}=this.getEyeCoords(X,T,E),Y=this.getLeftToRightEyeDepthDifference(f);Math.abs(Y)<30?(Yp(f,U,"left"),Yp(f,G,"right")):Y<1?Yp(f,U,"left",["EyeUpper0","EyeLower0"]):Yp(f,G,"right",["EyeUpper0","EyeLower0"]);let ae=this.getAdjustedIrisCoords(f,H,"left"),te=this.getAdjustedIrisCoords(f,ee,"right");f=f.concat(ae).concat(te)}let A=this.transformRawCoords(f,i,u,c),y=Xp(this.calculateLandmarksBoundingBox(A)),g=Kp(y),_=wn(A),b={coords:_,box:y,faceConfidence:p,boxConfidence:i.confidence,image:l,rawCoords:f};return n.face.mesh.returnRawData||delete b.rawCoords,this.storedBoxes[o]={...g,landmarks:_.arraySync(),confidence:i.confidence,faceConfidence:p},b}));return s=s.filter(i=>i!==null),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var Q6=nh(Zv());var r2={};Jn(r2,{FaceBoxes:()=>a2,load:()=>eae});var n2={};function hr(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};n2[e]=i,Te("Human profiler",e,i)}var a2=class{constructor(t,n){this.enlarge=1.1,this.model=t,this.config=n}async estimateFaces(t,n){n&&(this.config=n);let r=[],a=Ge.resizeBilinear(t,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),s=a.toInt(),i,o;if(n.profile){let l=await Hn(()=>this.model.executeAsync(s));i=l.result[0].dataSync(),o=l.result[1].squeeze().arraySync(),l.result.forEach(c=>c.dispose()),hr("faceboxes",l)}else{let[l,u,c]=await this.model.executeAsync(s);i=l.dataSync();let h=u.squeeze();o=h.arraySync(),l.dispose(),u.dispose(),h.dispose(),c.dispose()}s.dispose(),a.dispose();for(let l in o)if(i[l]&&i[l]>this.config.face.detector.minConfidence){let u=[o[l][0]/this.enlarge,o[l][1]/this.enlarge,o[l][2]*this.enlarge,o[l][3]*this.enlarge],c=[u[1],u[0],u[3]-u[1],u[2]-u[0]],h=[parseInt((c[0]*t.shape[2]).toString()),parseInt((c[1]*t.shape[1]).toString()),parseInt((c[2]*t.shape[2]).toString()),parseInt((c[3]*t.shape[1]).toString())],d=Ge.cropAndResize(t,[u],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),p=d.div([255]);d.dispose(),r.push({confidence:i[l],box:h,boxRaw:this.config.face.mesh.returnRawData?c:null,image:p})}return r}};async function eae(e){let t=await Nt(e.face.detector.modelPath);e.debug&&Te(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let n=new a2(t,e);return e.face.mesh.enabled&&e.debug&&Te(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Te(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),n}var s2={};Jn(s2,{load:()=>i2,predict:()=>o2});var Dl,Jp={age:0},Qp=Number.MAX_SAFE_INTEGER;async function i2(e){return Dl||(Dl=await Nt(e.face.age.modelPath),e.debug&&Te(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),Dl}async function o2(e,t){return Dl?Qp<t.face.age.skipFrames&&t.videoOptimized&&Jp.age&&Jp.age>0?(Qp++,Jp):(t.videoOptimized?Qp=0:Qp=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=P(r,[255]);Ee(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await Dl.predict(a));else{let o=t.face.age.enabled?await Hn(()=>Dl.predict(a)):{};s=o.result.clone(),o.result.dispose(),hr("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),Jp=i,n(i)})):null}var l2={};Jn(l2,{load:()=>d2,predict:()=>p2});var Ii,u2={gender:""},e0=Number.MAX_SAFE_INTEGER,c2=!1,h2=[.2989,.587,.114];async function d2(e){return Ii||(Ii=await Nt(e.face.gender.modelPath),c2=Ii.inputs[0].shape[3]===1,e.debug&&Te(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),Ii}async function p2(e,t){return Ii?e0<t.face.gender.skipFrames&&t.videoOptimized&&u2.gender!==""?(e0++,u2):(t.videoOptimized?e0=0:e0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;c2?a=B(()=>{let[o,l,u]=Jt(r,3,3),c=P(o,h2[0]),h=P(l,h2[1]),d=P(u,h2[2]);return Yo([c,h,d]).sub(.5).mul(2)}):a=P(r,[255]),Ee(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await Ii.predict(a));else{let o=t.face.gender.enabled?await Hn(()=>Ii.predict(a)):{};s=o.result.clone(),o.result.dispose(),hr("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(c2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),u2=i,n(i)})):null}var f2={};Jn(f2,{load:()=>y2,predict:()=>g2});var tae=["angry","disgust","fear","happy","sad","surprise","neutral"],zl,m2=[],t0=Number.MAX_SAFE_INTEGER,A2=[.2989,.587,.114],Yv=1;async function y2(e){return zl||(zl=await Nt(e.face.emotion.modelPath),e.debug&&Te(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),zl}async function g2(e,t){return zl?t0<t.face.emotion.skipFrames&&t.videoOptimized&&m2.length>0?(t0++,m2):(t.videoOptimized?t0=0:t0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=Jt(r,3,3);r.dispose();let o=P(a,A2[0]),l=P(s,A2[1]),u=P(i,A2[2]);a.dispose(),s.dispose(),i.dispose();let c=Yo([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=B(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await Hn(()=>zl.predict(h));p=m.result.dataSync(),m.result.dispose(),hr("emotion",m)}else{let m=await zl.predict(h);p=m.dataSync(),Ee(m)}for(let m=0;m<p.length;m++)Yv*p[m]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*Yv*p[m])/100),emotion:tae[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),m2=d,n(d)})):null}var Pl;async function x2(e){return Pl||(Pl=await Nt(e.face.embedding.modelPath),e.debug&&Te(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Pl}function Jv(e,t){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function w2(e,t){return Pl?new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await Hn(()=>Pl.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),hr("emotion",s)}else{let s=await Pl.predict({img_inputs:r});a=[...s.dataSync()],Ee(s)}r.dispose(),n(a)}):null}var F2={};Jn(F2,{PoseNet:()=>M2,load:()=>$2});var nae=[-123.15,-115.9,-103.06];function rae(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function aae(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var _2=class{constructor(t){this.model=t}predict(t,n){return B(()=>{let a=(n.body.modelType==="posenet-resnet"?t.toFloat().add(nae):t.toFloat().div(127.5).sub(1)).expandDims(0),i=this.model.predict(a).map(l=>l.squeeze([0])),o=n.body.modelType==="posenet-resnet"?aae(i):rae(i);return{heatmapScores:o.heatmap.sigmoid(),offsets:o.offsets,displacementFwd:o.displacementFwd,displacementBwd:o.displacementBwd}})}dispose(){this.model.dispose()}};function b2(e){return Math.floor(e/2)}var v2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(b2(t),t);)this.exchange(t,b2(t)),t=b2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};function sae(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let m=d;m<p;++m)if(s.get(h,m,e)>t){l=!1;break}if(!l)break}return l}function Qv(e,t,n){let[r,a,s]=n.shape,i=new v2(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||sae(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}var la=nh(n0());var e6=nh(n0());function N2(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+e6.NUM_KEYPOINTS)}}function r0(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=N2(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function S2(e,t,n){return e<t?t:e>n?n:e}function t6(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function T2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var a0=nh(n0());function n6(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function dae(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+a0.NUM_KEYPOINTS)}}function pae(e,t){let n=[];for(let r=0;r<a0.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=dae(a,s,r,t);n.push(o),n.push(i)}return wn(n,[a0.NUM_KEYPOINTS,2])}function r6(e,t,n){return B(()=>e.toTensor().mul(be(t,"int32")).toFloat().add(pae(e,n)))}function fae(e,t){return B(()=>{let n=e.div(be(t,"int32"));return e.sub(n.mul(be(t,"int32")))})}function a6(e){let[t,n,r]=e.shape;return B(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(be(n,"int32")).expandDims(1),o=fae(s,n).expandDims(1);return rt([i,o],1)})}var s6=la.poseChain.map(([e,t])=>[la.partIds[e],la.partIds[t]]),E2=s6.map(([,e])=>e),i6=s6.map(([e])=>e),mae=16;function Aae(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function C2(e,t,n,r){return{y:S2(Math.round(e.y/t),0,n-1),x:S2(Math.round(e.x/t),0,r-1)}}function o6(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=C2(t.position,s,l,u),h=Aae(e,c,i),p=T2(t.position,h);for(let A=0;A<o;A++){let y=C2(p,s,l,u),g=N2(y.y,y.x,n,a);p=T2({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let m=C2(p,s,l,u),f=r.get(m.y,m.x,n);return{position:p,part:la.partNames[n],score:f}}function l6(e,t,n,r,a,s){let i=t.shape[2],o=E2.length,l=new Array(i),{part:u,score:c}=e,h=r0(u,r,n);l[u.id]={score:c,part:la.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=E2[d],m=i6[d];l[p]&&!l[m]&&(l[m]=o6(d,l[p],m,t,n,r,s))}for(let d=0;d<o;++d){let p=i6[d],m=E2[d];l[p]&&!l[m]&&(l[m]=o6(d,l[p],m,t,n,r,a))}return l}async function u6(e,t,n){let r=0,a=a6(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=r6(l,mae,o),c=await u.buffer(),d=Array.from(n6(i,l)).map((m,f)=>(r+=m,{position:{y:c.get(f,0),x:c.get(f,1)},part:la.partNames[f],score:m})),p=d.filter(m=>m.score>n.body.scoreThreshold);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}var yae=1,c6=16;function h6(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return t6(r,n,i.y,i.x)<=t})}function gae(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(h6(e,t,s,o)||(a+=i),a),0)/n.length}function d6(e,t,n,r,a){let s=[],i=Qv(a.body.scoreThreshold,yae,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),u=r0(l.part,c6,t);if(h6(s,o,u,l.part.id))continue;let c=l6(l,e,t,c6,n,r),h=gae(s,o,c);h>a.body.scoreThreshold&&s.push({keypoints:c,score:h})}return s}async function p6(e){return Promise.all(e.map(t=>t.buffer()))}function xae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:s.x*n,y:s.y*t}}))}}function f6(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function R2(e,[t,n],[r,a]){return e.map(i=>xae(i,t/r,n/a))}async function wae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await p6([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],u=i[2],c=i[3],h=await d6(o,l,u,c,n),d=R2(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function _ae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],o=[await u6(t.heatmapScores,t.offsets,n)],l=R2(o,[a,s],[n.body.inputSize,n.body.inputSize]);r(l)})}var M2=class{constructor(t){this.baseModel=t}async estimatePoses(t,n){let r=f6(t,[n.body.inputSize,n.body.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await _ae(t,a,n):await wae(t,a,n);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function $2(e){let t=await Nt(e.body.modelPath),n=new _2(t);return e.debug&&Te(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new M2(n)}var L2={};Jn(L2,{HandPose:()=>B2,load:()=>V2});function s0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Cc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function m6(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ge.cropAndResize(t,s,[0],n)}function A6(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function i0(e,t=1.5){let n=Cc(e),r=s0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function o0(e){let t=Cc(e),n=s0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var O2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=wn(this.anchors),this.inputSizeTensor=Ut([n,n]),this.doubleInputSizeTensor=Ut([n*2,n*2])}normalizeBoxes(t){return B(()=>{let n=Ce(t,[0,0],[-1,2]),r=Ce(t,[0,2],[-1,2]),a=se(ge(n,this.inputSizeTensor),this.anchorsTensor),s=ge(r,this.doubleInputSizeTensor),i=P(Ae(a,s),this.inputSizeTensor),o=P(se(a,s),this.inputSizeTensor);return el([i,o],1)})}normalizeLandmarks(t,n){return B(()=>{let r=se(ge(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=B(()=>Sn(Ce(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ce(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ge.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=Ce(l,[d,0],[1,-1]),m=Ce(a,[d,5],[1,14]),f=B(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=B(()=>t.resizeBilinear([n.hand.inputSize,n.hand.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(A6({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/n.hand.inputSize,r/n.hand.inputSize]))}return o}};function bae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function y6(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return bae(n)}var g6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ha(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function vae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function x6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ha(e[a],vae(t,s)))}return n}function D2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=g6(t[0],t[1]),i=x6(s,a),o=g6(-t[0],-t[1]);return x6(i,o)}function w6(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ha(t[0],n),-Ha(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function z2(e,t){return[Ha(e,t[0]),Ha(e,t[1])]}var kae=5,_6=1.65,b6=[0,5,9,13,17,1,2],Iae=0,Nae=2,P2=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>z2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return i0(o0(a),kae)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=i0(o0(n),_6);r.palmLandmarks=[];for(let a=0;a<b6.length;a++)r.palmLandmarks.push(t[b6[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=s0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=D2(r,[0,0]),u=o.map(p=>[...z2(p,l),p[2]]),c=w6(a),h=[...Cc(n),1],d=[Ha(h,c[0]),Ha(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?y6(o.palmLandmarks[Iae],o.palmLandmarks[Nae]):0,u=Cc(o),c=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation?Ge.rotateWithOffset(t,l,0,c):t.clone(),d=D2(-l,u),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,m=m6(p,h,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let _=j(y,[-1,3]),b=_.arraySync();y.dispose(),_.dispose();let w=this.transformRawCoords(b,p,l,d),x=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=x;let N={landmarks:w,confidence:g,box:{topLeft:x.startPoint,bottomRight:x.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=i0(o0(o),_6),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var v6=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var W2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},B2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return W2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let l of Object.keys(W2))i[l]=W2[l].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-s.box.topLeft[0],Math.min(t.shape[1],s.box.bottomRight[1])-s.box.topLeft[1]]:0;a.push({confidence:s.confidence,box:o,landmarks:s.landmarks,annotations:i})}return a}};async function V2(e){let[t,n]=await Promise.all([e.hand.enabled?Nt(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Nt(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new O2(t,e.hand.inputSize,v6),a=new P2(r,n,e.hand.inputSize),s=new B2(a);return e.hand.enabled&&e.debug&&Te(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&e.debug&&Te(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var U2={};Jn(U2,{load:()=>H2,predict:()=>j2});var k6=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],I6=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var dr;async function H2(e){return dr||(dr=await Nt(e.body.modelPath),dr.width=parseInt(dr.signature.inputs["input_1:0"].tensorShape.dim[2].size),dr.height=parseInt(dr.signature.inputs["input_1:0"].tensorShape.dim[1].size),e.debug&&Te(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`)),dr}async function j2(e,t){if(!dr||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Ge.resizeBilinear(e,[dr.width||t.body.inputSize,dr.height||t.body.inputSize],!1),a=ge(r,[255]);r.dispose();let s;if(t.profile){let u=await Hn(()=>dr.predict(a));s=u.result.find(c=>c.size===195||c.size===155).dataSync(),u.result.forEach(c=>c.dispose()),hr("blazepose",u)}else{let u=await dr.predict(a);s=u.find(c=>c.size===195||c.size===155).dataSync(),u.forEach(c=>c.dispose())}a.dispose();let i=[],o=s.length===195?k6:I6,l=5;for(let u=0;u<s.length/l;u++)i.push({id:u,part:o[u],position:{x:Math.trunc(n.width*s[l*u+0]/255),y:Math.trunc(n.height*s[l*u+1]/255),z:Math.trunc(s[l*u+2])+0},score:(100-Math.trunc(100/(1+Math.exp(s[l*u+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(s[l*u+4]))))/100});return[{keypoints:i}]}var N6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},S6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[35][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},T6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},E6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};function Sae(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function C6(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let x=Array.prototype.slice.call(arguments,1),N=h[w];i.push({func:N,args:x})},this.reset=function(){i=[]};let A=function(w,x){if(!(w===o&&x===l)){if(d.width=w,o=w,d.height=x,l=x,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(w,x){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,w,x,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:E}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},_=function(w=null){var E,M;let x=null,N=null,T=!1;t===0?x=n:x=(E=g(a))==null?void 0:E.texture,t++,r&&!(w&m.INTERMEDIATE)?(N=null,T=t%2==0):(a=(a+1)%2,N=(M=g(a))==null?void 0:M.fbo),f.bindTexture(f.TEXTURE_2D,x),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(c.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,w),i.length===0)return _(),d;for(let x=0;x<i.length;x++){r=x===i.length-1;let N=i[x];N.func.apply(this,N.args||[])}return d};let b=function(w){if(p[w])return c=p[w],f.useProgram(c.id),c;let x={};x.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),x.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Sae(f,x.VERTEX_IDENTITY,w);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return f.enableVertexAttribArray(c.attribute.pos),f.vertexAttribPointer(c.attribute.pos,2,f.FLOAT,!1,T,0*N),f.enableVertexAttribArray(c.attribute.uv),f.vertexAttribPointer(c.attribute.uv,2,f.FLOAT,!1,T,2*N),p[w]=c,c};h.colorMatrix=function(w){let x=new Float32Array(w);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let N=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=b(N);f.uniform1fv(T.uniform.m,x),_()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),h.brightness=function(w){let x=(w||0)+1;h.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},h.saturation=function(w){let x=(w||0)*2/3+1,N=(x-1)*-.5;h.colorMatrix([x,N,N,0,0,N,x,N,0,0,N,N,x,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let x=(w||0)+1,N=-128*(x-1);h.colorMatrix([x,0,0,0,N,0,x,0,0,N,0,0,x,0,N,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let x=Math.cos(w),N=Math.sin(w),T=.213,E=.715,M=.072;h.colorMatrix([T+x*(1-T)+N*-T,E+x*-E+N*-E,M+x*-M+N*(1-M),0,0,T+x*-T+N*.143,E+x*(1-E)+N*.14,M+x*-M+N*-.283,0,0,T+x*-T+N*-(1-T),E+x*-E+N*E,M+x*(1-M)+N*M,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let x=new Float32Array(w),N=1/o,T=1/l,E=b(h.convolution.SHADER);f.uniform1fv(E.uniform.m,x),f.uniform2f(E.uniform.px,N,T),_()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let x=w||1;h.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},h.emboss=function(w){let x=w||1;h.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},h.blur=function(w){let x=w/7/o,N=w/7/l,T=b(h.blur.SHADER);f.uniform2f(T.uniform.px,0,N),_(m.INTERMEDIATE),f.uniform2f(T.uniform.px,x,0),_()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),h.pixelate=function(w){let x=w/o,N=w/l,T=b(h.pixelate.SHADER);f.uniform2f(T.uniform.size,x,N),_()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Tt=null,nn=null,Rt=null;function G2(e,t){let n;if(e instanceof Ze)n=nr(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Te("Human: invalid input",e),null;(!Tt||Tt.width!==s||Tt.height!==i)&&(Tt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),Tt.width!==s&&(Tt.width=s),Tt.height!==i&&(Tt.height=i));let o=Tt.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,Tt.width,Tt.height),t.filter.enabled){if((!Rt||!nn||Tt.width!==nn.width||Tt.height!==nn.height)&&(nn=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Tt.width,Tt.height):document.createElement("canvas"),nn.width!==Tt.width&&(nn.width=Tt.width),nn.height!==Tt.height&&(nn.height=Tt.height),Rt=Ya.flags.IS_BROWSER?new C6({canvas:nn}):null),!Rt)return Tt;Rt.reset(),Rt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Rt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Rt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Rt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Rt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Rt.addFilter("hue",t.filter.hue),t.filter.negative&&Rt.addFilter("negative"),t.filter.sepia&&Rt.addFilter("sepia"),t.filter.vintage&&Rt.addFilter("brownie"),t.filter.sepia&&Rt.addFilter("sepia"),t.filter.kodachrome&&Rt.addFilter("kodachrome"),t.filter.technicolor&&Rt.addFilter("technicolor"),t.filter.polaroid&&Rt.addFilter("polaroid"),t.filter.pixelate!==0&&Rt.addFilter("pixelate",t.filter.pixelate),Rt.apply(Tt)}else nn=Tt,Rt&&(Rt=null);let l;if(nn.data){let c=[nn.height,nn.width,3];l=Xh(nn.data,c,"int32")}else if(t.backend==="webgl"||nn instanceof ImageData)l=Xo.fromPixels(nn);else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let h=c.getContext("2d");h==null||h.drawImage(nn,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=Xo.fromPixels(d)}let u=l.toFloat();n=u.expandDims(0),l.dispose(),u.dispose()}return{tensor:n,canvas:t.filter.return?nn:null}}var pt={backend:"webgl",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.1},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.1,skipFrames:21,modelPath:"../models/emotion.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.3,nmsRadius:20,modelType:"posenet-mobilenet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var l0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,u0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var q2={};Jn(q2,{author:()=>P6,browser:()=>D6,bugs:()=>L6,default:()=>Tae,dependencies:()=>H6,description:()=>F6,devDependencies:()=>G6,engines:()=>V6,homepage:()=>W6,keywords:()=>X6,license:()=>B6,main:()=>$6,module:()=>O6,name:()=>R6,peerDependencies:()=>j6,repository:()=>U6,scripts:()=>q6,sideEffects:()=>M6,types:()=>z6,version:()=>X2});var R6="@vladmandic/human",X2="0.40.5",F6="Human: AI-powered 3D Face Detection, Face Embedding & Recognition, Body Pose Tracking, Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction & Gesture Recognition",M6=!1,$6="dist/human.node.js",O6="dist/human.esm.js",D6="dist/human.esm.js",z6="types/human.d.ts",P6="Vladimir Mandic <mandic00@live.com>",L6={url:"https://github.com/vladmandic/human/issues"},W6="https://github.com/vladmandic/human#readme",B6="MIT",V6={node:">=12.0.0"},U6={type:"git",url:"git+https://github.com/vladmandic/human.git"},H6={},j6={},G6={"@tensorflow/tfjs":"^3.2.0","@tensorflow/tfjs-backend-cpu":"^3.2.0","@tensorflow/tfjs-backend-wasm":"^3.2.0","@tensorflow/tfjs-backend-webgl":"^3.2.0","@tensorflow/tfjs-converter":"^3.2.0","@tensorflow/tfjs-core":"^3.2.0","@tensorflow/tfjs-data":"^3.2.0","@tensorflow/tfjs-layers":"^3.2.0","@tensorflow/tfjs-node":"^3.2.0","@tensorflow/tfjs-node-gpu":"^3.2.0","@types/node":"^14.14.31","@typescript-eslint/eslint-plugin":"^4.16.1","@typescript-eslint/parser":"^4.16.1","@vladmandic/pilogger":"^0.2.14",chokidar:"^3.5.1",dayjs:"^1.10.4",esbuild:"^0.8.56",eslint:"^7.21.0","eslint-config-airbnb-base":"^14.2.1","eslint-plugin-import":"^2.22.1","eslint-plugin-json":"^2.1.2","eslint-plugin-node":"^11.1.0","eslint-plugin-promise":"^4.3.1",rimraf:"^3.0.2",seedrandom:"^3.0.5","simple-git":"^2.36.0",tslib:"^2.1.0",typescript:"^4.3.0-dev.20210305"},q6={start:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",lint:"eslint src demo server",dev:"npm install && node server/serve.js",build:"rimraf dist/* && rimraf types/* && node server/build.js && node server/changelog.js",update:"npm update --depth 20 --force && npm dedupe && npm prune && npm audit"},X6=["tensorflowjs","face-detection","face-geometry","face-embedding","face-recognition","body-tracking","hand-tracking","iris-tracking","age-estimation","emotion-detection","gender-prediction","gesture-recognition","blazeface","blazepose"],Tae={name:R6,version:X2,description:F6,sideEffects:M6,main:$6,module:O6,browser:D6,types:z6,author:P6,bugs:L6,homepage:W6,license:B6,engines:V6,repository:U6,dependencies:H6,peerDependencies:j6,devDependencies:G6,scripts:q6,keywords:X6};var K2={};Jn(K2,{all:()=>Cae,body:()=>Y6,canvas:()=>Eae,face:()=>Z6,gesture:()=>K6,hand:()=>J6,options:()=>ce});var ce={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:20,lineWidth:6,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,bufferedOutput:!1};function c0(e,t,n){e.fillStyle=ce.color,e.beginPath(),e.arc(t,n,ce.pointSize,0,2*Math.PI),e.fill()}function Z2(e,t,n,r,a){ce.roundRect&&ce.roundRect>0?(e.lineWidth=ce.lineWidth,e.beginPath(),e.moveTo(t+ce.roundRect,n),e.lineTo(t+r-ce.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+ce.roundRect),e.lineTo(t+r,n+a-ce.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-ce.roundRect,n+a),e.lineTo(t+ce.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-ce.roundRect),e.lineTo(t,n+ce.roundRect),e.quadraticCurveTo(t,n,t+ce.roundRect,n),e.closePath(),e.stroke()):Z2(e,t,n,r,a)}function Ll(e,t){e.beginPath();let n=new Path2D;n.moveTo(t[0][0],t[0][1]);for(let r of t)n.lineTo(r[0],parseInt(r[1]));e.stroke(n),ce.fillPolygons&&(e.closePath(),e.fill(n))}async function K6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!n)return;n.font=ce.font,n.fillStyle=ce.color;let r=1;for(let a=0;a<t.length;a++){let s=[],i=[];if([s,i]=Object.entries(t[a]),i.length>1&&i[1].length>0){let o=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${o}: ${i[1]}`;ce.shadowColor&&ce.shadowColor!==""&&(n.fillStyle=ce.shadowColor,n.fillText(l,8,2+r*ce.lineHeight)),n.fillStyle=ce.labelColor,n.fillText(l,6,0+r*ce.lineHeight),r+=1}}}async function Z6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n)for(let r of t){n.font=ce.font,n.strokeStyle=ce.color,n.fillStyle=ce.color,ce.drawBoxes&&Z2(n,r.box[0],r.box[1],r.box[2],r.box[3]);let a=[];if(a.push(`face confidence: ${Math.trunc(100*r.confidence)}%`),r.genderConfidence&&a.push(`${r.gender||""} ${Math.trunc(100*r.genderConfidence)}% confident`),r.age&&a.push(`age: ${r.age||""}`),r.iris&&a.push(`iris distance: ${r.iris}`),r.emotion&&r.emotion.length>0){let s=r.emotion.map(i=>`${Math.trunc(100*i.score)}% ${i.emotion}`);a.push(s.join(" "))}a.length===0&&a.push("face"),n.fillStyle=ce.color;for(let s=a.length-1;s>=0;s--){let i=Math.max(r.box[0],0),o=s*ce.lineHeight+r.box[1];ce.shadowColor&&ce.shadowColor!==""&&(n.fillStyle=ce.shadowColor,n.fillText(a[s],i+5,o+16)),n.fillStyle=ce.labelColor,n.fillText(a[s],i+4,o+15)}if(n.lineWidth=1,r.mesh){if(ce.drawPoints)for(let s of r.mesh)n.fillStyle=ce.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:ce.color,c0(n,s[0],s[1]);if(ce.drawPolygons){for(let s=0;s<vi.length/3;s++){let i=[vi[s*3+0],vi[s*3+1],vi[s*3+2]].map(o=>r.mesh[o]);n.strokeStyle=ce.useDepth?`rgba(${127.5+2*i[0][2]}, ${127.5-2*i[0][2]}, 255, 0.3)`:ce.color,n.fillStyle=ce.useDepth?`rgba(${127.5+2*i[0][2]}, ${127.5-2*i[0][2]}, 255, 0.3)`:ce.color,n.lineWidth=1,Ll(n,i)}if(r.annotations&&r.annotations.leftEyeIris){n.strokeStyle=ce.useDepth?"rgba(255, 200, 255, 0.3)":ce.color,n.beginPath();let s=Math.abs(r.annotations.leftEyeIris[3][0]-r.annotations.leftEyeIris[1][0])/2,i=Math.abs(r.annotations.leftEyeIris[4][1]-r.annotations.leftEyeIris[2][1])/2;n.ellipse(r.annotations.leftEyeIris[0][0],r.annotations.leftEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),ce.fillPolygons&&(n.fillStyle=ce.useDepth?"rgba(255, 255, 200, 0.3)":ce.color,n.fill())}if(r.annotations&&r.annotations.rightEyeIris){n.strokeStyle=ce.useDepth?"rgba(255, 200, 255, 0.3)":ce.color,n.beginPath();let s=Math.abs(r.annotations.rightEyeIris[3][0]-r.annotations.rightEyeIris[1][0])/2,i=Math.abs(r.annotations.rightEyeIris[4][1]-r.annotations.rightEyeIris[2][1])/2;n.ellipse(r.annotations.rightEyeIris[0][0],r.annotations.rightEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),ce.fillPolygons&&(n.fillStyle=ce.useDepth?"rgba(255, 255, 200, 0.3)":ce.color,n.fill())}}}}}var ja=[];async function Y6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round";for(let r=0;r<t.length;r++){if(!ja[r]&&ce.bufferedOutput&&(ja[r]={...t[r]}),n.strokeStyle=ce.color,n.lineWidth=ce.lineWidth,ce.drawPoints)for(let a=0;a<t[r].keypoints.length;a++)n.fillStyle=ce.useDepth&&t[r].keypoints[a].position.z?`rgba(${127.5+2*t[r].keypoints[a].position.z}, ${127.5-2*t[r].keypoints[a].position.z}, 255, 0.5)`:ce.color,ce.bufferedOutput?(ja[r].keypoints[a][0]=(ja[r].keypoints[a][0]+t[r].keypoints[a].position.x)/2,ja[r].keypoints[a][1]=(ja[r].keypoints[a][1]+t[r].keypoints[a].position.y)/2,c0(n,ja[r].keypoints[a][0],ja[r].keypoints[a][1])):c0(n,t[r].keypoints[a].position.x,t[r].keypoints[a].position.y);if(ce.drawLabels){n.font=ce.font;for(let a of t[r].keypoints)n.fillStyle=ce.useDepth&&a.position.z?`rgba(${127.5+2*a.position.z}, ${127.5-2*a.position.z}, 255, 0.5)`:ce.color,n.fillText(`${a.part}`,a.position.x+4,a.position.y+4)}if(ce.drawPolygons){let a=new Path2D,s,i;if(s=t[r].keypoints.find(o=>o.part==="leftShoulder"),s&&s.score>pt.body.scoreThreshold){let o=[];o.push([s.position.x,s.position.y,"leftShoulder"]),i=t[r].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="rightHip"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftHip"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Ll(n,o)}if(s=t[r].keypoints.find(o=>o.part==="leftHip"),s&&s.score>pt.body.scoreThreshold){let o=[];o.push([s.position.x,s.position.y]),i=t[r].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Ll(n,o)}if(s=t[r].keypoints.find(o=>o.part==="rightHip"),s&&s.score>pt.body.scoreThreshold){let o=[];o.push([s.position.x,s.position.y]),i=t[r].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Ll(n,o)}if(s=t[r].keypoints.find(o=>o.part==="leftShoulder"),s&&s.score>pt.body.scoreThreshold){let o=[];o.push([s.position.x,s.position.y]),i=t[r].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Ll(n,o)}if(s=t[r].keypoints.find(o=>o.part==="rightShoulder"),s&&s.score>pt.body.scoreThreshold){let o=[];o.push([s.position.x,s.position.y]),i=t[r].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[r].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>pt.body.scoreThreshold&&o.push([i.position.x,i.position.y]),Ll(n,o)}n.stroke(a)}}}}async function J6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round",n.font=ce.font;for(let r of t){if(ce.drawBoxes&&(n.strokeStyle=ce.color,n.fillStyle=ce.color,Z2(n,r.box[0],r.box[1],r.box[2],r.box[3]),ce.shadowColor&&ce.shadowColor!==""&&(n.fillStyle=ce.shadowColor,n.fillText("hand",r.box[0]+3,1+r.box[1]+ce.lineHeight,r.box[2])),n.fillStyle=ce.labelColor,n.fillText("hand",r.box[0]+2,0+r.box[1]+ce.lineHeight,r.box[2]),n.stroke()),ce.drawPoints&&r.landmarks&&r.landmarks.length>0)for(let a of r.landmarks)n.fillStyle=ce.useDepth?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.5)`:ce.color,c0(n,a[0],a[1]);if(ce.drawPolygons){let a=s=>{if(!!s)for(let i=0;i<s.length;i++)n.lineWidth=ce.lineWidth,n.beginPath(),n.strokeStyle=ce.useDepth?`rgba(${127.5+2*s[i][2]}, ${127.5-2*s[i][2]}, 255, 0.5)`:ce.color,n.moveTo(s[i>0?i-1:0][0],s[i>0?i-1:0][1]),n.lineTo(s[i][0],s[i][1]),n.stroke()};a(r.annotations.indexFinger),a(r.annotations.middleFinger),a(r.annotations.ringFinger),a(r.annotations.pinky),a(r.annotations.thumb)}}}}async function Eae(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Cae(e,t){!t||!e||e instanceof HTMLCanvasElement&&(Z6(e,t.face),Y6(e,t.body),J6(e,t.hand),K6(e,t.gesture))}var ct=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Rc(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Rc(s,i):n[a]=i}),n),{})}var e4=class{constructor(t={}){this.tf=rh,this.draw=K2,this.package=q2,this.version=X2,this.config=Rc(pt,t),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,blazepose:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.image=n=>G2(n,this.config),this.facemesh=Q6,this.age=s2,this.gender=l2,this.emotion=f2,this.body=this.config.body.modelType.startsWith("posenet")?F2:U2,this.hand=L2}profile(){return this.config.profile?n2:{}}analyze(...t){if(!this.analyzeMemoryLeaks)return;let n=this.tf.engine().state.numTensors,r=this.numTensors;this.numTensors=n;let a=n-r;a!==0&&Te(...t,a)}sanity(t){if(!this.checkSanity)return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof this.tf.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null}simmilarity(t,n){return this.config.face.embedding.enabled?Jv(t,n):0}async load(t=null){this.state="load";let n=ct();t&&(this.config=Rc(this.config,t)),this.firstRun&&(this.config.debug&&Te(`version: ${this.version} TensorFlow/JS version: ${this.tf.version_core}`),await this.checkBackend(!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&Te("configuration:",this.config),this.config.debug&&Te("tf flags:",this.tf.ENV.flags)));let r=this.config.face.detector.modelPath.includes("faceboxes")?r2:Q6;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose]=await Promise.all([this.models.face||(this.config.face.enabled?r.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?i2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?d2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?y2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?x2(this.config):null),this.models.handpose||(this.config.hand.enabled?V2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelType.startsWith("posenet")?$2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelType.startsWith("blazepose")?H2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await r.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await i2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await d2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await y2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await x2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await V2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelType.startsWith("posenet")&&(this.models.posenet=await $2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelType.startsWith("blazepose")&&(this.models.blazepose=await H2(this.config))),this.firstRun&&(this.config.debug&&Te("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.firstRun=!1);let a=Math.trunc(ct()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async checkBackend(t=!1){if(this.config.backend&&this.config.backend!==""&&t||this.tf.getBackend()!==this.config.backend){let n=ct();if(this.state="backend",this.config.backend&&this.config.backend!==""){this.config.debug&&Te("setting backend:",this.config.backend),this.config.backend==="wasm"&&(this.config.debug&&Te("settings wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath),await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT")||Te("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Lv();try{await this.tf.setBackend(this.config.backend)}catch(r){Te("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Te("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&Te(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(ct()-n)}}async detectFace(t){var u,c,h,d,p,m;let n,r,a,s,i,o=[];this.state="run:face",n=ct();let l=await((u=this.models.face)==null?void 0:u.estimateFaces(t,this.config));this.perf.face=Math.trunc(ct()-n);for(let f of l){if(this.analyze("Get Face"),!f.image||f.image.isDisposedInternal){Te("Face object is disposed:",f.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?o2(f.image,this.config):{}:(this.state="run:age",n=ct(),r=this.config.face.age.enabled?await o2(f.image,this.config):{},this.perf.age=Math.trunc(ct()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?p2(f.image,this.config):{}:(this.state="run:gender",n=ct(),a=this.config.face.gender.enabled?await p2(f.image,this.config):{},this.perf.gender=Math.trunc(ct()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?g2(f.image,this.config):{}:(this.state="run:emotion",n=ct(),s=this.config.face.emotion.enabled?await g2(f.image,this.config):{},this.perf.emotion=Math.trunc(ct()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?w2(f.image,this.config):[]:(this.state="run:embedding",n=ct(),i=this.config.face.embedding.enabled?await w2(f.image,this.config):[],this.perf.embedding=Math.trunc(ct()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((c=f==null?void 0:f.annotations)==null?void 0:c.leftEyeIris)&&((h=f==null?void 0:f.annotations)==null?void 0:h.rightEyeIris)&&(delete f.annotations.leftEyeIris,delete f.annotations.rightEyeIris);let A=((d=f.annotations)==null?void 0:d.leftEyeIris)&&((p=f.annotations)==null?void 0:p.rightEyeIris)?11.7*Math.max(Math.abs(f.annotations.leftEyeIris[3][0]-f.annotations.leftEyeIris[1][0]),Math.abs(f.annotations.rightEyeIris[4][1]-f.annotations.rightEyeIris[2][1])):0;o.push({confidence:f.confidence,faceConfidence:f.faceConfidence,boxConfidence:f.boxConfidence,box:f.box,mesh:f.mesh,boxRaw:f.boxRaw,meshRaw:f.meshRaw,annotations:f.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:A!==0?Math.trunc(A)/100:0}),(m=f.image)==null||m.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async detect(t,n={}){return new Promise(async r=>{var d,p,m,f;this.state="config";let a;this.config=Rc(this.config,n),this.state="check";let s=this.sanity(t);s&&(Te(s,t),r({error:s}));let i,o,l,u=ct();await this.checkBackend(),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:"),a=ct();let c=G2(t,this.config);if(!c||!c.tensor){Te("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(ct()-a),this.analyze("Get Image:"),this.config.async?(l=this.config.face.enabled?this.detectFace(c.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=ct(),l=this.config.face.enabled?await this.detectFace(c.tensor):[],this.perf.face=Math.trunc(ct()-a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelType.startsWith("posenet")?i=this.config.body.enabled?(d=this.models.posenet)==null?void 0:d.estimatePoses(c.tensor,this.config):[]:i=this.config.body.enabled?j2(c.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",a=ct(),this.config.body.modelType.startsWith("posenet")?i=this.config.body.enabled?await((p=this.models.posenet)==null?void 0:p.estimatePoses(c.tensor,this.config)):[]:i=this.config.body.enabled?await j2(c.tensor,this.config):[],this.perf.body=Math.trunc(ct()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(o=this.config.hand.enabled?(m=this.models.handpose)==null?void 0:m.estimateHands(c.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=ct(),o=this.config.hand.enabled?await((f=this.models.handpose)==null?void 0:f.estimateHands(c.tensor,this.config)):[],this.perf.hand=Math.trunc(ct()-a)),this.analyze("End Hand:"),this.config.async&&([l,i,o]=await Promise.all([l,i,o])),c.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let h=[];this.config.gesture.enabled&&(a=ct(),h=[...S6(l),...N6(i),...E6(o),...T6(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(ct()-a)),this.perf.total=Math.trunc(ct()-u),this.state="idle",r({face:l,body:i,hand:o,gesture:h,performance:this.perf,canvas:c.canvas})})}async warmupBitmap(){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(l0);break;case"full":n=await t(u0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r}async warmupCanvas(){return new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+l0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+u0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)})}async warmupNode(){let t=i=>Buffer.from(i,"base64"),n=this.config.warmup==="face"?t(l0):t(u0),r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r);let s=await this.detect(a,this.config);return this.tf.dispose(a),s}async warmup(t){let n=ct();t&&(this.config=Rc(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await this.warmupBitmap():typeof Image!="undefined"?a=await this.warmupCanvas():a=await this.warmupNode(),this.config.videoOptimized=r;let s=ct();return this.config.debug&&Te("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};export{e4 as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|