mirror of https://github.com/vladmandic/human
85 lines
3.0 KiB
JavaScript
85 lines
3.0 KiB
JavaScript
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
// https://storage.googleapis.com/tfjs-models/demos/handpose/index.html
|
|
|
|
import * as tf from '@tensorflow/tfjs/dist/tf.es2017.js';
|
|
import * as handdetector from './handdetector';
|
|
import * as pipeline from './handpipeline';
|
|
import * as anchors from './anchors';
|
|
|
|
const MESH_ANNOTATIONS = {
|
|
thumb: [1, 2, 3, 4],
|
|
indexFinger: [5, 6, 7, 8],
|
|
middleFinger: [9, 10, 11, 12],
|
|
ringFinger: [13, 14, 15, 16],
|
|
pinky: [17, 18, 19, 20],
|
|
palmBase: [0],
|
|
};
|
|
|
|
class HandPose {
|
|
constructor(pipe) {
|
|
this.pipeline = pipe;
|
|
}
|
|
|
|
static getAnnotations() {
|
|
return MESH_ANNOTATIONS;
|
|
}
|
|
|
|
async estimateHands(input, config) {
|
|
const predictions = await this.pipeline.estimateHands(input, config);
|
|
if (!predictions) return [];
|
|
const hands = [];
|
|
for (const prediction of predictions) {
|
|
const annotations = {};
|
|
if (prediction.landmarks) {
|
|
for (const key of Object.keys(MESH_ANNOTATIONS)) {
|
|
annotations[key] = MESH_ANNOTATIONS[key].map((index) => prediction.landmarks[index]);
|
|
}
|
|
}
|
|
hands.push({
|
|
confidence: prediction.confidence,
|
|
box: prediction.box ? [
|
|
prediction.box.topLeft[0],
|
|
prediction.box.topLeft[1],
|
|
prediction.box.bottomRight[0] - prediction.box.topLeft[0],
|
|
prediction.box.bottomRight[1] - prediction.box.topLeft[1],
|
|
] : 0,
|
|
landmarks: prediction.landmarks,
|
|
annotations,
|
|
});
|
|
}
|
|
return hands;
|
|
}
|
|
}
|
|
exports.HandPose = HandPose;
|
|
|
|
async function load(config) {
|
|
const [handDetectorModel, handPoseModel] = await Promise.all([
|
|
tf.loadGraphModel(config.detector.modelPath, { fromTFHub: config.detector.modelPath.includes('tfhub.dev') }),
|
|
tf.loadGraphModel(config.skeleton.modelPath, { fromTFHub: config.skeleton.modelPath.includes('tfhub.dev') }),
|
|
]);
|
|
const detector = new handdetector.HandDetector(handDetectorModel, config.inputSize, anchors.anchors);
|
|
const pipe = new pipeline.HandPipeline(detector, handPoseModel, config.inputSize);
|
|
const handpose = new HandPose(pipe);
|
|
// eslint-disable-next-line no-console
|
|
console.log(`Human: load model: ${config.detector.modelPath.match(/\/(.*)\./)[1]}`);
|
|
// eslint-disable-next-line no-console
|
|
console.log(`Human: load model: ${config.skeleton.modelPath.match(/\/(.*)\./)[1]}`);
|
|
return handpose;
|
|
}
|
|
exports.load = load;
|