mirror of https://github.com/vladmandic/human
8027 lines
1.6 MiB
8027 lines
1.6 MiB
"use strict";/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var _f=Object.defineProperty;var iR=Object.getOwnPropertyDescriptor;var lR=Object.getOwnPropertyNames;var uR=Object.prototype.hasOwnProperty;var cR=(e,t,n)=>t in e?_f(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ra=(e,t)=>{for(var n in t)_f(e,n,{get:t[n],enumerable:!0})},dR=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of lR(t))!uR.call(e,r)&&r!==n&&_f(e,r,{get:()=>t[r],enumerable:!(s=iR(t,r))||s.enumerable});return e};var pR=e=>dR(_f({},"__esModule",{value:!0}),e);var ge=(e,t,n)=>(cR(e,typeof t!="symbol"?t+"":t,n),n),N4=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Gd=(e,t,n)=>(N4(e,t,"read from private field"),n?n.call(e):t.get(e)),Hd=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},jd=(e,t,n,s)=>(N4(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Q5e={};ra(Q5e,{Human:()=>o4,default:()=>o4,defaults:()=>Oa,draw:()=>Qb,env:()=>me,match:()=>a4,models:()=>n1});function oe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function E4(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var ue=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function zg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")zg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&oe("invalid configuration",s),s}function Kt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Kt(a,o):n[r]=o}),n),{})}var Oa={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var He={};ra(He,{Abs:()=>ol,Acos:()=>uc,Acosh:()=>cc,AdadeltaOptimizer:()=>P0,AdagradOptimizer:()=>O0,AdamOptimizer:()=>M0,AdamaxOptimizer:()=>z0,Add:()=>ya,AddN:()=>oo,All:()=>dc,Any:()=>pc,ArgMax:()=>io,ArgMin:()=>hc,Asin:()=>fc,Asinh:()=>mc,Atan:()=>gc,Atan2:()=>Ac,Atanh:()=>yc,AvgPool:()=>lo,AvgPool3D:()=>Rp,AvgPool3DGrad:()=>Mm,AvgPoolGrad:()=>Om,BackendWasm:()=>oC,BatchMatMul:()=>uo,BatchToSpaceND:()=>il,Bincount:()=>zm,BroadcastArgs:()=>Lm,BroadcastTo:()=>P7,Callback:()=>B8,CallbackList:()=>Gw,Cast:()=>co,Ceil:()=>po,ClipByValue:()=>Aa,Complex:()=>_p,ComplexAbs:()=>Dp,Concat:()=>ll,Conv2D:()=>ho,Conv2DBackpropFilter:()=>Bm,Conv2DBackpropInput:()=>fo,Conv3D:()=>$p,Conv3DBackpropFilterV2:()=>Wm,Conv3DBackpropInputV2:()=>Vm,Cos:()=>mo,Cosh:()=>go,CropAndResize:()=>cl,Cumprod:()=>ul,Cumsum:()=>yo,CustomCallback:()=>jw,DataStorage:()=>Ep,DenseBincount:()=>Um,DepthToSpace:()=>dl,DepthwiseConv2dNative:()=>Ao,DepthwiseConv2dNativeBackpropFilter:()=>Gm,DepthwiseConv2dNativeBackpropInput:()=>Hm,Diag:()=>jm,Dilation2D:()=>Fp,Dilation2DBackpropFilter:()=>im,Dilation2DBackpropInput:()=>om,ENV:()=>Rr,EarlyStopping:()=>W8,Einsum:()=>Pp,Elu:()=>bo,EluGrad:()=>qm,Environment:()=>$7,Equal:()=>pl,Erf:()=>xc,Exp:()=>vo,ExpandDims:()=>hl,Expm1:()=>fl,FFT:()=>Xm,Fill:()=>bc,FlipLeftRight:()=>ml,Floor:()=>wo,FloorDiv:()=>ko,FromPixels:()=>pp,FusedBatchNorm:()=>Io,FusedConv2D:()=>Ka,FusedDepthwiseConv2D:()=>Za,GPGPUContext:()=>Gu,GatherNd:()=>yl,GatherV2:()=>gl,GraphModel:()=>Ih,Greater:()=>Al,GreaterEqual:()=>So,History:()=>Hw,IFFT:()=>Km,Identity:()=>Co,Imag:()=>Op,InputSpec:()=>rn,IsFinite:()=>vc,IsInf:()=>wc,IsNan:()=>kc,KernelBackend:()=>ic,LRN:()=>zp,LRNGrad:()=>Ym,LayerVariable:()=>Mw,LayersModel:()=>ca,LeakyRelu:()=>To,Less:()=>xl,LessEqual:()=>bl,LinSpace:()=>Zm,Log:()=>No,Log1p:()=>Ic,LogSoftmax:()=>O7,LogicalAnd:()=>vl,LogicalNot:()=>Sc,LogicalOr:()=>Mp,LowerBound:()=>l_,MathBackendWebGL:()=>sd,Max:()=>Eo,MaxPool:()=>_o,MaxPool3D:()=>Lp,MaxPool3DGrad:()=>Qm,MaxPoolGrad:()=>Jm,MaxPoolWithArgmax:()=>e0,Maximum:()=>Ro,Mean:()=>Do,Min:()=>$o,Minimum:()=>Fo,MirrorPad:()=>Po,Mod:()=>Cc,MomentumOptimizer:()=>L0,Multinomial:()=>t0,Multiply:()=>Oo,Neg:()=>wl,NonMaxSuppressionV3:()=>Il,NonMaxSuppressionV4:()=>Tc,NonMaxSuppressionV5:()=>Sl,NotEqual:()=>kl,OP_SCOPE_SUFFIX:()=>j7,OneHot:()=>Tl,OnesLike:()=>Cl,Optimizer:()=>va,OptimizerConstructors:()=>Ma,Pack:()=>Nl,PadV2:()=>Mo,Pool:()=>u_,Pow:()=>zo,Prelu:()=>Lo,Prod:()=>Bo,RMSPropOptimizer:()=>B0,RNN:()=>Zr,Range:()=>Nc,Rank:()=>t3,Real:()=>Bp,RealDiv:()=>xo,Reciprocal:()=>Ec,Reduction:()=>Kn,Relu:()=>Wo,Relu6:()=>Uo,Reshape:()=>El,ResizeBilinear:()=>Vo,ResizeBilinearGrad:()=>s0,ResizeNearestNeighbor:()=>Rc,ResizeNearestNeighborGrad:()=>n0,Reverse:()=>Rl,RotateWithOffset:()=>Gl,Round:()=>_l,Rsqrt:()=>Go,SGDOptimizer:()=>ph,ScatterNd:()=>Dl,SearchSorted:()=>r0,Select:()=>$l,Selu:()=>_c,Sequential:()=>ec,Sigmoid:()=>jo,Sign:()=>Dc,Sin:()=>Ho,Sinh:()=>Pl,Slice:()=>Fl,Softmax:()=>Ko,Softplus:()=>$c,SpaceToBatchND:()=>Ol,SparseFillEmptyRows:()=>Wp,SparseReshape:()=>Fc,SparseSegmentMean:()=>Vp,SparseSegmentSum:()=>Up,SparseToDense:()=>Gp,SplitV:()=>Ml,Sqrt:()=>qo,Square:()=>Pc,SquaredDifference:()=>Zo,Step:()=>Qo,StridedSlice:()=>zl,StringNGrams:()=>Hp,StringSplit:()=>a0,StringToHashBucketFast:()=>o0,Sub:()=>Yo,Sum:()=>Xo,SymbolicTensor:()=>wr,Tan:()=>Ll,Tanh:()=>Jo,Tensor:()=>st,TensorBuffer:()=>fn,Tile:()=>xa,TopK:()=>Bl,Transform:()=>Wl,Transpose:()=>Vr,Unique:()=>i0,Unpack:()=>Vl,UnsortedSegmentSum:()=>jp,UpperBound:()=>c_,Variable:()=>mp,ZerosLike:()=>Ul,_FusedMatMul:()=>Xa,abs:()=>nn,acos:()=>Sy,acosh:()=>Cy,add:()=>ce,addN:()=>u0,all:()=>c0,any:()=>Ap,argMax:()=>Cs,argMin:()=>Ty,asin:()=>Ny,asinh:()=>Ey,atan:()=>Ry,atan2:()=>_y,atanh:()=>Dy,avgPool:()=>eh,avgPool3d:()=>Fy,backend:()=>qs,backend_util:()=>T,basicLSTMCell:()=>eF,batchNorm:()=>qi,batchNorm2d:()=>R6,batchNorm3d:()=>_6,batchNorm4d:()=>D6,batchToSpaceND:()=>th,bincount:()=>Py,booleanMaskAsync:()=>iM,broadcastArgs:()=>$6,broadcastTo:()=>Vu,broadcast_util:()=>jl,browser:()=>Xs,buffer:()=>We,callbacks:()=>MH,cast:()=>he,ceil:()=>Oy,clipByValue:()=>ps,clone:()=>Jn,complex:()=>da,concat:()=>St,concat1d:()=>F6,concat2d:()=>zc,concat3d:()=>P6,concat4d:()=>O6,constraints:()=>Bw,conv1d:()=>d0,conv2d:()=>pa,conv2dTranspose:()=>p0,conv3d:()=>zy,conv3dTranspose:()=>z6,copyRegisteredKernels:()=>f_,cos:()=>nh,cosh:()=>h0,cosineWindow:()=>pA,cumprod:()=>xp,cumsum:()=>f0,customGrad:()=>jr,data:()=>dk,denseBincount:()=>L6,deprecationWarn:()=>my,depthToSpace:()=>Ly,depthwiseConv2d:()=>Lc,deregisterOp:()=>BH,device_util:()=>Zp,diag:()=>_F,dilation2d:()=>By,disableDeprecationWarnings:()=>WD,dispose:()=>ne,disposeVariables:()=>VD,div:()=>pe,divNoNan:()=>Wy,dot:()=>B6,dropout:()=>uw,einsum:()=>W6,elu:()=>Bc,enableDebugMode:()=>BD,enableProdMode:()=>fy,enclosingPowerOfTwo:()=>cw,engine:()=>sn,env:()=>Y,equal:()=>Ts,erf:()=>Vy,euclideanNorm:()=>Hy,exp:()=>Ns,expandDims:()=>Zt,expm1:()=>jy,eye:()=>qy,fft:()=>ch,fill:()=>Wc,findBackend:()=>yy,findBackendFactory:()=>jD,floor:()=>Vc,floorDiv:()=>Mc,forceHalfFloat:()=>TS,fused:()=>Ja,gather:()=>Ki,gatherND:()=>lw,gather_util:()=>Ay,getBackend:()=>ts,getGradient:()=>Qg,getKernel:()=>lm,getKernelsForBackend:()=>Gr,getThreadsCount:()=>Jfe,gpgpu_util:()=>aS,grad:()=>mP,grads:()=>gP,greater:()=>ms,greaterEqual:()=>ni,ifft:()=>Yu,imag:()=>Jp,image:()=>Se,inTopKAsync:()=>yM,initializers:()=>Ww,input:()=>o8,io:()=>$n,irfft:()=>N0,isFinite:()=>j6,isInf:()=>q6,isNaN:()=>Xy,keep:()=>bn,kernel_impls:()=>ir,layers:()=>Vw,leakyRelu:()=>rh,less:()=>m0,lessEqual:()=>si,linalg:()=>bw,linspace:()=>X6,loadGraphModel:()=>Uj,loadGraphModelSync:()=>Gj,loadLayersModel:()=>qU,localResponseNormalization:()=>Ky,log:()=>Es,log1p:()=>ah,logSigmoid:()=>Z6,logSoftmax:()=>y0,logSumExp:()=>Zy,logicalAnd:()=>rr,logicalNot:()=>oh,logicalOr:()=>A0,logicalXor:()=>Y6,losses:()=>Qz,lowerBound:()=>J6,matMul:()=>Je,math:()=>l6,max:()=>mn,maxPool:()=>ih,maxPool3d:()=>Jy,maxPoolWithArgmax:()=>Q6,maximum:()=>Kr,mean:()=>Wt,memory:()=>dm,meshgrid:()=>FP,metrics:()=>M8,min:()=>ha,minimum:()=>Uc,mirrorPad:()=>Qy,mod:()=>Xl,model:()=>HU,models:()=>z8,moments:()=>x0,movingAverage:()=>uM,mul:()=>L,multiRNNCell:()=>BP,multinomial:()=>ew,neg:()=>Ft,nextFrame:()=>mA,norm:()=>sh,notEqual:()=>Zi,oneHot:()=>Xu,ones:()=>Ss,onesLike:()=>Rs,op:()=>G,outerProduct:()=>HP,pad:()=>Ks,pad1d:()=>XP,pad2d:()=>ZP,pad3d:()=>JP,pad4d:()=>eO,pool:()=>tw,pow:()=>fa,prelu:()=>uh,print:()=>n6,prod:()=>b0,profile:()=>UD,rand:()=>lO,randomGamma:()=>pO,randomNormal:()=>nw,randomUniform:()=>Gc,range:()=>Zu,ready:()=>Oc,real:()=>Ku,reciprocal:()=>nA,registerBackend:()=>Hl,registerCallbackConstructor:()=>XU,registerGradient:()=>M7,registerKernel:()=>or,registerOp:()=>LH,regularizers:()=>L8,relu:()=>_r,relu6:()=>v0,removeBackend:()=>HD,reshape:()=>U,reverse:()=>_s,reverse1d:()=>bO,reverse2d:()=>wO,reverse3d:()=>IO,reverse4d:()=>CO,rfft:()=>dh,round:()=>w0,rsqrt:()=>k0,scalar:()=>Ce,scatterND:()=>iw,scatter_util:()=>xy,searchSorted:()=>Yy,selu:()=>I0,separableConv2d:()=>sA,sequential:()=>jU,serialization:()=>de,setBackend:()=>gy,setPlatform:()=>qD,setThreadsCount:()=>Yfe,setWasmPath:()=>Zfe,setWasmPaths:()=>vx,setWebGLContext:()=>l2,setdiff1dAsync:()=>sw,sigmoid:()=>Cn,sign:()=>rA,signal:()=>Jz,sin:()=>S0,sinh:()=>C0,slice:()=>Oe,slice1d:()=>T0,slice2d:()=>aA,slice3d:()=>Kl,slice4d:()=>Yi,slice_util:()=>Gt,softmax:()=>Zl,softplus:()=>ql,spaceToBatchND:()=>lh,sparse:()=>Qd,sparseToDense:()=>dA,spectral:()=>Yz,split:()=>Yt,sqrt:()=>Tn,square:()=>vt,squaredDifference:()=>E0,squeeze:()=>et,stack:()=>ln,step:()=>Hc,stridedSlice:()=>oA,string:()=>qf,sub:()=>fe,sum:()=>ke,sumOutType:()=>Kp,tan:()=>iA,tanh:()=>ji,tensor:()=>yt,tensor1d:()=>$t,tensor2d:()=>Ir,tensor3d:()=>c6,tensor4d:()=>YO,tensor5d:()=>JO,tensor6d:()=>QO,tensor_util:()=>kr,test_util:()=>I6,tidy:()=>K,tile:()=>Us,time:()=>GD,topk:()=>lA,train:()=>Ri,transpose:()=>rt,truncatedNormal:()=>R0,unique:()=>hm,unregisterGradient:()=>h_,unregisterKernel:()=>p_,unsortedSegmentSum:()=>uA,unstack:()=>Qn,upcastType:()=>Fn,upperBound:()=>rw,util:()=>v,valueAndGrad:()=>yP,valueAndGrads:()=>AP,variable:()=>aw,variableGrads:()=>K6,version:()=>Oh,version_converter:()=>jj,version_core:()=>Iy,version_layers:()=>MA,version_wasm:()=>Qfe,version_webgl:()=>ine,webgl:()=>lne,webgl_util:()=>EI,webgpu:()=>_C,where:()=>Pn,whereAsync:()=>cA,zeros:()=>Vt,zerosLike:()=>lt});var hR=Object.create,ty=Object.defineProperty,fR=Object.getOwnPropertyDescriptor,A7=Object.getOwnPropertyNames,mR=Object.getPrototypeOf,gR=Object.prototype.hasOwnProperty,Tt=(e,t)=>function(){return t||(0,e[A7(e)[0]])((t={exports:{}}).exports,t),t.exports},Ve=(e,t)=>{for(var n in t)ty(e,n,{get:t[n],enumerable:!0})},yR=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of A7(t))!gR.call(e,r)&&r!==n&&ty(e,r,{get:()=>t[r],enumerable:!(s=fR(t,r))||s.enumerable});return e},rl=(e,t,n)=>(n=e!=null?hR(mR(e)):{},yR(t||!e||!e.__esModule?ty(n,"default",{value:e,enumerable:!0}):n,e)),AR=Tt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(D){}function s(D,C,P){this.low=D|0,this.high=C|0,this.unsigned=!!P}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(D){return(D&&D.__isLong__)===!0}s.isLong=r;var a={},o={};function i(D,C){var P,V,j;return C?(D>>>=0,(j=0<=D&&D<256)&&(V=o[D],V)?V:(P=u(D,(D|0)<0?-1:0,!0),j&&(o[D]=P),P)):(D|=0,(j=-128<=D&&D<128)&&(V=a[D],V)?V:(P=u(D,D<0?-1:0,!1),j&&(a[D]=P),P))}s.fromInt=i;function l(D,C){if(isNaN(D))return C?b:A;if(C){if(D<0)return b;if(D>=g)return R}else{if(D<=-y)return $;if(D+1>=y)return E}return D<0?l(-D,C).neg():u(D%m|0,D/m|0,C)}s.fromNumber=l;function u(D,C,P){return new s(D,C,P)}s.fromBits=u;var c=Math.pow;function p(D,C,P){if(D.length===0)throw Error("empty string");if(D==="NaN"||D==="Infinity"||D==="+Infinity"||D==="-Infinity")return A;if(typeof C=="number"?(P=C,C=!1):C=!!C,P=P||10,P<2||36<P)throw RangeError("radix");var V;if((V=D.indexOf("-"))>0)throw Error("interior hyphen");if(V===0)return p(D.substring(1),C,P).neg();for(var j=l(c(P,8)),z=A,Z=0;Z<D.length;Z+=8){var W=Math.min(8,D.length-Z),ee=parseInt(D.substring(Z,Z+W),P);if(W<8){var Q=l(c(P,W));z=z.mul(Q).add(l(ee))}else z=z.mul(j),z=z.add(l(ee))}return z.unsigned=C,z}s.fromString=p;function d(D,C){return typeof D=="number"?l(D,C):typeof D=="string"?p(D,C):u(D.low,D.high,typeof C=="boolean"?C:D.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,x=i(f),A=i(0);s.ZERO=A;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var E=u(-1,2147483647,!1);s.MAX_VALUE=E;var R=u(-1,-1,!0);s.MAX_UNSIGNED_VALUE=R;var $=u(0,-2147483648,!1);s.MIN_VALUE=$;var _=s.prototype;_.toInt=function(){return this.unsigned?this.low>>>0:this.low},_.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},_.toString=function(C){if(C=C||10,C<2||36<C)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq($)){var P=l(C),V=this.div(P),j=V.mul(P).sub(this);return V.toString(C)+j.toInt().toString(C)}else return"-"+this.neg().toString(C);for(var z=l(c(C,6),this.unsigned),Z=this,W="";;){var ee=Z.div(z),Q=Z.sub(ee.mul(z)).toInt()>>>0,ie=Q.toString(C);if(Z=ee,Z.isZero())return ie+W;for(;ie.length<6;)ie="0"+ie;W=""+ie+W}},_.getHighBits=function(){return this.high},_.getHighBitsUnsigned=function(){return this.high>>>0},_.getLowBits=function(){return this.low},_.getLowBitsUnsigned=function(){return this.low>>>0},_.getNumBitsAbs=function(){if(this.isNegative())return this.eq($)?64:this.neg().getNumBitsAbs();for(var C=this.high!=0?this.high:this.low,P=31;P>0&&(C&1<<P)==0;P--);return this.high!=0?P+33:P+1},_.isZero=function(){return this.high===0&&this.low===0},_.eqz=_.isZero,_.isNegative=function(){return!this.unsigned&&this.high<0},_.isPositive=function(){return this.unsigned||this.high>=0},_.isOdd=function(){return(this.low&1)===1},_.isEven=function(){return(this.low&1)===0},_.equals=function(C){return r(C)||(C=d(C)),this.unsigned!==C.unsigned&&this.high>>>31===1&&C.high>>>31===1?!1:this.high===C.high&&this.low===C.low},_.eq=_.equals,_.notEquals=function(C){return!this.eq(C)},_.neq=_.notEquals,_.ne=_.notEquals,_.lessThan=function(C){return this.comp(C)<0},_.lt=_.lessThan,_.lessThanOrEqual=function(C){return this.comp(C)<=0},_.lte=_.lessThanOrEqual,_.le=_.lessThanOrEqual,_.greaterThan=function(C){return this.comp(C)>0},_.gt=_.greaterThan,_.greaterThanOrEqual=function(C){return this.comp(C)>=0},_.gte=_.greaterThanOrEqual,_.ge=_.greaterThanOrEqual,_.compare=function(C){if(r(C)||(C=d(C)),this.eq(C))return 0;var P=this.isNegative(),V=C.isNegative();return P&&!V?-1:!P&&V?1:this.unsigned?C.high>>>0>this.high>>>0||C.high===this.high&&C.low>>>0>this.low>>>0?-1:1:this.sub(C).isNegative()?-1:1},_.comp=_.compare,_.negate=function(){return!this.unsigned&&this.eq($)?$:this.not().add(w)},_.neg=_.negate,_.add=function(C){r(C)||(C=d(C));var P=this.high>>>16,V=this.high&65535,j=this.low>>>16,z=this.low&65535,Z=C.high>>>16,W=C.high&65535,ee=C.low>>>16,Q=C.low&65535,ie=0,J=0,ae=0,le=0;return le+=z+Q,ae+=le>>>16,le&=65535,ae+=j+ee,J+=ae>>>16,ae&=65535,J+=V+W,ie+=J>>>16,J&=65535,ie+=P+Z,ie&=65535,u(ae<<16|le,ie<<16|J,this.unsigned)},_.subtract=function(C){return r(C)||(C=d(C)),this.add(C.neg())},_.sub=_.subtract,_.multiply=function(C){if(this.isZero())return A;if(r(C)||(C=d(C)),n){var P=n.mul(this.low,this.high,C.low,C.high);return u(P,n.get_high(),this.unsigned)}if(C.isZero())return A;if(this.eq($))return C.isOdd()?$:A;if(C.eq($))return this.isOdd()?$:A;if(this.isNegative())return C.isNegative()?this.neg().mul(C.neg()):this.neg().mul(C).neg();if(C.isNegative())return this.mul(C.neg()).neg();if(this.lt(x)&&C.lt(x))return l(this.toNumber()*C.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,z=this.low>>>16,Z=this.low&65535,W=C.high>>>16,ee=C.high&65535,Q=C.low>>>16,ie=C.low&65535,J=0,ae=0,le=0,ye=0;return ye+=Z*ie,le+=ye>>>16,ye&=65535,le+=z*ie,ae+=le>>>16,le&=65535,le+=Z*Q,ae+=le>>>16,le&=65535,ae+=j*ie,J+=ae>>>16,ae&=65535,ae+=z*Q,J+=ae>>>16,ae&=65535,ae+=Z*ee,J+=ae>>>16,ae&=65535,J+=V*ie+j*Q+z*ee+Z*W,J&=65535,u(le<<16|ye,J<<16|ae,this.unsigned)},_.mul=_.multiply,_.divide=function(C){if(r(C)||(C=d(C)),C.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&C.low===-1&&C.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,C.low,C.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var V,j,z;if(this.unsigned){if(C.unsigned||(C=C.toUnsigned()),C.gt(this))return b;if(C.gt(this.shru(1)))return k;z=b}else{if(this.eq($)){if(C.eq(w)||C.eq(S))return $;if(C.eq($))return w;var Z=this.shr(1);return V=Z.div(C).shl(1),V.eq(A)?C.isNegative()?w:S:(j=this.sub(C.mul(V)),z=V.add(j.div(C)),z)}else if(C.eq($))return this.unsigned?b:A;if(this.isNegative())return C.isNegative()?this.neg().div(C.neg()):this.neg().div(C).neg();if(C.isNegative())return this.div(C.neg()).neg();z=A}for(j=this;j.gte(C);){V=Math.max(1,Math.floor(j.toNumber()/C.toNumber()));for(var W=Math.ceil(Math.log(V)/Math.LN2),ee=W<=48?1:c(2,W-48),Q=l(V),ie=Q.mul(C);ie.isNegative()||ie.gt(j);)V-=ee,Q=l(V,this.unsigned),ie=Q.mul(C);Q.isZero()&&(Q=w),z=z.add(Q),j=j.sub(ie)}return z},_.div=_.divide,_.modulo=function(C){if(r(C)||(C=d(C)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,C.low,C.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(C).mul(C))},_.mod=_.modulo,_.rem=_.modulo,_.not=function(){return u(~this.low,~this.high,this.unsigned)},_.and=function(C){return r(C)||(C=d(C)),u(this.low&C.low,this.high&C.high,this.unsigned)},_.or=function(C){return r(C)||(C=d(C)),u(this.low|C.low,this.high|C.high,this.unsigned)},_.xor=function(C){return r(C)||(C=d(C)),u(this.low^C.low,this.high^C.high,this.unsigned)},_.shiftLeft=function(C){return r(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?u(this.low<<C,this.high<<C|this.low>>>32-C,this.unsigned):u(0,this.low<<C-32,this.unsigned)},_.shl=_.shiftLeft,_.shiftRight=function(C){return r(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?u(this.low>>>C|this.high<<32-C,this.high>>C,this.unsigned):u(this.high>>C-32,this.high>=0?0:-1,this.unsigned)},_.shr=_.shiftRight,_.shiftRightUnsigned=function(C){if(r(C)&&(C=C.toInt()),C&=63,C===0)return this;var P=this.high;if(C<32){var V=this.low;return u(V>>>C|P<<32-C,P>>>C,this.unsigned)}else return C===32?u(P,0,this.unsigned):u(P>>>C-32,0,this.unsigned)},_.shru=_.shiftRightUnsigned,_.shr_u=_.shiftRightUnsigned,_.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},_.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},_.toBytes=function(C){return C?this.toBytesLE():this.toBytesBE()},_.toBytesLE=function(){var C=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,C&255,C>>>8&255,C>>>16&255,C>>>24]},_.toBytesBE=function(){var C=this.high,P=this.low;return[C>>>24,C>>>16&255,C>>>8&255,C&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},s.fromBytes=function(C,P,V){return V?s.fromBytesLE(C,P):s.fromBytesBE(C,P)},s.fromBytesLE=function(C,P){return new s(C[0]|C[1]<<8|C[2]<<16|C[3]<<24,C[4]|C[5]<<8|C[6]<<16|C[7]<<24,P)},s.fromBytesBE=function(C,P){return new s(C[4]<<24|C[5]<<16|C[6]<<8|C[7],C[0]<<24|C[1]<<16|C[2]<<8|C[3],P)}}}),xR=Tt({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),bR=Tt({"(disabled):util"(){}}),vR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=p.toString();for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),wR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),kR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),IR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),SR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),CR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),x7=Tt({"(disabled):crypto"(){}}),TR=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),p=c*2,d=a-1,h;function f(w,k,S){var E=[];k=k==!0?{entropy:!0}:k||{};var R=x(y(k.entropy?[w,b(n)]:w==null?A():w,3),E),$=new m(E),_=function(){for(var D=$.g(o),C=u,P=0;D<c;)D=(D+P)*a,C*=a,P=$.g(1);for(;D>=p;)D/=2,C/=2,P>>>=1;return(D+P)/C};return _.int32=function(){return $.g(4)|0},_.quick=function(){return $.g(4)/4294967296},_.double=_,x(b($.S),n),(k.pass||S||function(D,C,P,V){return V&&(V.S&&g(V,$),D.state=function(){return g($,{})}),P?(s[l]=D,C):D})(_,R,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(w){var k,S=w.length,E=this,R=0,$=E.i=E.j=0,_=E.S=[];for(S||(w=[S++]);R<a;)_[R]=R++;for(R=0;R<a;R++)_[R]=_[$=d&$+w[R%S]+(k=_[R])],_[$]=k;(E.g=function(D){for(var C,P=0,V=E.i,j=E.j,z=E.S;D--;)C=z[V=d&V+1],P=P*a+z[d&(z[V]=z[j=d&j+C])+(z[j]=C)];return E.i=V,E.j=j,P})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function y(w,k){var S=[],E=typeof w,R;if(k&&E=="object")for(R in w)try{S.push(y(w[R],k-1))}catch($){}return S.length?S:E=="string"?w:w+"\0"}function x(w,k){for(var S=w+"",E,R=0;R<S.length;)k[d&R]=d&(E^=k[d&R]*19)+S.charCodeAt(R++);return b(k)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=x7()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),b7=Tt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=vR(),s=wR(),r=kR(),a=IR(),o=SR(),i=CR(),l=TR();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),NR=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ER=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),RR=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),_R=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),DR=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$R=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),FR=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,k,S){var E=[];k=k==!0?{entropy:!0}:k||{};var R=x(y(k.entropy?[w,b(s)]:w==null?A():w,3),E),$=new m(E),_=function(){for(var D=$.g(o),C=u,P=0;D<c;)D=(D+P)*a,C*=a,P=$.g(1);for(;D>=p;)D/=2,C/=2,P>>>=1;return(D+P)/C};return _.int32=function(){return $.g(4)|0},_.quick=function(){return $.g(4)/4294967296},_.double=_,x(b($.S),s),(k.pass||S||function(D,C,P,V){return V&&(V.S&&g(V,$),D.state=function(){return g($,{})}),P?(r[l]=D,C):D})(_,R,"global"in k?k.global:this==r,k.state)}function m(w){var k,S=w.length,E=this,R=0,$=E.i=E.j=0,_=E.S=[];for(S||(w=[S++]);R<a;)_[R]=R++;for(R=0;R<a;R++)_[R]=_[$=d&$+w[R%S]+(k=_[R])],_[$]=k;(E.g=function(D){for(var C,P=0,V=E.i,j=E.j,z=E.S;D--;)C=z[V=d&V+1],P=P*a+z[d&(z[V]=z[j=d&j+C])+(z[j]=C)];return E.i=V,E.j=j,P})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function y(w,k){var S=[],E=typeof w,R;if(k&&E=="object")for(R in w)try{S.push(y(w[R],k-1))}catch($){}return S.length?S:E=="string"?w:w+"\0"}function x(w,k){for(var S=w+"",E,R=0;R<S.length;)k[d&R]=d&(E^=k[d&R]*19)+S.charCodeAt(R++);return b(k)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=x7()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),v7=Tt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=NR(),s=ER(),r=RR(),a=_R(),o=DR(),i=$R(),l=FR();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),w7=Tt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),ny=Tt({"(disabled):fs"(){}}),sm=Tt({"(disabled):path"(){}}),PR=Tt({"(disabled):worker_threads"(){}}),OR=Tt({"(disabled):perf_hooks"(){}}),MR=Tt({"(disabled):os"(){}}),zR=Tt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return $e.buffer!=Gn&&hr($e.buffer),Zh}function o(){return $e.buffer!=Gn&&hr($e.buffer),Yh}function i(){return $e.buffer!=Gn&&hr($e.buffer),Dd}function l(){return $e.buffer!=Gn&&hr($e.buffer),Jh}function u(){return $e.buffer!=Gn&&hr($e.buffer),Qh}function c(){return $e.buffer!=Gn&&hr($e.buffer),ef}function p(){return $e.buffer!=Gn&&hr($e.buffer),tf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,O){h=N,f=O});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,O)=>{throw O},b=typeof window=="object",w=typeof importScripts=="function",k=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",S=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(N){return d.locateFile?d.locateFile(N,E):E+N}var $,_,D,C;function P(N){if(N instanceof Vd)return;Q("exiting due to exception: "+N)}var V,j,z;if(k){w?E=sm().dirname(E)+"/":E=__dirname+"/",z=()=>{j||(V=ny(),j=sm())},$=function(H,te){return z(),H=j.normalize(H),V.readFileSync(H,te?void 0:"utf8")},D=O=>{var H=$(O,!0);return H.buffer||(H=new Uint8Array(H)),H},_=(O,H,te)=>{z(),O=j.normalize(O),V.readFile(O,function(Ae,be){Ae?te(Ae):H(be.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(O){if(!(O instanceof Vd))throw O}),process.on("unhandledRejection",function(O){throw O}),A=(O,H)=>{if(wi())throw process.exitCode=O,H;P(H),process.exit(O)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=PR()}catch(O){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),O}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",k||($=N=>{var O=new XMLHttpRequest;return O.open("GET",N,!1),O.send(null),O.responseText},w&&(D=N=>{var O=new XMLHttpRequest;return O.open("GET",N,!1),O.responseType="arraybuffer",O.send(null),new Uint8Array(O.response)}),_=(N,O,H)=>{var te=new XMLHttpRequest;te.open("GET",N,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){O(te.response);return}H()},te.onerror=H,te.send(null)}),C=N=>document.title=N);k&&typeof performance=="undefined"&&(global.performance=OR().performance);var Z=console.log.bind(console),W=console.warn.bind(console);k&&(z(),Z=N=>V.writeSync(1,N+`
|
|
`),W=N=>V.writeSync(2,N+`
|
|
`));var ee=d.print||Z,Q=d.printErr||W;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ie=4;function J(N){J.shown||(J.shown={}),J.shown[N]||(J.shown[N]=1,Q(N))}function ae(N,O){if(typeof WebAssembly.Function=="function"){for(var H={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:O[0]=="v"?[]:[H[O[0]]]},Ae=1;Ae<O.length;++Ae)te.parameters.push(H[O[Ae]]);return new WebAssembly.Function(te,N)}var be=[1,0,1,96],Ne=O.slice(0,1),Me=O.slice(1),Bt={i:127,j:126,f:125,d:124};be.push(Me.length);for(var Ae=0;Ae<Me.length;++Ae)be.push(Bt[Me[Ae]]);Ne=="v"?be.push(0):be=be.concat([1,Bt[Ne]]),be[1]=be.length-2;var yr=new Uint8Array([0,97,115,109,1,0,0,0].concat(be,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Ar=new WebAssembly.Module(yr),Rf=new WebAssembly.Instance(Ar,{e:{f:N}}),Ud=Rf.exports.f;return Ud}var le=[],ye;function we(){if(le.length)return le.pop();try{Bs.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Bs.length-1}function Re(N,O){for(var H=N;H<N+O;H++){var te=wu(H);te&&ye.set(te,H)}}var _e=0,Be=N=>{_e=N},Ue=Atomics.load,it=Atomics.store,dt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var At=d.noExitRuntime||!0;typeof WebAssembly!="object"&&xu("no native wasm support detected");var $e,Nt,kt=!1,Wn;function en(N,O){N||xu(O)}function As(N){var O=d["_"+N];return O}function pn(N,O,H,te,Ae){var be={string:function(vs){var Eu=0;if(vs!=null&&vs!==0){var T4=(vs.length<<2)+1;Eu=Nu(T4),na(vs,Eu,T4)}return Eu},array:function(vs){var Eu=Nu(vs.length);return sa(vs,Eu),Eu}};function Ne(vs){return O==="string"?Un(vs):O==="boolean"?Boolean(vs):vs}var Me=As(N),Bt=[],yr=0;if(te)for(var Ar=0;Ar<te.length;Ar++){var Rf=be[H[Ar]];Rf?(yr===0&&(yr=Og()),Bt[Ar]=Rf(te[Ar])):Bt[Ar]=te[Ar]}var Ud=Me.apply(null,Bt);function oR(vs){return yr!==0&&Cf(yr),Ne(vs)}return Ud=oR(Ud),Ud}function Vn(N,O,H,te){H=H||[];var Ae=H.every(function(Ne){return Ne==="number"}),be=O!=="string";return be&&Ae&&!te?As(N):function(){return pn(N,O,H,arguments,te)}}var xs=1;function bs(N){var O=new TextDecoder(N);this.decode=H=>(H.buffer instanceof SharedArrayBuffer&&(H=new Uint8Array(H)),O.decode.call(O,H))}var _n=typeof TextDecoder!="undefined"?new bs("utf8"):void 0;function Ls(N,O,H){for(var te=O+H,Ae=O;N[Ae]&&!(Ae>=te);)++Ae;if(Ae-O>16&&N.subarray&&_n)return _n.decode(N.subarray(O,Ae));for(var be="";O<Ae;){var Ne=N[O++];if(!(Ne&128)){be+=String.fromCharCode(Ne);continue}var Me=N[O++]&63;if((Ne&224)==192){be+=String.fromCharCode((Ne&31)<<6|Me);continue}var Bt=N[O++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|Me<<6|Bt:Ne=(Ne&7)<<18|Me<<12|Bt<<6|N[O++]&63,Ne<65536)be+=String.fromCharCode(Ne);else{var yr=Ne-65536;be+=String.fromCharCode(55296|yr>>10,56320|yr&1023)}}return be}function Un(N,O){return N?Ls(o(),N,O):""}function ta(N,O,H,te){if(!(te>0))return 0;for(var Ae=H,be=H+te-1,Ne=0;Ne<N.length;++Ne){var Me=N.charCodeAt(Ne);if(Me>=55296&&Me<=57343){var Bt=N.charCodeAt(++Ne);Me=65536+((Me&1023)<<10)|Bt&1023}if(Me<=127){if(H>=be)break;O[H++]=Me}else if(Me<=2047){if(H+1>=be)break;O[H++]=192|Me>>6,O[H++]=128|Me&63}else if(Me<=65535){if(H+2>=be)break;O[H++]=224|Me>>12,O[H++]=128|Me>>6&63,O[H++]=128|Me&63}else{if(H+3>=be)break;O[H++]=240|Me>>18,O[H++]=128|Me>>12&63,O[H++]=128|Me>>6&63,O[H++]=128|Me&63}}return O[H]=0,H-Ae}function na(N,O,H){return ta(N,o(),O,H)}function gu(N){for(var O=0,H=0;H<N.length;++H){var te=N.charCodeAt(H);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|N.charCodeAt(++H)&1023),te<=127?++O:te<=2047?O+=2:te<=65535?O+=3:O+=4}return O}var Da=typeof TextDecoder!="undefined"?new bs("utf-16le"):void 0;function sa(N,O){a().set(N,O)}function _d(N,O,H){for(var te=0;te<N.length;++te)a()[O++>>0]=N.charCodeAt(te);H||(a()[O>>0]=0)}function yu(N,O){return N%O>0&&(N+=O-N%O),N}var Gn,Zh,Yh,Dd,Jh,Qh,i4,ef,tf;S&&(Gn=d.buffer);function hr(N){Gn=N,d.HEAP8=Zh=new Int8Array(N),d.HEAP16=Dd=new Int16Array(N),d.HEAP32=Qh=new Int32Array(N),d.HEAPU8=Yh=new Uint8Array(N),d.HEAPU16=Jh=new Uint16Array(N),d.HEAPU32=i4=new Uint32Array(N),d.HEAPF32=ef=new Float32Array(N),d.HEAPF64=tf=new Float64Array(N)}var nf=d.INITIAL_MEMORY||16777216;if(S)$e=d.wasmMemory,Gn=d.buffer;else if(d.wasmMemory)$e=d.wasmMemory;else if($e=new WebAssembly.Memory({initial:nf/65536,maximum:32768,shared:!0}),!($e.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),k&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");$e&&(Gn=$e.buffer),nf=Gn.byteLength,hr(Gn);var Bs,Au=[],$a=[],i1=[],sf=[],vi=!1,l1=!1,rf=0;function wi(){return At||rf>0}function Hn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)l4(d.preRun.shift());uf(Au)}function $d(){vi=!0,!S&&uf($a)}function u1(){S||(ze.terminateAllThreads(),l1=!0)}function c1(){if(!S){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)Fd(d.postRun.shift());uf(sf)}}function l4(N){Au.unshift(N)}function u4(N){$a.unshift(N)}function Fd(N){sf.unshift(N)}var Fa=0,af=null,fr=null;function Pd(N){Fa++,d.monitorRunDependencies&&d.monitorRunDependencies(Fa)}function c4(N){if(Fa--,d.monitorRunDependencies&&d.monitorRunDependencies(Fa),Fa==0&&(af!==null&&(clearInterval(af),af=null),fr)){var O=fr;fr=null,O()}}d.preloadedImages={},d.preloadedAudios={};function xu(N){S?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",Q(N),kt=!0,Wn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var O=new WebAssembly.RuntimeError(N);throw f(O),O}var d1="data:application/octet-stream;base64,";function Od(N){return N.startsWith(d1)}function of(N){return N.startsWith("file://")}var jn;jn="tfjs-backend-wasm-threaded-simd.wasm",Od(jn)||(jn=R(jn));function lf(N){try{if(N==jn&&pt)return new Uint8Array(pt);if(D)return D(N);throw"both async and sync fetching of the wasm failed"}catch(O){xu(O)}}function bu(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!of(jn))return fetch(jn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+jn+"'";return N.arrayBuffer()}).catch(function(){return lf(jn)});if(_)return new Promise(function(N,O){_(jn,function(H){N(new Uint8Array(H))},O)})}return Promise.resolve().then(function(){return lf(jn)})}function p1(){var N={env:vf,wasi_snapshot_preview1:vf};function O(Ne,Me){var Bt=Ne.exports;if(d.asm=Bt,x1(d.asm.emscripten_tls_init),Bs=d.asm.__indirect_function_table,u4(d.asm.__wasm_call_ctors),Nt=Me,!S){var yr=ze.unusedWorkers.length;ze.unusedWorkers.forEach(function(Ar){ze.loadWasmModuleToWorker(Ar,function(){--yr||c4("wasm-instantiate")})})}}S||Pd("wasm-instantiate");function H(Ne){O(Ne.instance,Ne.module)}function te(Ne){return bu().then(function(Me){return WebAssembly.instantiate(Me,N)}).then(function(Me){return Me}).then(Ne,function(Me){Q("failed to asynchronously prepare wasm: "+Me),xu(Me)})}function Ae(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Od(jn)&&!of(jn)&&typeof fetch=="function"?fetch(jn,{credentials:"same-origin"}).then(function(Ne){var Me=WebAssembly.instantiateStreaming(Ne,N);return Me.then(H,function(Bt){return Q("wasm streaming compile failed: "+Bt),Q("falling back to ArrayBuffer instantiation"),te(H)})}):te(H)}if(d.instantiateWasm)try{var be=d.instantiateWasm(N,O);return be}catch(Ne){return Q("Module.instantiateWasm callback failed with error: "+Ne),!1}return Ae().catch(f),{}}var d4,p4,h1={};function uf(N){for(;N.length>0;){var O=N.shift();if(typeof O=="function"){O(d);continue}var H=O.func;typeof H=="number"?O.arg===void 0?wu(H)():wu(H)(O.arg):H(O.arg===void 0?null:O.arg)}}function vu(N){var O=Og(),H=N();return Cf(O),H}function fE(N){return N}function h4(N){var O=/\b_Z[\w\d_]+/g;return N.replace(O,function(H){var te=H;return H===te?H:te+" ["+H+"]"})}function f1(N){u()[N>>2]=0;var O=ze.pthreads[N];delete ze.pthreads[N],O.worker.terminate(),Pg(N),ze.runningWorkers.splice(ze.runningWorkers.indexOf(O.worker),1),O.worker.pthread=void 0}function m1(N){var O=ze.pthreads[N];O.worker.postMessage({cmd:"cancel"})}function cf(N){var O=ze.pthreads[N];if(O){u()[N>>2]=0;var H=O.worker;ze.returnWorkerToPool(H)}}function df(N){sR(N)}function g1(N){if(N instanceof Vd||N=="unwind")return Wn;A(1,N)}var ze={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){S?ze.initWorker():ze.initMainThread()},initMainThread:function(){for(var N=8,O=0;O<N;++O)ze.allocateUnusedWorker()},initWorker:function(){At=!1},pthreads:{},setExitStatus:function(N){Wn=N},terminateAllThreads:function(){for(var N in ze.pthreads){var O=ze.pthreads[N];O&&O.worker&&ze.returnWorkerToPool(O.worker)}for(var H=0;H<ze.unusedWorkers.length;++H){var te=ze.unusedWorkers[H];te.terminate()}ze.unusedWorkers=[]},returnWorkerToPool:function(N){ze.runWithoutMainThreadQueuedCalls(function(){delete ze.pthreads[N.pthread.threadInfoStruct],ze.unusedWorkers.push(N),ze.runningWorkers.splice(ze.runningWorkers.indexOf(N),1),Pg(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[C4>>2]=0;try{N()}finally{u()[C4>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in ze.tlsInitFunctions)ze.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,O){N.onmessage=H=>{var te=H.data,Ae=te.cmd;if(N.pthread&&(ze.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=Sf()){var be=ze.pthreads[te.targetThread];be?be.worker.postMessage(te,te.transferList):Q('Internal error! Worker sent a message "'+Ae+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),ze.currentProxiedOperationCallerThread=void 0;return}Ae==="processQueuedMainThreadWork"?v4():Ae==="spawnThread"?hf(te):Ae==="cleanupThread"?cf(te.thread):Ae==="killThread"?f1(te.thread):Ae==="cancelThread"?m1(te.thread):Ae==="loaded"?(N.loaded=!0,O&&O(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):Ae==="print"?ee("Thread "+te.threadId+": "+te.text):Ae==="printErr"?Q("Thread "+te.threadId+": "+te.text):Ae==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?N.postMessage(te):Ae==="onAbort"?d.onAbort&&d.onAbort(te.arg):Q("worker sent an unknown command "+Ae),ze.currentProxiedOperationCallerThread=void 0},N.onerror=H=>{var te="worker sent an error!";throw Q(te+" "+H.filename+":"+H.lineno+": "+H.message),H},k&&(N.on("message",function(H){N.onmessage({data:H})}),N.on("error",function(H){N.onerror(H)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:$e,wasmModule:Nt})},allocateUnusedWorker:function(){var N=R("tfjs-backend-wasm-threaded-simd.worker.js");ze.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return ze.unusedWorkers.length==0&&(ze.allocateUnusedWorker(),ze.loadWasmModuleToWorker(ze.unusedWorkers[0])),ze.unusedWorkers.pop()}};function y1(){var N=Sf(),O=u()[N+44>>2],H=u()[N+48>>2],te=O-H;S4(O,te),Cf(O)}d.establishStackSpace=y1;function pf(N){if(S)return Si(1,0,N);try{df(N)}catch(O){g1(O)}}var ki=[];function wu(N){var O=ki[N];return O||(N>=ki.length&&(ki.length=N+1),ki[N]=O=Bs.get(N)),O}function A1(N,O){return wu(N)(O)}d.invokeEntryPoint=A1;function f4(){var N=new Error;if(!N.stack){try{throw new Error}catch(O){N=O}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function x1(N,O,H){ze.tlsInitFunctions.push(N)}function m4(N,O){Bs.set(N,O),ki[N]=O}var Ii;k?Ii=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:S?Ii=()=>performance.now()-d.__performance_now_clock_drift:Ii=()=>performance.now();var b1=!0;function v1(N){return u()[b4()>>2]=N,N}function w1(N,O){var H;if(N===0)H=Date.now();else if((N===1||N===4)&&b1)H=Ii();else return v1(28),-1;return u()[O>>2]=H/1e3|0,u()[O+4>>2]=H%1e3*1e3*1e3|0,0}function k1(N,O){return w1(N,O)}function I1(N){w4(N,!w,1,!b),ze.threadInit()}function S1(N){S?postMessage({cmd:"cleanupThread",thread:N}):cf(N)}function hf(N){var O=ze.getNewWorker();if(!O)return 6;ze.runningWorkers.push(O);var H=ze.pthreads[N.pthread_ptr]={worker:O,threadInfoStruct:N.pthread_ptr};O.pthread=H;var te={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return O.runPthread=()=>{te.time=performance.now(),O.postMessage(te,N.transferList)},O.loaded&&(O.runPthread(),delete O.runPthread),0}function C1(N,O,H,te){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ae=[],be=0;if(S&&(Ae.length===0||be))return k4(687865856,N,O,H,te);if(be)return be;var Ne={startRoutine:H,pthread_ptr:N,arg:te,transferList:Ae};return S?(Ne.cmd="spawnThread",postMessage(Ne,Ae),0):hf(Ne)}function T1(){return 2097152}function N1(N,O){if(N==O)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var H=ze.pthreads[N],te=H&&H.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function E1(){xu("")}function R1(){k||w||J("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function ff(){return 2147483648}function _1(N,O,H){o().copyWithin(N,O,O+H)}function D1(){return k?MR().cpus().length:navigator.hardwareConcurrency}function Si(N,O){var H=arguments.length-2,te=arguments;return vu(function(){for(var Ae=H,be=Nu(Ae*8),Ne=be>>3,Me=0;Me<H;Me++){var Bt=te[2+Me];p()[Ne+Me]=Bt}return I4(N,Ae,be,O)})}var Md=[];function $1(N,O,H){Md.length=O;for(var te=H>>3,Ae=0;Ae<O;Ae++)Md[Ae]=p()[te+Ae];var be=N<0,Ne=be?h1[-N-1]:J1[N];return Ne.apply(null,Md)}function F1(N){try{return $e.grow(N-Gn.byteLength+65535>>>16),hr($e.buffer),1}catch(O){}}function P1(N){var O=o().length;if(N=N>>>0,N<=O)return!1;var H=ff();if(N>H)return!1;for(var te=1;te<=4;te*=2){var Ae=O*(1+.2/te);Ae=Math.min(Ae,N+100663296);var be=Math.min(H,yu(Math.max(N,Ae),65536)),Ne=F1(be);if(Ne)return!0}return!1}var Ye={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ye.eventHandlers.length-1;N>=0;--N)Ye._removeHandler(N);Ye.eventHandlers=[],Ye.deferredCalls=[]},registerRemoveEventListeners:function(){Ye.removeEventListenersRegistered||(i1.push(Ye.removeAllEventListeners),Ye.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,O,H){function te(Ne,Me){if(Ne.length!=Me.length)return!1;for(var Bt in Ne)if(Ne[Bt]!=Me[Bt])return!1;return!0}for(var Ae in Ye.deferredCalls){var be=Ye.deferredCalls[Ae];if(be.targetFunction==N&&te(be.argsList,H))return}Ye.deferredCalls.push({targetFunction:N,precedence:O,argsList:H}),Ye.deferredCalls.sort(function(Ne,Me){return Ne.precedence<Me.precedence})},removeDeferredCalls:function(N){for(var O=0;O<Ye.deferredCalls.length;++O)Ye.deferredCalls[O].targetFunction==N&&(Ye.deferredCalls.splice(O,1),--O)},canPerformEventHandlerRequests:function(){return Ye.inEventHandler&&Ye.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ye.canPerformEventHandlerRequests())for(var N=0;N<Ye.deferredCalls.length;++N){var O=Ye.deferredCalls[N];Ye.deferredCalls.splice(N,1),--N,O.targetFunction.apply(null,O.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,O){for(var H=0;H<Ye.eventHandlers.length;++H)Ye.eventHandlers[H].target==N&&(!O||O==Ye.eventHandlers[H].eventTypeString)&&Ye._removeHandler(H--)},_removeHandler:function(N){var O=Ye.eventHandlers[N];O.target.removeEventListener(O.eventTypeString,O.eventListenerFunc,O.useCapture),Ye.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var O=function(Ae){++Ye.inEventHandler,Ye.currentEventHandler=N,Ye.runDeferredCalls(),N.handlerFunc(Ae),Ye.runDeferredCalls(),--Ye.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=O,N.target.addEventListener(N.eventTypeString,O,N.useCapture),Ye.eventHandlers.push(N),Ye.registerRemoveEventListeners();else for(var H=0;H<Ye.eventHandlers.length;++H)Ye.eventHandlers[H].target==N.target&&Ye.eventHandlers[H].eventTypeString==N.eventTypeString&&Ye._removeHandler(H--)},queueEventHandlerOnThread_iiii:function(N,O,H,te,Ae){vu(function(){var be=Nu(12);u()[be>>2]=H,u()[be+4>>2]=te,u()[be+8>>2]=Ae,Fg(N,637534208,O,te,be)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return ze.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function O1(N){var O=gu(N)+1,H=$g(O);return na(N,H,O),H}function M1(N,O,H,te){vu(function(){var Ae=Nu(12),be=0;O&&(be=O1(O)),u()[Ae>>2]=be,u()[Ae+4>>2]=H,u()[Ae+8>>2]=te,Fg(N,657457152,0,be,Ae)})}function z1(N,O,H,te){O=O?Un(O):"",M1(N,O,H,te)}function L1(N){return N>2?Un(N):N}var B1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function W1(N){N=L1(N);var O=B1[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return O}function zd(N){return W1(N)}function mf(N,O,H){var te=zd(N);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=O,u()[te.canvasSharedPtr+4>>2]=H),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var Ae=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var be=te.GLctxObject.GLctx.getParameter(2978);Ae=be[0]===0&&be[1]===0&&be[2]===te.width&&be[3]===te.height}te.width=O,te.height=H,Ae&&te.GLctxObject.GLctx.viewport(0,0,O,H)}else if(te.canvasSharedPtr){var Ne=u()[te.canvasSharedPtr+8>>2];return z1(Ne,N,O,H),1}else return-4;return 0}function gf(N,O,H){return S?Si(2,1,N,O,H):mf(N,O,H)}function V1(N,O,H){var te=zd(N);return te?mf(N,O,H):gf(N,O,H)}function U1(){throw"unwind"}function G1(N){var O=N.getExtension("ANGLE_instanced_arrays");if(O)return N.vertexAttribDivisor=function(H,te){O.vertexAttribDivisorANGLE(H,te)},N.drawArraysInstanced=function(H,te,Ae,be){O.drawArraysInstancedANGLE(H,te,Ae,be)},N.drawElementsInstanced=function(H,te,Ae,be,Ne){O.drawElementsInstancedANGLE(H,te,Ae,be,Ne)},1}function H1(N){var O=N.getExtension("OES_vertex_array_object");if(O)return N.createVertexArray=function(){return O.createVertexArrayOES()},N.deleteVertexArray=function(H){O.deleteVertexArrayOES(H)},N.bindVertexArray=function(H){O.bindVertexArrayOES(H)},N.isVertexArray=function(H){return O.isVertexArrayOES(H)},1}function j1(N){var O=N.getExtension("WEBGL_draw_buffers");if(O)return N.drawBuffers=function(H,te){O.drawBuffersWEBGL(H,te)},1}function q1(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(O){Lt.lastError||(Lt.lastError=O)},getNewId:function(N){for(var O=Lt.counter++,H=N.length;H<O;H++)N[H]=null;return O},getSource:function(N,O,H,te){for(var Ae="",be=0;be<O;++be){var Ne=te?u()[te+be*4>>2]:-1;Ae+=Un(u()[H+be*4>>2],Ne<0?void 0:Ne)}return Ae},createContext:function(N,O){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(Ae,be){var Ne=N.getContextSafariWebGL2Fixed(Ae,be);return Ae=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var H=N.getContext("webgl",O);if(!H)return 0;var te=Lt.registerContext(H,O);return te},registerContext:function(N,O){var H=$g(8);u()[H+4>>2]=Sf();var te={handle:H,attributes:O,version:O.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=te),Lt.contexts[H]=te,(typeof O.enableExtensionsByDefault=="undefined"||O.enableExtensionsByDefault)&&Lt.initExtensions(te),H},makeContextCurrent:function(N){return Lt.currentContext=Lt.contexts[N],d.ctx=bf=Lt.currentContext&&Lt.currentContext.GLctx,!(N&&!bf)},getContext:function(N){return Lt.contexts[N]},deleteContext:function(N){Lt.currentContext===Lt.contexts[N]&&(Lt.currentContext=null),typeof Ye=="object"&&Ye.removeAllHandlersOnTarget(Lt.contexts[N].GLctx.canvas),Lt.contexts[N]&&Lt.contexts[N].GLctx.canvas&&(Lt.contexts[N].GLctx.canvas.GLctxObject=void 0),x4(Lt.contexts[N].handle),Lt.contexts[N]=null},initExtensions:function(N){if(N||(N=Lt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var O=N.GLctx;G1(O),H1(O),j1(O),O.disjointTimerQueryExt=O.getExtension("EXT_disjoint_timer_query"),q1(O);var H=O.getSupportedExtensions()||[];H.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&O.getExtension(te)})}}},X1=["default","low-power","high-performance"];function K1(N,O){var H=O>>2,te=u()[H+6],Ae={alpha:!!u()[H+0],depth:!!u()[H+1],stencil:!!u()[H+2],antialias:!!u()[H+3],premultipliedAlpha:!!u()[H+4],preserveDrawingBuffer:!!u()[H+5],powerPreference:X1[te],failIfMajorPerformanceCaveat:!!u()[H+7],majorVersion:u()[H+8],minorVersion:u()[H+9],enableExtensionsByDefault:u()[H+10],explicitSwapControl:u()[H+11],proxyContextToMainThread:u()[H+12],renderViaOffscreenBackBuffer:u()[H+13]},be=zd(N);if(!be||Ae.explicitSwapControl)return 0;var Ne=Lt.createContext(be,Ae);return Ne}function Z1(N,O){return K1(N,O)}var ku={mappings:{},buffers:[null,[],[]],printChar:function(N,O){var H=ku.buffers[N];O===0||O===10?((N===1?ee:Q)(Ls(H,0)),H.length=0):H.push(O)},varargs:void 0,get:function(){ku.varargs+=4;var N=u()[ku.varargs-4>>2];return N},getStr:function(N){var O=Un(N);return O},get64:function(N,O){return N}};function yf(N){return S?Si(3,1,N):0}function Af(N,O,H,te,Ae){if(S)return Si(4,1,N,O,H,te,Ae)}function xf(N,O,H,te){if(S)return Si(5,1,N,O,H,te);for(var Ae=0,be=0;be<H;be++){var Ne=u()[O>>2],Me=u()[O+4>>2];O+=8;for(var Bt=0;Bt<Me;Bt++)ku.printChar(N,o()[Ne+Bt]);Ae+=Me}return u()[te>>2]=Ae,0}function Y1(N){Be(N)}ze.init();var bf,J1=[null,pf,gf,yf,Af,xf],g4=!1,vf={__clock_gettime:k1,__emscripten_init_main_thread_js:I1,__emscripten_thread_cleanup:S1,__pthread_create_js:C1,_emscripten_default_pthread_stack_size:T1,_emscripten_notify_thread_queue:N1,abort:E1,emscripten_check_blocking_allowed:R1,emscripten_get_heap_max:ff,emscripten_get_now:Ii,emscripten_memcpy_big:_1,emscripten_num_logical_cores:D1,emscripten_receive_on_main_thread_js:$1,emscripten_resize_heap:P1,emscripten_set_canvas_element_size:V1,emscripten_unwind_to_js_event_loop:U1,emscripten_webgl_create_context:Z1,exit:df,fd_close:yf,fd_seek:Af,fd_write:xf,memory:$e||d.wasmMemory,setTempRet0:Y1},y4=p1(),Q1=d.___wasm_call_ctors=function(){return(Q1=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},eg=d._init=function(){return(eg=d._init=d.asm.init).apply(null,arguments)},tg=d._init_with_threads_count=function(){return(tg=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},ng=d._get_threads_count=function(){return(ng=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},sg=d._register_tensor=function(){return(sg=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},rg=d._dispose_data=function(){return(rg=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},ag=d._dispose=function(){return(ag=d._dispose=d.asm.dispose).apply(null,arguments)},og=d._Abs=function(){return(og=d._Abs=d.asm.Abs).apply(null,arguments)},ig=d._Add=function(){return(ig=d._Add=d.asm.Add).apply(null,arguments)},lg=d._AddN=function(){return(lg=d._AddN=d.asm.AddN).apply(null,arguments)},ug=d._All=function(){return(ug=d._All=d.asm.All).apply(null,arguments)},cg=d._Any=function(){return(cg=d._Any=d.asm.Any).apply(null,arguments)},dg=d._ArgMax=function(){return(dg=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},pg=d._AvgPool=function(){return(pg=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},hg=d._BatchMatMul=function(){return(hg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},fg=d._Ceil=function(){return(fg=d._Ceil=d.asm.Ceil).apply(null,arguments)},mg=d._ClipByValue=function(){return(mg=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},gg=d._Conv2D=function(){return(gg=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},yg=d._Conv2DBackpropInput=function(){return(yg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Ag=d._Cos=function(){return(Ag=d._Cos=d.asm.Cos).apply(null,arguments)},xg=d._Cosh=function(){return(xg=d._Cosh=d.asm.Cosh).apply(null,arguments)},bg=d._CropAndResize=function(){return(bg=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},vg=d._Cumprod=function(){return(vg=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},wg=d._Cumsum=function(){return(wg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},kg=d._DepthToSpace=function(){return(kg=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Ig=d._DepthwiseConv2dNative=function(){return(Ig=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},Sg=d._Elu=function(){return(Sg=d._Elu=d.asm.Elu).apply(null,arguments)},Cg=d._Equal=function(){return(Cg=d._Equal=d.asm.Equal).apply(null,arguments)},Tg=d._Exp=function(){return(Tg=d._Exp=d.asm.Exp).apply(null,arguments)},Ng=d._FlipLeftRight=function(){return(Ng=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},wf=d._Floor=function(){return(wf=d._Floor=d.asm.Floor).apply(null,arguments)},kf=d._FloorDiv=function(){return(kf=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},Ld=d._FusedBatchNorm=function(){return(Ld=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},Eg=d._FusedConv2D=function(){return(Eg=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Rg=d._FusedDepthwiseConv2D=function(){return(Rg=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Iu=d._Gather=function(){return(Iu=d._Gather=d.asm.Gather).apply(null,arguments)},Bd=d._GatherNd=function(){return(Bd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},Wd=d._Greater=function(){return(Wd=d._Greater=d.asm.Greater).apply(null,arguments)},A4=d._GreaterEqual=function(){return(A4=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Su=d._LeakyRelu=function(){return(Su=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Cu=d._Less=function(){return(Cu=d._Less=d.asm.Less).apply(null,arguments)},_g=d._LessEqual=function(){return(_g=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},X=d._Log=function(){return(X=d._Log=d.asm.Log).apply(null,arguments)},se=d._LogicalAnd=function(){return(se=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},xe=d._Max=function(){return(xe=d._Max=d.asm.Max).apply(null,arguments)},De=d._MaxPool=function(){return(De=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},ht=d._Maximum=function(){return(ht=d._Maximum=d.asm.Maximum).apply(null,arguments)},gt=d._Mean=function(){return(gt=d._Mean=d.asm.Mean).apply(null,arguments)},Qe=d._Min=function(){return(Qe=d._Min=d.asm.Min).apply(null,arguments)},Ke=d._Minimum=function(){return(Ke=d._Minimum=d.asm.Minimum).apply(null,arguments)},tn=d._MirrorPad=function(){return(tn=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},mr=d._Multiply=function(){return(mr=d._Multiply=d.asm.Multiply).apply(null,arguments)},gr=d._Neg=function(){return(gr=d._Neg=d.asm.Neg).apply(null,arguments)},Tu=d._NonMaxSuppressionV3=function(){return(Tu=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Ci=d._NonMaxSuppressionV4=function(){return(Ci=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Dg=d._NonMaxSuppressionV5=function(){return(Dg=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},qn=d._NotEqual=function(){return(qn=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},Pa=d._OneHot=function(){return(Pa=d._OneHot=d.asm.OneHot).apply(null,arguments)},If=d._PadV2=function(){return(If=d._PadV2=d.asm.PadV2).apply(null,arguments)},mE=d._Pow=function(){return(mE=d._Pow=d.asm.Pow).apply(null,arguments)},gE=d._Prelu=function(){return(gE=d._Prelu=d.asm.Prelu).apply(null,arguments)},yE=d._Prod=function(){return(yE=d._Prod=d.asm.Prod).apply(null,arguments)},AE=d._RealDiv=function(){return(AE=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},xE=d._Relu=function(){return(xE=d._Relu=d.asm.Relu).apply(null,arguments)},bE=d._Relu6=function(){return(bE=d._Relu6=d.asm.Relu6).apply(null,arguments)},vE=d._ResizeBilinear=function(){return(vE=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},wE=d._Reverse=function(){return(wE=d._Reverse=d.asm.Reverse).apply(null,arguments)},kE=d._RotateWithOffset=function(){return(kE=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},IE=d._Round=function(){return(IE=d._Round=d.asm.Round).apply(null,arguments)},SE=d._Rsqrt=function(){return(SE=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},CE=d._ScatterNd=function(){return(CE=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},TE=d._SelectV2=function(){return(TE=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},NE=d._Sigmoid=function(){return(NE=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},EE=d._Sin=function(){return(EE=d._Sin=d.asm.Sin).apply(null,arguments)},RE=d._Softmax=function(){return(RE=d._Softmax=d.asm.Softmax).apply(null,arguments)},_E=d._SparseFillEmptyRows=function(){return(_E=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},DE=d._SparseReshape=function(){return(DE=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},$E=d._SparseSegmentReduction=function(){return($E=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},FE=d._Sqrt=function(){return(FE=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},PE=d._Square=function(){return(PE=d._Square=d.asm.Square).apply(null,arguments)},OE=d._SquaredDifference=function(){return(OE=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},ME=d._Step=function(){return(ME=d._Step=d.asm.Step).apply(null,arguments)},zE=d._StridedSlice=function(){return(zE=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},LE=d._Sub=function(){return(LE=d._Sub=d.asm.Sub).apply(null,arguments)},BE=d._Sum=function(){return(BE=d._Sum=d.asm.Sum).apply(null,arguments)},WE=d._Tan=function(){return(WE=d._Tan=d.asm.Tan).apply(null,arguments)},VE=d._Tanh=function(){return(VE=d._Tanh=d.asm.Tanh).apply(null,arguments)},UE=d._Tile=function(){return(UE=d._Tile=d.asm.Tile).apply(null,arguments)},GE=d._TopK=function(){return(GE=d._TopK=d.asm.TopK).apply(null,arguments)},HE=d._Transform=function(){return(HE=d._Transform=d.asm.Transform).apply(null,arguments)},jE=d._Transpose=function(){return(jE=d._Transpose=d.asm.Transpose).apply(null,arguments)},qE=d.__FusedMatMul=function(){return(qE=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},$g=d._malloc=function(){return($g=d._malloc=d.asm.malloc).apply(null,arguments)},x4=d._free=function(){return(x4=d._free=d.asm.free).apply(null,arguments)},XE=d._emscripten_tls_init=function(){return(XE=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},b4=d.___errno_location=function(){return(b4=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Sf=d._pthread_self=function(){return(Sf=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},v4=d._emscripten_main_thread_process_queued_calls=function(){return(v4=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},KE=d.__emscripten_thread_crashed=function(){return(KE=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},w4=d.__emscripten_thread_init=function(){return(w4=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},ZE=d._emscripten_current_thread_process_queued_calls=function(){return(ZE=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},YE=d._emscripten_main_browser_thread_id=function(){return(YE=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},JE=d._emscripten_sync_run_in_main_thread_2=function(){return(JE=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},k4=d._emscripten_sync_run_in_main_thread_4=function(){return(k4=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},I4=d._emscripten_run_in_main_runtime_thread_js=function(){return(I4=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Fg=d._emscripten_dispatch_to_thread_=function(){return(Fg=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Pg=d.__emscripten_thread_free_data=function(){return(Pg=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},QE=d.__emscripten_thread_exit=function(){return(QE=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},eR=d._memalign=function(){return(eR=d._memalign=d.asm.memalign).apply(null,arguments)},S4=d._emscripten_stack_set_limits=function(){return(S4=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Og=d.stackSave=function(){return(Og=d.stackSave=d.asm.stackSave).apply(null,arguments)},Cf=d.stackRestore=function(){return(Cf=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Nu=d.stackAlloc=function(){return(Nu=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},tR=d.dynCall_iijjiiii=function(){return(tR=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},nR=d.dynCall_jiji=function(){return(nR=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},C4=d.__emscripten_allow_main_runtime_queued_calls=21464;d.cwrap=Vn,d.keepRuntimeAlive=wi,d.PThread=ze,d.PThread=ze,d.wasmMemory=$e,d.ExitStatus=Vd;var Tf;function Vd(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}fr=function N(){Tf||Mg(),Tf||(fr=N)};function Mg(N){if(N=N||y,Fa>0)return;if(S){h(d),$d(),postMessage({cmd:"loaded"});return}if(Hn(),Fa>0)return;function O(){Tf||(Tf=!0,d.calledRun=!0,!kt&&($d(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),c1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),O()},1)):O()}d.run=Mg;function sR(N,O){if(Wn=N,!O&&S)throw pf(N),"unwind";wi()||u1(),rR(N)}function rR(N){Wn=N,wi()||(ze.terminateAllThreads(),d.onExit&&d.onExit(N),kt=!0),A(N,new Vd(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();Mg();var Nf;m&&(Nf={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var Ef;if(typeof WasmBackendModule!="undefined")Ef=WasmBackendModule;else if(typeof r!="undefined")Ef=r;else throw new Error("Could not find wasm module in post.js");if(Nf){var aR=Ef._dispose;Ef._dispose=function(){aR(),Nf.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Nf.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),LR=Tt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.18.0_br26fteayl44zj43fz4bazb7oq/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(X,se){o=X,i=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(X,se)=>{throw se},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(X){return a.locateFile?a.locateFile(X,g):g+X}var x,A,b,w;function k(X){if(X instanceof Bd)return;_("exiting due to exception: "+X)}var S,E,R;m?(f?g=sm().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(S=ny(),E=sm())},x=function(se,xe){return R(),se=E.normalize(se),S.readFileSync(se,xe?void 0:"utf8")},b=X=>{var se=x(X,!0);return se.buffer||(se=new Uint8Array(se)),se},A=(X,se,xe)=>{R(),X=E.normalize(X),S.readFile(X,function(De,ht){De?xe(De):se(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Bd))throw X}),process.on("unhandledRejection",function(X){throw X}),d=(X,se)=>{if(Dd())throw process.exitCode=X,se;k(se),process.exit(X)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},f&&(b=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),A=(X,se,xe)=>{var De=new XMLHttpRequest;De.open("GET",X,!0),De.responseType="arraybuffer",De.onload=()=>{if(De.status==200||De.status==0&&De.response){se(De.response);return}xe()},De.onerror=xe,De.send(null)},w=X=>document.title=X);var $=a.print||console.log.bind(console),_=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var D=4;function C(X){C.shown||(C.shown={}),C.shown[X]||(C.shown[X]=1,_(X))}function P(X,se){if(typeof WebAssembly.Function=="function"){for(var xe={i:"i32",j:"i64",f:"f32",d:"f64"},De={parameters:[],results:se[0]=="v"?[]:[xe[se[0]]]},ht=1;ht<se.length;++ht)De.parameters.push(xe[se[ht]]);return new WebAssembly.Function(De,X)}var gt=[1,0,1,96],Qe=se.slice(0,1),Ke=se.slice(1),tn={i:127,j:126,f:125,d:124};gt.push(Ke.length);for(var ht=0;ht<Ke.length;++ht)gt.push(tn[Ke[ht]]);Qe=="v"?gt.push(0):gt=gt.concat([1,tn[Qe]]),gt[1]=gt.length-2;var mr=new Uint8Array([0,97,115,109,1,0,0,0].concat(gt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),gr=new WebAssembly.Module(mr),Tu=new WebAssembly.Instance(gr,{e:{f:X}}),Ci=Tu.exports.f;return Ci}var V=[],j;function z(){if(V.length)return V.pop();try{Da.grow(1)}catch(X){throw X instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":X}return Da.length-1}function Z(X,se){for(var xe=X;xe<X+se;xe++){var De=Pd(xe);De&&j.set(De,xe)}}var W=0,ee=X=>{W=X},Q;a.wasmBinary&&(Q=a.wasmBinary);var ie=a.noExitRuntime||!0;typeof WebAssembly!="object"&&vi("no native wasm support detected");var J,ae=!1,le;function ye(X,se){X||vi(se)}function we(X){var se=a["_"+X];return se}function Re(X,se,xe,De,ht){var gt={string:function(qn){var Pa=0;if(qn!=null&&qn!==0){var If=(qn.length<<2)+1;Pa=Ld(If),At(qn,Pa,If)}return Pa},array:function(qn){var Pa=Ld(qn.length);return kt(qn,Pa),Pa}};function Qe(qn){return se==="string"?dt(qn):se==="boolean"?Boolean(qn):qn}var Ke=we(X),tn=[],mr=0;if(De)for(var gr=0;gr<De.length;gr++){var Tu=gt[xe[gr]];Tu?(mr===0&&(mr=wf()),tn[gr]=Tu(De[gr])):tn[gr]=De[gr]}var Ci=Ke.apply(null,tn);function Dg(qn){return mr!==0&&kf(mr),Qe(qn)}return Ci=Dg(Ci),Ci}function _e(X,se,xe,De){xe=xe||[];var ht=xe.every(function(Qe){return Qe==="number"}),gt=se!=="string";return gt&&ht&&!De?we(X):function(){return Re(X,se,xe,arguments,De)}}var Be=1,Ue=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function it(X,se,xe){for(var De=se+xe,ht=se;X[ht]&&!(ht>=De);)++ht;if(ht-se>16&&X.subarray&&Ue)return Ue.decode(X.subarray(se,ht));for(var gt="";se<ht;){var Qe=X[se++];if(!(Qe&128)){gt+=String.fromCharCode(Qe);continue}var Ke=X[se++]&63;if((Qe&224)==192){gt+=String.fromCharCode((Qe&31)<<6|Ke);continue}var tn=X[se++]&63;if((Qe&240)==224?Qe=(Qe&15)<<12|Ke<<6|tn:Qe=(Qe&7)<<18|Ke<<12|tn<<6|X[se++]&63,Qe<65536)gt+=String.fromCharCode(Qe);else{var mr=Qe-65536;gt+=String.fromCharCode(55296|mr>>10,56320|mr&1023)}}return gt}function dt(X,se){return X?it(Vn,X,se):""}function pt(X,se,xe,De){if(!(De>0))return 0;for(var ht=xe,gt=xe+De-1,Qe=0;Qe<X.length;++Qe){var Ke=X.charCodeAt(Qe);if(Ke>=55296&&Ke<=57343){var tn=X.charCodeAt(++Qe);Ke=65536+((Ke&1023)<<10)|tn&1023}if(Ke<=127){if(xe>=gt)break;se[xe++]=Ke}else if(Ke<=2047){if(xe+1>=gt)break;se[xe++]=192|Ke>>6,se[xe++]=128|Ke&63}else if(Ke<=65535){if(xe+2>=gt)break;se[xe++]=224|Ke>>12,se[xe++]=128|Ke>>6&63,se[xe++]=128|Ke&63}else{if(xe+3>=gt)break;se[xe++]=240|Ke>>18,se[xe++]=128|Ke>>12&63,se[xe++]=128|Ke>>6&63,se[xe++]=128|Ke&63}}return se[xe]=0,xe-ht}function At(X,se,xe){return pt(X,Vn,se,xe)}function $e(X){for(var se=0,xe=0;xe<X.length;++xe){var De=X.charCodeAt(xe);De>=55296&&De<=57343&&(De=65536+((De&1023)<<10)|X.charCodeAt(++xe)&1023),De<=127?++se:De<=2047?se+=2:De<=65535?se+=3:se+=4}return se}var Nt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function kt(X,se){pn.set(X,se)}function Wn(X,se,xe){for(var De=0;De<X.length;++De)pn[se++>>0]=X.charCodeAt(De);xe||(pn[se>>0]=0)}function en(X,se){return X%se>0&&(X+=se-X%se),X}var As,pn,Vn,xs,bs,_n,Ls,Un,ta;function na(X){As=X,a.HEAP8=pn=new Int8Array(X),a.HEAP16=xs=new Int16Array(X),a.HEAP32=_n=new Int32Array(X),a.HEAPU8=Vn=new Uint8Array(X),a.HEAPU16=bs=new Uint16Array(X),a.HEAPU32=Ls=new Uint32Array(X),a.HEAPF32=Un=new Float32Array(X),a.HEAPF64=ta=new Float64Array(X)}var gu=a.INITIAL_MEMORY||16777216,Da,sa=[],_d=[],yu=[],Gn=!1,Zh=!1,Yh=0;function Dd(){return ie||Yh>0}function Jh(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)tf(a.preRun.shift());Fd(sa)}function Qh(){Gn=!0,Fd(_d)}function i4(){Zh=!0}function ef(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)nf(a.postRun.shift());Fd(yu)}function tf(X){sa.unshift(X)}function hr(X){_d.unshift(X)}function nf(X){yu.unshift(X)}var Bs=0,Au=null,$a=null;function i1(X){Bs++,a.monitorRunDependencies&&a.monitorRunDependencies(Bs)}function sf(X){if(Bs--,a.monitorRunDependencies&&a.monitorRunDependencies(Bs),Bs==0&&(Au!==null&&(clearInterval(Au),Au=null),$a)){var se=$a;$a=null,se()}}a.preloadedImages={},a.preloadedAudios={};function vi(X){a.onAbort&&a.onAbort(X),X="Aborted("+X+")",_(X),ae=!0,le=1,X+=". Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(X);throw i(se),se}var l1="data:application/octet-stream;base64,";function rf(X){return X.startsWith(l1)}function wi(X){return X.startsWith("file://")}var Hn;Hn="tfjs-backend-wasm.wasm",rf(Hn)||(Hn=y(Hn));function $d(X){try{if(X==Hn&&Q)return new Uint8Array(Q);if(b)return b(X);throw"both async and sync fetching of the wasm failed"}catch(se){vi(se)}}function u1(){if(!Q&&(h||f)){if(typeof fetch=="function"&&!wi(Hn))return fetch(Hn,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Hn+"'";return X.arrayBuffer()}).catch(function(){return $d(Hn)});if(A)return new Promise(function(X,se){A(Hn,function(xe){X(new Uint8Array(xe))},se)})}return Promise.resolve().then(function(){return $d(Hn)})}function c1(){var X={env:vu,wasi_snapshot_preview1:vu};function se(Qe,Ke){var tn=Qe.exports;a.asm=tn,J=a.asm.memory,na(J.buffer),Da=a.asm.__indirect_function_table,hr(a.asm.__wasm_call_ctors),sf("wasm-instantiate")}i1("wasm-instantiate");function xe(Qe){se(Qe.instance)}function De(Qe){return u1().then(function(Ke){return WebAssembly.instantiate(Ke,X)}).then(function(Ke){return Ke}).then(Qe,function(Ke){_("failed to asynchronously prepare wasm: "+Ke),vi(Ke)})}function ht(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!rf(Hn)&&!wi(Hn)&&typeof fetch=="function"?fetch(Hn,{credentials:"same-origin"}).then(function(Qe){var Ke=WebAssembly.instantiateStreaming(Qe,X);return Ke.then(xe,function(tn){return _("wasm streaming compile failed: "+tn),_("falling back to ArrayBuffer instantiation"),De(xe)})}):De(xe)}if(a.instantiateWasm)try{var gt=a.instantiateWasm(X,se);return gt}catch(Qe){return _("Module.instantiateWasm callback failed with error: "+Qe),!1}return ht().catch(i),{}}var l4,u4;function Fd(X){for(;X.length>0;){var se=X.shift();if(typeof se=="function"){se(a);continue}var xe=se.func;typeof xe=="number"?se.arg===void 0?Pd(xe)():Pd(xe)(se.arg):xe(se.arg===void 0?null:se.arg)}}function Fa(X){return X}function af(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(xe){var De=xe;return xe===De?xe:De+" ["+xe+"]"})}var fr=[];function Pd(X){var se=fr[X];return se||(X>=fr.length&&(fr.length=X+1),fr[X]=se=Da.get(X)),se}function c4(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function xu(X,se){Da.set(X,se),fr[X]=se}function d1(){vi("")}function Od(){return 2147483648}function of(X,se,xe){Vn.copyWithin(X,se,se+xe)}function jn(X){try{return J.grow(X-As.byteLength+65535>>>16),na(J.buffer),1}catch(se){}}function lf(X){var se=Vn.length;X=X>>>0;var xe=Od();if(X>xe)return!1;for(var De=1;De<=4;De*=2){var ht=se*(1+.2/De);ht=Math.min(ht,X+100663296);var gt=Math.min(xe,en(Math.max(X,ht),65536)),Qe=jn(gt);if(Qe)return!0}return!1}var bu={mappings:{},buffers:[null,[],[]],printChar:function(X,se){var xe=bu.buffers[X];se===0||se===10?((X===1?$:_)(it(xe,0)),xe.length=0):xe.push(se)},varargs:void 0,get:function(){bu.varargs+=4;var X=_n[bu.varargs-4>>2];return X},getStr:function(X){var se=dt(X);return se},get64:function(X,se){return X}};function p1(X){return 0}function d4(X,se,xe,De,ht){}function p4(X,se,xe,De){for(var ht=0,gt=0;gt<xe;gt++){var Qe=_n[se>>2],Ke=_n[se+4>>2];se+=8;for(var tn=0;tn<Ke;tn++)bu.printChar(X,Vn[Qe+tn]);ht+=Ke}return _n[De>>2]=ht,0}function h1(X){ee(X)}var uf=!1,vu={abort:d1,emscripten_get_heap_max:Od,emscripten_memcpy_big:of,emscripten_resize_heap:lf,fd_close:p1,fd_seek:d4,fd_write:p4,setTempRet0:h1},fE=c1(),h4=a.___wasm_call_ctors=function(){return(h4=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},f1=a._init=function(){return(f1=a._init=a.asm.init).apply(null,arguments)},m1=a._init_with_threads_count=function(){return(m1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},cf=a._get_threads_count=function(){return(cf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},df=a._register_tensor=function(){return(df=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},g1=a._dispose_data=function(){return(g1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},ze=a._dispose=function(){return(ze=a._dispose=a.asm.dispose).apply(null,arguments)},y1=a._Abs=function(){return(y1=a._Abs=a.asm.Abs).apply(null,arguments)},pf=a._Add=function(){return(pf=a._Add=a.asm.Add).apply(null,arguments)},ki=a._AddN=function(){return(ki=a._AddN=a.asm.AddN).apply(null,arguments)},wu=a._All=function(){return(wu=a._All=a.asm.All).apply(null,arguments)},A1=a._Any=function(){return(A1=a._Any=a.asm.Any).apply(null,arguments)},f4=a._ArgMax=function(){return(f4=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},x1=a._AvgPool=function(){return(x1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},m4=a._BatchMatMul=function(){return(m4=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Ii=a._Ceil=function(){return(Ii=a._Ceil=a.asm.Ceil).apply(null,arguments)},b1=a._ClipByValue=function(){return(b1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},v1=a._Conv2D=function(){return(v1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},w1=a._Conv2DBackpropInput=function(){return(w1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},k1=a._Cos=function(){return(k1=a._Cos=a.asm.Cos).apply(null,arguments)},I1=a._Cosh=function(){return(I1=a._Cosh=a.asm.Cosh).apply(null,arguments)},S1=a._CropAndResize=function(){return(S1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},hf=a._Cumprod=function(){return(hf=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},C1=a._Cumsum=function(){return(C1=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},T1=a._DepthToSpace=function(){return(T1=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},N1=a._DepthwiseConv2dNative=function(){return(N1=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},E1=a._Elu=function(){return(E1=a._Elu=a.asm.Elu).apply(null,arguments)},R1=a._Equal=function(){return(R1=a._Equal=a.asm.Equal).apply(null,arguments)},ff=a._Exp=function(){return(ff=a._Exp=a.asm.Exp).apply(null,arguments)},_1=a._FlipLeftRight=function(){return(_1=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},D1=a._Floor=function(){return(D1=a._Floor=a.asm.Floor).apply(null,arguments)},Si=a._FloorDiv=function(){return(Si=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Md=a._FusedBatchNorm=function(){return(Md=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},$1=a._FusedConv2D=function(){return($1=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},F1=a._FusedDepthwiseConv2D=function(){return(F1=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},P1=a._Gather=function(){return(P1=a._Gather=a.asm.Gather).apply(null,arguments)},Ye=a._GatherNd=function(){return(Ye=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},O1=a._Greater=function(){return(O1=a._Greater=a.asm.Greater).apply(null,arguments)},M1=a._GreaterEqual=function(){return(M1=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},z1=a._LeakyRelu=function(){return(z1=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},L1=a._Less=function(){return(L1=a._Less=a.asm.Less).apply(null,arguments)},B1=a._LessEqual=function(){return(B1=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},W1=a._Log=function(){return(W1=a._Log=a.asm.Log).apply(null,arguments)},zd=a._LogicalAnd=function(){return(zd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},mf=a._Max=function(){return(mf=a._Max=a.asm.Max).apply(null,arguments)},gf=a._MaxPool=function(){return(gf=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},V1=a._Maximum=function(){return(V1=a._Maximum=a.asm.Maximum).apply(null,arguments)},U1=a._Mean=function(){return(U1=a._Mean=a.asm.Mean).apply(null,arguments)},G1=a._Min=function(){return(G1=a._Min=a.asm.Min).apply(null,arguments)},H1=a._Minimum=function(){return(H1=a._Minimum=a.asm.Minimum).apply(null,arguments)},j1=a._MirrorPad=function(){return(j1=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},q1=a._Multiply=function(){return(q1=a._Multiply=a.asm.Multiply).apply(null,arguments)},Lt=a._Neg=function(){return(Lt=a._Neg=a.asm.Neg).apply(null,arguments)},X1=a._NonMaxSuppressionV3=function(){return(X1=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},K1=a._NonMaxSuppressionV4=function(){return(K1=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Z1=a._NonMaxSuppressionV5=function(){return(Z1=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},ku=a._NotEqual=function(){return(ku=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},yf=a._OneHot=function(){return(yf=a._OneHot=a.asm.OneHot).apply(null,arguments)},Af=a._PadV2=function(){return(Af=a._PadV2=a.asm.PadV2).apply(null,arguments)},xf=a._Pow=function(){return(xf=a._Pow=a.asm.Pow).apply(null,arguments)},Y1=a._Prelu=function(){return(Y1=a._Prelu=a.asm.Prelu).apply(null,arguments)},bf=a._Prod=function(){return(bf=a._Prod=a.asm.Prod).apply(null,arguments)},J1=a._RealDiv=function(){return(J1=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},g4=a._Relu=function(){return(g4=a._Relu=a.asm.Relu).apply(null,arguments)},vf=a._Relu6=function(){return(vf=a._Relu6=a.asm.Relu6).apply(null,arguments)},y4=a._ResizeBilinear=function(){return(y4=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Q1=a._Reverse=function(){return(Q1=a._Reverse=a.asm.Reverse).apply(null,arguments)},eg=a._RotateWithOffset=function(){return(eg=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},tg=a._Round=function(){return(tg=a._Round=a.asm.Round).apply(null,arguments)},ng=a._Rsqrt=function(){return(ng=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},sg=a._ScatterNd=function(){return(sg=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},rg=a._SelectV2=function(){return(rg=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},ag=a._Sigmoid=function(){return(ag=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},og=a._Sin=function(){return(og=a._Sin=a.asm.Sin).apply(null,arguments)},ig=a._Softmax=function(){return(ig=a._Softmax=a.asm.Softmax).apply(null,arguments)},lg=a._SparseFillEmptyRows=function(){return(lg=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},ug=a._SparseReshape=function(){return(ug=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},cg=a._SparseSegmentReduction=function(){return(cg=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},dg=a._Sqrt=function(){return(dg=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},pg=a._Square=function(){return(pg=a._Square=a.asm.Square).apply(null,arguments)},hg=a._SquaredDifference=function(){return(hg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},fg=a._Step=function(){return(fg=a._Step=a.asm.Step).apply(null,arguments)},mg=a._StridedSlice=function(){return(mg=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},gg=a._Sub=function(){return(gg=a._Sub=a.asm.Sub).apply(null,arguments)},yg=a._Sum=function(){return(yg=a._Sum=a.asm.Sum).apply(null,arguments)},Ag=a._Tan=function(){return(Ag=a._Tan=a.asm.Tan).apply(null,arguments)},xg=a._Tanh=function(){return(xg=a._Tanh=a.asm.Tanh).apply(null,arguments)},bg=a._Tile=function(){return(bg=a._Tile=a.asm.Tile).apply(null,arguments)},vg=a._TopK=function(){return(vg=a._TopK=a.asm.TopK).apply(null,arguments)},wg=a._Transform=function(){return(wg=a._Transform=a.asm.Transform).apply(null,arguments)},kg=a._Transpose=function(){return(kg=a._Transpose=a.asm.Transpose).apply(null,arguments)},Ig=a.__FusedMatMul=function(){return(Ig=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},Sg=a._malloc=function(){return(Sg=a._malloc=a.asm.malloc).apply(null,arguments)},Cg=a._free=function(){return(Cg=a._free=a.asm.free).apply(null,arguments)},Tg=a.___errno_location=function(){return(Tg=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},Ng=a._emscripten_main_thread_process_queued_calls=function(){return(Ng=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},wf=a.stackSave=function(){return(wf=a.stackSave=a.asm.stackSave).apply(null,arguments)},kf=a.stackRestore=function(){return(kf=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Ld=a.stackAlloc=function(){return(Ld=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},Eg=a.dynCall_iijjiiii=function(){return(Eg=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},Rg=a.dynCall_jiji=function(){return(Rg=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Iu;function Bd(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}$a=function X(){Iu||Wd(),Iu||($a=X)};function Wd(X){if(X=X||c,Bs>0||(Jh(),Bs>0))return;function se(){Iu||(Iu=!0,a.calledRun=!0,!ae&&(Qh(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),ef()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),se()},1)):se()}a.run=Wd;function A4(X){le=X,Dd()||(a.onExit&&a.onExit(X),ae=!0),d(X,new Bd(X))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Wd();var Su;l&&(Su={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var Cu;if(typeof r!="undefined")Cu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Cu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Su){var _g=Cu._dispose;Cu._dispose=function(){_g(),Su.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),Su.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),BR=1e-7,WR=1e-4,Ep=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ic=class{refCount(e){return Ws("refCount")}incRef(e){return Ws("incRef")}timerAvailable(){return!0}time(e){return Ws("time")}read(e){return Ws("read")}readSync(e){return Ws("readSync")}readToGPU(e,t){return Ws("readToGPU")}numDataIds(){return Ws("numDataIds")}disposeData(e,t){return Ws("disposeData")}write(e,t,n){return Ws("write")}move(e,t,n,s,r){return Ws("move")}memory(){return Ws("memory")}floatPrecision(){return Ws("floatPrecision")}epsilon(){return this.floatPrecision()===32?BR:WR}dispose(){return Ws("dispose")}};function Ws(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function k7(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,rm(e,t,n)}function VR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,rm(e,n,s),rm(t,n,s)}function dp(e,t,n){return Math.max(e,Math.min(t,n))}function UR(e){return e%2===0?e:e+1}function rm(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function GR(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function HR(e,t){let n=Math.random();return t*n+(1-n)*e}function jR(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function es(e,t,n=""){M(ao(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function al(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ui(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Dn(e)&&!n)for(let s=0;s<e.length;++s)Ui(e[s],t,n);else t.push(e);return t}function Rt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function qR(e){return e.length===0}function ao(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Hu(e){return e%1===0}function XR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function KR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function ZR(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return k7(t),t}function ip(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function YR(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function JR(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function ar(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>Hu(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function I7(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:ar(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function S7(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function C7(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function T7(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function N7(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function QR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Dn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Jg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function E7(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ba(e){return typeof e=="string"||e instanceof String}function R7(e){return typeof e=="boolean"}function _7(e){return typeof e=="number"}function Fm(e){return Array.isArray(e)?Fm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":_7(e)?"float32":Ba(e)?"string":R7(e)?"bool":"float32"}function qa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function am(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function lc(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function D7(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=D7(e+l*i,o,n,s)}return r}function Lu(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return D7(0,e,t,n)}function sy(e,t){let n=Pm(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Pm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function e_(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Lu(e,new Float32Array(n));if(t==="int32")return Lu(e,new Int32Array(n));if(t==="bool")return Lu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ry(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function t_(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function n_(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function ay(e){return e&&e.then&&typeof e.then=="function"}var R4="tfjsflags",$7=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=s_,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(ay(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);R4 in e&&e[R4].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=a_(s,r)})}};function s_(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(r_(t,s[0],s[1]),s.join("="))),t}function r_(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function a_(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Rr}var Rr=null;function o_(e){Rr=e}var Lg;function F7(){if(Lg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Lg=e}return Lg}function i_(){let e=F7();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function oy(e,t){let n=i_();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ol="Abs",uc="Acos",cc="Acosh",ya="Add",oo="AddN",dc="All",pc="Any",io="ArgMax",hc="ArgMin",fc="Asin",mc="Asinh",gc="Atan",yc="Atanh",Ac="Atan2",lo="AvgPool",Om="AvgPoolGrad",Rp="AvgPool3D",Mm="AvgPool3DGrad",uo="BatchMatMul",il="BatchToSpaceND",zm="Bincount",P7="BroadcastTo",Lm="BroadcastArgs",co="Cast",po="Ceil",Aa="ClipByValue",_p="Complex",Dp="ComplexAbs",ll="Concat",ho="Conv2D",Bm="Conv2DBackpropFilter",fo="Conv2DBackpropInput",$p="Conv3D",Wm="Conv3DBackpropFilterV2",Vm="Conv3DBackpropInputV2",mo="Cos",go="Cosh",ul="Cumprod",yo="Cumsum",cl="CropAndResize",Um="DenseBincount",dl="DepthToSpace",Ao="DepthwiseConv2dNative",Gm="DepthwiseConv2dNativeBackpropFilter",Hm="DepthwiseConv2dNativeBackpropInput",jm="Diag",Fp="Dilation2D",om="Dilation2DBackpropInput",im="Dilation2DBackpropFilter",xo="RealDiv",Pp="Einsum",bo="Elu",qm="EluGrad",xc="Erf",pl="Equal",vo="Exp",hl="ExpandDims",fl="Expm1",Xm="FFT",bc="Fill",ml="FlipLeftRight",wo="Floor",ko="FloorDiv",Io="FusedBatchNorm",gl="GatherV2",yl="GatherNd",Al="Greater",So="GreaterEqual",Co="Identity",Km="IFFT",Op="Imag",vc="IsFinite",wc="IsInf",kc="IsNan",To="LeakyRelu",xl="Less",bl="LessEqual",Zm="LinSpace",No="Log",Ic="Log1p",vl="LogicalAnd",Sc="LogicalNot",Mp="LogicalOr",O7="LogSoftmax",l_="LowerBound",zp="LRN",Ym="LRNGrad",Eo="Max",Ro="Maximum",_o="MaxPool",Jm="MaxPoolGrad",Lp="MaxPool3D",Qm="MaxPool3DGrad",e0="MaxPoolWithArgmax",Do="Mean",$o="Min",Fo="Minimum",Po="MirrorPad",Cc="Mod",t0="Multinomial",Oo="Multiply",wl="Neg",kl="NotEqual",Il="NonMaxSuppressionV3",Tc="NonMaxSuppressionV4",Sl="NonMaxSuppressionV5",Cl="OnesLike",Tl="OneHot",Nl="Pack",Mo="PadV2",u_="Pool",zo="Pow",Lo="Prelu",Bo="Prod",Nc="Range",Bp="Real",Ec="Reciprocal",Wo="Relu",El="Reshape",Rc="ResizeNearestNeighbor",n0="ResizeNearestNeighborGrad",Vo="ResizeBilinear",s0="ResizeBilinearGrad",Uo="Relu6",Rl="Reverse",_l="Round",Go="Rsqrt",Dl="ScatterNd",r0="SearchSorted",$l="Select",_c="Selu",Fl="Slice",Ho="Sin",Pl="Sinh",Dc="Sign",jo="Sigmoid",$c="Softplus",qo="Sqrt",Xo="Sum",Ol="SpaceToBatchND",Ml="SplitV",Ko="Softmax",Wp="SparseFillEmptyRows",Fc="SparseReshape",Vp="SparseSegmentMean",Up="SparseSegmentSum",Gp="SparseToDense",Zo="SquaredDifference",Pc="Square",zl="StridedSlice",Hp="StringNGrams",a0="StringSplit",o0="StringToHashBucketFast",Yo="Sub",Ll="Tan",Jo="Tanh",xa="Tile",Bl="TopK",Wl="Transform",Vr="Transpose",i0="Unique",Vl="Unpack",jp="UnsortedSegmentSum",c_="UpperBound",Ul="ZerosLike",Qo="Step",pp="FromPixels",Gl="RotateWithOffset",Xa="_FusedMatMul",Ka="FusedConv2D",Za="FusedDepthwiseConv2D";function La(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function d_(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var ju=oy("kernelRegistry",()=>new Map),hp=oy("gradRegistry",()=>new Map);function lm(e,t){let n=iy(e,t);return ju.get(n)}function Qg(e){return hp.get(e)}function Gr(e){let t=ju.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function or(e){let{kernelName:t,backendName:n}=e,s=iy(t,n);ju.has(s)&&La(`The kernel '${t}' for backend '${n}' is already registered`),ju.set(s,e)}function M7(e){let{kernelName:t}=e;hp.has(t)&&Y().getBool("DEBUG")&&La(`Overriding the gradient for '${t}'`),hp.set(t,e)}function p_(e,t){let n=iy(e,t);if(!ju.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ju.delete(n)}function h_(e){if(!hp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);hp.delete(e)}function f_(e,t){Gr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});or(r)})}function iy(e,t){return`${t}_${e}`}var v={};Ve(v,{arraysEqual:()=>ao,assert:()=>M,assertNonNegativeIntegerDimensions:()=>ry,assertNonNull:()=>al,assertShapesMatch:()=>es,bytesFromStringArray:()=>E7,bytesPerElement:()=>Jg,checkConversionForErrors:()=>T7,clamp:()=>dp,computeStrides:()=>lc,createScalarValue:()=>b_,createShuffledIndices:()=>ZR,decodeString:()=>um,distSquared:()=>jR,encodeString:()=>Xp,fetch:()=>w_,fingerPrint64:()=>x_,flatten:()=>Ui,getArrayFromDType:()=>C7,getTypedArrayFromDType:()=>S7,hasEncodingLoss:()=>QR,hexToLong:()=>qp,indexToLoc:()=>n_,inferDtype:()=>Fm,inferFromImplicitShape:()=>JR,isBoolean:()=>R7,isFunction:()=>qa,isInt:()=>Hu,isNumber:()=>_7,isPromise:()=>ay,isScalarShape:()=>qR,isString:()=>Ba,isTypedArray:()=>Dn,isValidDtype:()=>N7,locToIndex:()=>t_,makeOnesTypedArray:()=>sy,makeZerosNestedTypedArray:()=>e_,makeZerosTypedArray:()=>Pm,nearestDivisor:()=>am,nearestLargerEven:()=>UR,now:()=>fp,parseAxisParam:()=>ar,randUniform:()=>HR,repeatedTry:()=>YR,rightPad:()=>ip,shuffle:()=>k7,shuffleCombo:()=>VR,sizeFromShape:()=>Rt,sizeToSquarishShape:()=>KR,squeezeShape:()=>I7,sum:()=>GR,swap:()=>rm,tanh:()=>XR,toNestedArray:()=>Lu,toTypedArray:()=>l0});var _4=rl(AR()),Di=_4.default||_4;function qp(e){return Di.fromString(e,!0,16)}var z7=qp("c3a5c85c97cb3127"),Ei=qp("b492b66fbe98f273"),Xn=qp("9ae16a3b2f90404f");function e3(e){return e.xor(e.shru(47))}function L7(e,t,n){let s=e.slice(t,t+n);return Di.fromBytes(Array.from(s),!0,!0)}function Et(e,t){return L7(e,t,8)}function D4(e,t){return L7(e,t,4)}function xn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ua(e,t,n=qp("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function m_(e,t,n,s,r,a){r=r.add(e),a=xn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(xn(r,44)),[r.add(s),a.add(o)]}function Df(e,t,n,s){return m_(Et(e,t),Et(e,t+8),Et(e,t+16),Et(e,t+24),n,s)}function g_(e,t=e.length){if(t>=8){let n=Xn.add(t*2),s=Et(e,0).add(Xn),r=Et(e,t-8),a=xn(r,37).mul(n).add(s),o=xn(s,25).add(r).mul(n);return Ua(a,o,n)}if(t>=4){let n=Xn.add(t*2),s=D4(e,0);return Ua(s.shl(3).add(t),D4(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return e3(Xn.mul(a).xor(z7.mul(o))).mul(Xn)}return Xn}function y_(e,t=e.length){let n=Xn.add(t*2),s=Et(e,0).mul(Ei),r=Et(e,8),a=Et(e,t-8).mul(n),o=Et(e,t-16).mul(Xn);return Ua(xn(s.add(r),43).add(xn(a,30)).add(o),s.add(xn(r.add(Xn),18)).add(a),n)}function A_(e,t=e.length){let n=Xn.add(t*2),s=Et(e,0).mul(Xn),r=Et(e,8),a=Et(e,t-8).mul(n),o=Et(e,t-16).mul(Xn),i=xn(s.add(r),43).add(xn(a,30)).add(o),l=Ua(i,s.add(xn(r.add(Xn),18)).add(a),n),u=Et(e,16).mul(n),c=Et(e,24),p=i.add(Et(e,t-32)).mul(n),d=l.add(Et(e,t-24)).mul(n);return Ua(xn(u.add(c),43).add(xn(p,30)).add(d),u.add(xn(c.add(s),18)).add(p),n)}function x_(e,t=e.length){let n=Di.fromNumber(81,!0);if(t<=32)return t<=16?g_(e,t):y_(e,t);if(t<=64)return A_(e,t);let s=n,r=n.mul(Ei).add(113),a=e3(r.mul(Xn).add(113)).mul(Xn),o=[Di.UZERO,Di.UZERO],i=[Di.UZERO,Di.UZERO];s=s.mul(Xn).add(Et(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=xn(s.add(r).add(o[0]).add(Et(e,l+8)),37).mul(Ei),r=xn(r.add(o[1]).add(Et(e,l+48)),42).mul(Ei),s=s.xor(i[1]),r=r.add(o[0]).add(Et(e,l+40)),a=xn(a.add(i[0]),33).mul(Ei),o=Df(e,l,o[1].mul(Ei),s.add(i[0])),i=Df(e,l+32,a.add(i[1]),r.add(Et(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=Ei.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=xn(s.add(r).add(o[0]).add(Et(e,l+8)),37).mul(p),r=xn(r.add(o[1]).add(Et(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Et(e,l+40))),a=xn(a.add(i[0]),33).mul(p),o=Df(e,l,o[1].mul(p),s.add(i[0])),i=Df(e,l+32,a.add(i[1]),r.add(Et(e,l+16))),[a,s]=[s,a],Ua(Ua(o[0],i[0],p).add(e3(r).mul(z7)).add(a),Ua(o[1],i[1],p).add(s),p)}function b_(e,t){return t==="string"?Xp(e):l0([e],t)}function v_(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function l0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ui(e)),Y().getBool("DEBUG")&&T7(e,t),v_(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function fp(){return Y().platform.now()}function w_(e,t){return Y().platform.fetch(e,t)}function Xp(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function um(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var k_=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new S_)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=fp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:fp()-o})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{I_(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function I_(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var S_=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?ip(`${s}ms`,9):s.error,i=ip(e,25),l=t.rank,u=t.size,c=ip(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function C_(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(a[u.outputs[p].id]){for(let d in c)a[c[d].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function T_(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!ao(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var $4=20,qd=3,Bg=7;function N_(e,t,n,s){let r=lc(t),a=E_(e,t,n,r),o=t.length,i=Hf(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function E_(e,t,n,s){let r=Rt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Jd(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let p=0;p<a;p++)o[p]=Math.max(o[p],Yd(l[c+p],0,n).length)}return o}function Yd(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Bg))} + ${parseFloat(e[1].toFixed(Bg))}j`:Ba(e)?s=`'${e}'`:n==="bool"?s=B7(e):s=parseFloat(e.toFixed(Bg)).toString(),ip(s,t)}function B7(e){return e===0?"false":"true"}function Hf(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Jd(e);return[Yd(m[0],0,n)]}return n==="bool"?[B7(e[0])]:[e[0].toString()]}if(l===1){if(i>$4){let g=qd*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-qd)*o,i*o));return n==="complex64"&&(y=Jd(y),x=Jd(x)),["["+y.map((A,b)=>Yd(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>Yd(A,r[i-qd+b],n)).join(", ")+"]"]}let m=n==="complex64"?Jd(e):Array.from(e);return["["+m.map((g,y)=>Yd(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>$4){for(let m=0;m<qd;m++){let g=m*p,y=g+p;d.push(...Hf(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let m=i-qd;m<i;m++){let g=m*p,y=g+p;d.push(...Hf(e.slice(g,y),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*p,y=g+p;d.push(...Hf(e.slice(g,y),u,n,c,r,m===i-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function Jd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var fn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Rt(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||C7(t,this.size),this.strides=lc(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return xr().makeTensor(this.values,this.shape,this.dtype)}},xr=null,Pu=null,R_=null;function __(e){xr=e}function D_(e){Pu=e}function $_(e){R_=e}var st=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Rt(e),this.strides=lc(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Pu.buffer(this.shape,this.dtype,e)}bufferSync(){return Pu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Lu(this.shape,e,this.dtype==="complex64")}arraySync(){return Lu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=xr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>um(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),xr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=xr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>um(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await xr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(xr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Pu.print(this,e)}clone(){return this.throwIfDisposed(),Pu.clone(this)}toString(e=!1){let t=this.dataSync();return N_(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Pu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),xr().makeVariable(this,e,t,n)}};Object.defineProperty(st,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return oy("Tensor",()=>st)}re();var mp=class extends st{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ao(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);xr().disposeTensor(this),this.dataId=e.dataId,xr().incRef(this,null)}dispose(){xr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(mp,Symbol.hasInstance,{value:e=>e instanceof st&&e.assign!=null&&e.assign instanceof Function});var kr={};Ve(kr,{assertTypesMatch:()=>W7,getTensorsInContainer:()=>ly,isTensorInList:()=>P_,makeTypesMatch:()=>Ht});var t3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(t3||(t3={}));var n3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(n3||(n3={}));var s3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(s3||(s3={}));var r3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(r3||(r3={}));var a3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(a3||(a3={}));var F_={float32:r3,int32:n3,bool:s3,complex64:a3};function Fn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return F_[e][t]}function Kp(e){return Fn(e,"int32")}function Ht(e,t){if(e.dtype===t.dtype)return[e,t];let n=Fn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function W7(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function P_(e,t){return t.some(n=>n.id===e.id)}function ly(e){let t=[];return V7(e,t,new Set),t}function V7(e,t,n){if(e==null)return;if(e instanceof st){t.push(e);return}if(!O_(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),V7(a,t,n))}}function O_(e){return Array.isArray(e)||typeof e=="object"}function Wg(e){return e.kernelName!=null}var F4=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},gp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new F4}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(La(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new k_(this.backendInstance),!0}setupRegisteredKernels(){Gr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Gr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ic)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,La(`Initialization of backend ${e} failed`),La(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return La(`Initialization of backend ${e} failed`),La(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return gp.nextTensorId++}nextVariableId(){return gp.nextVariableId++}clone(e){let t=B.runKernel(Co,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(co,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(lm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Wg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Wg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=lm(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=Wg(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Qg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Ba(e[0])&&(r=e.map(i=>Xp(i)));let a=s.write(r,t,n),o=new st(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=E7(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new st(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new mp(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Jg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof mp||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Jg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Qg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=Pm(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=ly(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof st,()=>"The result y returned by f() must be a tensor.");let a=C_(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?M_(r.shape):n,T_(o,a,l=>this.tidy(l),z_);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(qa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof st),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof st,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(qa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(p=>p instanceof st),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=fp(),n=await this.backend.time(e);return n.wallMs=fp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new F4;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};gp.nextTensorId=0;gp.nextVariableId=0;function M_(e){let t=sy(Rt(e),"float32");return B.makeTensor(t,e,"float32")}function U7(){let e=F7();if(e._tfengine==null){let t=new $7(e);e._tfengine=new gp(t)}return o_(e._tfengine.ENV),__(()=>e._tfengine),e._tfengine}var B=U7();function z_(e,t){let n={a:e,b:t};return B.runKernel(ya,n)}var Zp={};Ve(Zp,{isBrowser:()=>G7,isMobile:()=>W_,mockIsMobile:()=>B_});function L_(){return typeof navigator!="undefined"&&navigator!=null}var o3;function B_(e){o3=e}function W_(e){if(o3!==void 0)return o3;if(e||L_()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function G7(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var sr=Y();sr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});sr.registerFlag("IS_BROWSER",()=>G7());sr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");sr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));sr.registerFlag("PROD",()=>!1);sr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>sr.getBool("DEBUG"));sr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);sr.registerFlag("IS_TEST",()=>!1);sr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);sr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);sr.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Hr(e,t){let n=e;if(Dn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Dn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&H7(e,s,[]),s}function H7(e,t,n){if(n=n||[],!Array.isArray(e)&&!Dn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)H7(e[r],s,n.concat(r))}function P4(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,s="numeric"){if(e instanceof st)return P4(s,e.dtype,t,n),e;let r=Fm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),P4(s,r,t,n),e==null||!Dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Hr(e,r);!Dn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?l0(e,r):Ui(e,[],!0);return B.makeTensor(i,a,r)}function yp(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>F(a,`${t}[${o}]`,n,s))}var j7="__op";function G(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+j7;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return ay(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function V_(e,t){let n=F(e,"real","complex"),s=F(t,"imag","complex");es(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(_p,r)}var da=G({complex_:V_});function ei(e,t,n,s){if(s==null&&(s=Fm(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ry(t);let r=Rt(t),a=Rt(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Rt(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Dn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?l0(e,s):Ui(e,[],!0),B.makeTensor(e,t,s)}function yt(e,t,n){let s=Hr(e,n);return ei(e,t,s,n)}var i3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},cm=4;async function U_(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+cm*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let y=d[g],x=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(x,m),m+=cm,f.set(y,m),m+=y.length}p(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:G_(a),specs:n}}function q7(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Rt(l),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=i3[p.dtype],h=e.slice(r,r+u*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=Z_()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}else if(i==="string"){let p=Rt(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+cm))[0];r+=cm;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=i3[i],d=e.slice(r,r+u*p);if(i==="float32")c=new Float32Array(d);else if(i==="int32")c=new Int32Array(d);else if(i==="bool")c=new Uint8Array(d);else if(i==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],f[y]=c[y*2+1];let m=yt(h,l,"float32"),g=yt(f,l,"float32");n[o]=da(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}i!=="complex64"&&(n[o]=yt(c,l,i))}return n}function G_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var uy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function O4(e){return uy?Buffer.byteLength(e):new Blob([e]).size}function H_(e){if(uy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function j_(e){if(uy){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function cy(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function M4(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function X7(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function dy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Yp(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:O4(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:O4(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function q_(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function X_(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function K_(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Z_(){let e=q_(),t=X_(),n=K_();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Xt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Xt.instance==null&&(Xt.instance=new Xt),Xt.instance}static registerSaveRouter(e){Xt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Xt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Xt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Xt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Xt.getInstance().loadRouters:Xt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},Y_=e=>Xt.registerSaveRouter(e),J_=e=>Xt.registerLoadRouter(e),Q_=e=>Xt.getSaveHandlers(e),eD=(e,t)=>Xt.getLoadHandlers(e,t),l3="tensorflowjs",u3=1,Oi="models_store",Wa="model_info_store";function K7(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function c3(e){let t=e.result;t.createObjectStore(Oi,{keyPath:"modelPath"}),t.createObjectStore(Wa,{keyPath:"modelPath"})}var Gi=class{constructor(e){if(this.indexedDB=K7(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(l3,u3);r.onupgradeneeded=()=>c3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Oi,"readonly"),l=o.objectStore(Oi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Yp(t),i=a.transaction(Wa,"readwrite"),l=i.objectStore(Wa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Oi,"readwrite");let d=c.objectStore(Oi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(Wa);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Gi.URL_SCHEME="indexeddb://";var Z7=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Gi.URL_SCHEME)?tD(e.slice(Gi.URL_SCHEME.length)):null;Xt.registerSaveRouter(Z7);Xt.registerLoadRouter(Z7);function tD(e){return new Gi(e)}function nD(e){return e.startsWith(Gi.URL_SCHEME)?e.slice(Gi.URL_SCHEME.length):e}var sD=class{constructor(){this.indexedDB=K7()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(l3,u3);n.onupgradeneeded=()=>c3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Wa,"readonly"),o=r.objectStore(Wa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=nD(e),new Promise((t,n)=>{let s=this.indexedDB.open(l3,u3);s.onupgradeneeded=()=>c3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Wa,"readwrite"),o=a.objectStore(Wa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Oi,"readwrite");let d=l.objectStore(Oi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},la="/",Ou="tensorflowjs_models",Y7="info",rD="model_topology",aD="weight_specs",oD="weight_data",iD="model_metadata";function J7(e){return{info:[Ou,e,Y7].join(la),topology:[Ou,e,rD].join(la),weightSpecs:[Ou,e,aD].join(la),weightData:[Ou,e,oD].join(la),modelMetadata:[Ou,e,iD].join(la)}}function Q7(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function lD(e){let t=e.split(la);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(la)}function uD(e){return e.startsWith(Hi.URL_SCHEME)?e.slice(Hi.URL_SCHEME.length):e}var Hi=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=J7(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Yp(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,H_(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Q7(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=j_(a),t}};Hi.URL_SCHEME="localstorage://";var e6=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Hi.URL_SCHEME)?cD(e.slice(Hi.URL_SCHEME.length)):null;Xt.registerSaveRouter(e6);Xt.registerLoadRouter(e6);function cD(e){return new Hi(e)}var dD=class{constructor(){M(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ou+la,n=la+Y7;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=lD(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=uD(e);let t=J7(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Q7(t),n}},Bu="://",Vs=class{constructor(){this.managers={}}static getInstance(){return Vs.instance==null&&(Vs.instance=new Vs),Vs.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Bu)&&(e=e.slice(0,e.indexOf(Bu))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Vs.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function jf(e){if(e.indexOf(Bu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Vs.getSchemes().join(",")}`);return{scheme:e.split(Bu)[0],path:e.split(Bu)[1]}}async function t6(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Xt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Xt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=jf(e).scheme,l=jf(e).path,u=i===jf(e).scheme,c=await r.load();n&&u&&await Vs.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await Vs.getManager(i).removeModel(l),p.modelArtifactsInfo}async function pD(){let e=Vs.getSchemes(),t={};for(let n of e){let s=await Vs.getManager(n).listModels();for(let r in s){let a=n+Bu+r;t[a]=s[r]}}return t}async function hD(e){let t=jf(e);return Vs.getManager(t.scheme).removeModel(t.path)}async function fD(e,t){return t6(e,t,!1)}async function mD(e,t){return t6(e,t,!0)}var gD=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new gD);try{Vs.registerManager(Hi.URL_SCHEME,new dD)}catch(e){}try{Vs.registerManager(Gi.URL_SCHEME,new sD)}catch(e){}}var yD={importFetch:()=>xR()},Vg,AD=class{constructor(){this.util=bR(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Vg==null&&(Vg=yD.importFetch()),Vg(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&!Y().get("IS_BROWSER")&&Y().setPlatform("node",new AD);function We(e,t="float32",n){return t=t||"float32",ry(e),new fn(e,t,n)}function xD(e,t){let n=F(e,"x","cast");if(!N7(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(co,s,r)}var he=G({cast_:xD});function bD(e){let n={x:F(e,"x","clone","string_or_numeric")};return B.runKernel(Co,n)}var Jn=G({clone_:bD});function n6(e,t=!1){console.log(e.toString(t))}U7();var vD={buffer:We,cast:he,clone:Jn,print:n6};D_(vD);var $n={};Ve($n,{browserFiles:()=>ND,browserHTTPRequest:()=>$D,concatenateArrayBuffers:()=>cy,copyModel:()=>fD,decodeWeights:()=>q7,encodeWeights:()=>U_,fromMemory:()=>PD,fromMemorySync:()=>i6,getLoadHandlers:()=>eD,getModelArtifactsForJSON:()=>dy,getModelArtifactsInfoForJSON:()=>Yp,getSaveHandlers:()=>Q_,http:()=>hy,isHTTPScheme:()=>d3,listModels:()=>pD,loadWeights:()=>ED,moveModel:()=>mD,registerLoadRouter:()=>J_,registerSaveRouter:()=>Y_,removeModel:()=>hD,weightsLoaderFactory:()=>r6,withSaveHandler:()=>OD,withSaveHandlerSync:()=>MD});var wD="model",kD=".json",ID=".weights.bin";function z4(e){return new Promise(t=>setTimeout(t)).then(e)}var qu=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(qu.URL_SCHEME)&&(e=e.slice(qu.URL_SCHEME.length)),(e==null||e.length===0)&&(e=wD),this.modelJsonFileName=e+kD,this.weightDataFileName=e+ID}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=X7(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await z4(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await z4(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Yp(e)}}}};qu.URL_SCHEME="downloads://";var SD=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=dy(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,cy(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>M4(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=M4(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},CD=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(qu.URL_SCHEME)?TD(e.slice(qu.URL_SCHEME.length)):null;Xt.registerSaveRouter(CD);function TD(e="model"){return new qu(e)}function ND(e){return new SD(e)}function L4(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function s6(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await L4(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await L4(i,t.onProgress,l,u)}async function ED(e,t="",n,s){return r6(o=>s6(o,{requestInit:s}))(e,t,n)}function r6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=i3[y]*Rt(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=q7(w,[b.manifestEntry]);for(let S in k)p[S]=k[S]}),d+=f}),p}}var RD="application/octet-stream",_D="application/json",py=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=X7(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:_D}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:RD}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Yp(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return dy(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=DD(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await s6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,cy(l)]}};py.URL_SCHEME_REGEX=/^https?:\/\//;function DD(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function d3(e){return e.match(py.URL_SCHEME_REGEX)!=null}var a6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>d3(s)):n=d3(e),n)return hy(e,t)}return null};Xt.registerSaveRouter(a6);Xt.registerLoadRouter(a6);function hy(e,t){return new py(e,t)}function $D(e,t){return hy(e,t)}var Ug=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},o6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},FD=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function PD(e,t,n,s){let r=arguments;return new FD(i6(...r))}function i6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Ug(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ug({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ug({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function OD(e){return new o6(e)}function MD(e){return new o6(e)}var l6={};Ve(l6,{confusionMatrix:()=>QD});function zD(e,t,n=!1,s=!1){let r=F(e,"a","matMul"),a=F(t,"b","matMul");[r,a]=Ht(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(uo,o,i)}var Je=G({matMul_:zD});function LD(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return B.runKernel(Tl,a,o)}var Xu=G({oneHot_:LD});function fy(){Y().set("PROD",!0)}function BD(){Y().set("DEBUG",!0)}function WD(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function my(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}$_(my);function VD(){B.disposeVariables()}function sn(){return B}function dm(){return B.memory()}function UD(e){return B.profile(e)}function K(e,t){return B.tidy(e,t)}function ne(e){ly(e).forEach(n=>n.dispose())}function bn(e){return B.keep(e)}function GD(e){return B.time(e)}function gy(e){return B.setBackend(e)}function Oc(){return B.ready()}function ts(){return B.backendName}function HD(e){B.removeBackend(e)}function yy(e){return B.findBackend(e)}function jD(e){return B.findBackendFactory(e)}function Hl(e,t,n=1){return B.registerBackend(e,t,n)}function qs(){return B.backend}function qD(e,t){Y().setPlatform(e,t)}function XD(e){let n={input:F(e,"input","imag")};return B.runKernel(Op,n)}var Jp=G({imag_:XD});function KD(e){let n={x:F(e,"x","neg")};return B.runKernel(wl,n)}var Ft=G({neg_:KD});function ZD(e){let n={input:F(e,"input","real")};return B.runKernel(Bp,n)}var Ku=G({real_:ZD});function YD(e,t,n){let s=F(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),M(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{M(o>=0&&o<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?K(()=>{let o=Ku(s),i=Jp(s);return o=B.runKernel(Vr,{x:o},a),i=B.runKernel(Vr,{x:i},a),n&&(i=Ft(i)),da(o,i)}):B.runKernel(Vr,r,a)}var rt=G({transpose_:YD});function JD(e,t,n){let s=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Xu(he(s,"int32"),n),o=Xu(he(r,"int32"),n),i=rt(a),l=Je(i,o);return he(l,"int32")}var QD=G({confusionMatrix_:JD}),jl={};Ve(jl,{assertAndGetBroadcastShape:()=>wt,getBroadcastDims:()=>u6,getReductionAxes:()=>on});function u6(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function on(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function wt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Xs={};Ve(Xs,{fromPixels:()=>o$,fromPixelsAsync:()=>r$,toPixels:()=>a$});function c6(e,t,n){if(al(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Hr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ei(e,t,s,n)}var Ti;function d6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(lm(pp,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(pp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Ti==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ti=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ti=document.createElement("canvas").getContext("2d");Ti.canvas.width=u,Ti.canvas.height=c,Ti.drawImage(e,0,0,u,c),p=Ti.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return c6(d,[c,u,t],"int32")}function e$(e){return e!=null&&e.data instanceof Uint8Array}function t$(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function n$(e){return e!=null&&e.width!==0&&e.height!==0}function s$(e){return t$()&&!(e instanceof ImageBitmap)&&n$(e)&&!e$(e)}async function r$(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&s$(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return d6(n,t)}async function a$(e,t){let n=F(e,"img","toPixels");if(!(e instanceof st)){let u=n;n=he(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=o[u*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var o$=G({fromPixels_:d6}),Ay={};Ve(Ay,{prepareAndValidate:()=>p6});function p6(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Rt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;p<r.length-1;++p)o*=r[p];let i=e.shape,l=r.slice();l.pop();let u=1;for(let p=a;p<n;++p)u*=i[p],l.push(i[p]);let c=[...lc(e.shape).map(p=>p/u),1].slice(0,a);return[l,o,u,c]}var xy={};Ve(xy,{calculateShapes:()=>h6,validateInput:()=>vy,validateUpdateShape:()=>by});function by(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function vy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}by(n,t,e)}function h6(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;p<a;++p)o*=n[p];let i=r<1?1:r,l=Rt(t.shape)/i,u=[...lc(n.slice(0,r)),1],c=Rt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Gt={};Ve(Gt,{assertParamsValid:()=>l$,computeFlatOffset:()=>h$,computeOutShape:()=>c$,getNormalizedAxes:()=>d$,isSliceContinous:()=>p$,maskToAxes:()=>u$,parseSliceParams:()=>w6,sliceInfo:()=>f$,startForAxis:()=>b6,startIndicesWithElidedDims:()=>y6,stopForAxis:()=>v6,stopIndicesWithElidedDims:()=>A6,stridesForAxis:()=>x6,stridesWithElidedDims:()=>f6});var p3=-2,i$=-1;function l$(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function u$(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function c$(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function f6(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function m6(e,t,n){return n<=e?n:n-(t-1)}function g6(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function d$(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=y6(o,h,f,s,e),p=A6(i,h,f,r,e),d=f6(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=b6(o,s,a,e,h,l),p[h]=v6(i,r,a,e,h,l),d[h]=x6(a,h,l);return{begin:c,end:p,strides:d}}function y6(e,t,n,s,r){let a=[...r],o=g6(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=m6(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function A6(e,t,n,s,r){let a=[...r],o=g6(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=m6(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=dp(0,a[i],r[i])}return a}function x6(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function b6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=dp(0,o,l-1),o}function v6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=dp(0,o,l):o=dp(-1,o,l-1),o}function p$(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function h$(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function w6(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function f$(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A<p.dims;A++)c&&(1<<A&i)!==0&&p.numAddAxisAfterEllipsis++,1<<A&o&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};m$(p,d);let h=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let b=!!(d.shrinkAxisMask&1<<A),w=e[A];if(w===-1){g.push(b?1:-1);continue}let k=[d.beginMask&1<<A,d.endMask&1<<A],S=[d.strides[A]>0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(b){let D=d.begin[A]<0?w+d.begin[A]:d.begin[A];if(d.begin[A]=D,d.end[A]=d.begin[A]+1,D<0||D>=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=B4(d.begin[A],0,d.strides[A],w,k,S),d.end[A]=B4(d.end[A],1,d.strides[A],w,k,S);let _=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&_,f=f&&(A===0&&d.strides[A]===1||_)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let R,$=!1;if(d.beginValid&&d.endValid?(R=d.end[A]-d.begin[A],$=!0):b?(R=1,$=!0):E&&w>=0&&(d.strides[A]<0?R=-w:R=w,$=!0),$){let _;R===0||R<0!=d.strides[A]<0?_=0:_=Math.trunc(R/d.strides[A])+(R%d.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let b=d.finalShapeGatherIndices[A];b>=0?y.push(g[b]):b===p3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==p3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function m$(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(p3),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(i$),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function B4(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var de={};Ve(de,{Serializable:()=>k6,SerializationMap:()=>$i,registerClass:()=>ti});var k6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},$i=class{constructor(){this.classNameMap={}}static getMap(){return $i.instance==null&&($i.instance=new $i),$i.instance}static register(e){$i.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ti(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),$i.register(e)}var I6={};Ve(I6,{TEST_EPSILON_FLOAT16:()=>S6,encodeStrings:()=>C6,expectArrayBuffersEqual:()=>w$,expectArraysClose:()=>y$,expectArraysEqual:()=>x$,expectNumbersClose:()=>b$,expectPromiseToFail:()=>A$,expectValuesInRange:()=>v$,testEpsilon:()=>wy});var g$=.001,S6=.1;function y$(e,t,n){return n==null&&(n=wy()),h3(e,t,(s,r)=>ky(s,r,n))}function wy(){return B.backend.floatPrecision()===32?g$:S6}function h3(e,t,n){let s=!0;if((Dn(e)||Dn(t))&&(s=!1),Dn(e)&&Dn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Hr(e),i=Hr(t);if(!ao(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Dn(e)?e:Ui(e),a=Dn(t)?t:Ui(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function A$(e,t){e().then(()=>t.fail(),()=>t())}function x$(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ba(e)||Ba(e[0])||Ba(t)||Ba(t[0])?h3(e,n,(s,r)=>s==r):h3(e,t,(s,r)=>ky(s,r,0))}function b$(e,t,n){if(n==null&&(n=wy()),!ky(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function ky(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function v$(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function w$(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function C6(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?C6(n):e[t]=Xp(n)}return e}var Iy="3.18.0";function k$(e,t){let n=F(e,"a","add"),s=F(t,"b","add");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(ya,r)}var ce=G({add_:k$});function I$(e,t){let n=F(e,"a","floorDiv"),s=F(t,"b","floorDiv");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(ko,r)}var Mc=G({floorDiv_:I$});function S$(e,t){let n=F(e,"a","div"),s=F(t,"b","div");if([n,s]=Ht(n,s),n.dtype==="int32"&&s.dtype==="int32")return Mc(n,s);let r={a:n,b:s},a={};return B.runKernel(xo,r,a)}var pe=G({div_:S$});function C$(e,t){let n=F(e,"a","mul"),s=F(t,"b","mul");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Oo,r)}var L=G({mul_:C$});function T$(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Dp,n)}else{let n={x:t};return B.runKernel(ol,n)}}var nn=G({abs_:T$});function N$(e){let n={x:F(e,"x","acos")};return B.runKernel(uc,n)}var Sy=G({acos_:N$});function E$(e){let n={x:F(e,"x","acosh")};return B.runKernel(cc,n)}var Cy=G({acosh_:E$});function R$(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>F(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ao(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(oo,s)}var u0=G({addN_:R$});function _$(e,t=null,n=!1){let r={x:F(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(dc,r,a)}var c0=G({all_:_$});function D$(e,t=null,n=!1){let r={x:F(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(pc,r,a)}var Ap=G({any_:D$});function $$(e,t=0){let s={x:F(e,"x","argMax")},r={axis:t};return B.runKernel(io,s,r)}var Cs=G({argMax_:$$});function F$(e,t=0){let s={x:F(e,"x","argMin")},r={axis:t};return B.runKernel(hc,s,r)}var Ty=G({argMin_:F$});function P$(e){let n={x:F(e,"x","asin")};return B.runKernel(fc,n)}var Ny=G({asin_:P$});function O$(e){let n={x:F(e,"x","asinh")};return B.runKernel(mc,n)}var Ey=G({asinh_:O$});function M$(e){let n={x:F(e,"x","atan")};return B.runKernel(gc,n)}var Ry=G({atan_:M$});function z$(e,t){let n=F(e,"a","atan2"),s=F(t,"b","atan2");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Ac,r)}var _y=G({atan2_:z$});function L$(e){let n={x:F(e,"x","atanh")};return B.runKernel(yc,n)}var Dy=G({atanh_:L$});function B$(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=E6(r);return Qp(e,i,n,a,s,null,null,l)}function T6(e,t,n,s,r,a,o="channelsLast"){let[i,l]=pm(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Qp(e,u,n,s,r,a,!1,o)}function W$(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=f3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return N6(e,c,n,s,r,!1,p,a)}function Qp(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=pm(n),[y,x]=pm(s),A=Wu(d,y),b=Wu(h,x),{padInfo:w,outHeight:k,outWidth:S}=G$(r,u,c,m,g,A,b,a,i),E=o?f*p:f,R;return i==="channelsFirst"?R=[l,E,k,S]:i==="channelsLast"&&(R=[l,k,S,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:k,outWidth:S,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:R,filterShape:t}}function N6(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=f3(n),[b,w,k]=f3(s),S=Wu(h,b),E=Wu(f,w),R=Wu(m,k),{padInfo:$,outDepth:_,outHeight:D,outWidth:C}=H$(r,u,c,p,y,x,A,S,E,R,i),P=a?g*d:g,V;return o==="channelsFirst"?V=[l,P,_,D,C]:o==="channelsLast"&&(V=[l,_,D,C,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:_,outHeight:D,outWidth:C,outChannels:P,padInfo:$,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:V,filterShape:t}}function V$(e,t,n,s,r){s==null&&(s=$y(e,t,n));let a=e[0],o=e[1],i=Li((a-t+2*s)/n+1,r),l=Li((o-t+2*s)/n+1,r);return[i,l]}function U$(e,t,n,s,r,a){r==null&&(r=$y(e,t,s));let o=e[0],i=e[1],l=e[2],u=Li((o-t+2*r)/s+1,a),c=Li((i-t+2*r)/s+1,a),p=Li((l-t+2*r)/s+1,a);return[u,c,p,n]}function $y(e,t,n,s=1){let r=Wu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function pm(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function f3(e){return typeof e=="number"?[e,e,e]:e}function Wu(e,t){return t<=1?e:e+(e-1)*(t-1)}function G$(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=V$([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Li((t-a+d+h)/s+1,i),p=Li((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function H$(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=U$([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,k=Math.floor(y/2),S=y-k;p={top:b,bottom:w,left:k,right:S,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function Li(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ya(e){let[t,n,s]=pm(e);return t===1&&n===1&&s===1}function Xr(e,t){return Ya(e)||Ya(t)}function E6(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ns(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")M(Hu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{M(Hu(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function j$(e,t){let s={x:F(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(El,s,r)}var U=G({reshape_:j$});function q$(e,t,n,s,r){let a=F(e,"x","avgPool","float32"),o=1;M(Xr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),ns("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(lo,u,c);return p=he(p,a.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var eh=G({avgPool_:q$});function X$(e,t,n,s,r,a="NDHWC"){let o=F(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ns("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Rp,u,c);return p=he(p,i.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Fy=G({avgPool3d_:X$});function K$(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=yp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Jn(n[0]);let s=n,r={axis:t};return B.runKernel(ll,s,r)}var St=G({concat_:K$});function Z$(e){let n={x:F(e,"x","sigmoid","float32")};return B.runKernel(jo,n)}var Cn=G({sigmoid_:Z$});function Y$(e,t,n){let s=F(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Fl,r,a)}var Oe=G({slice_:Y$});function J$(e){let n={x:F(e,"x","tanh","float32")};return B.runKernel(Jo,n)}var ji=G({tanh_:J$});function Q$(e,t,n,s,r,a){let o=F(e,"forgetBias","basicLSTMCell"),i=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(s,"data","basicLSTMCell"),c=F(r,"c","basicLSTMCell"),p=F(a,"h","basicLSTMCell"),d=St([u,p],1),h=Je(d,i),f=ce(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=Oe(f,[0,0],y),A=Oe(f,[0,g],y),b=Oe(f,[0,g*2],y),w=Oe(f,[0,g*3],y),k=ce(L(Cn(x),ji(A)),L(c,Cn(ce(o,b)))),S=L(ji(k),Cn(w));return[k,S]}var eF=G({basicLSTMCell_:Q$});function tF(e,t,n){let s=F(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(il,a,o)}var th=G({batchToSpaceND_:tF});function nF(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function sF(e,t,n,s,r,a){a==null&&(a=.001);let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;s!=null&&(c=F(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:nF(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(Io,d,h);return U(f,o.shape)}var qi=G({batchNorm_:sF});function rF(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),qi(o,i,l,c,u,a)}var R6=G({batchNorm2d_:rF});function aF(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),qi(o,i,l,c,u,a)}var _6=G({batchNorm3d_:aF});function oF(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),qi(o,i,l,c,u,a)}var D6=G({batchNorm4d_:oF});function iF(e,t,n){let s=F(e,"x","bincount"),r=F(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(zm,a,o)}var Py=G({bincount_:iF});function lF(e,t){let n=F(e,"s0","broadcastArgs","int32"),s=F(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(Lm,r)}var $6=G({broadcastArgs_:lF});function uF(e,t){let n=F(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Jn(n);let i={x:n},l={reps:a};return B.runKernel(xa,i,l)}var Vu=G({broadcastTo_:uF});function cF(e){let n={x:F(e,"x","ceil","float32")};return B.runKernel(po,n)}var Oy=G({ceil_:cF});function dF(e,t,n){let s=F(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Aa,r,a)}var ps=G({clipByValue_:dF});function pF(e){return St(e,0)}var F6=G({concat1d_:pF});function hF(e,t){return St(e,t)}var zc=G({concat2d_:hF});function fF(e,t){return St(e,t)}var P6=G({concat3d_:fF});function mF(e,t){return St(e,t)}var O6=G({concat4d_:mF});function gF(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","conv2d","float32"),l=F(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),ns("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];M(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),M(Xr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(ho,d,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var pa=G({conv2d_:gF});function yF(e,t,n,s,r="NWC",a=1,o){let i=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),ns("conv1d",s,o),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Xr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=pa(d,p,[1,n],s,"NHWC",[1,a],o);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var d0=G({conv1d_:yF});function AF(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),ns("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(fo,d,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var My=G({conv2DBackpropInput_:AF});function xF(e,t,n,s,r,a){let o=F(e,"x","conv2dTranspose"),i=F(t,"filter","conv2dTranspose");return My(n,o,i,s,r,"NHWC",a)}var p0=G({conv2dTranspose_:xF});function bF(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=F(e,"x","conv3d"),i=F(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Xr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=B.runKernel($p,c,p);return u?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var zy=G({conv3d_:bF});function vF(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=B.runKernel(Vm,c,p);return i?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var M6=G({conv3DBackpropInput_:vF});function wF(e,t,n,s,r){let a=F(e,"x","conv3dTranspose"),o=F(t,"filter","conv3dTranspose");return M6(n,a,o,s,r)}var z6=G({conv3dTranspose_:wF});function kF(e){let n={x:F(e,"x","cos","float32")};return B.runKernel(mo,n)}var nh=G({cos_:kF});function IF(e){let n={x:F(e,"x","cosh","float32")};return B.runKernel(go,n)}var h0=G({cosh_:IF});function SF(e,t=0,n=!1,s=!1){let a={x:F(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(ul,a,o)}var xp=G({cumprod_:SF});function CF(e,t=0,n=!1,s=!1){let a={x:F(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(yo,a,o)}var f0=G({cumsum_:CF});function TF(e,t,n,s=!1){let r=F(e,"x","denseBincount"),a=F(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(Um,o,i)}var L6=G({denseBincount_:TF});function NF(e,t,n="NHWC"){let s=F(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(dl,i,l)}var Ly=G({depthToSpace_:NF});function EF(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","depthwiseConv2d","float32"),l=F(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),ns("depthwiseConv2d",s,o);let p={x:u,filter:l},d={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=B.runKernel(Ao,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Lc=G({depthwiseConv2d_:EF});function RF(e){let n={x:F(e,"x","diag")};return B.runKernel(jm,n)}var _F=G({diag_:RF});function DF(e,t,n,s,r=[1,1],a="NHWC"){let o=F(e,"x","dilation2d"),i=F(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=B.runKernel(Fp,c,p);return u?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var By=G({dilation2d_:DF});function $F(e,t){let n=F(e,"a","equal","string_or_numeric"),s=F(t,"b","equal","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(pl,r)}var Ts=G({equal_:$F});function FF(e,t,n){let s=F(t,"a","where"),r=F(n,"b","where"),a=F(e,"condition","where","bool"),o=wt(wt(a.shape,s.shape),r.shape),i=Vu(a,o),l=Vu(s,o),u=Vu(r,o),c={condition:i,t:l,e:u};return B.runKernel($l,c)}var Pn=G({where_:FF});function PF(e){let n={x:F(e,"x","zerosLike")};return B.runKernel(Ul,n)}var lt=G({zerosLike_:PF});function OF(e,t){let n=F(e,"a","div"),s=F(t,"b","div");[n,s]=Ht(n,s);let r=pe(n,s),a=lt(r),o=Ts(s,a);return Pn(o,a,r)}var Wy=G({divNoNan_:OF});function MF(e,t){let n=F(e,"t1","dot"),s=F(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Je(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Je(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Je(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Je(n,o)}}var B6=G({dot_:MF});function zF(e,...t){let n=t.map((r,a)=>F(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Pp,n,s)}var W6=G({einsum_:zF});function LF(e){let n={x:F(e,"x","elu","float32")};return B.runKernel(bo,n)}var Bc=G({elu_:LF});function BF(e){let t=F(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=he(t,"float32"));let n={x:t};return B.runKernel(xc,n)}var Vy=G({erf_:BF});function Uy(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function V6(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function U6(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Xi(e,t){let n=t.map(s=>1);return V6(e,n,t)}function WF(e,t,n){M(Uy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function G6(e,t){if(Uy(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function Gy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function VF(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function UF(e,t=null,n=!1){let r={x:F(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(Eo,r,a)}var mn=G({max_:UF});function GF(e,t=null,n=!1){let r={x:F(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel($o,r,a)}var ha=G({min_:GF});function HF(e,t){let n=F(e,"base","pow"),s=F(t,"exp","pow");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(zo,r)}var fa=G({pow_:HF});function Ce(e,t){if((Dn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Dn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ei(e,[],[],t)}function jF(e){let n={x:F(e,"x","sqrt","float32")};return B.runKernel(qo,n)}var Tn=G({sqrt_:jF});function qF(e){let t=F(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var vt=G({square_:qF});function XF(e,t=null,n=!1){let s=F(e,"x","sum");s.dtype==="bool"&&(s=he(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Xo,r,a)}var ke=G({sum_:XF});function KF(e,t="euclidean",n=null,s=!1){e=F(e,"x","norm");let r=H6(e,t,n),a=r.shape;if(s){let o=ar(n,e.shape);a=Xi(r.shape,o)}return U(r,a)}function H6(e,t,n=null){if(e.rank===0)return nn(e);if(e.rank!==1&&n===null)return H6(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(nn(e),n);if(t===1/0)return mn(nn(e),n);if(t===-1/0)return ha(nn(e),n);if(t==="euclidean"||t===2)return Tn(ke(fa(nn(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return mn(ke(nn(e),n[0]),n[1]-1);if(t===1/0)return mn(ke(nn(e),n[1]),n[0]);if(t===-1/0)return ha(ke(nn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Tn(ke(vt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var sh=G({norm_:KF});function ZF(e,t=null,n=!1){return sh(e,"euclidean",t,n)}var Hy=G({euclideanNorm_:ZF});function YF(e){let n={x:F(e,"x","exp")};return B.runKernel(vo,n)}var Ns=G({exp_:YF});function JF(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(hl,s,r)}var Zt=G({expandDims_:JF});function QF(e){let n={x:F(e,"x","expm1")};return B.runKernel(fl,n)}var jy=G({expm1_:QF});function eP(e,t){let n=F(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(xa,s,r)}var Us=G({tile_:eP});function tP(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Us(Zt(o,0),[n[0],1,1]);if(n.length===2)return Us(Zt(Zt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Us(Zt(Zt(Zt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var qy=G({eye_:tP});function Wc(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(bc,{},s)}function nP(e){let n={x:F(e,"x","floor","float32")};return B.runKernel(wo,n)}var Vc=G({floor_:nP});function sP(e,t,n=0,s=0){let r=F(e,"x","gather"),a=F(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(gl,o,i)}var Ki=G({gather_:sP});function rP(e,t){let n=F(e,"a","greater","string_or_numeric"),s=F(t,"b","greater","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Al,r)}var ms=G({greater_:rP});function aP(e,t){let n=F(e,"a","greaterEqual","string_or_numeric"),s=F(t,"b","greaterEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(So,r)}var ni=G({greaterEqual_:aP});function oP(e){let n={x:F(e,"x","isFinite")};return B.runKernel(vc,n)}var j6=G({isFinite_:oP});function iP(e){let n={x:F(e,"x","isInf")};return B.runKernel(wc,n)}var q6=G({isInf_:iP});function lP(e){let n={x:F(e,"x","isNaN")};return B.runKernel(kc,n)}var Xy=G({isNaN_:lP});function uP(e,t=.2){let s={x:F(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(To,s,r)}var rh=G({leakyRelu_:uP});function cP(e,t){let n=F(e,"a","less","string_or_numeric"),s=F(t,"b","less","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(xl,r)}var m0=G({less_:cP});function dP(e,t){let n=F(e,"a","lessEqual","string_or_numeric"),s=F(t,"b","lessEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(bl,r)}var si=G({lessEqual_:dP});function X6(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(Zm,{},s)}function pP(e,t=5,n=1,s=1,r=.5){let a=F(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(Hu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=B.runKernel(zp,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ky=G({localResponseNormalization_:pP});function hP(e){let n={x:F(e,"x","log","float32")};return B.runKernel(No,n)}var Es=G({log_:hP});function fP(e){let n={x:F(e,"x","log1p")};return B.runKernel(Ic,n)}var ah=G({log1p_:fP});function mP(e){return M(qa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=F(t,"x","tf.grad","string_or_numeric"),r=n!=null?F(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&es(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),g0(o),o[0]})}}function gP(e){return M(qa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=yp(t,"args","tf.grads","string_or_numeric"),r=n!=null?F(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&es(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),g0(o),o})}}function yP(e){return M(qa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof st,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof st,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return g0(s),{grad:s[0],value:r}}}function AP(e){return M(qa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof st),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof st,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&es(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),g0(s.grads),s}}function K6(e,t){M(qa(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof mp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function jr(e){return B.customGrad(e)}function g0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function xP(e){let n={x:F(e,"x","softplus")};return B.runKernel($c,n)}var ql=G({softplus_:xP});function bP(e){let t=F(e,"x","logSigmoid");return jr(s=>({value:Ft(ql(Ft(s))),gradFunc:o=>L(o,Cn(Ft(s)))}))(t)}var Z6=G({logSigmoid_:bP});function vP(e,t){let n=F(e,"a","sub"),s=F(t,"b","sub");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Yo,r)}var fe=G({sub_:vP});function wP(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return jr((r,a)=>{let i=mn(r,t,!0),l=fe(r,i),u=fe(he(l,"float32"),Es(ke(Ns(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Ns(h);return fe(p,L(ke(p,t,f),m))}}})(n)}var y0=G({logSoftmax_:wP});function kP(e,t=null,n=!1){let s=F(e,"x","logSumExp"),r=ar(t,s.shape),a=mn(s,r,!0),o=fe(s,a),i=Ns(o),l=ke(i,r),u=Es(l),c=ce(U(a,u.shape),u);if(n){let p=Xi(c.shape,r);return U(c,p)}return c}var Zy=G({logSumExp_:kP});function IP(e,t){let n=F(e,"a","logicalAnd","bool"),s=F(t,"b","logicalAnd","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(vl,r)}var rr=G({logicalAnd_:IP});function SP(e){let n={x:F(e,"x","logicalNot","bool")};return B.runKernel(Sc,n)}var oh=G({logicalNot_:SP});function CP(e,t){let n=F(e,"a","logicalOr","bool"),s=F(t,"b","logicalOr","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Mp,r)}var A0=G({logicalOr_:CP});function TP(e,t){let n=F(e,"a","logicalXor","bool"),s=F(t,"b","logicalXor","bool");return wt(n.shape,s.shape),rr(A0(e,t),oh(rr(e,t)))}var Y6=G({logicalXor_:TP}),$f=2147483648;function NP(e,t,n="left"){let s=F(e,"sortedSequence","searchSorted"),r=F(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=U(s,[-1,a]),l=U(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Rt(l.shape)>=$f)throw new Error(`values tensor size must less than ${$f}`);if(i.shape[1]>=$f)throw new Error(`trailing dim_size must less than ${$f} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return B.runKernel(r0,u,c)}var Yy=G({searchSorted_:NP});function J6(e,t){return Yy(e,t,"left")}function EP(e,t,n,s,r){let a=F(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Xr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),ns("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(_o,u,c);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ih=G({maxPool_:EP});function RP(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=F(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ns("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Lp,u,c);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Jy=G({maxPool3d_:RP});function _P(e,t,n,s,r=!1){let o={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(e0,o,i);return{result:l[0],indexes:l[1]}}var Q6=G({maxPoolWithArgmax_:_P});function DP(e,t){let n=F(e,"a","maximum"),s=F(t,"b","maximum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=he(n,"int32"),s=he(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ro,r)}var Kr=G({maximum_:DP});function $P(e,t=null,n=!1){let r={x:F(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Do,r,a)}var Wt=G({mean_:$P});function Vt(e,t="float32"){if(t==="complex64"){let s=Vt(e,"float32"),r=Vt(e,"float32");return da(s,r)}let n=Pm(Rt(e),t);return B.makeTensor(n,e,t)}function Ss(e,t="float32"){if(t==="complex64"){let s=Ss(e,"float32"),r=Vt(e,"float32");return da(s,r)}let n=sy(Rt(e),t);return B.makeTensor(n,e,t)}function FP(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=F(e,"x","meshgrid",e instanceof st?e.dtype:"float32");if(t===void 0)return[s];let r=F(t,"y","meshgrid",t instanceof st?t.dtype:"float32"),a=Rt(s.shape),o=Rt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Je(Ss([o,1],s.dtype),s),Je(r,Ss([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Je(s,Ss([1,o],s.dtype)),Je(Ss([a,1],r.dtype),r)])}function PP(e,t){let n=F(e,"a","minimum"),s=F(t,"b","minimum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=he(n,"int32"),s=he(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Fo,r)}var Uc=G({minimum_:PP});function OP(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=F(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Po,o,a)}var Qy=G({mirrorPad_:OP});function MP(e,t){let n=F(e,"a","mod"),s=F(t,"b","mod");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Cc,r)}var Xl=G({mod_:MP});function zP(e,t=null,n=!1){e=F(e,"x","moments");let s=ar(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=Xi(r.shape,s));let o=vt(fe(he(e,"float32"),U(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var x0=G({moments_:zP});function LP(e,t,n,s){let r=F(t,"data","multiRNNCell"),a=yp(n,"c","multiRNNCell"),o=yp(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](i,a[p],o[p]);l.push(d[0]),l.push(d[1]),i=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var BP=G({multiRNNCell_:LP});function WP(e,t,n,s=!1){let r=F(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=B.runKernel(t0,l,u);return o===1?U(c,[c.size]):c}var ew=G({multinomial_:WP});function VP(e,t){let n=F(e,"a","notEqual","string_or_numeric"),s=F(t,"b","notEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(kl,r)}var Zi=G({notEqual_:VP});function UP(e){let n={x:F(e,"x","onesLike")};return B.runKernel(Cl,n)}var Rs=G({onesLike_:UP});function GP(e,t){let n=F(e,"v1","outerProduct"),s=F(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Je(r,a)}var HP=G({outerProduct_:GP});function jP(e,t,n=0){let s=F(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Mo,a,r)}var Ks=G({pad_:jP});function qP(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Ks(e,[t],n)}var XP=G({pad1d_:qP});function KP(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ks(e,t,n)}var ZP=G({pad2d_:KP});function YP(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ks(e,t,n)}var JP=G({pad3d_:YP});function QP(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ks(e,t,n)}var eO=G({pad4d_:QP});function tO(e,t,n){let s=F(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(Ol,r,a)}var lh=G({spaceToBatchND_:tO});function nO(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=F(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Xr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=T6(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=rO([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=sO([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:lh(l,p,f),A=(n==="avg"?()=>eh(y,t,a,g,o):()=>ih(y,t,a,g,o))(),b=h?A:th(A,p,m);return u?U(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function sO(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function rO(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var tw=G({pool_:nO});function aO(e,t){let n=F(e,"x","prelu"),s=F(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(Lo,r)}var uh=G({prelu_:aO});function oO(e,t=null,n=!1){let s=F(e,"x","prod");s.dtype==="bool"&&(s=he(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Bo,r,a)}var b0=G({prod_:oO});function iO(e,t,n){let s=Rt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var lO=G({rand_:iO}),eA=rl(b7()),tA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=eA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},uO=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=eA.alea(r.toString()),this.randn=new tA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},cO=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=eA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function dO(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new uO(t,n,s,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var pO=G({randomGamma_:dO});function hO(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new tA(t,n,s,!1,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var nw=G({randomNormal_:hO});function fO(e,t=0,n=1,s="float32",r){let a=We(e,s),o=new cO(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Gc=G({randomUniform_:fO});function Zu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(Nc,{},r)}function mO(e){let n={x:F(e,"x","reciprocal")};return B.runKernel(Ec,n)}var nA=G({reciprocal_:mO});function gO(e){let n={x:F(e,"x","relu")};return B.runKernel(Wo,n)}var _r=G({relu_:gO});function yO(e){let n={x:F(e,"x","relu6")};return B.runKernel(Uo,n)}var v0=G({relu6_:yO});function AO(e,t){let s={x:F(e,"x","reverse")},r={dims:t};return B.runKernel(Rl,s,r)}var _s=G({reverse_:AO});function xO(e){let t=F(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),_s(t,0)}var bO=G({reverse1d_:xO});function vO(e,t){let n=F(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),_s(n,t)}var wO=G({reverse2d_:vO});function kO(e,t){let n=F(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),_s(n,t)}var IO=G({reverse3d_:kO});function SO(e,t){let n=F(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),_s(n,t)}var CO=G({reverse4d_:SO});function TO(e){let n={x:F(e,"x","round")};return B.runKernel(_l,n)}var w0=G({round_:TO});function NO(e){let n={x:F(e,"x","rsqrt","float32")};return B.runKernel(Go,n)}var k0=G({rsqrt_:NO});function EO(e){let n={x:F(e,"x","selu")};return B.runKernel(_c,n)}var I0=G({selu_:EO});function RO(e,t,n,s,r,a=[1,1],o="NHWC"){let i=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];M(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=Lc(c,l,s,r,o,a),g=pa(f,u,1,"valid",o);return p?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var sA=G({separableConv2d_:RO});async function _O(e,t){let n=F(e,"x","setdiff1d"),s=F(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new fn([i],n.dtype),u=new fn([i],"int32");for(let c=0,p=0;c<r.length;c++)o.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var sw=_O;function DO(e){let n={x:F(e,"x","sign")};return B.runKernel(Dc,n)}var rA=G({sign_:DO});function $O(e){let n={x:F(e,"x","sin","float32")};return B.runKernel(Ho,n)}var S0=G({sin_:$O});function FO(e){let n={x:F(e,"x","sinh")};return B.runKernel(Pl,n)}var C0=G({sinh_:FO});function PO(e,t,n){let s=F(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Oe(s,[t],[n])}var T0=G({slice1d_:PO});function OO(e,t,n){let s=F(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Oe(s,t,n)}var aA=G({slice2d_:OO});function MO(e,t,n){let s=F(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Oe(s,t,n)}var Kl=G({slice3d_:MO});function zO(e,t,n){let s=F(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Oe(s,t,n)}var Yi=G({slice4d_:zO});function LO(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(Ko,s,r)}var Zl=G({softmax_:LO});function BO(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Xm,t)}var ch=G({fft_:BO});function WO(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Km,t)}var Yu=G({ifft_:WO});function VO(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=Yu(r)}else{let r=[n,2*(t-1)],a=U(Ku(e),[n,t]),o=U(Jp(e),[n,t]),i=_s(Oe(a,[0,1],[n,t-2]),1),l=L(_s(Oe(o,[0,1],[n,t-2]),1),Ce(-1)),u=St([a,i],1),c=St([o,l],1),p=U(da(u,c),[r[0],r[1]]);s=Yu(p)}if(s=Ku(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var N0=G({irfft_:VO});function UO(e,t,n=0){let r={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Ml,r,a)}var Yt=G({split_:UO});function GO(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Oe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=St([e,Vt(f)],e.shape.length-1),n=t}else r=e;let a=lt(r),o=U(da(r,a),[s,n]),i=ch(o),l=Math.floor(n/2)+1,u=Ku(i),c=Jp(i),p=Yt(u,[l,n-l],u.shape.length-1),d=Yt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(da(p[0],d[0]),h)}var dh=G({rfft_:GO});function HO(e,t){let n=F(e,"a","squaredDifference"),s=F(t,"b","squaredDifference");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(Zo,r,a)}var E0=G({squaredDifference_:HO});function jO(e,t){let n=F(e,"x","squeeze");return U(n,I7(n.shape,t).newShape)}var et=G({squeeze_:jO});function qO(e,t=0){let n=yp(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Nl,s,r)}var ln=G({stack_:qO});function XO(e,t=0){let s={x:F(e,"x","step")},r={alpha:t};return B.runKernel(Qo,s,r)}var Hc=G({step_:XO});function KO(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:F(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(zl,c,p)}var oA=G({stridedSlice_:KO});function ZO(e){let n={x:F(e,"x","tan","float32")};return B.runKernel(Ll,n)}var iA=G({tan_:ZO});function $t(e,t){al(e);let n=Hr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ei(e,null,n,t)}function Ir(e,t,n){if(al(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Hr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ei(e,t,s,n)}function YO(e,t,n){if(al(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Hr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ei(e,t,s,n)}function JO(e,t,n){if(al(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Hr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ei(e,t,s,n)}function QO(e,t,n){if(al(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Hr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,ei(e,t,s,n)}function eM(e,t=1,n=!0){let s=F(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Bl,a,o);return{values:i,indices:l}}var lA=G({topk_:eM});function tM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new tA(t,n,s,!0,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var R0=G({truncatedNormal_:tM});function nM(e,t=0){let n=F(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(i0,s,r);return{values:a,indices:o}}var hm=G({unique_:nM});function sM(e,t,n){let s=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");M(Hu(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(jp,a,o)}var uA=G({unsortedSegmentSum_:sM});function rM(e,t=0){let n=F(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(Vl,s,r)}var Qn=G({unstack_:rM});function rw(e,t){return Yy(e,t,"right")}function aw(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function ow(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=We(e,"int32"),r=We([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function aM(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),s=ow(t.shape,n);return e!==t&&t.dispose(),s}var cA=aM;async function oM(e,t,n){let s=F(e,"tensor","boolMask"),r=F(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),es(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=U(s,u),p=U(r,[-1]),d=await cA(p),h=et(d,[1]),f=Ki(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var iM=oM;function lM(e,t,n,s,r=!0){let a=F(e,"v","movingAverage"),o=F(t,"x","movingAverage"),i=F(n,"decay","movingAverage");W7(a,o),M(ao(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ce(1),u=fe(l,i),c=L(fe(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let p=F(s,"step","movingAverage");c=pe(c,fe(l,fa(i,p)))}return ce(a,c)}var uM=G({movingAverage_:lM});function cM(e,t,n){let s=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");vy(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Dl,a,o)}var iw=G({scatterND_:cM});function dM(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function pM(e,t,n,s=0){let r=F(e,"sparseIndices","sparseToDense","int32"),a=F(t,"sparseValues","sparseToDense","string_or_numeric"),o=F(s,"defaultValue","sparseToDense",a.dtype);dM(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(Gp,i,l)}var dA=G({sparseToDense_:pM});function hM(e,t){let n=F(t,"indices","gatherND","int32"),r={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(yl,r)}var lw=G({gatherND_:hM});function fM(e,t){if(t==null)return e.shape.slice();if(ao(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function mM(e,t,n,s){let r=F(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof st?r.clone():r;let a=fM(r,n),o=1-t,i=pe(Vc(ce(Gc(a,0,1,"float32",s),o)),o);return L(r,i)}var uw=G({dropout_:mM});function cw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function pA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return $t(r,"float32")}async function gM(e,t,n=1){let s=F(e,"predictions","inTopK"),r=F(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),es(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=S7("bool",l);for(let p=0;p<l;p++){let d=p*u,h=o.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===i[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),yt(c,r.shape,"bool")}var yM=gM,Ja={};Ve(Ja,{conv2d:()=>bM,depthwiseConv2d:()=>IM,matMul:()=>CM});function AM(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),ns("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(Bm,p,d)}var hA=G({conv2DBackpropFilter_:AM});function _0(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Hc(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function D0(e,t){let n=t,s=on(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),U(n,e.shape)}function $0(e,t,n,s){if(t==="linear")return e;if(t==="relu")return _r(e);if(t==="elu")return Bc(e);if(t==="relu6")return v0(e);if(t==="prelu")return uh(e,n);if(t==="leakyrelu")return rh(e,s);if(t==="sigmoid")return Cn(e);throw new Error(`Unknown fused activation ${t}.`)}var F0=(e,t)=>!(e>0)||t==="linear";function xM({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",F0(B.state.gradientDepth,l)===!1){M(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let k=pa(e,t,n,s,r,a,o);return i!=null&&(k=ce(k,i)),$0(k,l,u,c)}let p=F(e,"x","conv2d","float32"),d=F(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),ns("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];M(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),M(Xr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=Qp(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=F(i,"bias","fused conv2d"),[y]=Ht(y,p),r==="NHWC"?wt(g.outShape,y.shape):(M(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),M(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let k=u.shape;if(M(k.length<=1||k.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${k.length}.`),k.length===1)M(k[0]===1||k[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${k}) is not compatible with the number of output channels (${g.outChannels}).`);else if(k.length===3)try{wt(k,g.outShape)}catch(S){let E=`Error in fused conv2d: PReLU activation weights (${k}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=F(u,"prelu weights","fused conv2d")}let A=(k,S)=>{M(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,R,$,_]=S,D=_0(k,$,l);M(Ya(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let C=My(R.shape,D,E,n,s),P=hA(R,D,E.shape,n,s),V=[C,P];if(_!=null){let j=D0(_,D);V.push(j)}return V},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?jr((S,E,R)=>{let $=B.runKernel(Ka,b,w);return R([E,S,$]),f&&($=U($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,d):jr((S,E,R,$)=>{let _=B.runKernel(Ka,b,w);return $([E,S,_,R]),f&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:A}})(h,d,y)}var bM=G({fusedConv2d_:xM});function vM(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(Gm,u,c)}var dw=G({depthwiseConv2dNativeBackpropFilter_:vM});function wM(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=B.runKernel(Hm,u,c);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var pw=G({depthwiseConv2dNativeBackpropInput_:wM});function kM({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(F0(B.state.gradientDepth,l)===!1){let w=Lc(e,t,n,s,r,a,o);return i!=null&&(w=ce(w,i)),$0(w,l,u,c)}let p=F(e,"x","depthwiseConv2d","float32"),d=F(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),M(Xr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),ns("fused depthwiseConv2d",s,o);let m=Qp(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Ht(g,p),wt(m.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let x=(w,k)=>{M(Ya(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,E,R,$]=k,_=_0(w,R,l),D=pw(E.shape,_,S,n,s,a,o),C=dw(E,_,S.shape,n,s,a,o);if($!=null){let P=D0(g,_);return[D,C,P]}return[D,C]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?jr((k,S,E)=>{let R=B.runKernel(Za,A,b);return E([S,k,R]),f&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,d):jr((k,S,E,R)=>{let $=B.runKernel(Za,A,b);return R([S,k,$,E]),f&&($=U($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:x}})(h,d,g)}var IM=G({fusedDepthwiseConv2d_:kM});function SM({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(F0(B.state.gradientDepth,a)===!1){let _=Je(e,t,n,s);return r!=null&&(_=ce(_,r)),$0(_,a,o,i)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Ht(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Rt(f),y=Rt(m);M(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=wt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?U(l,[g,c,d]):U(l,[g,d,c]),w=s?U(u,[y,h,p]):U(u,[y,p,h]),k;r!=null&&(k=F(r,"bias","fused matMul"),[k]=Ht(k,l),wt(A,k.shape));let S;o!=null&&(S=F(o,"prelu weights","fused matMul"));let E=(_,D)=>{let[C,P,V,j]=D,z=_0(U(_,V.shape),V,a),Z,W;if(!n&&!s?(Z=Je(z,P,!1,!0),W=Je(C,z,!0,!1)):!n&&s?(Z=Je(z,P,!1,!1),W=Je(z,C,!0,!1)):n&&!s?(Z=Je(P,z,!1,!0),W=Je(C,z,!1,!1)):(Z=Je(P,z,!0,!0),W=Je(z,C,!0,!0)),r!=null){let ee=D0(j,z);return[Z,W,ee]}else return[Z,W]},R={a:b,b:w,bias:k,preluActivationWeights:S},$={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?jr((D,C,P)=>{let V=B.runKernel(Xa,R,$);return P([D,C,V]),{value:U(V,A),gradFunc:E}})(b,w):jr((D,C,P,V)=>{let j=B.runKernel(Xa,R,$);return V([D,C,j,P]),{value:U(j,A),gradFunc:E}})(b,w,k)}var CM=G({fusedMatMul_:SM});function TM(e){return pA(e,.54,.46)}var NM=G({hammingWindow_:TM});function EM(e){return pA(e,.5,.5)}var hw=G({hannWindow_:EM});function RM(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Oe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=St([Oe(e,a,t-i),Wc([i],r)]);o.push(l),a+=n}return o.length===0?Ir([],[0,t]):U(St(o),[o.length,t])}var fw=G({frame_:RM});function _M(e,t,n,s,r=hw){s==null&&(s=cw(t));let a=fw(e,t,n),o=L(a,r(t));return dh(o,s)}var DM=G({stft_:_M});function $M(e,t,n,s,r="bilinear",a=0){let o=F(e,"image","cropAndResize"),i=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(cl,c,p)}var FM=G({cropAndResize_:$M});function PM(e){let t=F(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(ml,n,{})}var OM=G({flipLeftRight_:PM});function MM(e){let t=F(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Us(t,r)}var zM=G({grayscaleToRGB_:MM});function LM(e,t,n=0,s=.5){let r=F(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(Gl,a,o)}var BM=G({rotateWithOffset_:LM});function jc(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function WM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppression","float32"),o=F(t,"scores","nonMaxSuppression","float32"),i=jc(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(Il,{boxes:a,scores:o},l)}var VM=G({nonMaxSuppression_:WM});function UM(e,t,n){let s=GM(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function GM(e,t,n){return jM(e,t,n||HM)}function HM(e,t){return e>t?1:e<t?-1:0}function jM(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function mw(e,t,n,s,r){return fA(e,t,n,s,r,0)}function gw(e,t,n,s,r,a){return fA(e,t,n,s,r,0,!1,a,!0)}function yw(e,t,n,s,r,a){return fA(e,t,n,s,r,a,!0)}function fA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(W4);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y<r)break;let b=!1;for(let w=p.length-1;w>=A;--w){let k=qM(e,x,p[w]);if(k>=s){b=!0;break}if(g.score=g.score*XM(s,c,k),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&UM(u,g,W4))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function qM(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function XM(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function W4(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function KM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),i=jc(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=mw(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),$t(p,"int32")}var ZM=KM;function YM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=jc(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=B.runKernel(Sl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var JM=G({nonMaxSuppressionWithScore_:YM});async function QM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=jc(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=yw(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:$t(d,"int32"),selectedScores:$t(h)}}var ez=QM;function tz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=jc(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=B.runKernel(Tc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var nz=G({nonMaxSuppressionPadded_:tz});async function sz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=jc(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=gw(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:$t(f,"int32"),validOutputs:Ce(m,"int32")}}var rz=sz;function az(e,t,n=!1,s=!1){let r=F(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Vo,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Aw=G({resizeBilinear_:az});function oz(e,t,n=!1,s=!1){let r=F(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Rc,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var xw=G({resizeNearestNeighbor_:oz});function iz(e,t="binary",n=!1,s=.5){let r=F(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=L($t([s]),255),c,p,d,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Yt(r,[1,1,1],-1);let g=L(c,a),y=L(p,o),x=L(d,i);h=ce(ce(g,y),x)}else h=e;if(t==="otsu"){let g=Py(he(w0(h),"int32"),yt([]),256);u=lz(g,l)}let f=n?si(h,u):ms(h,u);return he(L(f,255),"int32")}function lz(e,t){let n=$t([-1]),s=$t([0]),r=$t([0]),a,o,i,l,u,c;for(let p=0;p<e.size-1;p++){a=Oe(e,0,p+1),o=Oe(e,p+1),u=pe(ke(a),t),c=pe(ke(o),t);let d=ke(L(a,Zu(0,a.size)));i=pe(d,ke(a));let h=Wc(o.shape,a.size),f=ce(Zu(0,o.size),h),m=L(o,f);l=pe(ke(m),ke(o));let g=fe(i,l),y=fe(i,l),x=L(u,c);r=L(L(x,g),y);let A=ms(r,s);s=Pn(A,r,s),n=Pn(A,$t([p]),n)}return n}var uz=G({threshold_:iz});function cz(e,t,n="nearest",s="constant",r=0,a){let o=F(e,"image","transform","float32"),i=F(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(Wl,l,u)}var dz=G({transform_:cz});function pz(e,t,n){M(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=F(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(Zu(0,a,1,"int32"),[-1,1]),l=Zu(0,o,1,"int32"),u=fe(i,l),c=rr(si(u,Ce(+t,"int32")),ni(u,Ce(-n,"int32"))),p=Vt([a,o],s.dtype);return U(ln(Qn(U(s,[-1,a,o])).map(d=>Pn(c,d,p))),r)}var hz=G({bandPart_:pz});function fz(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Yt(e,e.shape[0],0).map(r=>et(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(ke(L(n[o],a)),n[o]);a=fe(a,i)}return pe(a,sh(a,"euclidean"))}));return t?ln(n,0):n}var mz=G({gramSchmidt_:fz});function gz(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return V4(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=Qn(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=V4(l,t);r.push(u),a.push(c)});let o=U(ln(r,0),e.shape),i=U(ln(a,0),e.shape);return[o,i]}}function V4(e,t=!1){return B.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=qy(n),a=Jn(e),o=Ir([[1]],[1,1]),i=Jn(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,p=i,d=r;[i,a,r]=B.tidy(()=>{let h=Oe(a,[u,u],[n-u,1]),f=sh(h),m=Oe(a,[u,u],[1,1]),g=Pn(ms(m,0),Ir([[-1]]),Ir([[1]])),y=fe(m,L(g,f)),x=pe(h,y);x.shape[0]===1?i=Jn(o):i=St([o,Oe(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=Ft(pe(Je(g,y),f)),b=Oe(a,[u,0],[n-u,s]),w=L(A,i),k=rt(i);if(u===0)a=fe(b,Je(w,Je(k,b)));else{let R=fe(b,Je(w,Je(k,b)));a=St([Oe(a,[0,0],[u,s]),R],0)}let S=rt(w),E=Oe(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=fe(E,Je(Je(E,i),S));else{let R=fe(E,Je(Je(E,i),S));r=St([Oe(r,[0,0],[n,u]),R],1)}return[i,a,r]}),ne([c,p,d])}return!t&&n>s&&(r=Oe(r,[0,0],[n,s]),a=Oe(a,[0,0],[s,s])),[r,a]})}var yz=G({qr_:gz}),Kn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Kn||(Kn={}));function Az(e,t,n=Kn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Kn.NONE)return a;if(n===Kn.SUM)return ke(a);if(n===Kn.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=pe(ke(a),ke(r));return o>1?pe(i,Ce(o)):i}}if(n===Kn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return pe(ke(a),Ce(s.size));{let o=L(r,Ss(s.shape)),i=he(ke(Zi(o,Ce(0))),"float32");return pe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var ba=G({computeWeightedLoss_:Az});function xz(e,t,n,s=Kn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),a=F(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=F(n,"weights","absoluteDifference")),es(r.shape,a.shape,"Error in absoluteDifference: ");let i=nn(fe(r,a));return ba(i,o,s)}var bz=G({absoluteDifference_:xz});function vz(e,t,n,s,r=Kn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","cosineDistance"),o=F(t,"predictions","cosineDistance"),i=null;s!=null&&(i=F(s,"weights","cosineDistance")),es(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=fe(l,ke(L(a,o),n,!0));return ba(u,i,r)}var wz=G({cosineDistance_:vz});function kz(e,t,n,s=Kn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),a=F(t,"predictions","hingeLoss"),o=null;n!=null&&(o=F(n,"weights","hingeLoss")),es(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=fe(L(Ce(2),r),i);let l=_r(fe(i,L(r,a)));return ba(l,o,s)}var Iz=G({hingeLoss_:kz});function Sz(e,t,n,s=1,r=Kn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","huberLoss"),o=F(t,"predictions","huberLoss"),i=null;n!=null&&(i=F(n,"weights","huberLoss")),es(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=nn(fe(o,a)),c=Uc(u,l),p=fe(u,c),d=ce(L(Ce(.5),vt(c)),L(l,p));return ba(d,i,r)}var Cz=G({huberLoss_:Sz});function Tz(e,t,n,s=1e-7,r=Kn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","logLoss"),o=F(t,"predictions","logLoss"),i=null;n!=null&&(i=F(n,"weights","logLoss")),es(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=Ft(L(a,Es(ce(o,u)))),p=L(fe(l,a),Es(ce(fe(l,o),u))),d=fe(c,p);return ba(d,i,r)}var Nz=G({logLoss_:Tz});function Ez(e,t,n,s=Kn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),a=F(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=F(n,"weights","meanSquaredError")),es(r.shape,a.shape,"Error in meanSquaredError: ");let i=E0(r,a);return ba(i,o,s)}var Rz=G({meanSquaredError_:Ez});function _z(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),s=F(t,"logits","sigmoidCrossEntropyWithLogits");es(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=_r(s),a=L(s,n),o=ah(Ns(Ft(nn(s))));return ce(fe(r,a),o)}function Dz(e,t,n,s=0,r=Kn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"multiClassLabels","sigmoidCrossEntropy"),o=F(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","sigmoidCrossEntropy")),es(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(.5);a=ce(L(a,fe(c,u)),L(p,u))}let l=_z(a,o);return ba(l,i,r)}var $z=G({sigmoidCrossEntropy_:Dz});function Fz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return jr((r,a,o)=>{let l=Zy(a,[n],!0),u=fe(he(a,"float32"),l);o([r,u]);let c=Ft(L(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=Xi(h.shape,[n]);return[L(U(h,y),fe(he(m,"float32"),Ns(g))),L(U(h,y),fe(Ns(g),he(m,"float32")))]}}})(e,t)}function Pz(e,t,n,s=0,r=Kn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"onehotLabels","softmaxCrossEntropy"),o=F(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","softmaxCrossEntropy")),es(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(a.shape[1]);a=ce(L(a,fe(c,u)),pe(u,p))}let l=Fz(a,o);return ba(l,i,r)}var Oz=G({softmaxCrossEntropy_:Pz});function Mz(e,t,n,s){let r=F(e,"indices","sparseFillEmptyRows","int32"),a=F(t,"values","sparseFillEmptyRows"),o=F(n,"denseShape","sparseFillEmptyRows","int32"),i=F(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=B.runKernel(Wp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var zz=G({sparseFillEmptyRows_:Mz});function Lz(e,t,n){let s=F(e,"inputIndices","sparseReshape","int32"),r=F(t,"inputShape","sparseReshape","int32"),a=F(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Fc,o);return{outputIndices:i[0],outputShape:i[1]}}var Bz=G({sparseReshape_:Lz});function Wz(e,t,n){let s=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean","int32"),a=F(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Vp,o)}var Vz=G({sparseSegmentMean_:Wz});function Uz(e,t,n){let s=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum","int32"),a=F(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Up,o)}var Gz=G({sparseSegmentSum_:Uz});function Hz(e,t,n,s,r,a,o,i){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=B.runKernel(Hp,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var jz=G({stringNGrams_:Hz});function qz(e,t,n=!0){let s=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(a0,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var Xz=G({stringSplit_:qz});function Kz(e,t){let n=F(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(o0,r,s)}var Zz=G({stringToHashBucketFast_:Kz}),Yz={fft:ch,ifft:Yu,rfft:dh,irfft:N0},Jz={hammingWindow:NM,hannWindow:hw,frame:fw,stft:DM},Se={flipLeftRight:OM,grayscaleToRGB:zM,resizeNearestNeighbor:xw,resizeBilinear:Aw,rotateWithOffset:BM,cropAndResize:FM,nonMaxSuppression:VM,nonMaxSuppressionAsync:ZM,nonMaxSuppressionWithScore:JM,nonMaxSuppressionWithScoreAsync:ez,nonMaxSuppressionPadded:nz,nonMaxSuppressionPaddedAsync:rz,threshold:uz,transform:dz},bw={bandPart:hz,gramSchmidt:mz,qr:yz},Qz={absoluteDifference:bz,computeWeightedLoss:ba,cosineDistance:wz,hingeLoss:Iz,huberLoss:Cz,logLoss:Nz,meanSquaredError:Rz,sigmoidCrossEntropy:$z,softmaxCrossEntropy:Oz},Qd={sparseFillEmptyRows:zz,sparseReshape:Bz,sparseSegmentMean:Vz,sparseSegmentSum:Gz},qf={stringNGrams:jz,stringSplit:Xz,stringToHashBucketFast:Zz},va=class extends k6{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ne(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return K6(e,t)}dispose(){this.iterations_!=null&&ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(va,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var P0=class extends va{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:K(()=>lt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:K(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;K(()=>{let u=ce(L(i,this.rho),L(vt(o),1-this.rho)),c=L(pe(Tn(ce(l,this.epsilon)),Tn(ce(i,this.epsilon))),o),p=ce(L(l,this.rho),L(vt(c),1-this.rho));i.assign(u),l.assign(p);let d=ce(L(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ne(this.accumulatedGrads.map(e=>e.variable)),ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};P0.className="Adadelta";ti(P0);var O0=class extends va{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:K(()=>Wc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;K(()=>{let i=ce(o,vt(a));o.assign(i);let l=ce(L(pe(a,Tn(ce(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};O0.className="Adagrad";ti(O0);var M0=class extends va{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],K(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);K(()=>{let n=fe(1,this.accBeta1),s=fe(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:K(()=>lt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:K(()=>lt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ce(L(u,this.beta1),L(l,1-this.beta1)),d=ce(L(c,this.beta2),L(vt(l),1-this.beta2)),h=pe(p,n),f=pe(d,s);u.assign(p),c.assign(d);let m=ce(L(pe(h,ce(Tn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),K(()=>{this.accBeta1.assign(fa(this.beta1,this.iterations_+1)),this.accBeta2.assign(fa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};M0.className="Adam";ti(M0);var z0=class extends va{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],K(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);K(()=>{let n=fe(1,this.accBeta1),s=pe(-this.learningRate,ce(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:lt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:lt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ce(L(u,this.beta1),L(l,1-this.beta1)),d=L(c,this.beta2),h=nn(l),f=Kr(d,h);u.assign(p),c.assign(f);let m=ce(L(pe(s,n),pe(p,ce(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ce(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};z0.className="Adamax";ti(z0);var ph=class extends va{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];K(()=>{let o=ce(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=bn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ph.className="SGD";ti(ph);var L0=class extends ph{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:K(()=>lt(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&K(()=>{let i,l=ce(L(this.m,a),o);this.useNesterov?i=ce(L(this.c,ce(o,L(l,this.m))),r):i=ce(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};L0.className="Momentum";ti(L0);var B0=class extends va{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:K(()=>lt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:K(()=>lt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:K(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;K(()=>{let u=ce(L(i,this.decay),L(vt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ce(L(c,this.decay),L(o,1-this.decay)),d=pe(L(o,this.learningRate),Tn(fe(u,ce(vt(p),this.epsilon)))),h=ce(L(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=fe(r,h);r.assign(f)}else{let c=ce(L(i,this.decay),L(vt(o),1-this.decay)),p=ce(L(l,this.momentum),pe(L(o,this.learningRate),Tn(ce(c,this.epsilon))));i.assign(c),l.assign(p);let d=fe(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};B0.className="RMSProp";ti(B0);var Ma=class{static sgd(e){return new ph(e)}static momentum(e,t,n=!1){return new L0(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new B0(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new M0(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new P0(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new z0(e,t,n,s,r)}static adagrad(e,t=.1){return new O0(e,t)}},Ri={sgd:Ma.sgd,momentum:Ma.momentum,adadelta:Ma.adadelta,adagrad:Ma.adagrad,rmsprop:Ma.rmsprop,adamax:Ma.adamax,adam:Ma.adam},eL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function mA(){return new Promise(e=>eL(()=>e()))}var T={};Ve(T,{ERF_A1:()=>dL,ERF_A2:()=>pL,ERF_A3:()=>hL,ERF_A4:()=>fL,ERF_A5:()=>mL,ERF_P:()=>cL,PARALLELIZE_THRESHOLD:()=>gA,SELU_SCALE:()=>ww,SELU_SCALEALPHA:()=>vw,applyActivation:()=>$0,assertAndGetBroadcastShape:()=>wt,assertAxesAreInnerMostDims:()=>WF,assertParamsConsistent:()=>tL,assignToTypedArray:()=>vL,axesAreInnerMostDims:()=>Uy,calculateShapes:()=>h6,checkEinsumDimSizes:()=>TL,checkPadOnDimRoundingMode:()=>ns,combineLocations:()=>V6,complexWithEvenIndex:()=>AL,complexWithOddIndex:()=>xL,computeConv2DInfo:()=>Qp,computeConv3DInfo:()=>N6,computeDefaultPad:()=>$y,computeDilation2DInfo:()=>B$,computeOptimalWindowSize:()=>sL,computeOutAndReduceShapes:()=>U6,computeOutShape:()=>nL,computePool2DInfo:()=>T6,computePool3DInfo:()=>W$,convertConv2DDataFormat:()=>E6,decodeEinsumEquation:()=>SL,eitherStridesOrDilationsAreOne:()=>Xr,expandShapeToKeepDim:()=>Xi,exponent:()=>kL,exponents:()=>wL,fromStringArrayToUint8:()=>XL,fromUint8ToStringArray:()=>qL,getAxesPermutation:()=>G6,getBroadcastDims:()=>u6,getComplexWithIndex:()=>bL,getEinsumComputePath:()=>NL,getEinsumPermutation:()=>CL,getFusedBiasGradient:()=>D0,getFusedDyActivation:()=>_0,getImageCenter:()=>rL,getInnerMostAxes:()=>VF,getPermuted:()=>oL,getReductionAxes:()=>on,getReshaped:()=>aL,getReshapedPermuted:()=>iL,getSliceBeginCoords:()=>lL,getSliceSize:()=>uL,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>DL,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>$L,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>FL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>ML,getSparseReshapeInputOutputMismatchErrorMessage:()=>LL,getSparseReshapeInputOutputMultipleErrorMessage:()=>zL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>PL,getSparseReshapeNegativeOutputDimErrorMessage:()=>OL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>UL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>BL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>WL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>VL,getUndoAxesPermutation:()=>Gy,isIdentityPermutation:()=>EL,log:()=>d_,mergeRealAndImagArrays:()=>gL,prepareAndValidate:()=>p6,prepareSplitSize:()=>_L,segment_util:()=>kw,shouldFuse:()=>F0,slice_util:()=>Gt,splitRealAndImagArrays:()=>yL,tupleValuesAreOne:()=>Ya,upcastType:()=>Fn,validateInput:()=>vy,validateUpdateShape:()=>by,warn:()=>La});function tL(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function nL(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var gA=30;function sL(e){return e<=gA?e:am(e,Math.floor(Math.sqrt(e)))}function rL(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function aL(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function oL(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function iL(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function lL(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function uL(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var vw=1.7580993408473768,ww=1.0507009873554805,cL=.3275911,dL=.254829592,pL=-.284496736,hL=1.421413741,fL=-1.453152027,mL=1.061405429;function gL(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function yL(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function AL(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function xL(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function bL(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function vL(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function wL(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function kL(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var Gg="->",IL=/->/g,U4=",",G4="...";function SL(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(IL,"").length)/Gg.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Gg}").`);let[s,r]=e.split(Gg);M(s.indexOf(G4)===-1,()=>`The ellipsis notation ("${G4}") is not supported yet.`);let a=s.split(U4),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;d<s.length;++d){let h=s[d];i.indexOf(h)===-1&&h!==U4&&i.push(h)}let l=new Array(a.length);for(let d=0;d<o;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<a[d].length;++h)l[d].push(i.indexOf(a[d][h]))}let u=i.length,c=r.length,p=[];for(let d=c;d<u;++d)p.push(d);return{allDims:i,summedDims:p,idDims:l}}function CL(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function TL(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function NL(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=RL(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function EL(e){return e.every((t,n)=>t===n)}function RL(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function _L(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function DL(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function $L(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function FL(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function PL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function OL(e,t){return`size ${e} must be non-negative, not ${t}`}function ML(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function zL(e,t){let n=Rt(e),s=Rt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function LL(e,t){let n=Rt(e),s=Rt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function BL(){return"segment ids must be >= 0"}function WL(){return"segment ids are not increasing"}function VL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function UL(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var kw={};Ve(kw,{collectGatherOpShapeInfo:()=>jL,computeOutShape:()=>HL,segOpComputeOptimalWindowSize:()=>GL});function GL(e,t){let n=!1,s;for(e<=gA?(s=e,n=!0):s=am(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=am(e,s+1);return s}function HL(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function jL(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let p=0;p<s;++p)i.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<n;p++)i.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<r;p++)i.push(t.shape[p]);for(let p=n+1;p<a;p++)i.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function qL(e){try{return e.map(t=>um(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function XL(e){return e.map(t=>Xp(t))}var ir={};Ve(ir,{nonMaxSuppressionV3Impl:()=>mw,nonMaxSuppressionV4Impl:()=>gw,nonMaxSuppressionV5Impl:()=>yw,whereImpl:()=>ow});var Iw={kernelName:ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Hc(he(n,"float32"),-1))}}},KL={kernelName:uc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=vt(he(n,"float32")),r=Tn(fe(Ce(1),s));return Ft(pe(e,r))}}}},ZL={kernelName:cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Tn(fe(vt(he(n,"float32")),1));return pe(e,s)}}}},YL={kernelName:ya,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),U(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),U(i,s.shape)}}}},JL={kernelName:oo,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},QL={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},eB={kernelName:hc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},tB={kernelName:fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Tn(fe(Ce(1),vt(he(n,"float32")))))}}},nB={kernelName:mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Tn(ce(Ce(1),vt(he(n,"float32"))));return pe(e,s)}}}},sB={kernelName:Ac,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ce(vt(n),vt(s)),l=L(e,pe(s,i)),u=on(n.shape,r);return u.length>0&&(l=ke(l,u)),U(l,n.shape)},b:()=>{let i=ce(vt(n),vt(s)),l=Ft(L(e,pe(n,i))),u=on(s.shape,r);return u.length>0&&(l=ke(l,u)),U(l,s.shape)}}}},rB={kernelName:gc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ce(vt(he(n,"float32")),1))}}},aB={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,fe(Ce(1),vt(he(n,"float32"))))}}};function oB(e,t,n,s,r,a){let o=F(e,"dy","avgPool3dGrad"),i=F(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),ns("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(Mm,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var iB=G({avgPool3dGrad_:oB}),lB={kernelName:Rp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>iB(e,s,r,a,o,i)}}};function uB(e,t,n,s,r){let a=F(e,"dy","avgPoolGrad"),o=F(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=B.runKernel(Om,c,p);return u?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var cB=G({avgPoolGrad_:uB}),dB={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>cB(e,s,r,a,o)}}},pB={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Je(e,r,!1,!0),b:()=>Je(s,e,!0,!1)}:!a&&o?{a:()=>Je(e,r,!1,!1),b:()=>Je(e,s,!0,!1)}:a&&!o?{a:()=>Je(r,e,!1,!0),b:()=>Je(s,e,!1,!1)}:{a:()=>Je(r,e,!0,!0),b:()=>Je(e,s,!0,!0)}}},hB={kernelName:il,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>lh(e,s,r)}}},fB={kernelName:P7,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},mB={kernelName:co,gradFunc:e=>({x:()=>e.clone()})},gB={kernelName:po,gradFunc:e=>({x:()=>lt(e)})},yB={kernelName:Aa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Pn(rr(ni(s,r),si(s,a)),e,lt(e))}}},AB={kernelName:Dp,inputsToSave:["x"],gradFunc:Iw.gradFunc},xB={kernelName:ll,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=ar(r,t[0].shape)[0],o=s.map(l=>l[a]);return Yt(e,o,a).map(l=>()=>l)}},bB={kernelName:ho,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(Ya(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>My(s.shape,e,r,o,i,l),filter:()=>hA(s,e,r.shape,o,i,l)}}},vB={kernelName:fo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>pa(e,r,a,o,i,1,l),filter:()=>hA(e,s,r.shape,a,o,i,l)}}};function wB(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(Wm,i,l)}var kB=G({conv3DBackpropFilter_:wB}),IB={kernelName:$p,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(Ya(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>M6(o.shape,e,i,r,a),filter:()=>kB(o,e,i.shape,r,a)}}},SB={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ft(S0(he(n,"float32"))),e)}}},CB={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(C0(he(n,"float32")),e)}}},TB={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=G6([r],s.rank),l=f0(e,r,a,!o);return i!=null&&(l=rt(l,i)),l}}}},NB={kernelName:Ao,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(Ya(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(Xr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),ns("depthwiseConv2d",a,o),{x:()=>pw(l.shape,e,u,r,a,i,o),filter:()=>dw(l,e,u.shape,r,a,i,o)}}},EB={kernelName:Fp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(om,a,n),filter:()=>B.runKernel(im,o,n)}}},RB={kernelName:bo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(qm,s)}}},_B={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Ns(Ft(vt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},DB={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},$B={kernelName:hl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},FB={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ns(n))}}},PB={kernelName:wo,gradFunc:e=>({x:()=>lt(e)})},OB={kernelName:ko,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=pe(e,he(s,"float32")),l=on(n.shape,r);return l.length>0?U(ke(i,l),n.shape):i},b:()=>{let i=L(e,he(n,"float32")),l=on(s.shape,r);l.length>0&&(i=U(ke(i,l),s.shape));let u=vt(s);return Ft(pe(i,he(u,"float32")))}}}},MB={kernelName:Io,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=on(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let p=fe(r,a),d=L(e,l),h=k0(ce(o,Ce(s))),f=L(L(L(h,h),h),Ce(-.5));return{x:()=>a.rank===1?U(L(L(e,Us(U(h,[1,1,1,a.shape[0]]),c)),l),r.shape):U(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Ce(-1)),d);return a.rank===1&&(b=ke(b,u)),U(b,a.shape)},variance:()=>{let b=L(L(f,p),d);return a.rank===1&&(b=ke(b,u)),U(b,a.shape)},scale:()=>{let b=L(p,h),w=L(e,b);return a.rank===1&&(w=ke(w,u)),U(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),U(b,a.shape)}}}},zB={kernelName:gl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=ar(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=H4(0,p),m=H4(p+1,p+1+h),g=j4([c,[u],d]),y=U(e,g),x=U(r,[u]),A=j4([[p],f,m]),b=rt(y,A),w=uA(b,x,s.shape[o]),k=Gy(A);return w=rt(w,k),w},indices:()=>r}}};function H4(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function j4(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var LB={kernelName:So,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>lt(n),b:()=>lt(s)}}},BB={kernelName:Co,gradFunc:e=>({x:()=>he(e,"float32")})},WB={kernelName:vc,gradFunc:e=>({x:()=>lt(e)})},VB={kernelName:wc,gradFunc:e=>({x:()=>lt(e)})},UB={kernelName:kc,gradFunc:e=>({x:()=>lt(e)})},GB={kernelName:To,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ms(s,0);return{x:()=>Pn(a,e,L(e,r))}}},HB={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ce(n,1))}}},jB={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,he(n,"float32"))}}},qB={kernelName:O7,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Ns(s);return fe(e,L(ke(e,r,!0),o))}}}};function XB(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(Ym,i,l)}var KB=G({localResponseNormalizationBackprop_:XB}),ZB={kernelName:zp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>KB(s,r,e,a,o,i,l)}}};function Sw(e,t,n,s){return t.rank<n.rank&&(t=U(t,Xi(t.shape,s))),e.rank<n.rank&&(e=U(e,Xi(e.shape,s))),{x:()=>L(e,he(Ts(n,t),e.dtype))}}var q4={kernelName:Eo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=ar(r,a.shape),l=Sw(e,o,a,i);return{x:()=>l.x()}}},YB={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,he(ni(n,s),"float32")),b:()=>L(e,he(m0(n,s),"float32"))}}};function JB(e,t,n,s,r,a,o){let i=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),ns("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(Qm,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var QB=G({maxPool3dGrad_:JB}),eW={kernelName:Lp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>QB(e,s,r,a,o,i,l)}}};function tW(e,t,n,s,r,a,o){let i=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),ns("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(Jm,c,p)}var nW=G({maxPoolGrad_:tW}),sW={kernelName:_o,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>nW(e,s,r,a,o,i)}}},rW={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=ar(r,s.shape),i=U6(s.shape,a)[1],l=Rt(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=U(e,c);return pe(L(p,Ss(s.shape,"float32")),l)}}}},aW={kernelName:$o,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=ar(r,a.shape),l=Sw(e,o,a,i);return{x:()=>l.x()}}},oW={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,he(si(n,s),"float32")),b:()=>L(e,he(ms(n,s),"float32"))}}},iW={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Oe(e,a,s.shape)}}},lW={kernelName:Cc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=on(n.shape,r);return i.length>0?U(ke(e,i),n.shape):e},b:()=>{let i=L(e,Ft(Vc(pe(n,s)))),l=on(s.shape,r);return l.length>0?U(ke(i,l),s.shape):i}}}},uW={kernelName:Oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=L(e,he(s,"float32")),l=on(n.shape,r);return l.length>0?U(ke(i,l),n.shape):i},b:()=>{let i=L(e,he(n,"float32")),l=on(s.shape,r);return l.length>0?U(ke(i,l),s.shape):i}}}},cW={kernelName:wl,gradFunc:e=>({x:()=>Ft(e)})},dW={kernelName:Tl,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Vt(n.shape,"float32")}}},pW={kernelName:Cl,gradFunc:e=>({x:()=>lt(e)})},hW={kernelName:Nl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Qn(e,s).map(a=>()=>a)}},X4={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Oe(e,a,s.shape)}}},fW={kernelName:zo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=wt(a.shape,o.shape);return{a:()=>{let c=he(o,"float32"),p=L(e,L(c,fa(a,fe(c,Ce(1))))),d=on(a.shape,i);return d.length>0&&(p=ke(p,d)),U(p,a.shape)},b:()=>{let c=ms(a,0),p=Pn(c,Es(a),lt(a)),d=L(e,L(r,p)),h=on(o.shape,i);return h.length>0&&(d=ke(d,h)),U(d,o.shape)}}}},mW={kernelName:Lo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ms(n,0);return{x:()=>Pn(r,e,L(e,s)),alpha:()=>{let a=Pn(r,lt(e),L(e,n)),o=on(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),U(a,s.shape)}}}};function gW(e,t,n){let s=e.shape.slice();s[n]=1;let r=U(t,s),a=xp(e,n,!0,!1),o=xp(e,n,!0,!0),i=L(a,o);return L(r,i)}function yW(e,t,n){let s=e.shape.length,r=s-n.length,a=T.getAxesPermutation(n,s),o=e;a!=null&&(o=rt(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=gW(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=T.getUndoAxesPermutation(a);p=rt(p,d)}return p}var AW={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>yW(s,e,a)}}},xW={kernelName:xo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=pe(e,he(s,"float32")),l=on(n.shape,r);return l.length>0?U(ke(i,l),n.shape):i},b:()=>{let i=L(e,he(n,"float32")),l=on(s.shape,r);l.length>0&&(i=U(ke(i,l),s.shape));let u=vt(s);return Ft(pe(i,he(u,"float32")))}}}},bW={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Ft(vt(n)))}}},vW={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(si(n,6),Hc(n));return{x:()=>L(e,he(s,"float32"))}}},wW={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,he(Hc(n),"float32"))}}},kW={kernelName:El,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},IW={kernelName:Vo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(s0,r,n)}}},SW={kernelName:Rc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(n0,r,n)}}},CW={kernelName:Rl,gradFunc:(e,t,n)=>{let{dims:s}=n,r=ar(s,e.shape);return{x:()=>_s(e,r)}}},TW={kernelName:_l,gradFunc:e=>({x:()=>lt(e)})},NW={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ft(pe(e,L(fa(n,1.5),2)))}}},EW={kernelName:$l,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>he(lt(n),"float32"),t:()=>L(e,he(n,e.dtype)),e:()=>L(e,he(oh(n),e.dtype))}}},RW={kernelName:_c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ms(n,Ce(0)),r=Ce(vw),a=Ce(ww),o=L(e,a),i=L(L(e,r),Ns(he(n,"float32")));return Pn(s,o,i)}}}},_W={kernelName:jo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,fe(Ce(1),n)))}}},DW={kernelName:Dc,gradFunc:e=>({x:()=>lt(e)})},$W={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(nh(he(n,"float32")),e)}}},FW={kernelName:Pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(h0(he(n,"float32")),e)}}},PW={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=w6(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Ks(e,u)}}},OW={kernelName:Ko,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>fe(o,L(ke(o,[r],a),s))}}},MW={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Cn(n))}}},K4={kernelName:Ol,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>th(e,s,r)}}},Z4={kernelName:Ml,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>St(e,s)}}},zW={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,L(Tn(he(n,"float32")),2))}}},LW={kernelName:Pc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(he(n,"float32"),2))}}},BW={kernelName:Zo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>L(e,L(r,fe(n,s))),b:()=>L(e,L(r,fe(s,n)))}}},WW={kernelName:Qo,gradFunc:e=>({x:()=>lt(e)})},VW={kernelName:Yo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),U(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),U(Ft(i),s.shape)}}}},UW={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;ar(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=L(i,Ss(s.shape,"float32"));return{x:()=>l}}},GW={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,vt(nh(n)))}}},HW={kernelName:Jo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(fe(Ce(1),vt(n)),e)}}},jW={kernelName:xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=lt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ce(o,Oe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ce(o,Oe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ce(o,Oe(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ce(o,Oe(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},qW={kernelName:Vr,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=Gy(r);return{x:()=>rt(e,a)}}},XW={kernelName:Vl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>ln(e,r)}}},KW={kernelName:jp,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ZW(e,n)}}};function ZW(e,t){let n=Kr(t,lt(t)),s=Ki(e,n),r=ni(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Zt(r,i+1);r=rr(r,Ss(s.shape,"bool"));let o=lt(s);return Pn(r,s,o)}var YW={kernelName:Ul,gradFunc:e=>({x:()=>lt(e)})},JW=[Iw,KL,ZL,YL,JL,QL,eB,tB,nB,sB,rB,aB,lB,dB,pB,hB,fB,mB,gB,yB,AB,xB,vB,bB,IB,SB,CB,TB,NB,EB,xW,RB,_B,DB,$B,FB,OB,PB,MB,zB,LB,BB,WB,VB,UB,GB,HB,jB,qB,ZB,q4,q4,YB,eW,sW,rW,aW,oW,iW,lW,uW,cW,dW,pW,hW,X4,X4,fW,mW,AW,bW,vW,wW,kW,IW,SW,CW,TW,NW,EW,RW,_W,DW,$W,FW,PW,OW,MW,K4,K4,Z4,Z4,zW,BW,LW,WW,VW,UW,GW,HW,jW,qW,XW,KW,YW];for(let e of JW)M7(e);re().prototype.abs=function(){return this.throwIfDisposed(),nn(this)};re().prototype.acos=function(){return this.throwIfDisposed(),Sy(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),Cy(this)};re().prototype.add=function(e){return this.throwIfDisposed(),ce(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),c0(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),Ap(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),Cs(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),Ty(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),U(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),he(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};re().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),U(this,[e,t,n,s])};re().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),U(this,[e,t,n,s,r])};re().prototype.asin=function(){return this.throwIfDisposed(),Ny(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),Ey(this)};re().prototype.atan=function(){return this.throwIfDisposed(),Ry(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),_y(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),Dy(this)};re().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),eh(this,e,t,n,s)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),th(this,e,t)};re().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),qi(this,e,t,n,s,r)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Vu(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),he(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),Oy(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),ps(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof st&&(e=[e]),St([this,...e],t)};re().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),d0(this,e,t,n,s,r,a)};re().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),p0(this,e,t,n,s,r)};re().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),pa(this,e,t,n,s,r,a)};re().prototype.cos=function(){return this.throwIfDisposed(),nh(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),h0(this)};re().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),xp(this,e,t,n)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),f0(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Ly(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Lc(this,e,t,n,s,r,a)};re().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),By(this,e,t,n,s,r)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),Wy(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),B6(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),Bc(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),Ts(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),Vy(this)};re().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),Hy(this,e,t)};re().prototype.exp=function(){return this.throwIfDisposed(),Ns(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),Zt(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),jy(this)};re().prototype.fft=function(){return this.throwIfDisposed(),ch(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),Vc(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),Mc(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),Ki(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ni(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),ms(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),Yu(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),N0(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),j6(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),q6(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),Xy(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),rh(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),si(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),m0(this,e)};re().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),Ky(this,e,t,n,s)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),Z6(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),y0(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Zy(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),Es(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),ah(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),rr(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),oh(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),A0(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),Y6(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Je(this,e,t,n)};re().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),ih(this,e,t,n,s)};re().prototype.max=function(e,t){return this.throwIfDisposed(),mn(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),Kr(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Wt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),Uc(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Qy(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),Xl(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),Ft(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),sh(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),Zi(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Xu(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),Rs(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),Ks(this,e,t)};re().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),tw(this,e,t,n,s,r,a)};re().prototype.pow=function(e){return this.throwIfDisposed(),fa(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),uh(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),b0(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),nA(this)};re().prototype.relu=function(){return this.throwIfDisposed(),_r(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),v0(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Aw(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),xw(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),_s(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),dh(this)};re().prototype.round=function(){return this.throwIfDisposed(),w0(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),k0(this)};re().prototype.selu=function(){return this.throwIfDisposed(),I0(this)};re().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),sA(this,e,t,n,s,r,a)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),Cn(this)};re().prototype.sign=function(){return this.throwIfDisposed(),rA(this)};re().prototype.sin=function(){return this.throwIfDisposed(),S0(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),C0(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),Oe(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),Zl(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),ql(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),lh(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),Yt(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),Tn(this)};re().prototype.square=function(){return this.throwIfDisposed(),vt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),E0(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),et(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof st?[this,e]:[this,...e];return ln(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),Hc(this,e)};re().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),oA(this,e,t,n,s,r,a,o,i)};re().prototype.sub=function(e){return this.throwIfDisposed(),fe(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),iA(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),ji(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),Us(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),he(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),he(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),he(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),lA(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),rt(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),hm(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),uA(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),Qn(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Pn(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),lt(this)};var aa=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,aa.prototype)}},vr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,vr.prototype)}},q=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,q.prototype)}},Ge=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ge.prototype)}},Cw=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Cw.prototype)}},Tw=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function Ji(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Lr(e,t){if(!e)throw new Cw(t)}function Y4(e,t){let n=0;for(let s of e)s===t&&n++;return n}function cs(e){return e.length===1?e[0]:e}function Dt(e){return Array.isArray(e)?e:[e]}function oa(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Fi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Qs={};function yA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function m3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>m3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:m3(s))}}}function hh(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Qs)o=Qs[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Qs?[i,l]=Qs.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Qs))u[h]=Qs[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},Qs);for(let h of Object.keys(n))Qs[h]=n[h];m3(a.config);let d=l(i,a.config,n,r);return Qs=Object.assign({},p),d}else{let u=Object.assign({},Qs);for(let p of Object.keys(n))Qs[p]=n[p];let c=new i(a.config);return Qs=Object.assign({},u),c}}}function QW(e,t){return e<t?-1:e>t?1:0}function Ff(e,t){return-1*QW(e,t)}function Ga(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function eV(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Yl(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function AA(e,t,n=0,s=1/0){return Lr(n>=0),Lr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function vn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>vn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Nw(e)}.`)}function Nw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Nw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function tV(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function Ew(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var nV=0;function Rw(){return nV++}var Pf={};function W0(e=""){return e in Pf||(Pf[e]=0),Pf[e]+=1,e+Pf[e].toString()}var sV=["channelsFirst","channelsLast"],rV=["nearest","bilinear"],aV=["valid","same","causal"],oV=["max","avg"],iV=["sum","mul","concat","ave"],Ru=new Map;function Jt(e){Yl(sV,"DataFormat",e)}function lV(e){Yl(rV,"InterpolationFormat",e)}function Zs(e){Yl(aV,"PaddingMode",e)}function _w(e){Yl(oV,"PoolMode",e)}var lp=[],J4="/";function Bi(e,t){lp.push(e);try{let n=t();return lp.pop(),n}catch(n){throw lp.pop(),n}}function uV(){return lp.length===0?"":lp.join(J4)+J4}function Dw(e){if(!Fw(e))throw new Error("Not a valid tensor name: '"+e+"'");return uV()+e}function $w(e){if(!Fw(e))throw new Error("Not a valid tensor name: '"+e+"'");Ru.has(e)||Ru.set(e,0);let t=Ru.get(e);if(Ru.set(e,Ru.get(e)+1),t>0){let n=`${e}_${t}`;return Ru.set(n,1),n}else return e}var cV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Fw(e){return!!e.match(cV)}function dV(e){return e===parseInt(e.toString(),10)}function Ha(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Ju(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Qa(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Tr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var Hg;function hn(){return Hg==null&&(Hg=qs().epsilon()),Hg}function Nr(){return"channelsLast"}function V0(e,t){return he(e,t)}function fh(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function pV(e,t){return K(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=fh(e,1);return g3(n,[1,t,1])})}function hV(e){let t=[Ha(e.shape)];return U(e,t)}function fV(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ha(e.shape,1)];return U(e,t)}function Wi(e,t,n){return K(()=>{switch(e.rank){case 1:return T0(e,t,n);case 2:return aA(e,[t,0],[n,e.shape[1]]);case 3:return Kl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Yi(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Oe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Oe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jg(e,t,n){return K(()=>{switch(e.rank){case 1:return T0(e,t,n);case 2:return aA(e,[0,t],[e.shape[0],n]);case 3:return Kl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Yi(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Of(e,t,n,s){return K(()=>{switch(e.rank){case 1:return T0(e,t,n);case 2:switch(s){case 1:return Wi(e,t,n);case 2:return jg(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Wi(e,t,n);case 2:return Kl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return jg(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Wi(e,t,n);case 2:return Yi(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Yi(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return jg(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function xA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),St(e,t)}function Q4(e,t){switch(e.rank){case 1:return F6([e,t]);case 2:return zc([e,t],0);case 3:return P6([e,t],0);case 4:return O6([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function g3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Us(e,t)}function U0(e,t=0,n=1,s,r){return nw(e,t,n,s,r)}function Ur(e,t,n,s){if(e.rank<2||t.rank<2)throw new Ge(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Ge(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Ja.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?y3(e.rank,s,Nr()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(rt(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return U(Ja.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?y3(e.rank,s,Nr()):null,activation:n}),p)}}function Pw(e,t,n){return K(()=>(Array.isArray(t)?t=$t(t,"int32"):t=he(t,"int32"),Ki(e,t,n)))}function mh(e){return L(e,e)}function y3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function Dr(e,t,n){return K(()=>(n==null&&(n=Nr()),Jt(n),ce(e,y3(e.rank,t,n))))}function mV(e,t=1){if(t!==1)throw new Ge(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Bc(e)}function gV(e){return K(()=>pe(e,ce(nn(e),1)))}function Ow(e,t,n,s){return K(()=>uw(e,t,n,s))}function yV(e){return K(()=>{let t=ce(.5,L(.2,e));return ps(t,0,1)})}function gh(e,t,n=!1){return n?e():t()}var AV=["fanIn","fanOut","fanAvg"],xV=["normal","uniform","truncatedNormal"];function bV(e){Yl(AV,"FanMode",e)}function vV(e){Yl(xV,"Distribution",e)}var lr=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},bA=class extends lr{apply(e,t){return Vt(e,t)}};bA.className="Zeros";de.registerClass(bA);var G0=class extends lr{apply(e,t){return Ss(e,t)}};G0.className="Ones";de.registerClass(G0);var vA=class extends lr{constructor(e){if(super(),typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return K(()=>L(Ce(this.value),Ss(e,t)))}getConfig(){return{value:this.value}}};vA.className="Constant";de.registerClass(vA);var wA=class extends lr{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Gc(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};wA.className="RandomUniform";de.registerClass(wA);var kA=class extends lr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ge(`randomNormal does not support dType ${t}.`);return U0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};kA.className="RandomNormal";de.registerClass(kA);var IA=class extends lr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ge(`truncatedNormal does not support dType ${t}.`);return R0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};IA.className="TruncatedNormal";de.registerClass(IA);var SA=class extends lr{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return K(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,qy(e[0]))})}getConfig(){return{gain:this.gain}}};SA.className="Identity";de.registerClass(SA);function wV(e,t="channelsLast"){let n,s;if(Jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ha(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Ha(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Ha(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var hs=class extends lr{constructor(e){if(super(),e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,bV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,vV(this.distribution),this.seed=e.seed}apply(e,t){let n=wV(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ge(`${this.getClassName()} does not support dType ${t}.`);return R0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Gc(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};hs.className="VarianceScaling";de.registerClass(hs);var H0=class extends hs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return hs.className}};H0.className="GlorotUniform";de.registerClass(H0);var j0=class extends hs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return hs.className}};j0.className="GlorotNormal";de.registerClass(j0);var q0=class extends hs{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return hs.className}};q0.className="HeNormal";de.registerClass(q0);var X0=class extends hs{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return hs.className}};X0.className="HeUniform";de.registerClass(X0);var K0=class extends hs{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return hs.className}};K0.className="LeCunNormal";de.registerClass(K0);var Z0=class extends hs{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return hs.className}};Z0.className="LeCunNormal";de.registerClass(Z0);var CA=class extends lr{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ge("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return K(()=>{if(e.length<2)throw new Ge("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=U0(n,0,1,"float32"),r=bw.gramSchmidt(s);return e[0]>e[1]&&(r=rt(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};CA.className="Orthogonal";de.registerClass(CA);var ev={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function tv(e,t={}){return hh(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Ut(e){return yA(e)}function Mt(e){if(typeof e=="string"){let t=e in ev?ev[e]:e;if(t==="GlorotNormal")return new j0;if(t==="GlorotUniform")return new H0;if(t==="HeNormal")return new q0;if(t==="HeUniform")return new X0;if(t==="LeCunNormal")return new K0;if(t==="LeCunUniform")return new Z0;{let n={};return n.className=t,n.config={},tv(n)}}else return e instanceof lr?e:tv(e)}function A3(e){return Array.isArray(e)&&Array.isArray(e[0])}function fm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function qe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function xt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function mm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var nv="Variable",Mw=class{constructor(e,t="float32",n=nv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Rw(),n=n==null?nv:n,this.originalName=Dw(n),this.name=$w(this.originalName),this.trainable_=s,this.constraint=r,this.val=aw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),kV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function kV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function x3(e){return e.map(t=>t.read())}function TA(e){e.forEach(t=>{t[0].write(t[1])})}var rn=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},wr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Rw(),a!=null&&(this.originalName=Dw(a),this.name=$w(this.originalName)),this.rank=t.length}},IV=0,Y0=class{constructor(e,t){this.callArgs=t,this.id=IV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},SV=0,ut=class extends de.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=SV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=oa(n)+"_"+W0(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new vr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return cs(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return cs(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new aa(`Layer ${this.name} is not connected, no input to return.`);return cs(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return cs(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Dt(e),s=!0;for(let a of n)if(!(a instanceof wr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof wr){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return Bi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(cs(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=cs(i),this.activityRegularizer!=null)throw new Ge("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=CV(e),o=this.computeOutputShape(a),i,l=TV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new wr(l,u,this,Dt(e),t,this.name,c)):i=new wr(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Ge("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new vr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return mm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return x3(e?this.trainableWeights:this.weights)}setWeights(e){K(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=x3(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}TA(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Mt("zeros"));let l=s.apply(t,n),u=new Mw(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),s=Dt(s),r=fm(r),a=fm(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new Y0({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function CV(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return cs(t)}function TV(e){return"float32"}function zw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=zw(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var qc=class extends ut{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:W0("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new wr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Y0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};qc.className="InputLayer";de.registerClass(qc);function Lw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new qc({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function NV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return he(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Mi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Mi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=NV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof wr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof wr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ne(this.id2Mask)}},gm=new Tw,ym=new Tw;function EV(e){gm!=null&&gm.setMaxEntries(e),ym!=null&&ym.setMaxEntries(e)}function ep(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=gm.get(c),d;if(p==null){let f=RV(o,t);p=f.sorted,d=f.recipientCounts,gm.put(c,p),ym.put(c,d)}d={},r||Object.assign(d,ym.get(c));let h=new Mi(t);for(let f=0;f<p.length;++f){if(s!=null){let R=dm().numTensors;R>s.maxNumTensors&&(s.maxNumTensors=R),R<s.minNumTensors&&(s.minNumTensors=R)}let m=p[f],g=m.sourceLayer;if(g instanceof qc)continue;let y=[],x=[],A=[],b=!1;for(let R of m.inputs){let $=h.getValue(R),_=h.getMask(R);y.push($),x.push(_),_!=null&&(b=!0),r||(d[R.name]--,d[R.name]===0&&!t.hasKey(R)&&i.indexOf(R.name)===-1&&!$.isDisposed&&R.sourceLayer.stateful!==!0&&A.push($))}b&&(n=n||{},n.mask=x[0]);let w=Dt(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,x));let S=DV(m),E=Array.isArray(S)?S:[S];for(let R=0;R<E.length;++R){h.hasKey(E[R])||h.add(E[R],w[R],Array.isArray(k)?k[0]:k);let $=i.indexOf(E[R].name);$!==-1&&(l[$]=w[R])}r||ne(A)}return h.disposeMasks(),a?l:l[0]}function RV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=sv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=sv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:_V(s)}}function _V(e){let t={};for(let n in e)t[n]=e[n].size;return t}function sv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function DV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var $V=Y();$V.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,EV);var Bw={};Ve(Bw,{maxNorm:()=>FV,minMaxNorm:()=>MV,nonNeg:()=>OV,unitNorm:()=>PV});function NA(e,t){return K(()=>Tn(ke(L(e,e),t,!0)))}var yh=class extends de.Serializable{getConfig(){return{}}},EA=class extends yh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=NA(e,this.axis),n=ps(t,0,this.maxValue);return L(e,pe(n,ce(hn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};EA.className="MaxNorm";de.registerClass(EA);var RA=class extends yh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>pe(e,ce(hn(),NA(e,this.axis))))}getConfig(){return{axis:this.axis}}};RA.className="UnitNorm";de.registerClass(RA);var _A=class extends yh{apply(e){return _r(e)}};_A.className="NonNeg";de.registerClass(_A);var DA=class extends yh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return K(()=>{let t=NA(e,this.axis),n=ce(L(this.rate,ps(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(n,ce(hn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};DA.className="MinMaxNorm";de.registerClass(DA);var rv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function gn(e){return yA(e)}function av(e,t={}){return hh(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function yn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in rv?rv[e]:e,config:{}};return av(n)}else return e instanceof yh?e:av(e)}function FV(e){return new EA(e)}function PV(e){return new RA(e)}function OV(){return new _A}function MV(e){return new DA(e)}var Ww={};Ve(Ww,{constant:()=>BV,glorotNormal:()=>qV,glorotUniform:()=>jV,heNormal:()=>XV,heUniform:()=>KV,identity:()=>GV,leCunNormal:()=>ZV,leCunUniform:()=>YV,ones:()=>LV,orthogonal:()=>JV,randomNormal:()=>VV,randomUniform:()=>WV,truncatedNormal:()=>UV,varianceScaling:()=>HV,zeros:()=>zV});function zV(){return new bA}function LV(){return new G0}function BV(e){return new vA(e)}function WV(e){return new wA(e)}function VV(e){return new kA(e)}function UV(e){return new IA(e)}function GV(e){return new SA(e)}function HV(e){return new hs(e)}function jV(e){return new H0(e)}function qV(e){return new j0(e)}function XV(e){return new q0(e)}function KV(e){return new X0(e)}function ZV(e){return new K0(e)}function YV(e){return new Z0(e)}function JV(e){return new CA(e)}var Vw={};Ve(Vw,{Layer:()=>ut,RNN:()=>Zr,RNNCell:()=>wh,activation:()=>IG,add:()=>$G,alphaDropout:()=>gH,average:()=>FG,averagePooling1d:()=>L5,averagePooling2d:()=>B5,averagePooling3d:()=>W5,avgPool1d:()=>UG,avgPool2d:()=>HG,avgPool3d:()=>qG,avgPooling1d:()=>GG,avgPooling2d:()=>jG,avgPooling3d:()=>XG,batchNormalization:()=>BG,bidirectional:()=>lH,concatenate:()=>PG,conv1d:()=>mG,conv2d:()=>gG,conv2dTranspose:()=>yG,conv3d:()=>AG,conv3dTranspose:()=>xG,convLstm2d:()=>rH,convLstm2dCell:()=>aH,cropping2D:()=>vG,dense:()=>SG,depthwiseConv2d:()=>kG,dot:()=>LG,dropout:()=>CG,elu:()=>uG,embedding:()=>DG,flatten:()=>NG,gaussianDropout:()=>mH,gaussianNoise:()=>fH,globalAveragePooling1d:()=>KG,globalAveragePooling2d:()=>ZG,globalMaxPool1d:()=>cH,globalMaxPool2d:()=>dH,globalMaxPooling1d:()=>$8,globalMaxPooling2d:()=>F8,gru:()=>JG,gruCell:()=>QG,input:()=>o8,inputLayer:()=>lG,layerNormalization:()=>WG,leakyReLU:()=>dG,lstm:()=>eH,lstmCell:()=>tH,masking:()=>yH,maxPool1d:()=>pH,maxPool2d:()=>hH,maxPooling1d:()=>P8,maxPooling2d:()=>O8,maxPooling3d:()=>YG,maximum:()=>OG,minimum:()=>MG,multiply:()=>zG,permute:()=>_G,prelu:()=>pG,reLU:()=>cG,repeatVector:()=>EG,reshape:()=>RG,rnn:()=>oH,separableConv2d:()=>bG,simpleRNN:()=>nH,simpleRNNCell:()=>sH,softmax:()=>hG,spatialDropout1d:()=>TG,stackedRNNCells:()=>iH,thresholdedReLU:()=>fG,timeDistributed:()=>uH,upSampling2d:()=>wG,zeroPadding2d:()=>VG});async function za(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ne(s)}}function Uw(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var ov;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(ov||(ov={}));var QV=125,Qu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Gw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},eU=class extends Qu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=K(()=>ce(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:K(()=>{let s=L(pe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),bn(t[n])}))}},Hw=class extends Qu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},jw=class extends Qu{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||mA,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=QV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=tV(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await za(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await za(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await za(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await za(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await za(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await za(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await za(e),await this.trainEnd(e))}};function qw(e,t){return e==null&&(e={}),e instanceof Qu?[e]:Array.isArray(e)&&e[0]instanceof Qu?e:Dt(e).map(s=>new jw(s,t))}var tr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),tr.checkForDuplicate(t),tr.constructors[e]==null&&(tr.constructors[e]=[]),tr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in tr.constructors)tr.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){tr.constructors={}}static createCallbacks(e){let t=[];for(let n in tr.constructors){let s=+n;e>=s&&t.push(...tr.constructors[s])}return t.map(n=>new n)}};tr.constructors={};function Xw(e,t,n,s,r,a,o,i,l){let u=new Hw,c=[new eU,...tr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new Gw(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Sr(e,t={},n=!1){return hh(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function Am(e,t){return K(()=>{e.dtype!=="float32"&&(e=he(e,"float32"));let n=ke(mh(e),t,!0),s=Wc(n.shape,hn()),r=Tn(Kr(n,s));return pe(e,r)})}function Jl(e,t){return K(()=>Wt(mh(fe(t,e)),-1))}function J0(e,t){return K(()=>Wt(nn(fe(t,e)),-1))}function Xc(e,t){return K(()=>{let n=fe(e,t),s=ps(nn(e),hn(),Number.MAX_VALUE),r=nn(pe(n,s));return L(100,Wt(r,-1))})}function tU(e,t){return K(()=>{let n=ps(t,hn(),Number.MAX_VALUE),s=Es(ce(1,n)),r=ps(e,hn(),Number.MAX_VALUE),a=Es(ce(1,r));return Wt(mh(fe(s,a)),-1)})}function nU(e,t){return K(()=>{let n=Kr(0,fe(1,L(e,t)));return Wt(mh(n),-1)})}function sU(e,t){return K(()=>{let n=Kr(0,fe(1,L(e,t)));return Wt(n,-1)})}function rU(e,t){return K(()=>{let n=ke(L(e,t),-1),s=mn(L(fe(1,e),t),-1);return Kr(0,ce(1,fe(s,n)))})}function aU(e,t){return K(()=>{let n=Math.log(2),s=fe(t,e),r=fe(ce(s,ql(L(-2,s))),n);return Wt(r,-1)})}function bp(e,t,n=!1){return K(()=>{if(n)t=Zl(t);else{let s=ke(t,t.shape.length-1,!0);t=pe(t,s)}return t=ps(t,hn(),1-hn()),Ft(ke(L(he(e,"float32"),Es(t)),t.shape.length-1))})}function xm(e,t,n=!1){return K(()=>{let s=he(Vc(hV(e)),"int32");t=ps(t,hn(),1-hn());let r=t.shape,a=U(Xu(s,r[r.length-1]),r);return bp(a,t,n)})}function oU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return K(()=>{let n=_r(t),s=Ft(nn(t));return ce(fe(n,L(t,e)),ah(Ns(s)))})}function Q0(e,t){return K(()=>{let n;return n=ps(t,hn(),1-hn()),n=Es(pe(n,fe(1,n))),Wt(oU(e,n),-1)})}function iU(e,t){return K(()=>{let n=ps(e,hn(),1),s=ps(t,hn(),1);return ke(L(e,Es(pe(n,s))),-1)})}function lU(e,t){return K(()=>{let n=Es(ce(hn(),t));return Wt(fe(t,L(e,n)),-1)})}function $A(e,t){return K(()=>{let n=Am(e,-1),s=Am(t,-1),r=L(n,s);return Ft(ke(r,-1))})}var bm={meanSquaredError:Jl,meanAbsoluteError:J0,meanAbsolutePercentageError:Xc,meanSquaredLogarithmicError:tU,squaredHinge:nU,hinge:sU,categoricalHinge:rU,logcosh:aU,categoricalCrossentropy:bp,sparseCategoricalCrossentropy:xm,binaryCrossentropy:Q0,kullbackLeiblerDivergence:iU,poisson:lU,cosineProximity:$A};function qg(e){if(typeof e=="string"){if(e in bm)return bm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function FA(e,t){return K(()=>{let n=L(.5,Rs(t)),s=V0(ms(t,n),e.dtype);return Wt(Ts(e,s),-1)})}function PA(e,t){return K(()=>V0(Ts(Cs(e,-1),Cs(t,-1)),"float32"))}function Kw(e,t){return K(()=>he(ke(rr(Ts(e,1),Ts(t,1))),"float32"))}function uU(e,t){return K(()=>he(ke(rr(Ts(e,1),Ts(t,0))),"float32"))}function cU(e,t){return K(()=>he(ke(rr(Ts(e,0),Ts(t,1))),"float32"))}function Zw(e,t){return K(()=>{let n=Kw(e,t),s=cU(e,t),r=ce(n,s);return he(Pn(ms(r,0),pe(n,r),0),"float32")})}function dU(e,t){return K(()=>{let n=Kw(e,t),s=uU(e,t),r=ce(n,s);return he(Pn(ms(r,0),pe(n,r),0),"float32")})}function Yw(e,t){return Q0(e,t)}function Jw(e,t){return e.rank===t.rank&&(e=et(e,[e.rank-1])),t=Cs(t,-1),t.dtype!==e.dtype&&(t=he(t,e.dtype)),he(Ts(e,t),"float32")}var pU=Jl,hU=Jl,fU=J0,mU=J0,gU=Xc,yU=Xc,OA=bp,AU=$A,Qw=xm,vm={binaryAccuracy:FA,categoricalAccuracy:PA,precision:Zw,categoricalCrossentropy:OA,sparseCategoricalCrossentropy:Qw,mse:pU,MSE:hU,mae:fU,MAE:mU,mape:gU,MAPE:yU,cosine:AU};function xU(e){if(typeof e=="string"&&e in vm)return vm[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Mf(e){if(Lr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(bm))if(bm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(vm))if(vm[n]===e){t=n;break}return t!==void 0?t:e.name}}function bU(e){let t={Adagrad:()=>Ri.adagrad(.01),Adadelta:()=>Ri.adadelta(1,.95,hn()),Adam:()=>Ri.adam(.001,.9,.999,hn()),Adamax:()=>Ri.adamax(.002,.9,.999,hn(),0),RMSProp:()=>Ri.rmsprop(.001,.9,0,hn()),SGD:()=>Ri.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var iv=1*1024*1024;function lv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!b3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>iv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${iv}.`)}}function b3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!b3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!b3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function vU(e,t,n,s=console.log){let r=kU(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),wm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?IU(i[c],n,s):SU(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=wU(e),u=mm(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function wU(e){let t;return e.collectedTrainableWeights!=null?t=mm(e.collectedTrainableWeights):t=mm(e.trainableWeights),t}function kU(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function wm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function IU(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];wm(i,t,n)}function SU(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];o.push(`${h}[${f}][${m}]`)}let i=e.name,l=e.getClassName(),u=o.length===0?"":o[0],c=[`${i} (${l})`,a,r,e.countParams().toString(),u];wm(c,t,s);for(let p=1;p<o.length;++p)wm(["","","","",o[p]],t,s)}function e8(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function vp(e,t){if(e===null)return null;if(typeof e=="string")return Fi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];e8(t,r,a)?n.push(a):n.push(vp(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Fi(s);n[a]=vp(r,a)}}return n}}function v3(e,t){if(e==null)return null;if(typeof e=="string")return oa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];e8(t,r,a)?n.push(a):n.push(v3(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=oa(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=v3(r,s)}return n}}var MA="3.18.0",zr=class extends ut{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=W0(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ga(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ga(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Lr(A===0,"input layer has >1 nodes"),Lr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let x=this.inputLayers[y];if(!(x instanceof qc))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,k)=>{(b==null||w==null||k==null)&&(b=y.sourceLayer,w=y.nodeIndex,k=y.tensorIndex);let S=b.inboundNodes[w];if(A.indexOf(S)!==-1)throw new vr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(S)!==-1)return;this.containerNodes.add(zr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(S)===-1&&A.push(S);let E=S.inboundLayers.length;for(let R=0;R<E;R++){let $=S.inputTensors[R],_=S.inboundLayers[R],D=S.nodeIndices[R],C=S.tensorIndices[R];i($,x,A,_,D,C)}for(x.push(S);A.indexOf(S)>=0;)A.splice(A.indexOf(S),1);o.push(S)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],k=y.nodeIndices[b],S=w.inboundNodes[k],E=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(x+1,E),n[S.id]=S}}let p={};for(let y in t){let x=t[y];x in p||(p[x]=[]),p[x].push(n[y])}let d={};for(let y in s){let x=s[y];x in d||(d[x]=[]),d[x].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Ff);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let A of x)A instanceof zr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Ff);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new vr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new vr(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Y0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}TA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${MA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=v3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return K(()=>{e=Dt(e);let n=new Mi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return ep(this.outputs,n,t)})}computeMask(e,t){return K(()=>{e=Dt(e);let n;return t==null?n=Ji(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=fm(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Ff);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],x=`${m.name}_${g}_${y}`,A=n[x];c.push(A)}let p=u.computeOutputShape(cs(c)),d=fm(p),h=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Lr(i in n),r.push(n[i])}return cs(r)}runInternalGraph(e,t){t==null&&(t=Ji(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Ff);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=Dt(c.call(A,f)),x=Dt(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),x=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new Ge("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A<d.length;++A){let b=d[A],w=y[A],k=x[A];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Lr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof zr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=zr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return K(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=zr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=zr.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],y=p.nodeIndices[m],x=p.tensorIndices[m],A=zr.nodeKey(g,y),b=t[A];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=zr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=zr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],x;for(let A of g){let b=A[0],w=A[1],k=A[2];if(x=A[3]==null?{}:A[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=w){o(m,g);return}let E=S.inboundNodes[w];y.push(E.outputTensors[k])}y.length>0&&m.apply(cs(y),x)}function l(m){let g=m.name,y=Sr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!eV(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Lr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Lr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){K(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function CU(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function t8(e,t){return CU(e,t,"classWeight")}async function n8(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=K(()=>{if(e.shape.length===1)return Jn(e);if(e.shape.length===2){if(e.shape[1]>1)return Cs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ne(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),$t(o,"float32")}else return null}function TU(e,t){return L(e,t)}var NU=32;function s8(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=uv("input",e.inputNames,n),o=uv("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function uv(e,t,n){if(n instanceof st)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function EU(e){if(e.length===3)throw new Ge("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function RU(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(cv(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=EU(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=qw(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=Xw(c,p,n.epochs,null,null,_U(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let y=0,x=0;for(s||(m=await t.iterator());!s||y<n.batchesPerEpoch;){let A=await m.next();if(s&&A.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(A.value!=null){let{xs:b,ys:w}=s8(e,A.value),k={};k.batch=x,k.size=b[0].shape[0],await d.onBatchBegin(x,k);let S=[];if(n.classWeight!=null){let $=t8(n.classWeight,e.outputNames);for(let _=0;_<$.length;++_)S.push(await n8(w[_],null,$[_]))}let E=b.concat(w).concat(S),R=i(E);ne(E);for(let $=0;$<l.length;++$){let _=l[$],D=R[$];k[_]=D,bn(D)}await d.onBatchEnd(x,k),Uw(k),x++,y++}if(s?y>=n.batchesPerEpoch:A.done){if(r){let b;cv(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?NU:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function _U(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function cv(e){return typeof e.iterator=="function"}function DU(e){return typeof e.next=="function"}async function $U(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Ge("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=DU(t)?t:await t.iterator(),i=0,l=0;for(;!s||l<n.batches;){let u=await o.next();if(a=K(()=>{if(u.value){let{xs:c,ys:p}=s8(e,u.value),d=c.concat(p),h=K(()=>r(d));if(ne(d),l===0)for(let m=0;m<h.length;++m)a.push(Ce(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=K(()=>ce(a[m],L(f,g))),l>0&&ne(y)}ne(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=pe(a[u],i),ne(c)}return cs(a)}function w3(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function tp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Wi(s,t,n-t)):Wi(e,t,n-t)}function zA(e,t){return K(()=>e==null?null:Array.isArray(e)?e.map(n=>zA(n,t)):Pw(e,t.dtype==="int32"?t:he(t,"int32")))}function k3(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function FU(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Tr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=Xw(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Ge("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Ge("batch shuffling is not implemneted yet");c&&v.shuffle(y);let k=$t(y),S=k3(g,r);for(let E=0;E<S.length;++E){let R={};if(await x.onBatchBegin(E,R),K(()=>{let $=S[E][0],_=S[E][1],D=Wi(k,$,_-$);R.batch=E,R.size=_-$;let C=zA(n,D),P=t(C);for(let V=0;V<s.length;++V){let j=s[V],z=P[V];R[j]=z,bn(z)}if(E===S.length-1&&m){let V=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let z=s[j],Z=V[j];bn(Z),w["val_"+z]=Z}}}),await x.onBatchEnd(E,R),Uw(R),e.stopTraining_)break}k.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function PU(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;w3(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,y;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new Ge("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let R=!0,$=await e.standardizeUserData(l,u,null,null,R,h);c=$[0],p=$[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let R=Math.floor(r[0].shape[0]*(1-s.validationSplit)),$=r[0].shape[0];c=tp(r,R,$),o=r,r=tp(r,0,R),p=tp(a,R,$),i=a,a=tp(a,0,R),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,k;g?(e.makeTestFunction(),w=e.testFunction,k=b.slice().concat(b.map(R=>"val_"+R))):(w=null,y=[],k=b.slice());let S=qw(s.callbacks,s.yieldEvery);return await FU(e,A,x,b,h,s.epochs,s.verbose,S,w,y,s.shuffle,k,s.initialEpoch,null,null)}finally{e.isTraining=!1,br(r,t),br(a,n),br(o,t),br(i,n),br(c,l),br(p,u),d!=null&&ne(d)}}function r8(e){let t=[];e instanceof st&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(fh(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function br(e,t){if(e==null)return;let n=[];if(t instanceof st)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof st)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function OU(e){return e instanceof st}function I3(e){return Array.isArray(e)}function dv(e){return!OU(e)&&!I3(e)}function pv(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(I3(e)&&e.length>0)o=!0;else if(dv(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(dv(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(I3(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=r8(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function MU(e,t,n){let s=Ga(e.map(a=>a.shape[0]));s.sort();let r=Ga(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function zU(e,t,n){let s=[Jl,Q0,bp];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===bp&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function hv(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function LU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var BU="layers-model",ca=class extends zr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");vU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=bU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof va))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(qg(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>qg(o))}else{let a=qg(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Bi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=LU(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Bi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Q0?["accuracy","acc"].indexOf(h)!==-1?p=FA:["crossentropy","ce"].indexOf(h)!==-1&&(p=Yw):this.lossFunctions[a]===xm?["accuracy","acc"].indexOf(h)!==-1?p=Jw:["crossentropy","ce"].indexOf(h)!==-1&&(p=Qw):["accuracy","acc"].indexOf(h)!==-1?p=PA:["crossentropy","ce"].indexOf(h)!==-1&&(p=OA);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=xU(h),c=u+Mf(h);let f;Bi(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;w3(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return cs(l)}finally{br(a[0],e),br(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),$U(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Mi;if(e instanceof st&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=ep(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Ji(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return K(()=>{let s=this.checkNumSamples(e);if(n)throw new Ge("Verbose predictLoop() is not implemented yet.");let r=k3(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)K(()=>{let l=r[o][0],u=r[o][1],c=tp(e,l,u),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new Mi(p);return ep(this.outputs,d)}).forEach((l,u)=>a[u].push(l));return cs(a.map(o=>St(o,0)))})}predict(e,t={}){let n=r8(e);hv(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return w3(s),this.predictLoop(n,s)}finally{br(n,e)}}predictOnBatch(e){hv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new vr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===xm?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=pv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=pv(t,this.feedOutputNames,r,!1,"target"),MU(e,t,null),zU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=t8(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await n8(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return K(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Ge("Verbose mode is not implemented yet.");if(r!=null)throw new Ge("steps mode in testLoop() is not implemented yet");{let i=k3(a,n),l=$t(Tr(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],p=i[u][1],d=Wi(l,c,p-c),h=zA(t,d),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Ce(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ce(o[m],L(p-c,g))}}for(let u=0;u<o.length;++u)o[u]=pe(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Y4(e,s)>1&&(r+=`_${Y4(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new Mi(c),d=ep(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let m=this.lossFunctions[f],g=m(s[f],d[f]);r[f]!=null&&(g=TU(g,r[f]));let y=Wt(g);t.push(y),f===0?h=g:h=ce(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Wt(g(s[y],d[y]))}bn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ce(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>K(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new Mi(a),i=ep(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Wt(u(r[l],i[l]));l===0?n=c:n=ce(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Wt(u(r[c],i[c]));t.push(p)}return t})}async fit(e,t,n={}){return PU(this,e,t,n)}async fitDataset(e,t){return RU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return ne(o),br(n[0],e),br(n[1],t),cs(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=dm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-dm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=oa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>oa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=oa(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[oa(Mf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>oa(Mf(e)));{let e={};for(let t in this.metrics)e[t]=oa(Mf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=vp(e.optimizer_config),n=Sr(t),s;if(typeof e.loss=="string")s=Fi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Fi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Fi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Fi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Fi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=$n.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await $n.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:BU,generatedBy:`TensorFlow.js tfjs-layers v${MA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await $n.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=$n.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(lv(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){lv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ca.className="Model";de.registerClass(ca);var a8=class extends ca{};a8.className="Functional";de.registerClass(a8);async function WU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=vp(n),r=Sr(s,t);if(e.weightsManifest!=null){let a=await $n.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ne(a)}return r}async function VU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=$n.getLoadHandlers(e,t);if(n.length===0)n.push($n.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return UU(e,void 0,t)}async function UU(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Sr(vp(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=GU(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),ne(u),ne(c.map(p=>p.tensor))}return i}function GU(e,t){let n=$n.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var ec=class extends ca{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:W0("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ec||e instanceof ca,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Lw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=zw(this.outputs[0])}this.inboundNodes=[],new Y0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ji(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(xt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ca({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new vr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof ec))throw new Ge(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Sr(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ec.className="Sequential";de.registerClass(ec);function HU(e){return new ca(e)}function jU(e){return new ec(e)}function qU(e,t){return t==null&&(t={}),VU(e,t)}function o8(e){return Lw(e)}function XU(e,t){tr.registerCallbackConstructor(e,t)}var gs=class extends de.Serializable{getConfig(){return{}}},i8=class extends gs{apply(e,t=1){return mV(e,t)}};i8.className="elu";de.registerClass(i8);var l8=class extends gs{apply(e){return I0(e)}};l8.className="selu";de.registerClass(l8);var u8=class extends gs{apply(e){return _r(e)}};u8.className="relu";de.registerClass(u8);var c8=class extends gs{apply(e){return K(()=>Uc(6,_r(e)))}};c8.className="relu6";de.registerClass(c8);var d8=class extends gs{apply(e){return e}};d8.className="linear";de.registerClass(d8);var p8=class extends gs{apply(e){return Cn(e)}};p8.className="sigmoid";de.registerClass(p8);var h8=class extends gs{apply(e){return yV(e)}};h8.className="hardSigmoid";de.registerClass(h8);var f8=class extends gs{apply(e){return ql(e)}};f8.className="softplus";de.registerClass(f8);var m8=class extends gs{apply(e){return gV(e)}};m8.className="softsign";de.registerClass(m8);var g8=class extends gs{apply(e){return ji(e)}};g8.className="tanh";de.registerClass(g8);var LA=class extends gs{apply(e,t=-1){return Zl(e,t)}};LA.className="softmax";de.registerClass(LA);var y8=class extends gs{apply(e,t=-1){return y0(e,t)}};y8.className="logSoftmax";de.registerClass(y8);var A8=class extends gs{apply(e,t=1){return K(()=>L(Cn(L(e,t)),e))}};A8.className="swish";de.registerClass(A8);var x8=class extends gs{apply(e){return K(()=>L(e,ji(ql(e))))}};x8.className="mish";de.registerClass(x8);function eo(e){return e.getClassName()}function Xg(e,t={}){return hh(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function to(e){if(e==null){let t={};return t.className="linear",t.config={},Xg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Xg(t)}else return e instanceof gs?e:Xg(e)}function BA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var b8=class extends de.Serializable{},Ah=class extends b8{constructor(e){super(),BA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return K(()=>{let t=Vt([1]);return this.hasL1&&(t=ce(t,ke(L(this.l1,nn(e))))),this.hasL2&&(t=ce(t,ke(L(this.l2,mh(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ah.className="L1L2";de.registerClass(Ah);function KU(e){return BA(e),new Ah({l1:e!=null?e.l1:null,l2:0})}function ZU(e){return BA(e),new Ah({l2:e!=null?e.l2:null,l1:0})}var fv={l1l2:"L1L2"};function It(e){return yA(e)}function mv(e,t={}){return hh(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function zt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in fv?fv[e]:e,config:{}};return mv(n)}else return e instanceof b8?e:mv(e)}var WA=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=qe(e);let n=_r(e);return this.maxValue!=null&&(n=ps(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};WA.className="ReLU";de.registerClass(WA);var VA=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=qe(e);return rh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};VA.className="LeakyReLU";de.registerClass(VA);var UA=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Mt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=zt(e.alphaRegularizer),this.alphaConstraint=yn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=xt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new rn({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=qe(e),uh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ut(this.alphaInitializer),alphaRegularizer:It(this.alphaRegularizer),alphaConstraint:gn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};UA.className="PReLU";de.registerClass(UA);var GA=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ge(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=qe(e);return Bc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};GA.className="ELU";de.registerClass(GA);var HA=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=qe(e);return L(n,he(ms(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};HA.className="ThresholdedReLU";de.registerClass(HA);var jA=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new LA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=qe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};jA.className="Softmax";de.registerClass(jA);function Uu(e,t,n){if(typeof e=="number")return Ji(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!dV(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Cr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Br(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Qa([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function qA(e,t){return K(()=>(Jt(t),t==="channelsFirst"?rt(e,[0,2,3,1]):e))}function v8(e,t){return K(()=>(Jt(t),t==="channelsFirst"?rt(e,[0,2,3,4,1]):e))}function YU(e,t,n,s=1,r="valid",a,o=1){return K(()=>{if(a==null&&(a=Nr()),Jt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=rt(e,[0,2,1])),r==="causal")throw new Ge("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=d0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Dr(i,n)),i})}function gv(e,t,n,s=[1,1],r="valid",a,o,i=null){return K(()=>{if(a==null&&(a=Nr()),Jt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=qA(e,a);if(r==="causal")throw new Ge("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ja.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=rt(l,[0,3,1,2])),l})}function JU(e,t,n,s=[1,1,1],r="valid",a,o){return K(()=>{if(a==null&&(a=Nr()),Jt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=v8(e,a);if(r==="causal")throw new Ge("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=zy(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Dr(i,n)),a==="channelsFirst"&&(i=rt(i,[0,4,1,2,3])),i})}var XA=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",XA.verifyArgs(t),this.rank=e,vn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ge(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Uu(t.kernelSize,e,"kernelSize"),this.strides=Uu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Zs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Jt(this.dataFormat),this.activation=to(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Mt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=yn(t.biasConstraint),this.biasRegularizer=zt(t.biasRegularizer),this.activityRegularizer=zt(t.activityRegularizer),this.dilationRate=Uu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Lr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!AA(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:eo(this.activation),useBias:this.useBias,biasInitializer:Ut(this.biasInitializer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),biasConstraint:gn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},xh=class extends XA{constructor(e,t){super(e,t),this.kernel=null,xh.verifyArgs(t),this.filters=t.filters,vn(this.filters,"filters"),this.kernelInitializer=Mt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=yn(t.kernelConstraint),this.kernelRegularizer=zt(t.kernelRegularizer)}build(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return K(()=>{e=qe(e);let n,s=this.bias==null?null:this.bias.read(),r=Ew(this.activation.getClassName());if(r!=null&&this.rank===2)n=gv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=YU(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=gv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=JU(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ge("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=xt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Cr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ut(this.kernelInitializer),kernelRegularizer:It(this.kernelRegularizer),kernelConstraint:gn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},bh=class extends xh{constructor(e){super(2,e),bh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!AA(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};bh.className="Conv2D";de.registerClass(bh);var vh=class extends xh{constructor(e){super(3,e),vh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};vh.className="Conv3D";de.registerClass(vh);var KA=class extends bh{constructor(e){if(super(e),this.inputSpec=[new rn({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=xt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new rn({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return K(()=>{let n=qe(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Br(i,p,u,this.padding),f=Br(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=rt(n,[0,2,3,1]));let g=p0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=rt(g,[0,3,1,2])),this.bias!=null&&(g=Dr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=xt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Br(t[s],i,a,this.padding),t[r]=Br(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};KA.className="Conv2DTranspose";de.registerClass(KA);var ZA=class extends vh{constructor(e){if(super(e),this.inputSpec=[new rn({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=xt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new rn({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return K(()=>{let n=qe(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Br(l,f,p,this.padding),x=Br(u,m,d,this.padding),A=Br(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=rt(n,[0,2,3,4,1]));let w=z6(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=rt(w,[0,4,1,2,3])),this.bias!==null&&(w=Dr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=xt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Br(t[s],u,o,this.padding),t[r]=Br(t[r],c,i,this.padding),t[a]=Br(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ZA.className="Conv3DTranspose";de.registerClass(ZA);var w8=class extends xh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Mt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=zt(t.depthwiseRegularizer),this.depthwiseConstraint=yn(t.depthwiseConstraint),this.pointwiseInitializer=Mt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=zt(t.pointwiseRegularizer),this.pointwiseConstraint=yn(t.pointwiseConstraint)}build(e){if(e=xt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new rn({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return K(()=>{e=qe(e);let n;if(this.rank===1)throw new Ge("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=rt(e,[0,2,3,1])),n=sA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Dr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=rt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.pointwiseInitializer=Ut(this.pointwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.pointwiseRegularizer=It(this.pointwiseRegularizer),e.depthwiseConstraint=gn(this.depthwiseConstraint),e.pointwiseConstraint=gn(this.pointwiseConstraint),e}};w8.className="SeparableConv";var YA=class extends w8{constructor(e){super(2,e)}};YA.className="SeparableConv2D";de.registerClass(YA);var e2=class extends xh{constructor(e){super(1,e),e2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!AA(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};e2.className="Conv1D";de.registerClass(e2);var JA=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return K(()=>{if(e=qe(e),this.dataFormat==="channelsLast"){let n=Of(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Of(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Of(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Of(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Cropping2D";de.registerClass(JA);var QA=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,lV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return K(()=>{let n=qe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=rt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a]);return rt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Se.resizeNearestNeighbor(n,[r,a]):Se.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};QA.className="UpSampling2D";de.registerClass(QA);function QU(e,t,n=[1,1],s="valid",r,a){return K(()=>{r==null&&(r=Nr()),Jt(r);let o=qA(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Lc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=rt(o,[0,3,1,2])),o})}var e5=class extends XA{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Mt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=yn(e.depthwiseConstraint),this.depthwiseRegularizer=zt(e.depthwiseRegularizer)}build(e){if(e=xt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{e=qe(e);let n=QU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Dr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Cr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Cr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.depthwiseConstraint=gn(this.depthwiseRegularizer),e}};e5.className="DepthwiseConv2D";de.registerClass(e5);function k8(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function I8(e,t,n,s=!1,r,a,o=!1,i=!1){return K(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Tr(2,l));if(t=rt(t,u),a!=null)throw new Ge("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=he(he(r,"bool"),"float32"),r.rank===l-1&&(r=Zt(r,-1)),r=rt(r,u)),s&&(t=_s(t,0),r!=null&&(r=_s(r,0)));let c=[],p,d=n,h=t.shape[0],f=Qn(t),m;r!=null&&(m=Qn(r));for(let y=0;y<h;++y){let x=f[y],A=K(()=>e(x,d));if(r==null)p=A[0],d=A[1];else{let b=K(()=>{let w=m[y],k=fe(Rs(w),w),S=ce(L(A[0],w),L(d[0],k)),E=d.map((R,$)=>ce(L(A[1][$],w),L(R,k)));return{output:S,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=ln(c,1)),[p,g,d]})}var Zr=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new s2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new rn({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Tr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){A3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return K(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ge("Constants support is not implemented in RNN yet.");A3(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new rn({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new rn({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_=[Vt([n,this.cell.stateSize])];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_[0]=Vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>bn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=k8(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new rn({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof wr){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return K(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=qe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=I8((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return K(()=>{let t=Vt(e.shape);return t=ke(t,[1,2]),t=fh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?g3(t,[1,n]):t):this.cell.stateSize>1?[g3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Zr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Sr(s,n);return new e(Object.assign(t,{cell:r}))}};Zr.className="RNN";de.registerClass(Zr);var wh=class extends ut{},t2=class extends wh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,vn(this.units,"units"),this.activation=to(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=yn(e.kernelConstraint),this.recurrentConstraint=yn(e.recurrentConstraint),this.biasConstraint=yn(e.biasConstraint),this.dropout=Ju([1,Qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ju([1,Qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=xt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=no({ones:()=>Rs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=no({ones:()=>Rs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Ur(L(e,a),this.kernel.read()):r=Ur(e,this.kernel.read()),this.bias!=null&&(r=Dr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ce(r,Ur(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:eo(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),recurrentConstraint:gn(this.recurrentConstraint),biasConstraint:gn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};t2.className="SimpleRNNCell";de.registerClass(t2);var t5=class extends Zr{constructor(e){e.cell=new t2(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};t5.className="SimpleRNN";de.registerClass(t5);var n2=class extends wh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,vn(this.units,"units"),this.activation=to(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=to(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=yn(e.kernelConstraint),this.recurrentConstraint=yn(e.recurrentConstraint),this.biasConstraint=yn(e.biasConstraint),this.dropout=Ju([1,Qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ju([1,Qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=xt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return K(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=no({ones:()=>Rs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=no({ones:()=>Rs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=Ur(e,this.kernel.read());this.useBias&&(u=Dr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Yt(c,[2*this.units,this.units],c.rank-1),h=Ur(s,p),[f,m,g]=Yt(u,3,u.rank-1),[y,x]=Yt(h,2,h.rank-1);o=this.recurrentActivation.apply(ce(f,y)),i=this.recurrentActivation.apply(ce(m,x));let A=Ur(L(i,s),d);l=this.activation.apply(ce(g,A));let b=ce(L(o,s),L(ce(1,Ft(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:eo(this.activation),recurrentActivation:eo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),recurrentConstraint:gn(this.recurrentConstraint),biasConstraint:gn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};n2.className="GRUCell";de.registerClass(n2);var n5=class extends Zr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new n2(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};n5.className="GRU";de.registerClass(n5);var kh=class extends wh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,vn(this.units,"units"),this.activation=to(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=to(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=yn(e.kernelConstraint),this.recurrentConstraint=yn(e.recurrentConstraint),this.biasConstraint=yn(e.biasConstraint),this.dropout=Ju([1,Qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ju([1,Qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=xt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends lr{apply(i,l){let u=r.apply([a]),c=new G0().apply([a]),p=r.apply([a*2]);return Q4(Q4(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return K(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=no({ones:()=>Rs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=no({ones:()=>Rs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let p=Ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),p=ce(p,Ur(s,this.recurrentKernel.read())),this.useBias&&(p=Dr(p,this.bias.read()));let[d,h,f,m]=Yt(p,4,p.rank-1);i=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=ce(L(l,r),L(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=L(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:eo(this.activation),recurrentActivation:eo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),recurrentConstraint:gn(this.recurrentConstraint),biasConstraint:gn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};kh.className="LSTMCell";de.registerClass(kh);var s5=class extends Zr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new kh(e),super(e)}call(e,t){return K(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};s5.className="LSTM";de.registerClass(s5);var s2=class extends wh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return K(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){A3(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Bi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Sr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return x3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}TA(t)}};s2.className="StackedRNNCells";de.registerClass(s2);function no(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Ow(t(),n),i=()=>gh(o,t,s);return!r||r<=1?bn(i().clone()):Array(r).fill(void 0).map(i).map(u=>bn(u.clone()))}var eG=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},S8=class extends Zr{constructor(e){if(e.unroll)throw new Ge("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ge("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new rn({ndim:5})]}call(e,t){return K(()=>{if(this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return K(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Vt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){K(()=>{if(!this.stateful)throw new aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_=[Vt(r)];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_[0]=Vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>bn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Cr(l,s[0],r,a[0],o[0]),p=Cr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};S8.className="ConvRNN2D";var r2=class extends kh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,vn(this.filters,"filters"),this.kernelSize=Uu(n,2,"kernelSize"),this.kernelSize.forEach(i=>vn(i,"kernelSize")),this.strides=Uu(s||1,2,"strides"),this.strides.forEach(i=>vn(i,"strides")),this.padding=r||"valid",Zs(this.padding),this.dataFormat=a||"channelsLast",Jt(this.dataFormat),this.dilationRate=Uu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>vn(i,"dilationRate"))}build(e){var t;e=xt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends lr{apply(p,d){let h=l.apply([u]),f=Ss([u]),m=l.apply([u*2]);return xA([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return K(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=no({ones:()=>Rs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(W,ee,Q)=>!ee||!ee[Q]?W:L(ee[Q],W),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=no({ones:()=>Rs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,k]=Yt(this.kernel.read(),o,x),[S,E,R,$]=this.useBias?Yt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,S,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,R,this.padding),d=this.inputConv(d,k,$,this.padding);let[_,D,C,P]=Yt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,_),m=this.recurrentConv(m,D),g=this.recurrentConv(g,C),y=this.recurrentConv(y,P);let V=this.recurrentActivation.apply(ce(u,f)),j=this.recurrentActivation.apply(ce(c,m)),z=ce(L(j,a),L(V,this.activation.apply(ce(p,g)))),Z=L(this.recurrentActivation.apply(ce(d,y)),this.activation.apply(z));return[Z,Z,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=eG(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=pa(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Dr(r,n,this.dataFormat):r}recurrentConv(e,t){return pa(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};r2.className="ConvLSTM2DCell";de.registerClass(r2);var r5=class extends S8{constructor(e){let t=new r2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};r5.className="ConvLSTM2D";de.registerClass(r5);var a2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return gh(()=>Ow(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};a2.className="Dropout";de.registerClass(a2);var a5=class extends a2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};a5.className="SpatialDropout1D";de.registerClass(a5);var o5=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,vn(this.units,"units"),this.activation=to(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=yn(e.kernelConstraint),this.biasConstraint=yn(e.biasConstraint),this.kernelRegularizer=zt(e.kernelRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.activityRegularizer=zt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=xt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=xt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e),s=Ew(this.activation.getClassName()),r;return s!=null?r=Ur(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Ur(n,this.kernel.read()),this.bias!=null&&(r=Dr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:eo(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),biasConstraint:gn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};o5.className="Dense";de.registerClass(o5);var i5=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=xt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ha(e,1)]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=rt(n,s)}return fV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};i5.className="Flatten";de.registerClass(i5);var l5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.activation=to(e.activation)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e);return this.activation.apply(n)})}getConfig(){let e={activation:eo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};l5.className="Activation";de.registerClass(l5);var u5=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return K(()=>(e=qe(e),pV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};u5.className="RepeatVector";de.registerClass(u5);var c5=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=Ha(e);if(a!==null){if(r===0||o%r!==0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};c5.className="Reshape";de.registerClass(c5);var d5=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Tr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new rn({ndim:this.dims.length+1})]}computeOutputShape(e){e=xt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return rt(qe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};d5.className="Permute";de.registerClass(d5);var p5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=qe(e),s=-1;return Ap(Zi(n,this.maskValue),s)}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e),s=-1,r=!0,a=Ap(Zi(n,this.maskValue),s,r);return L(n,he(a,n.dtype))})}};p5.className="Masking";de.registerClass(p5);var h5=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,vn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,vn(this.outputDim,"outputDim"),this.embeddingsInitializer=Mt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=zt(e.embeddingsRegularizer),this.activityRegularizer=zt(e.activityRegularizer),this.embeddingsConstraint=yn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return K(()=>this.maskZero?(e=qe(e),Zi(e,lt(e))):null)}computeOutputShape(e){if(e=xt(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e);n.dtype!=="int32"&&(n=V0(n,"int32"));let s=Pw(this.embeddings.read(),U(n,[n.size]));return U(s,xt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ut(this.embeddingsInitializer),embeddingsRegularizer:It(this.embeddingsRegularizer),activityRegularizer:It(this.activityRegularizer),embeddingsConstraint:gn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};h5.className="Embedding";de.registerClass(h5);var Ql=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Ge}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[xt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Ga(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Ga(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return K(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Qa(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=fh(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],p=u.slice(1).concat([c]),d=U(i,[c].concat(Ha(u.slice(1))));d=rt(d,[1,0]),d=U(d,p),n.push(d),r=!0}else if(l>1){let u=Tr(1,l).concat([0]);n.push(rt(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(rt(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Tr(0,o-1));a=rt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Ga(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return K(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Zt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=rr(n,t[s]);return n})}},f5=class extends Ql{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ce(t,e[n]);return t})}};f5.className="Add";de.registerClass(f5);var m5=class extends Ql{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};m5.className="Multiply";de.registerClass(m5);var g5=class extends Ql{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ce(t,e[n]);return L(1/e.length,t)})}};g5.className="Average";de.registerClass(g5);var y5=class extends Ql{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Kr(t,e[n]);return t})}};y5.className="Maximum";de.registerClass(y5);var A5=class extends Ql{constructor(e){super(e)}mergeFunction(e){return K(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Uc(t,e[n]);return t})}};A5.className="Minimum";de.registerClass(A5);var x5=class extends Ql{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return K(()=>xA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return K(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(he(Rs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Zt(t[a],-1)):s.push(t[a]);let r=St(s,this.axis);return c0(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};x5.className="Concatenate";de.registerClass(x5);function Xd(e,t){for(;e<0;)e+=t;return e}function tG(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Ge("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ge("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return K(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(L(e,t),a[0]):i=ke(L(rt(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Je(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=et(i,u)}return i.shape.length===1&&(i=Zt(i,1)),i})}var b5=class extends Ql{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Ge("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Xd(r,e[a].shape.length)):s=[Xd(this.axes,t.shape.length),Xd(this.axes,n.shape.length)],this.normalize&&(t=Am(t,s[0]),n=Am(n,s[1])),tG(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Xd(this.axes,e.length),Xd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Ge("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};b5.className="Dot";de.registerClass(b5);var v5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e);return gh(()=>ce(U0(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};v5.className="GaussianNoise";de.registerClass(v5);var w5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{this.invokeCallHook(e,t);let n=qe(e);return this.rate>0&&this.rate<1?gh(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,U0(n.shape,1,r))},()=>n,t.training||!1):n})}};w5.className="GaussianDropout";de.registerClass(w5);var k5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||qe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return K(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return gh(()=>{let r=qe(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ni(Gc(n),this.rate);l=V0(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ce(L(r,l),L(ce(l,-1),i));return ce(L(p,u),c)},()=>qe(e),t.training||!1)}return e})}};k5.className="AlphaDropout";de.registerClass(k5);function wp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=R6(e,t,n,s,r,a);else if(e.rank===3)o=_6(e,t,n,s,r,a);else if(e.rank===4)o=D6(e,t,n,s,r,a);else throw new Ge(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function nG(e,t,n,s,r=.001){return K(()=>{let a=x0(e,s),o=a.mean,i=a.variance;return[wp(e,o,i,n,t,r),o,i]})}function sG(e,t,n,s,r=.001){return K(()=>{let a=x0(e,s),o=a.mean,i=a.variance,l=[];for(let f of Tr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),p=t==null?null:U(t,l),d=n==null?null:U(n,l);return[wp(e,u,c,d,p,r),o,i]})}function rG(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),Tr(0,e.rank-1))?nG(e,t,n,s,r):sG(e,t,n,s,r)}var I5=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Mt(e.betaInitializer||"zeros"),this.gammaInitializer=Mt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Mt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Mt(e.movingVarianceInitializer||"ones"),this.betaConstraint=yn(e.betaConstraint),this.gammaConstraint=yn(e.gammaConstraint),this.betaRegularizer=zt(e.betaRegularizer),this.gammaRegularizer=zt(e.gammaRegularizer)}build(e){e=xt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new rn({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return K(()=>{let n=t.training==null?!1:t.training,s=qe(e),r=s.shape,a=r.length,o=Tr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Ji(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,Tr(0,a).slice(0,a-1)),p=()=>{if(c){let y=U(this.movingMean.read(),l),x=U(this.movingVariance.read(),l),A=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return wp(s,y,x,A,b,this.epsilon)}else return wp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=rG(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{K(()=>{let b=1-A,w=y.read(),k=L(fe(w,x),b);y.write(fe(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),movingMeanInitializer:Ut(this.movingMeanInitializer),movingVarianceInitializer:Ut(this.movingVarianceInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer),betaConstraint:gn(this.betaConstraint),gammaConstraint:gn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};I5.className="BatchNormalization";de.registerClass(I5);var S5=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Mt(e.betaInitializer||"zeros"),this.gammaInitializer=Mt(e.gammaInitializer||"ones"),this.betaRegularizer=zt(e.betaRegularizer),this.gammaRegularizer=zt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=xt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Ga(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=qe(e),s=n.shape,r=s.length;return K(()=>{let{mean:o,variance:i}=x0(n,this.axis,!0),l=Ji(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?U(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return o=Us(o,d),i=Us(i,d),c!=null&&(c=Us(c,h)),p!=null&&(p=Us(p,h)),wp(n,o,i,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};S5.className="LayerNormalization";de.registerClass(S5);function aG(e,t,n){return K(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Nr()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Ks(e,s)})}var C5=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Nr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){e=xt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return K(()=>aG(qe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};C5.className="ZeroPadding2D";de.registerClass(C5);function o2(e,t,n,s,r,a){return K(()=>{Jt(r),_w(a),Zs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Nr()),a==null&&(a="max"),e=qA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=ih(e,t,n,i):o=eh(e,t,n,i),r==="channelsFirst"&&(o=rt(o,[0,3,1,2])),o})}function C8(e,t,n,s,r,a){return K(()=>{Jt(r),_w(a),Zs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Nr()),a==null&&(a="max"),e=v8(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Jy(e,t,n,i):o=Fy(e,t,n,i),r==="channelsFirst"&&(o=rt(o,[0,4,1,2,3])),o})}var T8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(vn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);vn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Zs(this.padding),this.inputSpec=[new rn({ndim:3})]}computeOutputShape(e){e=xt(e);let t=Cr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return K(()=>{this.invokeCallHook(e,t),e=fh(qe(e),2);let n=this.poolingFunction(qe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return et(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},T5=class extends T8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),Zs(s),o2(e,t,n,s,r,"max")}};T5.className="MaxPooling1D";de.registerClass(T5);var N5=class extends T8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),Zs(s),o2(e,t,n,s,r,"avg")}};N5.className="AveragePooling1D";de.registerClass(N5);var N8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];vn(this.poolSize,"poolSize"),vn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),Zs(this.padding),this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Cr(t,this.poolSize[0],this.padding,this.strides[0]),n=Cr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(qe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},E5=class extends N8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),Zs(s),o2(e,t,n,s,r,"max")}};E5.className="MaxPooling2D";de.registerClass(E5);var R5=class extends N8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),Zs(s),o2(e,t,n,s,r,"avg")}};R5.className="AveragePooling2D";de.registerClass(R5);var E8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];vn(this.poolSize,"poolSize"),vn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),Zs(this.padding),this.inputSpec=[new rn({ndim:5})]}computeOutputShape(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Cr(t,this.poolSize[0],this.padding,this.strides[0]),n=Cr(n,this.poolSize[1],this.padding,this.strides[1]),s=Cr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return K(()=>(this.invokeCallHook(e,t),this.poolingFunction(qe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_5=class extends E8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),Zs(s),C8(e,t,n,s,r,"max")}};_5.className="MaxPooling3D";de.registerClass(_5);var D5=class extends E8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Jt(r),Zs(s),C8(e,t,n,s,r,"avg")}};D5.className="AveragePooling3D";de.registerClass(D5);var R8=class extends ut{constructor(e){super(e),this.inputSpec=[new rn({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ge}},$5=class extends R8{constructor(e){super(e||{})}call(e,t){return K(()=>{let n=qe(e);return Wt(n,1)})}};$5.className="GlobalAveragePooling1D";de.registerClass($5);var F5=class extends R8{constructor(e){super(e||{})}call(e,t){return K(()=>{let n=qe(e);return mn(n,1)})}};F5.className="GlobalMaxPooling1D";de.registerClass(F5);var _8=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Jt(this.dataFormat),this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ge}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},P5=class extends _8{call(e,t){return K(()=>{let n=qe(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};P5.className="GlobalAveragePooling2D";de.registerClass(P5);var O5=class extends _8{call(e,t){return K(()=>{let n=qe(e);return this.dataFormat==="channelsLast"?mn(n,[1,2]):mn(n,[2,3])})}};O5.className="GlobalMaxPooling2D";de.registerClass(O5);var D8=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Sr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},M5=class extends D8{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=xt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=xt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return K(()=>(e=qe(e),I8((a,o)=>[qe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};M5.className="TimeDistributed";de.registerClass(M5);function oG(e){Yl(iV,"BidirectionalMergeMode",e)}var iG="concat",z5=class extends D8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Sr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Sr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?iG:e.mergeMode,oG(this.mergeMode),e.weights)throw new Ge("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):cs(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=k8(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new rn({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Ge("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof wr;for(let l of a)if(l instanceof wr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return K(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=_s(r,1));let o;return this.mergeMode==="concat"?o=xA([s,r]):this.mergeMode==="sum"?o=ce(s,r):this.mergeMode==="ave"?o=L(.5,ce(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Bi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Bi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Sr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ge("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};z5.className="Bidirectional";de.registerClass(z5);function lG(e){return new qc(e)}function uG(e){return new GA(e)}function cG(e){return new WA(e)}function dG(e){return new VA(e)}function pG(e){return new UA(e)}function hG(e){return new jA(e)}function fG(e){return new HA(e)}function mG(e){return new e2(e)}function gG(e){return new bh(e)}function yG(e){return new KA(e)}function AG(e){return new vh(e)}function xG(e){return new ZA(e)}function bG(e){return new YA(e)}function vG(e){return new JA(e)}function wG(e){return new QA(e)}function kG(e){return new e5(e)}function IG(e){return new l5(e)}function SG(e){return new o5(e)}function CG(e){return new a2(e)}function TG(e){return new a5(e)}function NG(e){return new i5(e)}function EG(e){return new u5(e)}function RG(e){return new c5(e)}function _G(e){return new d5(e)}function DG(e){return new h5(e)}function $G(e){return new f5(e)}function FG(e){return new g5(e)}function PG(e){return new x5(e)}function OG(e){return new y5(e)}function MG(e){return new A5(e)}function zG(e){return new m5(e)}function LG(e){return new b5(e)}function BG(e){return new I5(e)}function WG(e){return new S5(e)}function VG(e){return new C5(e)}function L5(e){return new N5(e)}function UG(e){return L5(e)}function GG(e){return L5(e)}function B5(e){return new R5(e)}function HG(e){return B5(e)}function jG(e){return B5(e)}function W5(e){return new D5(e)}function qG(e){return W5(e)}function XG(e){return W5(e)}function KG(e){return new $5(e)}function ZG(e){return new P5(e)}function $8(e){return new F5(e)}function F8(e){return new O5(e)}function P8(e){return new T5(e)}function O8(e){return new E5(e)}function YG(e){return new _5(e)}function JG(e){return new n5(e)}function QG(e){return new n2(e)}function eH(e){return new s5(e)}function tH(e){return new kh(e)}function nH(e){return new t5(e)}function sH(e){return new t2(e)}function rH(e){return new r5(e)}function aH(e){return new r2(e)}function oH(e){return new Zr(e)}function iH(e){return new s2(e)}function lH(e){return new z5(e)}function uH(e){return new M5(e)}var cH=$8,dH=F8,pH=P8,hH=O8;function fH(e){return new v5(e)}function mH(e){return new w5(e)}function gH(e){return new k5(e)}function yH(e){return new p5(e)}var M8={};Ve(M8,{MAPE:()=>NH,MSE:()=>_H,binaryAccuracy:()=>AH,binaryCrossentropy:()=>xH,categoricalAccuracy:()=>vH,categoricalCrossentropy:()=>wH,cosineProximity:()=>SH,mape:()=>EH,meanAbsoluteError:()=>CH,meanAbsolutePercentageError:()=>TH,meanSquaredError:()=>RH,mse:()=>DH,precision:()=>kH,recall:()=>IH,sparseCategoricalAccuracy:()=>bH});function AH(e,t){return FA(e,t)}function xH(e,t){return Yw(e,t)}function bH(e,t){return Jw(e,t)}function vH(e,t){return PA(e,t)}function wH(e,t){return OA(e,t)}function kH(e,t){return Zw(e,t)}function IH(e,t){return dU(e,t)}function SH(e,t){return $A(e,t)}function CH(e,t){return J0(e,t)}function TH(e,t){return Xc(e,t)}function NH(e,t){return Xc(e,t)}function EH(e,t){return Xc(e,t)}function RH(e,t){return Jl(e,t)}function _H(e,t){return Jl(e,t)}function DH(e,t){return Jl(e,t)}var z8={};Ve(z8,{modelFromJSON:()=>WU});var L8={};Ve(L8,{l1:()=>FH,l1l2:()=>$H,l2:()=>PH});function $H(e){return new Ah(e)}function FH(e){return KU(e)}function PH(e){return ZU(e)}var B8=class extends Qu{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof ca))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function zf(e,t){return e<t}function yv(e,t){return e>t}var W8=class extends B8{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Ge("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=zf:this.mode==="max"?this.monitorFunc=yv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=yv:this.monitorFunc=zf,this.monitorFunc===zf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===zf?1/0:-1/0}async onEpochEnd(e,t){await za(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function OH(e){return new W8(e)}var MH={earlyStopping:OH},zH=Y();zH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var er;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(er||(er={}));var Av;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Av||(Av={}));var V5={};function LH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};V5[e]=n}function V8(e){return V5[e]}function BH(e){delete V5[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Zn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>Zn(d,n,s,r));let u=Zn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Zn(e,t,n,s){let[r,a]=ks(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[km(r,i)]);return o!==void 0?t[km(r,o)][a]:void 0}function WH(e,t,n){return t[km(e,n.currentContextId)]}function Wr(e,t){let[n,s,r]=ks(e);return[km(n,t&&t.currentContextId),s,r]}function km(e,t){return t?`${e}-${t}`:e}function ks(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Xf(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ia(e){return e.kept?e:Jn(e)}var U8={};Ve(U8,{json:()=>VH});var VH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],G8={};Ve(G8,{json:()=>UH});var UH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],H8={};Ve(H8,{json:()=>GH});var GH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],j8={};Ve(j8,{json:()=>HH});var HH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],q8={};Ve(q8,{json:()=>jH});var jH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],X8={};Ve(X8,{json:()=>qH});var qH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],K8={};Ve(K8,{json:()=>XH});var XH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Z8={};Ve(Z8,{json:()=>KH});var KH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Y8={};Ve(Y8,{json:()=>ZH});var ZH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],J8={};Ve(J8,{json:()=>YH});var YH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],Q8={};Ve(Q8,{json:()=>JH});var JH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],ek={};Ve(ek,{json:()=>QH});var QH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],tk={};Ve(tk,{json:()=>ej});var ej=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],nk={};Ve(nk,{json:()=>tj});var tj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],sk={};Ve(sk,{json:()=>nj});var nj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],rk={};Ve(rk,{json:()=>sj});var sj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],ak={};Ve(ak,{json:()=>rj});var rj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],ok={};Ve(ok,{json:()=>aj});var aj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],ik={};Ve(ik,{json:()=>oj});var oj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],xv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[U8,G8,H8,j8,q8,X8,K8,Z8,Y8,J8,Q8,ek,tk,nk,sk,rk,ak,ok,ik],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Wr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let k=`${x}:${w}`;m.inputNames[y]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Wr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Wr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=V8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=S3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=S3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=D3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=D3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=T3(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=T3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=_3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=_3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=C3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=C3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=F3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=F3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=R3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=R3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=$3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=$3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=N3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=N3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=E3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=E3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=bv(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=bv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Wr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:U5(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Wr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Wr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ij(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function lk(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ij(e);return t?n:n.toLowerCase()}function S3(e,t,n,s=!1){let r=e[t];return r!=null?lk(r.s,s):n}function C3(e,t,n){let s=e[t];return s?s.b:n}function T3(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function U5(e){switch(typeof e=="string"&&(e=er[e]),e){case er.DT_FLOAT:case er.DT_HALF:return"float32";case er.DT_INT32:case er.DT_INT64:case er.DT_INT8:case er.DT_UINT8:return"int32";case er.DT_BOOL:return"bool";case er.DT_DOUBLE:return"float32";case er.DT_STRING:return"string";default:return null}}function bv(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function N3(e,t,n){let s=e[t];return s&&s.type?U5(s.type):n}function E3(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>U5(r)):n}function uk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function R3(e,t,n){let s=e[t];return s&&s.shape?uk(s.shape):n}function _3(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function D3(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>lk(a,s)):n}function $3(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>uk(r)):n}function F3(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var lj=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Zn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Zn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return T3(this.node.rawAttrs,e,t);if(n.s!=null)return S3(this.node.rawAttrs,e,t);if(n.b!=null)return C3(this.node.rawAttrs,e,t);if(n.shape!=null)return R3(this.node.rawAttrs,e,t);if(n.type!=null)return N3(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return _3(this.node.rawAttrs,e,t);if(n.list.s!=null)return D3(this.node.rawAttrs,e,t);if(n.list.shape!=null)return $3(this.node.rawAttrs,e,t);if(n.list.b!=null)return F3(this.node.rawAttrs,e,t);if(n.list.type!=null)return E3(this.node.rawAttrs,e,t)}return t}},uj=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ce(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[u0(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Xl(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[pe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Wy(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Mc(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[fe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Uc(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Kr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[fa(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[E0(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},cj=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[nn(I("x",e,t,n))];case"Acos":return[Sy(I("x",e,t,n))];case"Acosh":return[Cy(I("x",e,t,n))];case"Asin":return[Ny(I("x",e,t,n))];case"Asinh":return[Ey(I("x",e,t,n))];case"Atan":return[Ry(I("x",e,t,n))];case"Atan2":return[_y(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Dy(I("x",e,t,n))];case"Ceil":return[Oy(I("x",e,t,n))];case"Complex":return[da(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[nh(I("x",e,t,n))];case"Cosh":return[h0(I("x",e,t,n))];case"Elu":return[Bc(I("x",e,t,n))];case"Erf":return[Vy(I("x",e,t,n))];case"Exp":return[Ns(I("x",e,t,n))];case"Expm1":return[jy(I("x",e,t,n))];case"Floor":return[Vc(I("x",e,t,n))];case"Log":return[Es(I("x",e,t,n))];case"Log1p":return[ah(I("x",e,t,n))];case"Imag":return[Jp(I("x",e,t,n))];case"Neg":return[Ft(I("x",e,t,n))];case"Reciprocal":return[nA(I("x",e,t,n))];case"Real":return[Ku(I("x",e,t,n))];case"Relu":return[_r(I("x",e,t,n))];case"Round":return[w0(I("x",e,t,n))];case"Selu":return[I0(I("x",e,t,n))];case"Sigmoid":return[Cn(I("x",e,t,n))];case"Sin":return[S0(I("x",e,t,n))];case"Sign":return[rA(I("x",e,t,n))];case"Sinh":return[C0(I("x",e,t,n))];case"Softplus":return[ql(I("x",e,t,n))];case"Sqrt":return[Tn(I("x",e,t,n))];case"Square":return[vt(I("x",e,t,n))];case"Tanh":return[ji(I("x",e,t,n))];case"Tan":return[iA(I("x",e,t,n))];case"ClipByValue":return[ps(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[v0(I("x",e,t,n))];case"Rsqrt":return[k0(Zn(e.inputNames[0],t,n))];case"Prod":return[b0(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[rh(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[uh(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Xy(Zn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function nr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function vv(e){return!(typeof e=="number"||e.some(t=>t<0))}function Kd(e,t,n){let s=P3(e,n),r=!vv(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=P3(a.shape,s)}),!vv(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function P3(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var dj=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),bn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),nr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,bn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return yt([],[0].concat(this.elementShape));let n=this.readMany(e);return nr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),ln(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return yt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return nr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),St(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Qn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];K(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=U(Oe(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},tc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);nr(t,r.shape,"TensorList shape mismatch: "),bn(r)}),this.idTensor=Ce(0),this.maxNumElements=s,bn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new tc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);nr(e,this.elementShape,"TensorList shape mismatch: ");let s=Kd(this.elementShape,this.tensors,e);return K(()=>{let r=this.tensors.map(a=>U(a,s));return ln(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Kd(this.elementShape,this.tensors,e),s=this.tensors.pop();return nr(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(nr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");bn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new tc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);nr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Kd(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);nr(this.elementShape,t.shape,"TensorList shape mismatch: "),bn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);nr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Kd(this.elementShape,this.tensors,n);return e.length===0?yt([],[0].concat(s)):K(()=>{let r=e.map(a=>U(this.tensors[a],s));return ln(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);nr(this.elementShape,t,"TensorList shape mismatch: ");let n=Kd(this.elementShape,this.tensors,t);return this.size()===0?yt([],[0].concat(n)):K(()=>{let s=this.tensors.map(r=>U(r,n));return St(s,0)})}};function pj(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);nr(r,t,"TensorList shape mismatch: ");let a=Qn(e);return new tc(a,t,s)}function hj(e,t,n){return new tc([],e,t,n)}function fj(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new tc([],n,e.dtype,s),o=Qn(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function mj(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=P3(a,n),i=s===0?0:e.size/s,l=K(()=>{let c=[];e=U(e,[1,s,i]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],i];c[p]=U(Oe(e,h,f),o)}return e.dispose(),c}),u=new tc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var gj=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[ia(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=ia(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Zn(r,t,n)!==void 0);if(s){let r=Zn(s,t,n);return[ia(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[ia(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[ia(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[ia(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new dj(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=fj(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=hj(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=pj(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=mj(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ce(r.size(),"int32")]}case"TensorListResize":{let s=I("tensorListId",e,t,n),r=I("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wv(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),p=Xf(e,t,n),d=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var yj=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[d0(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Xf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[pa(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=wv(e,t,n);return[Ja.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=wv(e,t,n);return[Ja.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Xf(e,t,n);return[p0(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Xf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Lc(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[zy(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[eh(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[ih(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Q6(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Fy(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Jy(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[By(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Aj=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Wc(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[X6(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[ew(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Xu(s,r,a,o)]}case"Ones":return[Ss(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Rs(I("x",e,t,n))];case"RandomUniform":return[Gc(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Zu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[R0(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Vt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[lt(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Kg(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var xj=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=Kg(e,t,n),u=await Se.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Kg(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Se.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Kg(e,t,n);return[await Se.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=he(I("condition",e,t,n),"bool"),r=[await cA(s)];return s.dispose(),r}case"ListDiff":return sw(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},bj=(e,t,n)=>{switch(e.op){case"LowerBound":{let s=I("sortedSequence",e,t,n),r=I("values",e,t,n);return[J6(s,r)]}case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=lA(s,r,a);return[o.values,o.indices]}case"UpperBound":{let s=I("sortedSequence",e,t,n),r=I("values",e,t,n);return[rw(s,r)]}case"Unique":{let s=I("x",e,t,n),r=hm(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=hm(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vj=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Zn(e.name,t,n)||s];case"Placeholder":return[Zn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[ia(u)]}case"IdentityN":return I("x",e,t,n).map(u=>ia(u));case"Snapshot":let r=I("x",e,t,n);return[ia(r)];case"Shape":return[$t(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>$t(u.shape));case"Size":return[Ce(I("x",e,t,n).size,"int32")];case"Rank":return[Ce(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ce(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wj=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,bn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),K(()=>{let s=Qn(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];bn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return K(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return ln(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},kj=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new wj(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ij=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Se.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Se.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Se.cropAndResize(s,r,a,o,i,l)]}case"ImageProjectiveTransformV3":{let s=I("images",e,t,n),r=I("transforms",e,t,n),a=I("outputShape",e,t,n),o=I("fillValue",e,t,n),i=I("interpolation",e,t,n),l=I("fillMode",e,t,n);return[Se.transform(s,r,i.toLowerCase(),l.toLowerCase(),o,a)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sj=(e,t,n)=>{switch(e.op){case"Equal":return[Ts(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Zi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[ms(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ni(I("a",e,t,n),I("b",e,t,n))];case"Less":return[m0(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[si(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[rr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[oh(I("a",e,t,n))];case"LogicalOr":return[A0(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Pn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cj=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Je(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[W6(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[rt(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=I("args",e,t,n);return[Ja.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tj=(e,t,n)=>{switch(e.op){case"EuclideanNorm":return[Hy(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[qi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[qi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Ky(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Zl(I("x",e,t,n))];case"LogSoftmax":return[y0(I("x",e,t,n))];case"SparseToDense":return[dA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nj=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[mn(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Wt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ha(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ke(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[c0(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Ap(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Cs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[Ty(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[b0(I("x",e,t,n),o,i)]}case"Cumprod":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[xp(I("x",e,t,n),o,i,l)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[f0(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[Py(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[L6(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ej=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[St(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Ki(s,he(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Ki(a,he(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[_s(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[_s(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[Oe(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[oA(p,s,r,a,o,i,l,u,c)]}case"Pack":return K(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=et(r[0]).shape,i=r.map(l=>{let u=v.arraysEqual(l.shape,a);if(!u&&!v.arraysEqual(et(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:U(l,a)});return[ln(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return Qn(r,s)}case"Tile":{let s=I("reps",e,t,n);return[Us(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Yt(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[iw(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[lw(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[dA(s,a,r,a.dtype===o.dtype?o:he(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rj=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Qd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Qd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Qd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Qd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_j=(e,t,n)=>{switch(e.op){case"FFT":return[ch(I("x",e,t,n))];case"IFFT":return[Yu(I("x",e,t,n))];case"RFFT":return[dh(I("x",e,t,n))];case"IRFFT":return[N0(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dj=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=qf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=qf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[qf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$j=(e,t,n)=>{switch(e.op){case"Cast":return[he(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Zt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[et(I("x",e,t,n),s)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Qy(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Ks(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[lh(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[th(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[Ly(I("x",e,t,n),s,r)]}case"BroadcastTo":return[Vu(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[$6(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function kv(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return K(()=>uj(a,o,i));case"basic_math":return K(()=>cj(a,o,i));case"control":return gj(a,o,i);case"convolution":return K(()=>yj(a,o,i));case"creation":return K(()=>Aj(a,o,i));case"dynamic":return xj(a,o,i);case"evaluation":return K(()=>bj(a,o,i));case"image":return K(()=>Ij(a,o,i));case"graph":return K(()=>vj(a,o,i));case"logical":return K(()=>Sj(a,o,i));case"matrices":return K(()=>Cj(a,o,i));case"normalization":return K(()=>Tj(a,o,i));case"reduction":return K(()=>Nj(a,o,i));case"slice_join":return K(()=>Ej(a,o,i));case"sparse":return K(()=>Rj(a,o,i));case"spectral":return K(()=>_j(a,o,i));case"string":return K(()=>Dj(a,o,i));case"transformation":return K(()=>$j(a,o,i));case"hash_table":return kj(a,o,i,s);case"custom":let l=V8(a.op);if(l&&l.customExecutor)return l.customExecutor(new lj(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var Iv=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Sv(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>ks(d)[0]),c=[];s!=null&&(c=s.map(d=>ks(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((ck(d)||zj(d)||Lj(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function Fj(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>ks(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var Pj=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Oj=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Mj=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function ck(e){return Pj.indexOf(e.op)>=0}function zj(e){return Oj.indexOf(e.op)>=0}function Lj(e){return Mj.indexOf(e.op)>=0}var O3=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new O3(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=Sv(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return Fj(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[ks(c)[0]]),r=t.map(c=>ks(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return K(()=>{let c=new Iv(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ks(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!p[m.name]){let g=kv(m,p,c,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>Zn(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=WH(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Wr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Y().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new Iv(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>Zn(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[ks(x)[0]]),o=n.map(x=>ks(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=Sv(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=ks(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!ck(x)&&!Zn(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([p]=Wr(c.node.name,n)),s[c.node.name]==null){let d=kv(c.node,s,n,this._resourceManager);p||([p]=Wr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Wr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Zn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Zn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ks(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ks(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ks(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Bj=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Wj="?tfjs-format=file",Vj="model.json",Ih=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Bj}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=$n.browserHTTPRequest(e,this.loadOptions);else{let t=$n.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push($n.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=$n.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new O3(xv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=xv.Instance.transformGraph(e.modelInitializer);this.initializer=new O3(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=$n.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof st)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Uj(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=Hj(e));let n=new Ih(e,t);return await n.load(),n}function Gj(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new Ih(e);return t.load(),t}function Hj(e){return e.endsWith("/")||(e=e+"/"),`${e}${Vj}${Wj}`}var jj="3.18.0",dk={};Ve(dk,{CSVDataset:()=>bk,Dataset:()=>Kc,FileDataSource:()=>Tk,TextLineDataset:()=>xk,URLDataSource:()=>Nk,array:()=>mq,csv:()=>Cq,func:()=>Tq,generator:()=>Nq,microphone:()=>Rq,version_data:()=>_q,webcam:()=>Eq,zip:()=>gq});var qj=rl(v7()),Xj=rl(v7());function Kj(e,t){return Im(e,t)}function Im(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(nc(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Im(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Zj(e,t=hk){return pk(e,t)}function pk(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(nc(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=pk(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function hk(e){return e===null?null:nc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function fk(e,t){let n=new Map;Im(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Im(e,t,n)}function nc(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=w7();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof st)&&!(e instanceof Promise)&&!t)}function Yj(e){return e==null||Jj(e)||Array.isArray(e)||typeof e=="object"&&e instanceof st||v.isTypedArray(e)}function Jj(e){return e===null||typeof e!="object"&&typeof e!="function"}function Qj(e){return Kj(e,eq)}function eq(e){return e instanceof st?{value:e.clone(),recurse:!1}:nc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var mk=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},G5=class extends mk{constructor(){super(G5.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};G5.INITIAL_CAPACITY=32;function gk(e){return new sq(e)}function H5(e){return new rq(e)}function tq(e,t){return new yk(e,t)}function nq(e,t=Va.FAIL){return new hq(e,t)}var kn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new dq(this,e)}filter(e){return new uq(this,e)}map(e){return new cq(this,e)}mapAsync(e){return new Cv(this,e)}serialMapAsync(e){return new Cv(this,e).serial()}flatmap(e){return new pq(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new lq(this,e,t)}columnMajorBatch(e,t=!0,n=hk){return this.rowMajorBatch(e,t).map(r=>Zj(r,n))}concatenate(e,t){return new yk(gk([this,e]),t)}take(e){return e<0||e==null?this:new iq(this,e)}skip(e){return e<0||e==null?this:new oq(this,e)}prefetch(e){return new Ak(this,e)}shuffle(e,t){return new fq(this,e,t)}serial(){return new aq(this)}},sq=class extends kn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Qj(e),done:!1}}},rq=class extends kn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},aq=class extends kn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},oq=class extends kn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ne(e.value)}return this.upstream.next()}},iq=class extends kn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},lq=class extends kn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},uq=class extends kn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ne(e.value)}}},cq=class extends kn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),s=kr.getTensorsInContainer(n);for(let r of t)kr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},dq=class extends kn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Cv=class extends kn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=kr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=kr.getTensorsInContainer(n);for(let r of t)kr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},j5=class extends kn{constructor(){super(),this.outputQueue=new G5,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},pq=class extends j5{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=kr.getTensorsInContainer(e.value),n=this.transform(e.value),s=kr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)kr.isTensorInList(r,s)||r.dispose();return!0}},yk=class extends kn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Va;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Va||(Va={}));var hq=class extends kn{constructor(e,t=Va.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof kn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await fk(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Va.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Va.SHORTEST:return{value:null,done:!0};case Va.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Ak=class extends kn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new mk(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},fq=class extends Ak{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Xj.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Kc=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ws(async()=>(await n.iterator()).columnMajorBatch(e,t,yq),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ws(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ws(async()=>(await t.iterator()).filter(s=>K(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ws(async()=>(await t.iterator()).map(n=>K(()=>e(n))),this.size)}mapAsync(e){let t=this;return ws(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ws(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ws(async()=>{let s=H5(async()=>({value:await t.iterator(),done:!1}));return tq(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ws(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=qj.alea(t||v.now().toString());return ws(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ws(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Kc.MAX_BUFFER_SIZE=1e4;function ws(e,t=null){return new class extends Kc{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function mq(e){return ws(async()=>gk(e),e.length)}function gq(e){if(!nc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ws(async()=>{let n=await fk(e,s=>{if(s instanceof Kc)return{value:s.iterator(),recurse:!1};if(nc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return nq(n,Va.SHORTEST)},t)}function yq(e){if(e===null)return null;let t=e[0];return Yj(t)?{value:Aq(e),recurse:!1}:{value:null,recurse:!0}}function Aq(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof st?ln(e):yt(e)}var xk=class extends Kc{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Lf='"',Zd=Symbol("out"),Tv=Symbol("field"),Bf=Symbol("quote"),Zg=Symbol("quoteafterquote"),Nv=Symbol("quoteinquote"),bk=class extends Kc{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new xk(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Zd;for(let o=0;o<r;o++)switch(a){case Zd:switch(e.charAt(o)){case Lf:s=o+1,a=Bf;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Zd;break;default:a=Tv,s=o;break}break;case Tv:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Zd,s=o+1;break;default:}break;case Bf:switch(e.charAt(o)){case Lf:a=Zg;break;default:}break;case Zg:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Zd,s=o+1;break;case Lf:a=Bf;break;default:a=Nv;break}break;case Nv:switch(e.charAt(o)){case Lf:a=Bf;break;default:}break;default:}if(a===Zg?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},vk=class extends kn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Y().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new vk(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),yt(n,t)}},wk=class extends kn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=$t([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Ir([a,r,i,o],[1,4])}else this.cropBox=Ir([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Y().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new wk(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Xs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return K(()=>{let t=Zt(he(e,"float32"),0),n;n=Se.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},kk=class{},Ik=class extends kn{split(e){return new xq(this,e)}},xq=class extends Ik{constructor(e,t){super(),this.upstream=e,this.impl=new bq(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},bq=class extends j5{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},vq=class extends kn{decodeUTF8(){return new wq(this)}},wq=class extends Ik{constructor(e){super(),this.upstream=e,this.impl=new kq(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},kq=class extends j5{constructor(e){if(super(),this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=w7();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Sk=class extends vq{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function Iq(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=Sq(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new Sk(o,t)}else throw new Error(a.statusText)}var Sq=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Ck(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var Tk=class extends kk{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(Ck(this.input)&&Y().get("IS_NODE")){let e=ny();this.input=e.readFileSync(this.input.slice(7))}return new Sk(this.input,this.options)}},Nk=class extends kk{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return Ck(this.url)?new Tk(this.url,this.fileOptions).iterator():Iq(this.url,this.fileOptions)}};function Cq(e,t={}){return new bk(new Nk(e),t)}function Tq(e){let t=H5(e);return ws(async()=>t)}function Nq(e){return ws(async()=>{let t=await e();return H5(()=>t.next())})}async function Eq(e,t){return wk.create(e,t)}async function Rq(e){return vk.create(e)}var _q="3.18.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Dq=ir.whereImpl,q5=class extends ic{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Ep(this,sn())}nextDataId(){return q5.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&T.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return T.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}makeOutput(e,t,n){return sn().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return Dq(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};q5.nextDataId=0;var X5={};Ve(X5,{addImpl:()=>Rk,bincountImpl:()=>Z5,bincountReduceImpl:()=>_k,ceilImpl:()=>Dk,concatImpl:()=>Y5,equalImpl:()=>$k,expImpl:()=>Pk,expm1Impl:()=>Mk,floorImpl:()=>zk,gatherNdImpl:()=>Lk,gatherV2Impl:()=>Bk,greaterEqualImpl:()=>Vk,greaterImpl:()=>Wk,lessEqualImpl:()=>Gk,lessImpl:()=>Uk,linSpaceImpl:()=>Hk,logImpl:()=>jk,maxImpl:()=>qk,maximumImpl:()=>Xk,minimumImpl:()=>Kk,multiplyImpl:()=>J5,negImpl:()=>Zk,notEqualImpl:()=>Yk,prodImpl:()=>Jk,rangeImpl:()=>ex,rsqrtImpl:()=>Qk,scatterImpl:()=>zu,sigmoidImpl:()=>bX,simpleAbsImpl:()=>Ek,sliceImpl:()=>Cm,sparseFillEmptyRowsImpl:()=>tI,sparseReshapeImpl:()=>nI,sparseSegmentReductionImpl:()=>tx,sqrtImpl:()=>kX,squaredDifferenceImpl:()=>sI,stridedSliceImpl:()=>rI,stringNGramsImpl:()=>aI,stringSplitImpl:()=>oI,stringToHashBucketFastImpl:()=>iI,subImpl:()=>lI,tileImpl:()=>uI,topKImpl:()=>dI,transposeImpl:()=>Q5,uniqueImpl:()=>pI});function Ek(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var $q=e=>{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=Ek(r),n.makeOutput(s,t.shape,t.dtype)},Fq={kernelName:ol,backendName:"cpu",kernelFunc:$q};function un(e){return(t,n,s,r,a)=>{let o=T.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=T.getBroadcastDims(t,o),g=T.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(S=>A[S]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(S=>w[S]=0);let k=v.locToIndex(w,d,f);c[y]=e(s[b],r[k])}return[c,o]}}function Is(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var Pq={kernelName:_p,backendName:"cpu",kernelFunc:Is};function Sm(e,t,n="float32"){if(n==="complex64"){let r=Sm(e,t,"float32"),a=Sm(e,t,"float32");return Is({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function qr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Oq={kernelName:Co,backendName:"cpu",kernelFunc:qr};function Qi(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var Mq={kernelName:Bp,backendName:"cpu",kernelFunc:Qi};function so(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return qr({inputs:{x:r},backend:n});let o=Sm(n,r.shape,r.dtype),i=so({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Is({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Qi({inputs:{input:r},backend:n}),i=so({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=qr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,u]=un((c,p)=>c!==p?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var zq={kernelName:co,backendName:"cpu",kernelFunc:so};function In(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?T.fromUint8ToStringArray(u):u,d=o.dtype==="string"?T.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=so({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=so({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,k,S]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(S,"float32",w),R=l.makeTensorInfo(S,"float32",k),$=Is({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),$}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function K5(e){return(t,n,s,r,a,o)=>{let i=T.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=T.getBroadcastDims(t,i),f=T.getBroadcastDims(n,i),m=T.mergeRealAndImagArrays(s,r),g=T.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let k=w%m.length,S=w%g.length,E=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let k=v.indexToLoc(w,u,c),S=k.slice(-y);h.forEach(D=>S[D]=0);let E=v.locToIndex(S,y,x),R=k.slice(-A);f.forEach(D=>R[D]=0);let $=v.locToIndex(R,A,b),_=e(m[E*2],m[E*2+1],g[$*2],g[$*2+1]);p[w]=_.real,d[w]=_.imag}return[p,d,i]}}var Rk=un((e,t)=>e+t),Lq=K5((e,t,n,s)=>({real:e+n,imag:t+s})),sc=In(ya,Rk,Lq),Bq={kernelName:ya,backendName:"cpu",kernelFunc:sc};function Z5(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function _k(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function ri(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function bt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function Zc(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var Dk=ri(e=>Math.ceil(e)),Wq=Zc(po,Dk),Vq={kernelName:po,backendName:"cpu",kernelFunc:Wq};function Y5(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?T.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var $k=un((e,t)=>e===t?1:0),Fk=In(pl,$k,null,"bool"),Uq={kernelName:pl,backendName:"cpu",kernelFunc:Fk},Pk=ri(e=>Math.exp(e)),Ok=Zc(vo,Pk,"float32"),Gq={kernelName:vo,backendName:"cpu",kernelFunc:Ok},Mk=ri(e=>Math.expm1(e)),Hq=Zc(fl,Mk),jq={kernelName:fl,backendName:"cpu",kernelFunc:Hq},zk=ri(e=>Math.floor(e)),qq=Zc(wo,zk),Xq={kernelName:wo,backendName:"cpu",kernelFunc:qq};function Lk(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function Bk(e,t,n){let s=We(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var Wk=un((e,t)=>e>t?1:0),Kq=In(Al,Wk,null,"bool"),Zq={kernelName:Al,backendName:"cpu",kernelFunc:Kq},Vk=un((e,t)=>e>=t?1:0),Yq=In(So,Vk,null,"bool"),Jq={kernelName:So,backendName:"cpu",kernelFunc:Yq},Uk=un((e,t)=>e<t?1:0),Qq=In(xl,Uk,null,"bool"),eX={kernelName:xl,backendName:"cpu",kernelFunc:Qq},Gk=un((e,t)=>e<=t?1:0),tX=In(bl,Gk,null,"bool"),nX={kernelName:bl,backendName:"cpu",kernelFunc:tX};function Hk(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var jk=ri(e=>Math.log(e)),sX=Zc(No,jk),rX={kernelName:No,backendName:"cpu",kernelFunc:sX};function qk(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var Xk=un((e,t)=>Math.max(e,t)),aX=In(Ro,Xk),oX={kernelName:Ro,backendName:"cpu",kernelFunc:aX},Kk=un((e,t)=>Math.min(e,t)),iX=In(Fo,Kk),lX={kernelName:Fo,backendName:"cpu",kernelFunc:iX},J5=un((e,t)=>e*t),uX=K5((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),i2=In(Oo,J5,uX),cX={kernelName:Oo,backendName:"cpu",kernelFunc:i2};function Zk(e,t,n){let s=v.createScalarValue(-1,n);return J5([],t,s,e,n)}function dX(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=Zk(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var pX={kernelName:wl,backendName:"cpu",kernelFunc:dX},Yk=un((e,t)=>e!==t?1:0),hX=In(kl,Yk,null,"bool"),fX={kernelName:kl,backendName:"cpu",kernelFunc:hX};function Q5(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function fs(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Te(r,"transpose");let o=r.shape.length,i=new Array(o);for(let p=0;p<i.length;p++)i[p]=r.shape[a[p]];let l=s.data.get(r.dataId).values,u=Q5(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var mX={kernelName:Vr,backendName:"cpu",kernelFunc:fs};function Jk(e,t,n,s){let[r,a]=T.computeOutAndReduceShapes(e,s),o=Fn(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function gX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=T.getAxesPermutation(l,i),c=l,p=r,d=[];u!=null&&(p=fs({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=T.getInnerMostAxes(c.length,i));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=Jk(p.shape,p.dtype,h,c),y=m;return o&&(y=T.expandShapeToKeepDim(m,l)),d.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var yX={kernelName:Bo,backendName:"cpu",kernelFunc:gX};function ex(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Qk=ri(e=>1/Math.sqrt(e)),AX=Zc(Go,Qk),xX={kernelName:Go,backendName:"cpu",kernelFunc:AX};function zu(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return We(n,t.dtype);let h=We(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}var bX=ri(e=>1/(1+Math.exp(-e))),eI=bt(jo,e=>1/(1+Math.exp(-e))),vX={kernelName:jo,backendName:"cpu",kernelFunc:eI};function Cm(e,t,n,s,r){let a=Gt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Gt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?T.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?T.fromStringArrayToUint8(c.values):c.values}function el(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Gt.parseSliceParams(r,a,o);Gt.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Cm(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var wX={kernelName:Fl,backendName:"cpu",kernelFunc:el};function tI(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(T.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],k=A[w],S=(w===0?0:f[w-1])+k;A[w]++;for(let E=0;E<p;++E)y[S*p+E]=e[b*p+E];x[S]=s[b],c[b]=S}for(let b=0;b<l;++b)if(A[b]===0){let k=b===0?0:f[b-1];y[k*p+0]=b;for(let S=1;S<p;++S)y[k*p+S]=0;x[k]=o}return[y,[g,p],x,u,c]}}function nI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(T.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(T.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(T.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function tx(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let k=0;k<u;k++)f[x*u+k]+=e[w*u+k]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var kX=ri(e=>Math.sqrt(e)),IX=bt(qo,e=>Math.sqrt(e)),SX={kernelName:qo,backendName:"cpu",kernelFunc:IX},sI=un((e,t)=>{let n=e-t;return n*n}),CX=In(Zo,sI),TX={kernelName:Zo,backendName:"cpu",kernelFunc:CX};function rI(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var NX=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function aI(e,t,n,s,r,a,o,i){return new NX(n,s,r,a,o,i).compute(e,t)}function EX(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function oI(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;EX(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function iI(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var lI=un((e,t)=>e-t),RX=K5((e,t,n,s)=>({real:e-n,imag:t-s})),nx=In(Yo,lI,RX),_X={kernelName:Yo,backendName:"cpu",kernelFunc:nx};function uI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=We(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var np=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function cI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));cI(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),np(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;np(e[a],r)<0;)a=a+1;for(;np(e[o],r)>0;)o=o-1}np(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function dI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(cI(f,s),f=f.slice(0,s)),r&&f.sort(np);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[We(c,n,l),We(c,"int32",u)]}function pI(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new fn(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new fn(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}Hl("cpu",()=>new q5,1);var hI=bt(bo,e=>e>=0?e:Math.exp(e)-1),DX={kernelName:bo,backendName:"cpu",kernelFunc:hI};function fI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var $X={kernelName:To,backendName:"cpu",kernelFunc:fI},FX=un((e,t)=>e<0?t*e:e);function mI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=FX(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var PX={kernelName:Lo,backendName:"cpu",kernelFunc:mI},gI=bt(Wo,e=>Math.max(0,e)),OX={kernelName:Wo,backendName:"cpu",kernelFunc:gI},yI=bt(Uo,e=>Math.min(Math.max(0,e),6)),MX={kernelName:Uo,backendName:"cpu",kernelFunc:yI};function Tm(e,t,n,s,r){if(n==="linear")return qr({inputs:{x:t},backend:e});if(n==="relu")return gI({inputs:{x:t},backend:e});if(n==="elu")return hI({inputs:{x:t},backend:e});if(n==="relu6")return yI({inputs:{x:t},backend:e});if(n==="prelu")return mI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return fI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return eI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function _t(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var zX={kernelName:El,backendName:"cpu",kernelFunc:_t};function AI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=jl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],k=_t({inputs:{x:r},backend:n,attrs:{shape:b}}),S=_t({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?k.shape[1]:k.shape[2],R=o?k.shape[2]:k.shape[1],$=i?S.shape[1]:S.shape[2],_=Math.max(g,y),D=n.data.get(k.dataId).values,C=n.data.get(S.dataId).values,P=v.computeStrides(k.shape),V=v.computeStrides(S.shape),[j,z,Z]=o?[P[0],1,P[1]]:[P[0],P[1],1],[W,ee,Q]=i?[1,V[1],V[0]]:[V[1],1,V[0]],ie=R*$,J=We([_,R,$],k.dtype),ae=J.values,le=n.blockSize;for(let ye=0;ye<_;ye++)for(let we=0;we<R;we+=le)for(let Re=0;Re<$;Re+=le)for(let _e=0;_e<E;_e+=le){let Be=Math.min(we+le,R),Ue=Math.min(Re+le,$),it=Math.min(_e+le,E);for(let dt=we;dt<Be;dt++)for(let pt=Re;pt<Ue;pt++){let At=0;for(let $e=_e;$e<it;$e++){let Nt=Math.min(ye,g-1)*j,kt=Math.min(ye,y-1)*Q,Wn=D[Nt+dt*z+$e*Z],en=C[$e*W+pt*ee+kt];At+=Wn*en}ae[ye*ie+(dt*$+pt)]+=At}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(A,J.dtype,J.values)}var LX={kernelName:uo,backendName:"cpu",kernelFunc:AI};function BX(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=AI({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=sc({inputs:{a:d,b:o},backend:n}),m.push(d),d=h),c&&(f=Tm(n,d,c,i,p),m.push(d),d=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return d}var WX={kernelName:Xa,backendName:"cpu",kernelFunc:BX},VX=bt(uc,e=>Math.acos(e)),UX={kernelName:uc,backendName:"cpu",kernelFunc:VX},GX=bt(cc,e=>Math.acosh(e)),HX={kernelName:cc,backendName:"cpu",kernelFunc:GX};function jX(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var qX={kernelName:oo,backendName:"cpu",kernelFunc:jX};function XX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=fs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A&&w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=_t({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var KX={kernelName:dc,backendName:"cpu",kernelFunc:XX};function ZX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=fs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A||w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=_t({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var YX={kernelName:pc,backendName:"cpu",kernelFunc:ZX};function JX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=fs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w>x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var QX={kernelName:io,backendName:"cpu",kernelFunc:JX};function eK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=fs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w<x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var tK={kernelName:hc,backendName:"cpu",kernelFunc:eK},nK=bt(fc,e=>Math.asin(e)),sK={kernelName:fc,backendName:"cpu",kernelFunc:nK},rK=bt(mc,e=>Math.asinh(e)),aK={kernelName:mc,backendName:"cpu",kernelFunc:rK},oK=bt(gc,e=>Math.atan(e)),iK={kernelName:gc,backendName:"cpu",kernelFunc:oK},lK=un((e,t)=>Math.atan2(e,t)),uK=In(Ac,lK),cK={kernelName:Ac,backendName:"cpu",kernelFunc:uK},dK=bt(yc,e=>Math.atanh(e)),pK={kernelName:yc,backendName:"cpu",kernelFunc:dK};function sx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let E=0;E<r.outHeight;++E){let R=E*o-d,$=Math.max(0,R),_=Math.min(r.inHeight,c+R),D=w+E*x;for(let C=0;C<r.outWidth;++C){let P=C*i-h,V=Math.max(0,P),j=Math.min(r.inWidth,p+P),z=f,Z=0,W=0;for(let Q=$;Q<_;Q+=l){let ie=k+Q*s[1];for(let J=V;J<j;J+=u){let ae=ie+J*s[2],le=e[ae+S];a==="max"&&le>z?z=le:a==="avg"&&(Z+=le,W++)}if(isNaN(z))break}let ee=D+C*A+S;g[ee]=a==="avg"?Z/W:z}}}return m}function xI(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let x=0;x<s.outHeight;++x){let A=x*i-h,b=A;for(;b<0;)b+=u;let w=Math.min(s.inHeight,p+A);for(let k=0;k<s.outWidth;++k){let S=k*l-f,E=S;for(;E<0;)E+=c;let R=Math.min(s.inWidth,d+S),$=Number.NEGATIVE_INFINITY,_=-1;for(let D=b;D<w;D+=u){let C=D-A;for(let P=E;P<R;P+=c){let V=P-S,j=m.get(g,D,P,y);j>$&&($=j,r?_=a?((g*s.inHeight+D)*s.inWidth+P)*s.inChannels+y:(D*s.inWidth+P)*s.inChannels+y:_=C*d+V)}}o.set(_,g,x,k,y)}}return o}function bI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=We(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let R=0;R<r.batchSize;++R){let $=R*w,_=R*s[0];for(let D=0;D<r.inChannels;++D)for(let C=0;C<r.outDepth;++C){let P=C*o-m,V=P;for(;V<0;)V+=u;let j=Math.min(r.inDepth,d+P),z=$+C*k;for(let Z=0;Z<r.outHeight;++Z){let W=Z*i-g,ee=W;for(;ee<0;)ee+=c;let Q=Math.min(r.inHeight,h+W),ie=z+Z*S;for(let J=0;J<r.outWidth;++J){let ae=J*l-y,le=ae;for(;le<0;)le+=p;let ye=Math.min(r.inWidth,f+ae),we=ie+J*E,Re=x,_e=0,Be=0;for(let it=V;it<j;it+=u){let dt=_+it*s[1];for(let pt=ee;pt<Q;pt+=c){let At=dt+pt*s[2];for(let $e=le;$e<ye;$e+=p){let Nt=At+$e*s[3],kt=e[Nt+D];if(a==="max"&&kt>Re?Re=kt:a==="avg"&&(_e+=kt,Be++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Ue=we+D;b[Ue]=a==="avg"?_e/Be:Re}}}}return A}function hK(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let x=y*s-d,A=x;for(;A<0;)A+=o;let b=Math.min(t.inDepth,u+x);for(let w=0;w<t.outHeight;++w){let k=w*r-h,S=k;for(;S<0;)S+=i;let E=Math.min(t.inHeight,c+k);for(let R=0;R<t.outWidth;++R){let $=R*a-f,_=$;for(;_<0;)_+=l;let D=Math.min(t.inWidth,p+$),C=Number.NEGATIVE_INFINITY,P=-1;for(let V=A;V<b;V+=o){let j=V-x;for(let z=S;z<E;z+=i){let Z=z-k;for(let W=_;W<D;W+=l){let ee=W-$,Q=e.get(m,V,z,W,g);Q>=C&&(C=Q,P=j*c*p+Z*c+ee)}}}n.set(P,m,y,w,R,g)}}}return n}function fK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=qr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=sx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var mK={kernelName:lo,backendName:"cpu",kernelFunc:fK};function gK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"avgPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=bI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var yK={kernelName:Rp,backendName:"cpu",kernelFunc:gK};function AK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"avgPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,k=c.effectiveFilterWidth,S=b-1-c.padInfo.front,E=k-1-c.padInfo.left,R=w-1-c.padInfo.top,$=We(a.shape,"float32"),_=1/(f*m*g),D=n.bufferSync(r);for(let C=0;C<c.batchSize;++C)for(let P=0;P<c.inChannels;++P)for(let V=0;V<c.inDepth;++V)for(let j=0;j<c.inHeight;++j)for(let z=0;z<c.inWidth;++z){let Z=V-S,W=j-R,ee=z-E,Q=0;for(let ie=0;ie<b;ie+=y){let J=(Z+ie)/p;if(!(J<0||J>=c.outDepth||Math.floor(J)!==J))for(let ae=0;ae<w;ae+=x){let le=(W+ae)/d;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let ye=0;ye<k;ye+=A){let we=(ee+ye)/h;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;Q+=D.get(C,J,le,we,P)}}}$.set(Q*_,C,V,j,z,P)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var xK={kernelName:Mm,backendName:"cpu",kernelFunc:AK};function bK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=We(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,E=We(r.shape,"float32",S);for(let R=0;R<c.batchSize;++R)for(let $=0;$<c.inChannels;++$)for(let _=0;_<c.inHeight;++_)for(let D=0;D<c.inWidth;++D){let C=_-b,P=D-A,V=0;for(let j=0;j<y;j+=m){let z=(C+j)/p;if(!(z<0||z>=c.outHeight||Math.floor(z)!==z))for(let Z=0;Z<x;Z+=g){let W=(P+Z)/d;if(W<0||W>=c.outWidth||Math.floor(W)!==W)continue;V+=E.get(R,z,W,$)}}w.set(V*k,R,_,D,$)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var vK={kernelName:Om,backendName:"cpu",kernelFunc:bK};function wK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,k=0,S=0;for(let E=0;E<c.length;++E)m[E]=f[b++]+(c[E]-p[w++])*h[k++]/Math.sqrt(d[S++]+u),b>=g&&(b=0),w>=A&&(w=0),k>=y&&(k=0),S>=x&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var kK={kernelName:Io,backendName:"cpu",kernelFunc:wK};function IK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=_t({inputs:{x:r},backend:n,attrs:{shape:l}}),f=fs({inputs:{x:h},backend:n,attrs:{perm:u}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),g=el({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var SK={kernelName:il,backendName:"cpu",kernelFunc:IK};function CK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Z5(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var TK={kernelName:zm,backendName:"cpu",kernelFunc:CK};function NK(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var EK={kernelName:Lm,backendName:"cpu",kernelFunc:NK},RK=bt(Aa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),_K={kernelName:Aa,backendName:"cpu",kernelFunc:RK},DK=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];s[u]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},$K={kernelName:Dp,backendName:"cpu",kernelFunc:DK};function rc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var FK={kernelName:Op,backendName:"cpu",kernelFunc:rc};function ac(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return qr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(T.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>Qi({inputs:{input:b},backend:n})),g=i.map(b=>rc({inputs:{input:b},backend:n})),y=ac({inputs:m,backend:n,attrs:{axis:a}}),x=ac({inputs:g,backend:n,attrs:{axis:a}}),A=Is({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return _t({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=T.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Y5(c,o,t[0].dtype,p),h=T.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var PK={kernelName:ll,backendName:"cpu",kernelFunc:ac};function vI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Te([r,a],"conv2d");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new fn(d.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),S=w[0],E=A?w[1]:w[2],R=A?w[2]:1,$=A?1:w[1],_=b.strides[0],D=A?b.strides[1]:b.strides[2],C=A?b.strides[2]:1,P=A?1:b.strides[1],V=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,z=b.values;for(let Z=0;Z<d.batchSize;++Z){let W=Z*S,ee=Z*_;for(let Q=0;Q<d.outHeight;++Q){let ie=ee+Q*D,J=Q*d.strideHeight-x;for(let ae=0;ae<h;++ae){let le=J+ae*m;if(le<0||le>=d.inHeight)continue;let ye=ae*k[0],we=W+le*E;for(let Re=0;Re<d.outWidth;++Re){let _e=ie+Re*C,Be=Re*d.strideWidth-y;for(let Ue=0;Ue<f;++Ue){let it=Be+Ue*g;if(it<0||it>=d.inWidth)continue;let dt=ye+Ue*k[1],pt=we+it*R,At=dt;for(let $e=0;$e<d.inChannels;++$e){let Nt=V[pt+$e*$];for(let kt=0;kt<d.outChannels;++kt)z[_e+kt*P]+=Nt*j[At+kt];At+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var OK={kernelName:ho,backendName:"cpu",kernelFunc:vI};function MK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"conv2dBackpropFilter");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,y=d.dataFormat==="channelsLast",x=new fn(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new fn(r.shape,r.dtype,w),E=new fn(a.shape,a.dtype,k);for(let R=0;R<m;++R){let $=Math.max(0,Math.ceil((b-R)/h)),_=Math.min(d.outHeight,(d.inHeight+b-R)/h);for(let D=0;D<g;++D){let C=Math.max(0,Math.ceil((A-D)/f)),P=Math.min(d.outWidth,(d.inWidth+A-D)/f);for(let V=0;V<d.inChannels;++V)for(let j=0;j<d.outChannels;++j){let z=0;for(let Z=0;Z<d.batchSize;++Z)for(let W=$;W<_;++W){let ee=R+W*h-b;for(let Q=C;Q<P;++Q){let ie=D+Q*f-A;y?z+=S.get(Z,ee,ie,V)*E.get(Z,W,Q,j):z+=S.get(Z,V,ee,ie)*E.get(Z,j,W,Q)}}x.set(z,R,D,V,j)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var zK={kernelName:Bm,backendName:"cpu",kernelFunc:MK};function LK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Te([r,a],"conv2dBackpropInput");let p=v.computeStrides(a.shape),d=v.computeStrides(r.shape),h=T.convertConv2DDataFormat(u),f=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new fn(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[A,b,w]=p,{batchSize:k,filterHeight:S,filterWidth:E,inChannels:R,inHeight:$,inWidth:_,outChannels:D,outHeight:C,outWidth:P,strideHeight:V,strideWidth:j}=f;h=f.dataFormat;let z=S-1-f.padInfo.top,Z=E-1-f.padInfo.left,W=h==="channelsLast",ee=m.strides[0],Q=W?m.strides[1]:m.strides[2],ie=W?m.strides[2]:1,J=W?1:m.strides[1],ae=d[0],le=W?d[1]:d[2],ye=W?d[2]:1,we=W?1:d[1];for(let Re=0;Re<k;++Re)for(let _e=0;_e<R;++_e)for(let Be=0;Be<$;++Be){let Ue=Be-z,it=Math.max(0,Math.ceil(Ue/V)),dt=Math.min(C,(S+Ue)/V);for(let pt=0;pt<_;++pt){let At=pt-Z,$e=Math.max(0,Math.ceil(At/j)),Nt=Math.min(P,(E+At)/j),kt=0;for(let en=it;en<dt;++en){let As=en*V-Ue;for(let pn=$e;pn<Nt;++pn){let Vn=pn*j-At,xs=ae*Re+le*en+ye*pn,bs=A*(S-1-As)+b*(E-1-Vn)+w*_e;for(let _n=0;_n<D;++_n){let Ls=y[xs+we*_n],Un=x[bs+_n];kt+=Ls*Un}}}let Wn=ee*Re+Q*Be+ie*pt+J*_e;g[Wn]=kt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var BK={kernelName:fo,backendName:"cpu",kernelFunc:LK};function WK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Te([r,a],"conv3d");let u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,x=g.left,A=g.top,b=new fn(u.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,E=v.computeStrides(r.shape),R=v.computeStrides(a.shape);for(let $=0;$<u.batchSize;++$){let _=$*E[0],D=$*b.strides[0];for(let C=0;C<u.outDepth;++C){let P=D+C*b.strides[1],V=C*u.strideDepth-y;for(let j=0;j<c;++j){let z=V+j*h;if(z<0||z>=u.inDepth)continue;let Z=j*R[0],W=_+z*E[1];for(let ee=0;ee<u.outHeight;++ee){let Q=P+ee*b.strides[2],ie=ee*u.strideHeight-A;for(let J=0;J<p;++J){let ae=ie+J*f;if(ae<0||ae>=u.inHeight)continue;let le=Z+J*R[1],ye=W+ae*E[2];for(let we=0;we<u.outWidth;++we){let Re=Q+we*u.outChannels,_e=we*u.strideWidth-x;for(let Be=0;Be<d;++Be){let Ue=_e+Be*m;if(Ue<0||Ue>=u.inWidth)continue;let it=le+Be*R[2],dt=ye+Ue*u.inChannels,pt=it;for(let At=0;At<u.inChannels;++At){let $e=w[dt+At];for(let Nt=0;Nt<u.outChannels;++Nt)S[Re+Nt]+=$e*k[pt+Nt];pt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var VK={kernelName:$p,backendName:"cpu",kernelFunc:WK};function UK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Te([r,a],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=T.computeConv3DInfo(r.shape,l,o,1,i),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,y=p.filterWidth,x=new fn(p.filterShape,"float32"),A=x.values,[b,w,k,S]=x.strides,E=n.data.get(a.dataId).values,[R,$,_,D]=c,C=n.data.get(r.dataId).values,[P,V,j,z]=u,Z=p.padInfo.front,W=p.padInfo.left,ee=p.padInfo.top;for(let Q=0;Q<m;++Q){let ie=Math.max(0,Math.ceil((Z-Q)/d)),J=Math.min(p.outDepth,(p.inDepth+Z-Q)/d),ae=Q*b;for(let le=0;le<g;++le){let ye=Math.max(0,Math.ceil((ee-le)/h)),we=Math.min(p.outHeight,(p.inHeight+ee-le)/h),Re=le*w+ae;for(let _e=0;_e<y;++_e){let Be=Math.max(0,Math.ceil((W-_e)/f)),Ue=Math.min(p.outWidth,(p.inWidth+W-_e)/f),it=_e*k+Re;for(let dt=0;dt<p.inChannels;++dt){let pt=dt*S+it;for(let At=0;At<p.outChannels;++At){let $e=0;for(let Nt=0;Nt<p.batchSize;++Nt){let kt=Nt*P,Wn=Nt*R;for(let en=ie;en<J;++en){let pn=(Q+en*d-Z)*V+kt,Vn=en*$+Wn;for(let xs=ye;xs<we;++xs){let _n=(le+xs*h-ee)*j+pn,Ls=xs*_+Vn;for(let Un=Be;Un<Ue;++Un){let na=(_e+Un*f-W)*z+_n,gu=Un*D+Ls;$e+=C[na+dt]*E[gu+At]}}}}A[pt+At]=$e}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var GK={kernelName:Wm,backendName:"cpu",kernelFunc:UK};function HK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Te([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=T.computeConv3DInfo(l,a.shape,i,1,o),d=new fn(p.inShape,"float32"),h=d.values,[f,m,g,y]=d.strides,x=n.data.get(r.dataId).values,[A,b,w,k]=u,S=n.data.get(a.dataId).values,[E,R,$,_]=c,{batchSize:D,filterDepth:C,filterHeight:P,filterWidth:V,inChannels:j,inDepth:z,inHeight:Z,inWidth:W,outChannels:ee,outDepth:Q,outHeight:ie,outWidth:J,strideDepth:ae,strideHeight:le,strideWidth:ye}=p,we=C-1-p.padInfo.front,Re=P-1-p.padInfo.top,_e=V-1-p.padInfo.left;for(let Be=0;Be<D;++Be)for(let Ue=0;Ue<j;++Ue)for(let it=0;it<z;++it){let dt=it-we,pt=Math.max(0,Math.ceil(dt/ae)),At=Math.min(Q,(C+dt)/ae);for(let $e=0;$e<Z;++$e){let Nt=$e-Re,kt=Math.max(0,Math.ceil(Nt/le)),Wn=Math.min(ie,(P+Nt)/le);for(let en=0;en<W;++en){let As=en-_e,pn=Math.max(0,Math.ceil(As/ye)),Vn=Math.min(J,(V+As)/ye),xs=0;for(let bs=pt;bs<At;++bs){let _n=bs*ae-dt;for(let Ls=kt;Ls<Wn;++Ls){let Un=Ls*le-Nt;for(let ta=pn;ta<Vn;++ta){let na=ta*ye-As,gu=A*Be+b*bs+w*Ls+k*ta,Da=E*(C-1-_n)+R*(P-1-Un)+$*(V-1-na)+_*Ue;for(let sa=0;sa<ee;++sa){let _d=x[gu+sa],yu=S[Da+sa];xs+=_d*yu}}}}h[f*Be+m*it+g*$e+y*en+Ue]=xs}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var jK={kernelName:Vm,backendName:"cpu",kernelFunc:HK},qK=bt(mo,e=>Math.cos(e)),XK={kernelName:mo,backendName:"cpu",kernelFunc:qK},KK=bt(go,e=>Math.cosh(e)),ZK={kernelName:go,backendName:"cpu",kernelFunc:KK};function YK(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=We([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(y.shape);for(let S=0;S<f;S++){let E=S*4,R=x[E],$=x[E+1],_=x[E+2],D=x[E+3],C=A[S];if(C>=c)continue;let P=m>1?(_-R)*(p-1)/(m-1):0,V=g>1?(D-$)*(d-1)/(g-1):0;for(let j=0;j<m;j++){let z=m>1?R*(p-1)+j*P:.5*(R+_)*(p-1);if(z<0||z>p-1){for(let Z=0;Z<g;Z++)for(let W=0;W<h;W++){let ee=W+Z*k[2]+j*k[1]+S*k[0];y.values[ee]=u}continue}if(l==="bilinear"){let Z=Math.floor(z),W=Math.ceil(z),ee=z-Z;for(let Q=0;Q<g;Q++){let ie=g>1?$*(d-1)+Q*V:.5*($+D)*(d-1);if(ie<0||ie>d-1){for(let ye=0;ye<h;ye++){let we=ye+Q*k[2]+j*k[1]+S*k[0];y.values[we]=u}continue}let J=Math.floor(ie),ae=Math.ceil(ie),le=ie-J;for(let ye=0;ye<h;ye++){let we=ye+J*w[2]+Z*w[1]+C*w[0],Re=b[we];we=ye+ae*w[2]+Z*w[1]+C*w[0];let _e=b[we];we=ye+J*w[2]+W*w[1]+C*w[0];let Be=b[we];we=ye+ae*w[2]+W*w[1]+C*w[0];let Ue=b[we],it=Re+(_e-Re)*le,dt=Be+(Ue-Be)*le;we=ye+Q*k[2]+j*k[1]+S*k[0],y.values[we]=it+(dt-it)*ee}}}else for(let Z=0;Z<g;++Z){let W=g>1?$*(d-1)+Z*V:.5*($+D)*(d-1);if(W<0||W>d-1){for(let ie=0;ie<h;ie++){let J=ie+Z*k[2]+j*k[1]+S*k[0];y.values[J]=u}continue}let ee=Math.round(W),Q=Math.round(z);for(let ie=0;ie<h;ie++){let J=ie+ee*w[2]+Q*w[1]+C*w[0],ae=ie+Z*k[2]+j*k[1]+S*k[0];y.values[ae]=b[J]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var JK={kernelName:cl,backendName:"cpu",kernelFunc:YK};function QK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumprod");let l=T.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=fs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=T.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Fn(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?1:h[A];else{let b=m(y,x-1);d[A]=o?h[b]*d[b]:h[A]*d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=T.getUndoAxesPermutation(l),x=fs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var eZ={kernelName:ul,backendName:"cpu",kernelFunc:QK};function tZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumsum");let l=T.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=fs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=T.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Fn(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?0:h[A];else{let b=m(y,x-1);d[A]=o?h[b]+d[b]:h[A]+d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=T.getUndoAxesPermutation(l),x=fs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var nZ={kernelName:yo,backendName:"cpu",kernelFunc:tZ};function sZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Z5(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=_k(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var rZ={kernelName:Um,backendName:"cpu",kernelFunc:sZ};function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y<i;++y)for(let x=0;x<p;++x){let A=Math.floor(x/a),b=x%a;for(let w=0;w<d;++w){let k=Math.floor(w/a),S=w%a,E=(b*a+S)*h;for(let R=0;R<h;++R){let _=R+E+c*(k+u*(A+l*y));m[g++]=f[_]}}}return n.makeTensorInfo([i,p,d,h],r.dtype,m)}var oZ={kernelName:dl,backendName:"cpu",kernelFunc:aZ};function wI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Te([r,a],"depthwiseConv2DNative");let c=v.computeStrides(r.shape),p=v.computeStrides(a.shape),d=l;d==null&&(d=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,k=new fn(h.outShape,r.dtype),S=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,R=k.values;for(let $=0;$<h.batchSize;++$){let _=$*c[0],D=$*k.strides[0];for(let C=0;C<h.outHeight;++C){let P=D+C*k.strides[1],V=C*h.strideHeight-b;for(let j=0;j<f;++j){let z=V+j*g;if(z<0||z>=h.inHeight)continue;let Z=j*p[0],W=_+z*c[1];for(let ee=0;ee<h.outWidth;++ee){let Q=P+ee*k.strides[2],ie=ee*h.strideWidth-A;for(let J=0;J<m;++J){let ae=ie+J*y;if(ae<0||ae>=h.inWidth)continue;let le=Z+J*p[1],ye=W+ae*h.inChannels,we=Q,Re=le;for(let _e=0;_e<h.inChannels;++_e){let Be=S[ye+_e];for(let Ue=0;Ue<w;++Ue)R[we+Ue]+=Be*E[Re+Ue];we+=w,Re+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var iZ={kernelName:Ao,backendName:"cpu",kernelFunc:wI};function lZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"depthwiseConv2dNativeBackpropFilter");let p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new fn(p.filterShape,"float32"),y=p.padInfo.left,x=p.padInfo.top,A=p.outChannels/p.inChannels,b=n.data.get(r.dataId).values,w=new fn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new fn(a.shape,a.dtype,k);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((x-E)/d)),$=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let _=0;_<m;++_){let D=Math.max(0,Math.ceil((y-_)/h)),C=Math.min(p.outWidth,(p.inWidth+y-_)/h);for(let P=0;P<p.outChannels;++P){let V=Math.trunc(P/A),j=P%A,z=0;for(let Z=0;Z<p.batchSize;++Z)for(let W=R;W<$;++W){let ee=E+W*d-x;for(let Q=D;Q<C;++Q){let ie=_+Q*h-y;z+=w.get(Z,ee,ie,V)*S.get(Z,W,Q,P)}}g.set(z,E,_,V,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var uZ={kernelName:Gm,backendName:"cpu",kernelFunc:lZ};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Te([r,a],"depthwiseConv2DNativeBackpropInput");let p=v.computeStrides(r.shape),d=v.computeStrides(a.shape),h=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new fn(h.inShape,"float32"),m=f.values,[g,y,x]=f.strides,A=n.data.get(r.dataId).values,[b,w,k]=p,S=n.data.get(a.dataId).values,[E,R,$]=d,{batchSize:_,filterHeight:D,filterWidth:C,inChannels:P,inHeight:V,inWidth:j,outChannels:z,outHeight:Z,outWidth:W,strideHeight:ee,strideWidth:Q}=h,ie=D-1-h.padInfo.top,J=C-1-h.padInfo.left,ae=z/P;for(let le=0;le<_;++le)for(let ye=0;ye<P;++ye)for(let we=0;we<V;++we){let Re=we-ie,_e=Math.max(0,Math.ceil(Re/ee)),Be=Math.min(Z,(D+Re)/ee);for(let Ue=0;Ue<j;++Ue){let it=Ue-J,dt=Math.max(0,Math.ceil(it/Q)),pt=Math.min(W,(C+it)/Q),At=0;for(let $e=_e;$e<Be;++$e){let Nt=$e*ee-Re;for(let kt=dt;kt<pt;++kt){let Wn=kt*Q-it,en=b*le+w*$e+k*kt,As=E*(D-1-Nt)+R*(C-1-Wn)+$*ye;for(let pn=0;pn<ae;++pn){let Vn=ye*ae+pn,xs=A[en+Vn],bs=S[As+pn];At+=xs*bs}}}m[g*le+y*we+x*Ue+ye]=At}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var dZ={kernelName:Hm,backendName:"cpu",kernelFunc:cZ};function pZ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=We([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var hZ={kernelName:jm,backendName:"cpu",kernelFunc:pZ},fZ={kernelName:Fp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:S,dilationHeight:E,dilationWidth:R,outShape:$}=T.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),_=v.sizeFromShape($),D=$.length,C=v.getArrayFromDType(s.dtype,_);for(let V=0;V<h;++V)for(let j=0;j<y;++j){let z=j*b-A.top;for(let Z=0;Z<x;++Z){let W=Z*w-A.left;for(let ee=0;ee<g;++ee){let Q=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let ae=z+J*E;if(ae>=0&&ae<f)for(let le=0;le<S;++le){let ye=W+le*R;if(ye>=0&&ye<m){let we=v.locToIndex([V,ae,ye,ee],c,v.computeStrides(s.shape)),Re=v.locToIndex([J,le,ee],d,v.computeStrides(r.shape)),_e=u[we]+p[Re];_e>Q&&(Q=_e)}}}let ie=v.locToIndex([V,j,Z,ee],D,v.computeStrides($));C[ie]=Q}}}return{dataId:l.write(v.toTypedArray(C,s.dtype),$,s.dtype),shape:$,dtype:s.dtype}}},mZ={kernelName:im,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:E,outShape:R}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${im}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let $=v.toNestedArray(R,u.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let C=0;C<d;++C)for(let P=0;P<g;++P){let V=P*A-x.top;for(let j=0;j<y;++j){let z=j*b-x.left;for(let Z=0;Z<m;++Z){let W=Number.MIN_SAFE_INTEGER,ee=0,Q=0;for(let ie=0;ie<w;++ie){let J=V+ie*S;if(J>=0&&J<h)for(let ae=0;ae<k;++ae){let le=z+ae*E;if(le>=0&&le<f){let ye=c[C][J][le][Z]+p[ie][ae][Z];ye>W&&(W=ye,ee=ie,Q=ae)}}}_[ee][Q][Z]+=$[C][P][j][Z]}}}return{dataId:u.write(v.toTypedArray(_,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},gZ={kernelName:om,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:E,outShape:R}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${om}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let $=v.toNestedArray(R,u.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let C=0;C<d;++C)for(let P=0;P<g;++P){let V=P*A-x.top;for(let j=0;j<y;++j){let z=j*b-x.left;for(let Z=0;Z<m;++Z){let W=Number.MIN_SAFE_INTEGER,ee=V<0?0:V,Q=z<0?0:z;for(let ie=0;ie<w;++ie){let J=V+ie*S;if(J>=0&&J<h)for(let ae=0;ae<k;++ae){let le=z+ae*E;if(le>=0&&le<f){let ye=c[C][J][le][Z]+p[ie][ae][Z];ye>W&&(W=ye,ee=J,Q=le)}}}_[C][ee][Q][Z]+=$[C][P][j][Z]}}}return{dataId:u.write(v.toTypedArray(_,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Sh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=so({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=qr({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=T.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=fs({inputs:{x:i},backend:n,attrs:{perm:c}}),p=T.getInnerMostAxes(p.length,l)),T.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=T.computeOutAndReduceShapes(d.shape,p),m=T.upcastType(d.dtype,"int32"),g=Sm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b<x.length;++b){let w=b*y,k=0;for(let S=0;S<y;++S)k+=A[w+S];x[b]=k}if(o){let b=T.expandShapeToKeepDim(g.shape,u),w=g;g=_t({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(d),g}var yZ={kernelName:Xo,backendName:"cpu",kernelFunc:Sh};function AZ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=fs({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=_t({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=i2({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Sh({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var xZ={kernelName:Pp,backendName:"cpu",kernelFunc:AZ};function bZ(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var vZ={kernelName:qm,backendName:"cpu",kernelFunc:bZ},wZ=T.ERF_P,kZ=T.ERF_A1,IZ=T.ERF_A2,SZ=T.ERF_A3,CZ=T.ERF_A4,TZ=T.ERF_A5,NZ=bt(xc,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+wZ*n);return t*(1-((((TZ*s+CZ)*s+SZ)*s+IZ)*s+kZ)*s*Math.exp(-n*n))}),EZ={kernelName:xc,backendName:"cpu",kernelFunc:NZ};function Nm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),_t({inputs:{x:r},backend:n,attrs:{shape:i}})}var RZ={kernelName:hl,backendName:"cpu",kernelFunc:Nm},_Z=un((e,t)=>e/t),rx=In(xo,_Z),M3={kernelName:xo,backendName:"cpu",kernelFunc:rx};function kI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=el({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=el({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=Is({inputs:{real:y,imag:x},backend:n}),{real:b,imag:w}=DZ(A,t,n),k=T.mergeRealAndImagArrays(b,w);for(let S=0;S<a;S++){let E=T.getComplexWithIndex(k,S);p[g*a+S]=E.real,d[g*a+S]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(A)}let h=n.makeTensorInfo(u,"float32",p),f=n.makeTensorInfo(u,"float32",d),m=Is({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function DZ(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if($Z(s)){let i=z3(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),p=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),d=qr({inputs:{x:p},backend:n}),h=M3.kernelFunc({inputs:{a:u,b:p},backend:n}),f=M3.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=T.mergeRealAndImagArrays(a,o),l=FZ(i,s,t);return T.splitRealAndImagArrays(l)}}function $Z(e){return(e&e-1)===0}function z3(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=T.mergeRealAndImagArrays(e,t),o=n/2,i=T.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=Is({inputs:{real:p,imag:d},backend:r}),f=T.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],x=r.makeTensorInfo(y,"float32",m),A=r.makeTensorInfo(y,"float32",g),b=Is({inputs:{real:x,imag:A},backend:r}),w=z3(l,u,o,s,r),k=w.real,S=w.imag,E=[k.length],R=r.makeTensorInfo(E,"float32",k),$=r.makeTensorInfo(E,"float32",S),_=Is({inputs:{real:R,imag:$},backend:r}),D=z3(m,g,o,s,r),C=D.real,P=D.imag,V=[C.length],j=r.makeTensorInfo(V,"float32",C),z=r.makeTensorInfo(V,"float32",P),Z=Is({inputs:{real:j,imag:z},backend:r}),W=T.exponents(n,s),ee=[W.real.length],Q=r.makeTensorInfo(ee,"float32",W.real),ie=r.makeTensorInfo(ee,"float32",W.imag),J=Is({inputs:{real:Q,imag:ie},backend:r}),ae=i2({inputs:{a:J,b:Z},backend:r}),le=sc({inputs:{a:_,b:ae},backend:r}),ye=nx({inputs:{a:_,b:ae},backend:r}),we=Qi({inputs:{input:le},backend:r}),Re=Qi({inputs:{input:ye},backend:r}),_e=rc({inputs:{input:le},backend:r}),Be=rc({inputs:{input:ye},backend:r}),Ue=ac({inputs:[we,Re],backend:r,attrs:{axis:0}}),it=ac({inputs:[_e,Be],backend:r,attrs:{axis:0}}),dt=r.data.get(Ue.dataId).values,pt=r.data.get(it.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Ue),r.disposeIntermediateTensorInfo(it),{real:dt,imag:pt}}function FZ(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=T.exponent(r*i,t,n),u=T.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),T.assignToTypedArray(s,a,o,r)}return s}function PZ(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=_t({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=kI(i,!1,n),u=_t({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var OZ={kernelName:Xm,backendName:"cpu",kernelFunc:PZ};function ax(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return zZ(i,r,o),t.makeTensorInfo(s,o,i)}var MZ={kernelName:bc,backendName:"cpu",kernelFunc:ax};function zZ(e,t,n){e.fill(t)}var LZ={kernelName:ml,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<o;d++){let h=d*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let x=0;x<u;x++){let A=Math.round(l-g-1),b=h+m+y+x,w=c[b];if(A>=0&&A<l){let k=A*u,S=h+m+k+x;w=c[S]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},BZ=un((e,t)=>Math.floor(e/t)),WZ=In(ko,BZ,null,"int32"),VZ={kernelName:ko,backendName:"cpu",kernelFunc:WZ};function UZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=vI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=_t({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=sc({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=sc({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=_t({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Tm(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Tm(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var GZ={kernelName:Ka,backendName:"cpu",kernelFunc:UZ};function HZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=wI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=sc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Tm(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var jZ={kernelName:Za,backendName:"cpu",kernelFunc:HZ};function qZ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=T.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=Lk(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var XZ={kernelName:yl,backendName:"cpu",kernelFunc:qZ};function KZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=c-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=T.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=_t({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=_t({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=Bk(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var ZZ={kernelName:gl,backendName:"cpu",kernelFunc:KZ};function YZ(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=_t({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=kI(i,!0,n),u=_t({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var JZ={kernelName:Km,backendName:"cpu",kernelFunc:YZ},QZ=bt(vc,e=>Number.isFinite(e)?1:0,"bool"),eY={kernelName:vc,backendName:"cpu",kernelFunc:QZ},tY=bt(wc,e=>Math.abs(e)===1/0?1:0,"bool"),nY={kernelName:wc,backendName:"cpu",kernelFunc:tY},sY=bt(kc,e=>Number.isNaN(e)?1:0,"bool"),rY={kernelName:kc,backendName:"cpu",kernelFunc:sY};function aY(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=Hk(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var oY={kernelName:Zm,backendName:"cpu",kernelFunc:aY},iY=bt(Ic,e=>Math.log1p(e)),lY={kernelName:Ic,backendName:"cpu",kernelFunc:iY},uY=un((e,t)=>e&&t),cY=In(vl,uY,null,"bool"),dY={kernelName:vl,backendName:"cpu",kernelFunc:cY},pY=bt(Sc,e=>e?0:1,"bool"),hY={kernelName:Sc,backendName:"cpu",kernelFunc:pY},fY=un((e,t)=>e||t),mY=In(Mp,fY,null,"bool"),gY={kernelName:Mp,backendName:"cpu",kernelFunc:mY};function yY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),y=p[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var AY={kernelName:zp,backendName:"cpu",kernelFunc:yY};function xY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Te(o,"LRNGrad");let p=v.sizeFromShape(o.shape),d=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),y=p;for(let x=0;x<y;x++){let A=x%d,b=x-A+Math.max(0,A-i),w=x-A+Math.min(d,A+i+1),k=0;for(let S=b;S<w;S++)k+=Math.pow(f[S],2);k=u*k+l;for(let S=b;S<w;S++){let E=-2*u*c*f[S]*m[x]/k;x===S&&(E+=Math.pow(k,-c)),E*=h[x],g[S]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var bY={kernelName:Ym,backendName:"cpu",kernelFunc:xY};function II(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=v.parseAxisParam(a,l),p=c,d=T.getAxesPermutation(p,u),h=i.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=Q5(h,l,r.dtype,d,b),p=T.getInnerMostAxes(p.length,u),l=b}Te(r,"max"),T.assertAxesAreInnerMostDims("max",p,u);let[f,m]=T.computeOutAndReduceShapes(l,p),g=v.sizeFromShape(m),y=qk(h,g,f,r.dtype),x=i.write(y,f,r.dtype),A=f;return o&&(A=T.expandShapeToKeepDim(f,c)),{dataId:x,shape:A,dtype:r.dtype}}var vY={kernelName:Eo,backendName:"cpu",kernelFunc:II};function wY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=qr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=sx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var kY={kernelName:_o,backendName:"cpu",kernelFunc:wY};function IY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"maxPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=bI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var SY={kernelName:Lp,backendName:"cpu",kernelFunc:IY};function CY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"maxPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=hK(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,k=A-1-c.padInfo.front,S=w-1-c.padInfo.left,E=b-1-c.padInfo.top,R=We(a.shape,"float32"),$=n.bufferSync(r);for(let _=0;_<c.batchSize;++_)for(let D=0;D<c.inChannels;++D)for(let C=0;C<c.inDepth;++C)for(let P=0;P<c.inHeight;++P)for(let V=0;V<c.inWidth;++V){let j=C-k,z=P-E,Z=V-S,W=0;for(let ee=0;ee<A;ee+=g){let Q=(j+ee)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let ie=0;ie<b;ie+=y){let J=(z+ie)/f;if(!(J<0||J>=c.outHeight||Math.floor(J)!==J))for(let ae=0;ae<w;ae+=x){let le=(Z+ae)/m;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let ye=A*b*w-1-d.get(_,Q,J,le,D),we=ee*b*w+ie*w+ae,Re=ye===we?1:0;if(Re===0)continue;W+=$.get(_,Q,J,le,D)*Re}}}R.set(W,_,C,P,V,D)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var TY={kernelName:Qm,backendName:"cpu",kernelFunc:CY};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=We(d.outShape,i.dtype,xI(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,k=A-1-d.padInfo.top,S=We(i.shape,"float32"),E=n.data.get(r.dataId).values,R=We(r.shape,"float32",E);for(let $=0;$<d.batchSize;++$)for(let _=0;_<d.inChannels;++_)for(let D=0;D<d.inHeight;++D)for(let C=0;C<d.inWidth;++C){let P=D-k,V=C-w,j=0;for(let z=0;z<A;z+=y){let Z=(P+z)/m;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let W=0;W<b;W+=x){let ee=(V+W)/g;if(ee<0||ee>=d.outWidth||Math.floor(ee)!==ee)continue;let Q=A*b-1-f.get($,Z,ee,_),ie=z*b+W,J=Q===ie?1:0;if(J===0)continue;j+=R.get($,Z,ee,_)*J}}S.set(j,$,D,C,_)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var EY={kernelName:Jm,backendName:"cpu",kernelFunc:NY};function RY(e,t,n,s,r){let a=v.computeStrides(t),o=sx(e,t,n,a,r,"max"),i=xI(e,t,n,r,!0,s);return[o.values,i.values]}var _Y={kernelName:e0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=T.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=RY(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function DY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=T.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=so({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=rx({inputs:{a:h,b:d},backend:n});p.push(f);let m=Sh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var $Y={kernelName:Do,backendName:"cpu",kernelFunc:DY};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=fs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<A)&&(A=w)}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=_t({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var PY={kernelName:$o,backendName:"cpu",kernelFunc:FY};function OY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Te(r,"mirrorPad");let i=a.map((A,b)=>A[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let b=v.indexToLoc(A,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,S)=>k-l[S]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var MY={kernelName:Po,backendName:"cpu",kernelFunc:OY},zY=un((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),LY=In(Cc,zY),BY={kernelName:Cc,backendName:"cpu",kernelFunc:LY},WY=rl(b7());function SI(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=II({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=T.expandShapeToKeepDim(u.shape,l),p=_t({inputs:{x:u},backend:n,attrs:{shape:c}}),d=nx({inputs:{a:r,b:p},backend:n}),h=Ok({inputs:{x:d},backend:n}),f=Sh({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),g=rx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var VY={kernelName:Ko,backendName:"cpu",kernelFunc:SI};function UY(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:SI({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+p[m+A];let y=WY.alea(o.toString()),x=f*a;for(let A=0;A<a;++A){let b=y();h[x+A]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+A]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var GY={kernelName:t0,backendName:"cpu",kernelFunc:UY},HY=ir.nonMaxSuppressionV3Impl;function jY(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Te(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=HY(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var qY={kernelName:Il,backendName:"cpu",kernelFunc:jY},XY=ir.nonMaxSuppressionV4Impl;function KY(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Te(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=XY(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var ZY={kernelName:Tc,backendName:"cpu",kernelFunc:KY},YY=ir.nonMaxSuppressionV5Impl;function JY(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Te(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=YY(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var QY={kernelName:Sl,backendName:"cpu",kernelFunc:JY};function eJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Te(r,"oneHot");let l=v.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<a&&(u[p*a+c[p]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var tJ={kernelName:Tl,backendName:"cpu",kernelFunc:eJ};function Em(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Qi({inputs:{input:s},backend:n}),a=Em({inputs:{x:r},backend:n}),o=rc({inputs:{input:s},backend:n}),i=Em({inputs:{x:o},backend:n}),l=Is({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ax({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var nJ={kernelName:Ul,backendName:"cpu",kernelFunc:Em};function CI(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=Qi({inputs:{input:s},backend:n}),a=CI({inputs:{x:r},backend:n}),o=rc({inputs:{input:s},backend:n}),i=Em({inputs:{x:o},backend:n}),l=Is({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ax({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var sJ={kernelName:Cl,backendName:"cpu",kernelFunc:CI};function TI(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Nm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Nm({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=ac({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var rJ={kernelName:Nl,backendName:"cpu",kernelFunc:TI};function aJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<c;x++){let b=v.indexToLoc(x,p,d).map((k,S)=>k+l[S]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var NI={kernelName:Mo,backendName:"cpu",kernelFunc:aJ},oJ=un((e,t)=>Math.pow(e,t)),iJ=In(zo,oJ),lJ={kernelName:zo,backendName:"cpu",kernelFunc:iJ};function uJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=ex(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var cJ={kernelName:Nc,backendName:"cpu",kernelFunc:uJ},dJ=bt(Ec,e=>1/e),pJ={kernelName:Ec,backendName:"cpu",kernelFunc:dJ};function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let k=0;k<p;k++)for(let S=0;S<u;S++){let E;o?E=b*(S+.5)-.5:E=b*S;let R=Math.max(0,Math.floor(E)),$=E-R,_=Math.min(d-1,Math.ceil(E)),D=k*l[0]+R*l[1],C=k*l[0]+_*l[1];for(let P=0;P<c;P++){let V;o?V=w*(P+.5)-.5:V=w*P;let j=Math.max(0,Math.floor(V)),z=V-j,Z=Math.min(h-1,Math.ceil(V)),W=D+j*l[2],ee=C+j*l[2],Q=D+Z*l[2],ie=C+Z*l[2];for(let J=0;J<f;J++){let ae=m[W+J],le=m[ee+J],ye=m[Q+J],we=m[ie+J],Re=ae+(ye-ae)*z,_e=le+(we-le)*z,Be=Re+(_e-Re)*$;g[A++]=Be}}}return n.makeTensorInfo([p,u,c,f],"float32",g)}var fJ={kernelName:Vo,backendName:"cpu",kernelFunc:hJ};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(l*u*c*p),m=[o&&d>1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let S=0;S<d;S++){let E=S*y,R=Math.floor(E),$=Math.min(Math.ceil(E),u-1),_=k+R*i[1],D=k+$*i[1],C=E-R,P=1-C;for(let V=0;V<h;V++){let j=V*x,z=Math.floor(j),Z=Math.min(Math.ceil(j),c-1),W=j-z,ee=1-W,Q=_+z*i[2],ie=_+Z*i[2],J=D+z*i[2],ae=D+Z*i[2],le=P*ee,ye=P*W,we=C*ee,Re=C*W;for(let _e=0;_e<p;_e++){let Be=A[b++];f[Q+_e]+=Be*le,f[ie+_e]+=Be*ye,f[J+_e]+=Be*we,f[ae+_e]+=Be*Re}}}}return n.makeTensorInfo([l,c,u,p],"float32",f)}var gJ={kernelName:s0,backendName:"cpu",kernelFunc:mJ};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*f),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let k=0;k<p;k++){let S=k*l[0];for(let E=0;E<u;E++){let R=o?A*(E+.5):A*E,$=Math.min(d-1,a?Math.round(R):Math.floor(R));o&&($=Math.max(0,$));let _=S+$*l[1];for(let D=0;D<c;D++){let C=o?b*(D+.5):b*D,P=Math.min(h-1,a?Math.round(C):Math.floor(C));o&&(P=Math.max(0,P));let V=_+P*l[2];for(let j=0;j<f;j++){let z=m[V+j];g[w++]=z}}}}return n.makeTensorInfo([p,u,c,f],r.dtype,g)}var AJ={kernelName:Rc,backendName:"cpu",kernelFunc:yJ};function xJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[u,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*p*d),g=n.data.get(a.dataId).values,y=[o&&h>1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,k=1/b,S=Math.ceil(w)*2+2,E=Math.ceil(k)*2+2;for(let R=0;R<u;R++){let $=R*i[0];for(let _=0;_<c;_++){let D=$+_*i[1],C=Math.floor(_*w),P=Math.floor(C-S/2);for(let V=0;V<p;V++){let j=D+V*i[2],z=Math.floor(V*k),Z=Math.floor(z-E/2);for(let W=0;W<d;W++){let ee=0;for(let Q=0;Q<S;Q++){let ie=Q+P;if(ie<0||ie>=h)continue;let J=$+ie*l[1],ae=ie*A,le=Math.min(c-1,o?Math.round(ae):Math.floor(ae));if(_===le)for(let ye=0;ye<E;ye++){let we=ye+Z;if(we<0||we>=f)continue;let Re=J+we*l[2],_e=we*b,Be=Math.min(p-1,o?Math.round(_e):Math.floor(_e));V===Be&&(ee+=g[Re+W])}}m[j+W]=ee}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var bJ={kernelName:n0,backendName:"cpu",kernelFunc:xJ};function vJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return qr({inputs:{x:r},backend:n});let l=new fn(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();i.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var wJ={kernelName:Rl,backendName:"cpu",kernelFunc:vJ},kJ={kernelName:Gl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=T.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let w=b*p*c*d;for(let k=0;k<c;k++){let S=k*(p*d);for(let E=0;E<p;E++){let R=E*d;for(let $=0;$<d;$++){let _=[u,k,E,$],D=_[2],C=_[1],P=(D-h)*y-(C-f)*g,V=(D-h)*g+(C-f)*y;P=Math.round(P+h),V=Math.round(V+f);let j=a;if(typeof a!="number"&&($===3?j=m:j=a[$]),P>=0&&P<p&&V>=0&&V<c){let Z=V*(p*d),W=P*d,ee=w+Z+W+$;j=x[ee]}let z=w+S+R+$;l[z]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},IJ=bt(_l,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),SJ={kernelName:_l,backendName:"cpu",kernelFunc:IJ};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=zu(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var TJ={kernelName:Dl,backendName:"cpu",kernelFunc:CJ};function NJ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function EJ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function RJ(e,t,n,s,r,a){let o=v.getArrayFromDType("int32",n*r);for(let i=0;i<n;++i){let l=e.slice(i*s,(i+1)*s),u=i*r;for(let c=0;c<r;++c)o[u+c]=a==="left"?NJ(l,t[c+u]):EJ(l,t[c+u])}return o}function _J(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=RJ(i,l,r.shape[0],r.shape[1],a.shape[1],o);return n.makeTensorInfo(a.shape,"int32",u)}var DJ={kernelName:r0,backendName:"cpu",kernelFunc:_J};function $J(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Te([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Fn(r.dtype,a.dtype),p=v.makeZerosTypedArray(v.sizeFromShape(r.shape),c),d=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?p[d++]=l[f]:p[d++]=u[f];return n.makeTensorInfo(r.shape,c,p)}var FJ={kernelName:$l,backendName:"cpu",kernelFunc:$J},PJ=T.SELU_SCALEALPHA,OJ=T.SELU_SCALE,MJ=bt(_c,e=>e>=0?OJ*e:PJ*(Math.exp(e)-1)),zJ={kernelName:_c,backendName:"cpu",kernelFunc:MJ},LJ=bt(Dc,e=>e<0?-1:e>0?1:0),BJ={kernelName:Dc,backendName:"cpu",kernelFunc:LJ},WJ=bt(Ho,e=>Math.sin(e)),VJ={kernelName:Ho,backendName:"cpu",kernelFunc:WJ},UJ=bt(Pl,e=>Math.sinh(e)),GJ={kernelName:Pl,backendName:"cpu",kernelFunc:UJ},HJ=11920928955078125e-23,Ev=Math.log(HJ)+2,jJ=bt($c,e=>{let t=e>-Ev,n=e<Ev,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),qJ={kernelName:$c,backendName:"cpu",kernelFunc:jJ};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Te([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=NI.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(u.shape,a,i,!1),p=T.getPermuted(c.length,a.length,!1),d=T.getReshapedPermuted(u.shape,a,i,!1),m=_t({inputs:{x:u},backend:n,attrs:{shape:c}}),x=fs({inputs:{x:m},backend:n,attrs:{perm:p}}),w=_t({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var KJ={kernelName:Ol,backendName:"cpu",kernelFunc:XJ};function ZJ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=tI(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var YJ={kernelName:Wp,backendName:"cpu",kernelFunc:ZJ};function JJ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=nI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var QJ={kernelName:Fc,backendName:"cpu",kernelFunc:JJ};function eQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=tx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var tQ={kernelName:Vp,backendName:"cpu",kernelFunc:eQ};function nQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=tx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var sQ={kernelName:Up,backendName:"cpu",kernelFunc:nQ};function rQ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=zu(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=zu(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=zu(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=zu(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var aQ={kernelName:Gp,backendName:"cpu",kernelFunc:rQ};function oQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=el({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var iQ={kernelName:Ml,backendName:"cpu",kernelFunc:oQ},lQ={kernelName:Pc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},uQ=bt(Qo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),cQ={kernelName:Qo,backendName:"cpu",kernelFunc:uQ};function dQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=_t({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),S=el({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=_t({inputs:{x:S},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(S)}else{let k=n.bufferSync(r),S=rI(h,k,b,x);w=n.makeTensorInfo(f,S.dtype,S.values)}return w}var pQ={kernelName:zl,backendName:"cpu",kernelFunc:dQ};function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=aI(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var fQ={kernelName:Hp,backendName:"cpu",kernelFunc:hQ};function mQ(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=oI(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var gQ={kernelName:a0,backendName:"cpu",kernelFunc:mQ};function yQ(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=iI(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var AQ={kernelName:o0,backendName:"cpu",kernelFunc:yQ},xQ=bt(Ll,e=>Math.tan(e)),bQ={kernelName:Ll,backendName:"cpu",kernelFunc:xQ},vQ=bt(Jo,e=>Math.tanh(e)),wQ={kernelName:Jo,backendName:"cpu",kernelFunc:vQ};function kQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=uI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var IQ={kernelName:xa,backendName:"cpu",kernelFunc:kQ};function SQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=dI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var CQ={kernelName:Bl,backendName:"cpu",kernelFunc:SQ};function TQ(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let R=0;R<c;++R){let $=a.shape[0]===1?S:S.subarray(R*8,R*8+8);for(let _=0;_<f;++_)for(let D=0;D<m;++D)for(let C=0;C<h;++C){let P,V=$[6]*D+$[7]*_+1;if(V===0)continue;let j=($[0]*D+$[1]*_+$[2])/V,z=($[3]*D+$[4]*_+$[5])/V,Z=Rv(j,d,i),W=Rv(z,p,i);switch(o){case"nearest":P=$Q(k,p,d,x,A,b,R,W,Z,C,l);break;case"bilinear":P=FQ(k,p,d,x,A,b,R,W,Z,C,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ee=R*x+_*A+D*b+C;w[ee]=P}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var NQ={kernelName:Wl,backendName:"cpu",kernelFunc:TQ};function Rv(e,t,n){switch(n){case"reflect":return EQ(e,t);case"wrap":return RQ(e,t);case"nearest":return DQ(e,t);case"constant":default:return _Q(e,t)}}function EQ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function RQ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function _Q(e,t){return e}function DQ(e,t){return v.clamp(0,e,t-1)}function sp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[p]:c}function $Q(e,t,n,s,r,a,o,i,l,u,c){let p=Math.round(i),d=Math.round(l);return sp(e,t,n,s,r,a,o,p,d,u,c)}function FQ(e,t,n,s,r,a,o,i,l,u,c){let p=Math.floor(i),d=Math.floor(l),h=p+1,f=d+1,m=(f-l)*sp(e,t,n,s,r,a,o,p,d,u,c)+(l-d)*sp(e,t,n,s,r,a,o,p,f,u,c),g=(f-l)*sp(e,t,n,s,r,a,o,h,d,u,c)+(l-d)*sp(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-p)*g}function PQ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Te(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=pI(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var OQ={kernelName:i0,backendName:"cpu",kernelFunc:PQ};function MQ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(i);for(let h=0;h<d.length;h++){c[a]=h;let f=el({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=_t({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var zQ={kernelName:Vl,backendName:"cpu",kernelFunc:MQ};function LQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Te(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],p=i-l,d=a;for(let f=0;f<p;++f){let m=Nm({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=Fk({inputs:{a:g,b:d},backend:n}),x=so({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),A=i2({inputs:{a:x,b:r},backend:n}),b=Sh({inputs:{x:A},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(y),c.push(x),c.push(A),c.push(b)}let h=TI({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var BQ={kernelName:jp,backendName:"cpu",kernelFunc:LQ},WQ=[WX,Fq,UX,HX,Bq,qX,KX,YX,QX,tK,sK,aK,iK,cK,pK,mK,yK,xK,vK,LX,kK,SK,TK,EK,zq,Vq,_K,Pq,$K,PK,OK,zK,BK,VK,GK,jK,XK,ZK,JK,eZ,nZ,rZ,oZ,iZ,uZ,dZ,hZ,fZ,mZ,gZ,xZ,DX,vZ,Uq,EZ,Gq,RZ,jq,OZ,MZ,LZ,Xq,VZ,GZ,jZ,XZ,ZZ,Zq,Jq,Oq,JZ,FK,eY,nY,rY,$X,eX,nX,oY,rX,lY,dY,hY,gY,AY,bY,vY,oX,kY,SY,TY,EY,_Y,$Y,PY,lX,MY,BY,GY,cX,pX,qY,ZY,QY,fX,tJ,sJ,rJ,NI,lJ,PX,yX,cJ,Mq,M3,pJ,OX,MX,zX,fJ,gJ,AJ,bJ,wJ,kJ,SJ,xX,TJ,DJ,FJ,zJ,vX,BJ,VJ,GJ,wX,VY,qJ,KJ,YJ,QJ,tQ,sQ,aQ,iQ,SX,lQ,TX,cQ,pQ,fQ,gQ,AQ,_X,yZ,bQ,wQ,IQ,CQ,NQ,mX,OQ,zQ,BQ,nJ];for(let e of WQ)or(e);var EI={};Ve(EI,{assertNotComplex:()=>Jc,bindCanvasToFramebuffer:()=>JQ,bindColorTextureToFramebuffer:()=>Zf,bindTextureToProgramUniformSampler:()=>GI,bindTextureUnit:()=>WI,bindVertexBufferToProgramAttribute:()=>L3,callAndCheck:()=>Ie,canBeRepresented:()=>RI,createFragmentShader:()=>$I,createFramebuffer:()=>BI,createProgram:()=>FI,createStaticIndexBuffer:()=>MI,createStaticVertexBuffer:()=>OI,createTexture:()=>zI,createVertexShader:()=>DI,getBatchDim:()=>tl,getExtensionOrThrow:()=>rp,getFramebufferErrorMessage:()=>HI,getMaxTexturesInShader:()=>KI,getNumChannels:()=>ZQ,getProgramUniformLocation:()=>UI,getProgramUniformLocationOrThrow:()=>VI,getRowsCols:()=>nl,getShapeAs3D:()=>Yf,getTextureShapeFromLogicalShape:()=>qI,getWebGLDisjointQueryTimerVersion:()=>ZI,getWebGLErrorMessage:()=>_I,getWebGLMaxTextureSize:()=>XI,hasExtension:()=>Hs,isCapableOfRenderingToFloatTexture:()=>YI,isDownloadFloatTextureEnabled:()=>JI,isReshapeFree:()=>Ip,isWebGLFenceEnabled:()=>QI,isWebGLVersionEnabled:()=>W3,linkProgram:()=>PI,logShaderSourceAndInfoLog:()=>ix,resetMaxTextureSize:()=>QQ,resetMaxTexturesInShader:()=>eee,unbindColorTextureFromFramebuffer:()=>B3,unbindTextureUnit:()=>YQ,validateFramebuffer:()=>ap,validateProgram:()=>Kf,validateTextureSize:()=>LI});var Pi={},Yg={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function l2(e,t){Pi[e]=t}function Er(e,t){if(!(e in Pi)||t!=null){let s=UQ(e,t);if(s!==null)Pi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Pi[e];return n==null||n.isContextLost()?(delete Pi[e],Er(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Pi[e])}function VQ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function UQ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?VQ(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Pi[e]},!1),e===1?n.getContext("webgl",Yg)||n.getContext("experimental-webgl",Yg):n.getContext("webgl2",Yg)}var kp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(kp||(kp={}));var Gs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Gs||(Gs={}));var Sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Sn||(Sn={}));function Ch(e,t){return[t,e]}function GQ(e,t){return e*t}function Wf(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Yc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function HQ(e,t){let[n,s]=Yc(e,t);return n*s*4}function ox(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return Y().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return Y().getBool("DEBUG")&&jQ(e),n}function jQ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+_I(e,t))}var qQ=596e-10,XQ=65504;function RI(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||qQ<Math.abs(e)&&Math.abs(e)<XQ)}function _I(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function rp(e,t){return wa(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function DI(e,t){let n=wa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function $I(e,t){let n=wa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),Y().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw ix(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var KQ=/ERROR: [0-9]+:([0-9]+):/g;function ix(e,t){let n=KQ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;p<o.length;p++)i=Math.max(o[p].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function FI(e){return wa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function PI(e,t){if(Ie(e,()=>e.linkProgram(t)),!Y().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Kf(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function OI(e,t){let n=wa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function MI(e,t){let n=wa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ZQ(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function zI(e){return wa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function LI(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function BI(e){return wa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function L3(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function WI(e,t,n){jI(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function YQ(e,t){jI(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function VI(e,t,n){return wa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function UI(e,t,n){return e.getUniformLocation(t,n)}function GI(e,t,n,s){Ie(e,()=>WI(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function JQ(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Zf(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function B3(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ap(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+HI(e,t))}function HI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function wa(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function jI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function tl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function nl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Yf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[tl(e),...nl(e)]),t}function qI(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=tl(e),a=2,o=2;return e.length&&([a,o]=nl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Vf(e){return e%2===0}function Ip(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Vf(n)&&Vf(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Vf(e[0])&&Vf(t[0])}var Jf,Qf;function XI(e){if(Jf==null){let t=Er(e);Jf=t.getParameter(t.MAX_TEXTURE_SIZE)}return Jf}function QQ(){Jf=null}function eee(){Qf=null}function KI(e){if(Qf==null){let t=Er(e);Qf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Qf)}function ZI(e){if(e===0)return 0;let t,n=Er(e);return Hs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Hs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Hs(e,t){return e.getExtension(t)!=null}function W3(e){try{if(Er(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function YI(e){if(e===0)return!1;let t=Er(e);if(e===1){if(!Hs(t,"OES_texture_float"))return!1}else if(!Hs(t,"EXT_color_buffer_float"))return!1;return V3(t)}function JI(e){if(e===0)return!1;let t=Er(e);if(e===1){if(!Hs(t,"OES_texture_float")||!Hs(t,"WEBGL_color_buffer_float"))return!1}else{if(Hs(t,"EXT_color_buffer_float"))return V3(t);let s="EXT_color_buffer_half_float";if(Hs(t,s)){let r=t.getExtension(s);return tee(t,r)}return!1}return V3(t)}function V3(e){let t=ox(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function tee(e,t){let n=ox(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function QI(e){return e!==2?!1:Er(e).fenceSync!=null}function Jc(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=Y();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>W3(2)?2:W3(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>XI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>KI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:ZI(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zp.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>YI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>JI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>QI(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Fe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Zp.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Fe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Fe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Fe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Fe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function ss(){let e,t,n,s,r,a,o,i,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function eu(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function u2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function nee(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function see(e,t,n="index"){let s=e.map((a,o)=>o),r=nee(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function lx(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function ux(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var eS=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:tS}=T;function ree(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=cx(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>aee(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=ss(),l=lee(i),u,c,p=dee(i);return t.isPacked?(u=oee(t.logicalShape,o,n.enableShapeUniforms),c=cee(i)):(u=iee(t.logicalShape,o,n.enableShapeUniforms),c=uee(i)),n.packedInputs&&(p+=mee),[p,l,c,r,u,a,n.userCode].join(`
|
|
`)}function Qc(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Tee(e,t);case 1:return Eee(e,t);case 2:return _ee(e,t);case 3:return $ee(e,t);case 4:return Pee(e,t);case 5:return Oee(e);case 6:return Mee(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function nS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Cee(e);case 1:return Nee(e,t);case 2:return Ree(e,t);case 3:return Dee(e,t);default:return Fee(e,t)}}function aee(e,t,n=!1,s){let r="";n?r+=nS(e,s):r+=Qc(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=zee(e,t):r+=Lee(e,t)),r}function oee(e,t,n){switch(e.length){case 0:return sS();case 1:return gee(e,t,n);case 2:return Iee(e,t,n);case 3:return Aee(e,t,n);default:return bee(e,t,n)}}function iee(e,t,n){switch(e.length){case 0:return sS();case 1:return yee(e,t,n);case 2:return See(e,t,n);case 3:return xee(e,t,n);case 4:return vee(e,t,n);case 5:return wee(e,t);case 6:return kee(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function lee(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function uee(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function cee(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function dee(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${pee}
|
|
${hee}
|
|
${fee}
|
|
`}var pee=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,hee=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,fee=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,mee=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function sS(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function gee(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function yee(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Aee(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function xee(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${u2(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=eu(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function bee(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function vee(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${u2(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=eu(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function wee(e,t){let n=eu(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function kee(e,t){let n=eu(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Iee(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function See(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function tu(e){return`offset${e}`}function Cee(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=ss();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function Tee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=tu(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Nee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=ss();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function Eee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${ed(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=tu(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Ree(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=ss();if(a!=null&&v.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function _ee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let d=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let d=td(e,l),h=["row","col"];return`
|
|
${Qc(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${nd(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${ed(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],p=tu(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Dee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=td(e,d),m=["b","row","col"];return`
|
|
${nS(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${nd(m,h)});
|
|
}
|
|
`}let i=ss();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${p}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function $ee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),u=i;if(u.length<n.length){let m=td(e,u),g=["row","col","depth"];return`
|
|
${Qc(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${nd(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${ed(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(d===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=tu(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Fee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=ss();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],p=Math.ceil(a[o-1]/2),d=p*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,d*=a[o-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function Pee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let x=td(e,l),A=["row","col","depth","depth2"];return`
|
|
${Qc(x,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${nd(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${ed(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let y=tu(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${y});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Oee(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=td(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Qc(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${nd(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${ed(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=tu(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Mee(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=td(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Qc(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${nd(y,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${ed(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=tu(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ed(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function zee(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=tS(e.shapeInfo.logicalShape,t.logicalShape),l=Ct(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(`
|
|
`);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!y)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let x=a-2,A=a-1;i.indexOf(x)>-1&&i.indexOf(A)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${d});
|
|
${h}
|
|
}
|
|
`}function Lee(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=Ct(l),c=tS(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${s}(${f});
|
|
}
|
|
`}function Ct(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function cx(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function td(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function nd(e,t){return t.map(n=>e[n]).join(", ")}function Bee(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=ree(r,o,t),l=$I(e.gl,i),u=e.createProgram(l);return Y().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},rS(e,t,u))}function rS(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),Y().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(i=e.getUniformLocation(n,"outShape",d),u=e.getUniformLocation(n,"outShapeStrides",d),l=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function _v(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Wee(e,t,n,s,r){t.program.enableShapeUniforms||(_v(t.inShapeInfos,n),_v([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=cx(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Vee(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=cx(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=T.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,a}function ys(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Uee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=kp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=ss();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?u2(["r","c","d"],e):eu(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Gee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=kp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=ss();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?u2(["r","c","d"],e):eu(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Hee=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Gs.DOWNLOAD;let t=ss();this.outputShape=e,this.userCode=`
|
|
${eS}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},jee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Gs.DOWNLOAD;let t=ss();this.outputShape=e,this.userCode=`
|
|
${eS}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},qee=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=ss();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?ux():lx(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},Xee=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=ss();this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?ux():lx(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},aS={};Ve(aS,{bindVertexProgramAttributeStreams:()=>fS,createBufferFromOutputTexture:()=>yS,createFloat16MatrixTexture:()=>cS,createFloat16PackedMatrixTexture:()=>hS,createFloat32MatrixTexture:()=>uS,createIndexBuffer:()=>lS,createPackedMatrixTexture:()=>pS,createUnsignedBytesMatrixTexture:()=>dS,createVertexBuffer:()=>iS,createVertexShader:()=>oS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>xS,downloadFloat32MatrixFromBuffer:()=>AS,downloadMatrixFromPackedOutputTexture:()=>vS,downloadPackedMatrixFromBuffer:()=>bS,getInternalFormatForFloat16MatrixTexture:()=>px,getInternalFormatForFloat16PackedMatrixTexture:()=>mx,getInternalFormatForFloat32MatrixTexture:()=>dx,getInternalFormatForPackedMatrixTexture:()=>fx,getInternalFormatForUnsignedBytesMatrixTexture:()=>hx,uploadDenseMatrixToTexture:()=>mS,uploadPixelDataToTexture:()=>gS});function oS(e){let t=ss(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return DI(e,n)}function iS(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return OI(e,t)}function lS(e){let t=new Uint16Array([0,1,2,2,1,3]);return MI(e,t)}function Th(e,t,n,s,r,a){LI(t,n);let o=zI(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Y().getNumber("WEBGL_VERSION")===1?Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Ie(e,()=>e.texStorage2D(i,1,s,t,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function dx(e){return e.internalFormatFloat}function uS(e,t,n,s){let[r,a]=Ch(t,n);return Th(e,r,a,dx(s),s.textureFormatFloat,e.FLOAT)}function px(e){return e.internalFormatHalfFloat}function cS(e,t,n,s){let[r,a]=Ch(t,n);return Th(e,r,a,px(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function hx(e){return e.downloadTextureFormat}function dS(e,t,n,s){let[r,a]=Ch(t,n);return Th(e,r,a,hx(s),e.RGBA,e.UNSIGNED_BYTE)}function fx(e){return e.internalFormatPackedFloat}function pS(e,t,n,s){let[r,a]=Yc(t,n);return Th(e,r,a,fx(s),e.RGBA,e.FLOAT)}function mx(e){return e.internalFormatPackedHalfFloat}function hS(e,t,n,s){let[r,a]=Yc(t,n);return Th(e,r,a,mx(s),e.RGBA,s.textureTypeHalfFloat)}function fS(e,t,n){return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),L3(e,t,"clipSpacePos",n,3,20,0)&&L3(e,t,"uv",n,2,20,12)}function mS(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Y().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function gS(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Y().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Y().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function yS(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function AS(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function xS(e,t,n,s){let[r,a]=Ch(t,n),o=4,i=new Uint8Array(GQ(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function bS(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(HQ(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function vS(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Gu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,l2(t,e)):this.gl=Er(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=rp(this.gl,r),Hs(this.gl,a))this.textureHalfFloatExtension=rp(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Hs(this.gl,s))this.colorBufferHalfFloatExtension=rp(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Hs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Hs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=iS(this.gl),this.indexBuffer=lS(this.gl),this.framebuffer=BI(this.gl),this.textureConfig=ox(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),uS(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),cS(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),dS(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),gS(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),mS(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),hS(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),pS(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(B3(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>xS(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return bS(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return AS(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=yS(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>vS(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=oS(t));let n=FI(t);return Ie(t,()=>t.attachShader(n,this.vertexShader)),Ie(t,()=>t.attachShader(n,e)),PI(t,n),this.debug&&Kf(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=fS(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Kf(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?VI(this.gl,e,t):UI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),GI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Yc(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Kf(this.gl,this.program),ap(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=rp(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Kee(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Zf(this.gl,e,this.framebuffer),this.debug&&ap(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Zf(this.gl,this.outputTexture,this.framebuffer),this.debug&&ap(this.gl)):B3(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;Zf(s,e,this.framebuffer),this.debug&&ap(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Kee(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:Zee,bincountImpl:wS,bincountReduceImpl:Yee,ceilImpl:Jee,concatImpl:Qee,equalImpl:ete,expImpl:tte,expm1Impl:nte,floorImpl:ste,gatherNdImpl:rte,gatherV2Impl:ate,greaterImpl:ote,greaterEqualImpl:ite,lessImpl:lte,lessEqualImpl:ute,linSpaceImpl:cte,logImpl:dte,maxImpl:pte,maximumImpl:hte,minimumImpl:fte,multiplyImpl:mte,negImpl:gte,notEqualImpl:yte,prodImpl:Ate,rangeImpl:xte,rsqrtImpl:bte,scatterImpl:vte,sigmoidImpl:wte,simpleAbsImpl:kS,sliceImpl:kte,sparseFillEmptyRowsImpl:Ite,sparseReshapeImpl:Ste,sparseSegmentReductionImpl:IS,sqrtImpl:Cte,stridedSliceImpl:Tte,stringNGramsImpl:Nte,stringSplitImpl:Ete,stringToHashBucketFastImpl:Rte,subImpl:_te,tileImpl:Dte,topKImpl:$te,transposeImpl:gx,uniqueImpl:Fte}=X5;function SS(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Yn(e,t){return t===1?[e]:SS(e,t)}function Pte(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var Ote=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=ys(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Yn("rc",this.rank),n=Ct(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${s};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},CS=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${Mte(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?ux():lx(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Mte(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?see(["r","c","d"],"inputShape"):eu(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var zte=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=$v(t,n),r=Fv(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=Dv(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=$v(n,s),a=Fv(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=Dv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Lte(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Dv(e,t,n,s,r){let a=Bte(t,s),o;if(r){let[l,u]=Yc(e[0],e[1]);o=l*u}else{let[l,u]=Ch(e[0],e[1]);o=l*u}let i=Lte(n,a);return o*i}function Bte(e,t){switch(e){case Sn.PACKED_2X2_FLOAT32:return fx(t);case Sn.PACKED_2X2_FLOAT16:return mx(t);case Sn.UNPACKED_FLOAT32:return dx(t);case Sn.UNPACKED_FLOAT16:return px(t);case Sn.PACKED_4X1_UNSIGNED_BYTE:return hx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Wte(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Sn.PACKED_2X2_FLOAT32:Sn.UNPACKED_FLOAT32:e?Sn.PACKED_2X2_FLOAT16:Sn.UNPACKED_FLOAT16}function $v(e,t){if(e===Gs.UPLOAD)return Sn.PACKED_2X2_FLOAT32;if(e===Gs.RENDER||e==null)return Wte(t);if(e===Gs.DOWNLOAD||e===Gs.PIXELS)return Sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Fv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ua=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ur="if (isnan(x)) return x;",Vte="return x;",Pv="return abs(x);",Ute="return (x >= 0.0) ? x : (exp(x) - 1.0);",Gte=ur+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Hte=ur+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,_u="return x;",jte="return 1.0 / (1.0 + exp(-1.0 * x));",qte="return x;",Xte=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Kte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Zte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Yte="return 1.0 / (1.0 + exp(-1.0 * x));",zi=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Jte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let t=e.length,n=Yn("rc",t),s=Ct(t),r=Pte(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},Qte=ir.whereImpl,ene=1e-7,tne=1e-4,Uf={};function nne(e){return e in Uf||(Uf[e]={}),Uf[e]}var sne=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),rne=600;function ane(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*rne/1024/1024}var sd=class extends ic{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Gu)t=e;else{let n=Er(Y().getNumber("WEBGL_VERSION"),e);t=new Gu(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Er(Y().getNumber("WEBGL_VERSION"));t=new Gu(n),this.binaryCache=nne(Y().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new zte(this.gpgpu),this.numMBBeforeWarning=ane(),this.texData=new Ep(this,sn())}nextDataId(){return sd.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Gs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Gs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new zi(o,_u):p=new ua(o,_u);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=T.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new zi(s,_u):h=new ua(s,_u);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(Y().getBool("DEBUG")&&!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Wf(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=T.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&sn().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new zi(r,_u):d=new ua(r,_u);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=sn().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!RI(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...Wf(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=Y().getBool("WEBGL_PACK")&&s===!0,o=a?Yf(t):t,i=a?new jee(o):new Hee(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=sne){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){T.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return Qte(e.shape,t)}packedUnaryOp(e,t,n){let s=new zi(e.shape,t),r=this.compileAndRun(s,[e],n);return sn().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=kS(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Pv,e.dtype);let t=new ua(e.shape,Pv),n=this.compileAndRun(t,[e]);return sn().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return sn().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new Jte(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Ote(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[tl(e.shape),...nl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[tl(t),...nl(t)],a=new CS(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=Yf(r),i;s?i=new Gee(o):i=new Uee(o);let l=!0,u=[t!=null?t:Wf(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===kp.DENSE){let g=a!=null?a:Wf(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Ip(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=Vee(e,u,c),d=this.getAndSaveBinary(p,()=>Bee(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),Y().get("ENGINE_COMPILE_ONLY")||Wee(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=Y().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=K(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?ene:tne}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=qI(n,i),t.texShape=c),r!=null){let p=Yf(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=Yc(c[0],c[1])),i?d=new Xee(p,m):d=new qee(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=Gs.PIXELS:x.usage=Gs.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),k=this.texData.get(w.dataId);t.texShape=k.texShape,t.isPacked=k.isPacked,t.usage=k.usage,Y().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=k.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=one(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await mA(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(ix(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=rS(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};sd.nextDataId=0;function one(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var ine="3.18.0";function TS(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}Zp.isBrowser()&&Hl("webgl",()=>new sd,2);var lne={forceHalfFloat:TS},NS=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,oc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=ys(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},c2=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Nh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=ys(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${Ct(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Yn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Ds(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var une={kernelName:Co,backendName:"webgl",kernelFunc:Ds};function ai(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ds({inputs:{x:s},backend:n}),l=Ds({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var cne={kernelName:_p,backendName:"webgl",kernelFunc:ai},ES="return (a < 0.) ? b * a : a;",RS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function dne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nh(RS,r.shape,o.shape):new oc(ES,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var pne={kernelName:To,backendName:"webgl",kernelFunc:dne},_S="return (a < 0.) ? b * a : a;",DS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function hne(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nh(DS,s.shape,r.shape):new oc(_S,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var fne={kernelName:Lo,backendName:"webgl",kernelFunc:hne},rd="if (isnan(x)) return x;",mne=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,gne=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function ct({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new zi(o.shape,t):c=new ua(o.shape,e),i.runWebGLProgram(c,[o],l)}}function Nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new oc(e,l.shape,u.shape);return c.runWebGLProgram(E,[k,S],Fn(b.dtype,w.dtype))}),x=ai({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Fn(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?T.fromUint8ToStringArray(f):f,y=l.dtype==="string"?T.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Nh(t,l.shape,u.shape,n):h=new oc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function d2(e,t=!1){if(e==="linear")return t?qte:Vte;if(e==="relu")return t?Kte:Gte;if(e==="elu")return t?Xte:Ute;if(e==="relu6")return t?Zte:Hte;if(e==="prelu")return t?DS:_S;if(e==="leakyrelu")return t?RS:ES;if(e==="sigmoid")return t?Yte:jte;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var $S=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=ys(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",A="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(A=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${x};
|
|
int batchB = ${A};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Ov={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Mv=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},zv="return a * b;";function yx(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=T.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new Mv(Ov.REAL,s.shape,r.shape),c=new Mv(Ov.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=ai({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=mte(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Nh(zv,s.shape,r.shape):o=new oc(zv,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var yne={kernelName:Oo,backendName:"webgl",kernelFunc:yx};function Ane(e,t,n){let s=[tl(e.shape),...nl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[tl(t),...nl(t)],o=new CS(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Ip(r.shape,l)&&!(c.texture!==null&&Ip(c.shape,l))?Ane(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var xne={kernelName:El,backendName:"webgl",kernelFunc:ve},Lv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},bne=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(o="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(o="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function vne(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=T.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function nu(e,t,n,s){let r=vne(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,p;n==="mean"?c=o===0?new Lv({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new Lv({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new bne({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var wne=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=Ct(this.rank),r=kne(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function kne(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var Ine=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=Ct(this.rank),r=SS("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function p2(e,t,n){let s=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ine(e.shape,t):new wne(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function Sne(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=T.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=p2(e,l,s),i=T.getInnerMostAxes(i.length,a)),T.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=T.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=Kp(e.dtype),A=nu(y,x,"sum",s),b=ve({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function h2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Sne(r,a,o,n)}var Cne={kernelName:Xo,backendName:"webgl",kernelFunc:h2};function an(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let p=o.texData.get(r.dataId).values,d=gx(p,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=d}else u=p2(r,a,o);return u}var Tne={kernelName:Vr,backendName:"webgl",kernelFunc:an},FS=1e3;function Rm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=jl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],k=s?[x,f,d]:[x,d,f],S=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[S,E],$=Math.max(y,x),_=n?S.shape[1]:S.shape[2],D=a!=null,C=o!=null,P=l==="leakyrelu",V=l!=null?d2(l,!0):null,j=D||C||P||V!=null,z;if((h===1||f===1)&&_>FS&&j===!1){let W=S,ee=E;n&&(W=an({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),R.push(W)),s&&(ee=an({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),R.push(ee));let Q=f!==1,ie=f===1,J=W;Q&&(J=ve({inputs:{x:W},backend:r,attrs:{shape:[$,_,1]}}),R.push(J));let ae=f===1?2:1,le=ee;ie&&(le=ve({inputs:{x:ee},backend:r,attrs:{shape:[$,1,_]}}),R.push(le));let ye=yx({inputs:{a:J,b:le},backend:r});z=h2({inputs:{x:ye},backend:r,attrs:{axis:ae,keepDims:!0}}),R.push(ye)}else{let W=Fn(e.dtype,t.dtype),ee=new $S(w,k,[$,h,f],n,s,D,V,C,P),Q=[S,E];if(a!=null&&Q.push(a),C&&Q.push(o),P){let ie=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));Q.push(ie),R.push(ie)}z=r.runWebGLProgram(ee,Q,W)}let Z=ve({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let W of R)r.disposeIntermediateTensorInfo(W);return Z}function Nne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return Rm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var Ene={kernelName:Xa,backendName:"webgl",kernelFunc:Nne},Bv="return abs(x);";function Rne(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=kS(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new zi(s.shape,Bv):r=new ua(s.shape,Bv),n.runWebGLProgram(r,[s],s.dtype)}var _ne={kernelName:ol,backendName:"webgl",kernelFunc:Rne},Dne=ur+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,$ne=ct({opSnippet:Dne}),Fne={kernelName:uc,backendName:"webgl",kernelFunc:$ne},Pne=ur+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,One=ct({opSnippet:Pne}),Mne={kernelName:cc,backendName:"webgl",kernelFunc:One},Wv="return a + b;",zne=Nn({opSnippet:Wv,packedOpSnippet:Wv,supportsComplex:!0,cpuKernelImpl:Zee}),Lne={kernelName:ya,backendName:"webgl",kernelFunc:zne},Bne=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},Wne=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function em(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ds({inputs:{x:s[0]},backend:n});if(s.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=em({inputs:s.slice(0,l),backend:n}),c=em({inputs:s.slice(l),backend:n});return em({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Fn(l,u)),a=s.map(l=>l.shape),i=Y().getBool("WEBGL_PACK")?new Wne(s[0].shape,a):new Bne(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var Vne={kernelName:oo,backendName:"webgl",kernelFunc:em};function Une(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=an({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("all",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=nu(m,m.dtype,"all",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Gne={kernelName:dc,backendName:"webgl",kernelFunc:Une};function Hne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=an({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("any",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=nu(m,m.dtype,"any",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var jne={kernelName:pc,backendName:"webgl",kernelFunc:Hne},qne=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},Xne=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=Ct(i),u=Yn("coords",i),c,p;if(a===1){p=i+1;let S=Ct(p);c=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[i-2]};`}else p=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(S=>"int "+S),m=Yn("sourceLocR",p-1).concat("inIdx.r"),g=Yn("sourceLocG",p-1).concat("inIdx.g"),y=Yn("sourceLocB",p-1).concat("inIdx.b"),x=Yn("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function PS(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=T.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new qne(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=PS(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function OS(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=T.computeOptimalWindowSize(a),i=new Xne(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=OS(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function MS(e,t,n,s){let r=[n];if(T.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=T.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=PS(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return OS(e,t,s)}function Kne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=an({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=MS(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Zne={kernelName:io,backendName:"webgl",kernelFunc:Kne};function Yne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=an({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=MS(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Jne={kernelName:hc,backendName:"webgl",kernelFunc:Yne},Qne=ur+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,ese=ct({opSnippet:Qne}),tse={kernelName:fc,backendName:"webgl",kernelFunc:ese},nse=ur+"return log(x + sqrt(x * x + 1.0));",sse=ct({opSnippet:nse}),rse={kernelName:mc,backendName:"webgl",kernelFunc:sse},ase=ur+`
|
|
return atan(x);
|
|
`,ose=ct({opSnippet:ase}),ise={kernelName:gc,backendName:"webgl",kernelFunc:ose},lse=mne+`
|
|
return atan(a, b);
|
|
`,use=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+gne+`
|
|
return result;
|
|
`,cse=Nn({opSnippet:lse,packedOpSnippet:use}),dse={kernelName:Ac,backendName:"webgl",kernelFunc:cse},pse=ur+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,hse=ct({opSnippet:pse}),fse={kernelName:yc,backendName:"webgl",kernelFunc:hse},Sp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${A});
|
|
}
|
|
`}},Ax=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,E=`
|
|
if (${x}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${y});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function mse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Jc(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ds({inputs:{x:r},backend:n});let p=new Sp(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var gse={kernelName:lo,backendName:"webgl",kernelFunc:mse};function yse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new Ax(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var Ase={kernelName:Rp,backendName:"webgl",kernelFunc:yse},xse=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bse=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function vse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new bse(d);return n.runWebGLProgram(h,[r],o.dtype)}var wse={kernelName:Mm,backendName:"webgl",kernelFunc:vse};function kse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Jc([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=new xse(c);return n.runWebGLProgram(p,[r],o.dtype)}var Ise={kernelName:Om,backendName:"webgl",kernelFunc:kse};function Sse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Rm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Cse={kernelName:uo,backendName:"webgl",kernelFunc:Sse},Tse=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},Nse=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},Ese=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Nse(s.shape,r.shape,a.shape,c,p,l):new Tse(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},Rse={kernelName:Io,backendName:"webgl",kernelFunc:Ese},_se=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Ct(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Dse(this.rank),s,r=e.map((a,o)=>`sourceLoc.${U3[o]} = start[${o}] + coords.${U3[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},U3=["x","y","z","w","u","v"];function Dse(e){if(e===1)return"sourceLoc";if(e<=6)return U3.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var $se=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=Ct(this.rank),n=Yn("coords",this.rank),s=Yn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function Fse(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Gt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function ad(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=kte(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Gt.isSliceContinous(r.shape,i,l);if(u||!c){let p=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $se(l):new _se(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),Fse(r,i,l,n)}var Pse={kernelName:Fl,backendName:"webgl",kernelFunc:ad},Ose=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=an({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=ad({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},Mse={kernelName:il,backendName:"webgl",kernelFunc:Ose};function zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=wS(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var Lse={kernelName:zm,backendName:"webgl",kernelFunc:zse};function Bse(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Wse={kernelName:Lm,backendName:"webgl",kernelFunc:Bse},Vse="return float(a != b);",zS=Nn({opSnippet:Vse,cpuKernelImpl:yte,dtype:"bool"}),Use={kernelName:kl,backendName:"webgl",kernelFunc:zS};function Eh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ds({inputs:{x:r.complexTensorInfos.real},backend:n})}var Gse={kernelName:Bp,backendName:"webgl",kernelFunc:Eh},Hse="return float(int(x));";function jse(e,t){let n=new ua(e.shape,Hse),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function G3(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ds({inputs:{x:r},backend:n});let o=Vt(r.shape),i=G3({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ai({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Eh({inputs:{input:r},backend:n}),i=G3({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ds({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return jse(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=zS({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var qse={kernelName:co,backendName:"webgl",kernelFunc:G3},Vv="return ceil(x);",Xse=ct({opSnippet:Vv,packedOpSnippet:Vv,cpuKernelImpl:Jee}),Kse={kernelName:po,backendName:"webgl",kernelFunc:Xse},Zse=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},Yse=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function Jse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Y().getBool("WEBGL_PACK_CLIP")?i=new Yse(r.shape):i=new Zse(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Qse={kernelName:Aa,backendName:"webgl",kernelFunc:Jse},ere=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Uv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function tre(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new ere(s.shape),o=[Uv(s,r.complexTensorInfos.real),Uv(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var nre={kernelName:Dp,backendName:"webgl",kernelFunc:tre},sre=class{constructor(e){this.outputShape=[],this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},rre=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=T.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=Ct(s),a=Yn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),p=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];p+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Gf(o,l,m)}),
|
|
vec2(${Gf(u,l,m)}));
|
|
}`}let d=i.length,h=i[i.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${Gf(o,l,h)}),
|
|
vec2(${Gf(u,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Gf(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function f2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ds({inputs:{x:r.complexTensorInfos.imag},backend:n})}var are={kernelName:Op,backendName:"webgl",kernelFunc:f2};function Mu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>Eh({inputs:{input:m},backend:n})),p=e.map(m=>f2({inputs:{input:m},backend:n})),d=Mu(c,t,n),h=Mu(p,t,n),f=ai({inputs:{real:d,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(y=>{let x=v.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:n,attrs:{shape:[-1,x]}})}),p=c.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=T.computeOutShape(c.map(y=>y.shape),1),h=c[0].shape[0]===1,f=Qee(p,d,s,h),m=T.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),p=Mu(e.slice(0,c),t,n),d=Mu(e.slice(c),t,n),h=Mu([p,d],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new rre(e.map(p=>p.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=ore(e,t,n),i=new sre(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function ore(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function LS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Ds({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),Mu(i,a,n)}var ire={kernelName:ll,backendName:"webgl",kernelFunc:LS},BS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${x}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},lre=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ure=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=ys(this.outputShape.length);let{dataFormat:n}=t,s=ss(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${u};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function WS({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null&&!h&&a.shape.length===3){let b=an({inputs:{x:a},backend:s,attrs:{perm:[1,2,0]}});y.push(b),a=b}if(!((p===1||d===1)&&c>FS)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Ip(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let E=Rm({a:w,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=s.texData.get(E.dataId);v.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,R.shape=n.outShape,g=Ds({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=h?e:an({inputs:{x:e},backend:s,attrs:{perm:[0,2,3,1]}}),w=b.shape,k=w[0]*w[1]*w[2],S=ve({inputs:{x:b},backend:s,attrs:{shape:[1,k,n.inChannels]}}),E=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),R=Rm({a:S,b:E,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),$=[n.batchSize,n.outHeight,n.outWidth,n.outChannels],_=ve({inputs:{x:R},backend:s,attrs:{shape:$}});g=h?_:an({inputs:{x:_},backend:s,attrs:{perm:[0,3,1,2]}}),h||(y.push(b),y.push(_)),y.push(S),y.push(E),y.push(R)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function VS({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[m,g],x=!0,A=!1,b=[];if(a!=null&&!f&&a.shape.length===3){let Q=an({inputs:{x:a},backend:s,attrs:{perm:[1,2,0]}});b.push(Q),a=Q}let w=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let S=new ure(y,n),E=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],R=s.runWebGLProgram(S,[w],"float32",E),$=ve({inputs:{x:R},backend:s,attrs:{shape:[1,y[0],y[1]]}});b.push(R),b.push($);let _=r!=null,D=a!=null,C=i==="leakyrelu",P=i?d2(i,!0):null,V=new $S($.shape,k.shape,[1,g,n.outChannels],x,A,_,P,D,C),j=[$,k];if(r&&j.push(r),D&&j.push(a),C){let Q=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));j.push(Q),b.push(Q)}let z=s.runWebGLProgram(V,j,"float32"),Z=[1,d,p,n.outChannels],W=ve({inputs:{x:z},backend:s,attrs:{shape:Z}}),ee=f?W:an({inputs:{x:W},backend:s,attrs:{perm:[0,3,1,2]}});f||b.push(W),b.push(z);for(let Q of b)s.disposeIntermediateTensorInfo(Q);return ee}function cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=WS({x:r,filter:a,convInfo:d,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=VS({x:r,filter:a,convInfo:d,backend:n});else{let m=new BS(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var dre={kernelName:ho,backendName:"webgl",kernelFunc:cre},pre=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},hre=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fre=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mre=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new pre(d);return n.runWebGLProgram(h,[r,a],"float32")}var yre={kernelName:Bm,backendName:"webgl",kernelFunc:gre};function Are(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new hre(d);return n.runWebGLProgram(h,[r,a],"float32")}var xre={kernelName:fo,backendName:"webgl",kernelFunc:Are};function bre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new lre(u);return n.runWebGLProgram(c,[r,a],"float32")}var vre={kernelName:$p,backendName:"webgl",kernelFunc:bre};function wre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=T.computeConv3DInfo(r.shape,l,o,1,i),c=new fre(u);return n.runWebGLProgram(c,[r,a],"float32")}var kre={kernelName:Wm,backendName:"webgl",kernelFunc:wre};function Ire(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=T.computeConv3DInfo(l,a.shape,i,1,o),c=new mre(u);return n.runWebGLProgram(c,[r,a],"float32")}var Sre={kernelName:Vm,backendName:"webgl",kernelFunc:Ire},Cre=rd+`
|
|
return cos(x);
|
|
`,Tre=ct({opSnippet:Cre}),Nre={kernelName:mo,backendName:"webgl",kernelFunc:Tre},Ere=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Rre=ct({opSnippet:Ere}),_re={kernelName:go,backendName:"webgl",kernelFunc:Rre},Dre=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${x});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${A};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},$re=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Dre(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},Fre={kernelName:cl,backendName:"webgl",kernelFunc:$re},Cp;(function(e){e.Prod="*",e.Sum="+"})(Cp||(Cp={}));var Gv=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Cp.Prod?"1.0":"0.0",o=n?a:`getX(${Hv(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${Ct(r)} coords = getOutputCoords();
|
|
int end = ${jv(r,"coords",this.op)};
|
|
float val = ${o};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${u};
|
|
${jv(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Hv(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Hv(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function jv(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function US(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=an({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Ds({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new Gv(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new Gv(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=an({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function Pre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return US(Cp.Prod,r,n,a,o,i)}var Ore={kernelName:ul,backendName:"webgl",kernelFunc:Pre};function Mre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return US(Cp.Sum,r,n,a,o,i)}var zre={kernelName:yo,backendName:"webgl",kernelFunc:Mre};function Lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=wS(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=Yee(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Bre={kernelName:Um,backendName:"webgl",kernelFunc:Lre},Wre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Vre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new Wre(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Ure={kernelName:dl,backendName:"webgl",kernelFunc:Vre},GS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ys(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},HS=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ys(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<c;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let y=g*2;if(d+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,i===1){if(y<c&&(o%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?d+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<c)){let x=o%2===0?v.nearestLargerEven(l):l;l%2===0&&o%2===1||l%2!==0&&o%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),d+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?d+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:d+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<c&&(o%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<c&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<c&&(d+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<c&&(d+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<c&&(d+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=T.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new HS(p):d=new GS(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var Hre={kernelName:Ao,backendName:"webgl",kernelFunc:Gre},jre=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},qre=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Xre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new jre(p);return n.runWebGLProgram(d,[r,a],"float32")}var Kre={kernelName:Gm,backendName:"webgl",kernelFunc:Xre};function Zre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new qre(p);return n.runWebGLProgram(d,[r,a],"float32")}var Yre={kernelName:Hm,backendName:"webgl",kernelFunc:Zre},Jre=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Qre(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Jre(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var eae={kernelName:jm,backendName:"webgl",kernelFunc:Qre},tae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function nae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new tae(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var sae={kernelName:Fp,backendName:"webgl",kernelFunc:nae};function rae(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=an({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=ve({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=yx({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=h2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var aae={kernelName:Pp,backendName:"webgl",kernelFunc:rae},oae="return (x >= 0.0) ? x : (exp(x) - 1.0);",iae=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,lae=ct({opSnippet:oae,packedOpSnippet:iae}),uae={kernelName:bo,backendName:"webgl",kernelFunc:lae},cae="return (b >= 1.0) ? a : a * (b + 1.0);",dae=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,pae=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nh(dae,s.shape,r.shape):new oc(cae,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},hae={kernelName:qm,backendName:"webgl",kernelFunc:pae},fae=`
|
|
return vec4(equal(a, b));
|
|
`,mae="return float(a == b);",gae=Nn({opSnippet:mae,packedOpSnippet:fae,dtype:"bool",cpuKernelImpl:ete}),yae={kernelName:pl,backendName:"webgl",kernelFunc:gae},Aae=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${T.ERF_P};
|
|
float a1 = ${T.ERF_A1};
|
|
float a2 = ${T.ERF_A2};
|
|
float a3 = ${T.ERF_A3};
|
|
float a4 = ${T.ERF_A4};
|
|
float a5 = ${T.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,xae=ct({opSnippet:Aae}),bae={kernelName:xc,backendName:"webgl",kernelFunc:xae},vae=rd+`
|
|
return exp(x);
|
|
`,wae=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,jS=ct({opSnippet:vae,packedOpSnippet:wae,cpuKernelImpl:tte,dtype:"float32"}),kae={kernelName:vo,backendName:"webgl",kernelFunc:jS};function H3(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var Iae={kernelName:hl,backendName:"webgl",kernelFunc:H3},qv="return exp(x) - 1.0;",Sae=ct({opSnippet:qv,packedOpSnippet:qv,cpuKernelImpl:nte}),Cae={kernelName:fl,backendName:"webgl",kernelFunc:Sae},Xv=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function qS(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new Xv("real",l,t),c=new Xv("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=ai({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Tae(e){let{inputs:t,backend:n}=e,{input:s}=t;return qS(s,!1,n)}var Nae={kernelName:Xm,backendName:"webgl",kernelFunc:Tae},Eae=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Rh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Eae(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Rae={kernelName:bc,backendName:"webgl",kernelFunc:Rh},_ae=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Dae={kernelName:ml,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new _ae(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},Kv="return floor(x);",$ae=ct({opSnippet:Kv,packedOpSnippet:Kv,cpuKernelImpl:ste}),Fae={kernelName:wo,backendName:"webgl",kernelFunc:$ae},Pae=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Oae=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,Mae=Nn({opSnippet:Pae,packedOpSnippet:Oae,dtype:"int32"}),zae={kernelName:ko,backendName:"webgl",kernelFunc:Mae},Lae=class{constructor(e){this.variableNames=["A"];let t=ss(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Bae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=ss(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Wae={kernelName:pp,backendName:"webgl",kernelFunc:Vae},Du;function Vae(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];(i||o)&&(Du==null&&(Du=document.createElement("canvas").getContext("2d")),Du.canvas.width=l,Du.canvas.height=u,Du.drawImage(r,0,0,l,u),r=Du.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=Gs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=Y().getBool("WEBGL_PACK")?new Bae(p):new Lae(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function Uae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=WS({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=VS({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",S=h?d2(h,!1):null,E=new BS(g,b,S,w,k),R=[r,a],$=(_,D)=>{if(D==="NCHW"&&_.shape.length===1&&_.shape[0]!==1){let C=ve({inputs:{x:_},backend:n,attrs:{shape:[_.shape[0],1,1]}});return x.push(C),C}return _};if(b&&R.push($(o,c)),w&&R.push($(i,c)),k){let _=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(_),x.push(_)}y=n.runWebGLProgram(E,R,"float32")}let A=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Gae={kernelName:Ka,backendName:"webgl",kernelFunc:Uae};function Hae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=T.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?d2(d,y):null,A=[r,a],b=o!=null,w=i!=null,k=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),k){let $=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push($),f.push($)}let S;y?S=new HS(g,b,x,w,k):S=new GS(g,b,x,w,k);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=n.runWebGLProgram(S,A,"float32",E);return f.forEach($=>n.disposeIntermediateTensorInfo($)),R}var jae={kernelName:Za,backendName:"webgl",kernelFunc:Hae},qae=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=Ct(t.length),r=Ct(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Xae(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=rte(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new qae(o,p,[u,c]),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Kae={kernelName:yl,backendName:"webgl",kernelFunc:Xae},Zae=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=Ct(this.rank),s=Yae(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${s}));
|
|
}
|
|
`}};function Yae(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function XS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0];if(Y().get("DEBUG")){let x=n.readSync(a.dataId),A=r.shape[l];for(let b=0;b<x.length;++b){let w=x[b];v.assert(w<=A-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=ate(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new Zae(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var Jae={kernelName:gl,backendName:"webgl",kernelFunc:XS},Qae="return float(a > b);",eoe=`
|
|
return vec4(greaterThan(a, b));
|
|
`,toe=Nn({opSnippet:Qae,packedOpSnippet:eoe,cpuKernelImpl:ote,dtype:"bool"}),noe={kernelName:Al,backendName:"webgl",kernelFunc:toe},soe="return float(a >= b);",roe=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,aoe=Nn({opSnippet:soe,packedOpSnippet:roe,dtype:"bool",cpuKernelImpl:ite}),ooe={kernelName:So,backendName:"webgl",kernelFunc:aoe};function ioe(e){let{inputs:t,backend:n}=e,{input:s}=t;return qS(s,!0,n)}var loe={kernelName:Km,backendName:"webgl",kernelFunc:ioe},uoe="return float(!isnan(x) && !isinf(x));",coe=ct({opSnippet:uoe,dtype:"bool"}),doe={kernelName:vc,backendName:"webgl",kernelFunc:coe},poe="return float(isinf(x));",hoe=ct({opSnippet:poe,dtype:"bool"}),foe={kernelName:wc,backendName:"webgl",kernelFunc:hoe},moe="return float(isnan(x));",goe=ct({opSnippet:moe,dtype:"bool"}),yoe={kernelName:kc,backendName:"webgl",kernelFunc:goe},Aoe="return float(a < b);",xoe=`
|
|
return vec4(lessThan(a, b));
|
|
`,boe=Nn({opSnippet:Aoe,packedOpSnippet:xoe,cpuKernelImpl:lte,dtype:"bool"}),voe={kernelName:xl,backendName:"webgl",kernelFunc:boe},woe="return float(a <= b);",koe=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Ioe=Nn({opSnippet:woe,packedOpSnippet:koe,cpuKernelImpl:ute,dtype:"bool"}),Soe={kernelName:bl,backendName:"webgl",kernelFunc:Ioe};function Coe(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=cte(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Toe={kernelName:Zm,backendName:"webgl",kernelFunc:Coe},Noe=rd+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Eoe=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,Roe=ct({opSnippet:Noe,packedOpSnippet:Eoe,cpuKernelImpl:dte}),_oe={kernelName:No,backendName:"webgl",kernelFunc:Roe},Doe=rd+`
|
|
return log(1.0 + x);
|
|
`,$oe=ct({opSnippet:Doe}),Foe={kernelName:Ic,backendName:"webgl",kernelFunc:$oe},Poe="return float(a >= 1.0 && b >= 1.0);",Ooe=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Moe=Nn({opSnippet:Poe,packedOpSnippet:Ooe,dtype:"bool"}),zoe={kernelName:vl,backendName:"webgl",kernelFunc:Moe},Loe="return float(!(x >= 1.0));",Boe=ct({opSnippet:Loe}),Woe={kernelName:Sc,backendName:"webgl",kernelFunc:Boe},Voe="return float(a >= 1.0 || b >= 1.0);",Uoe=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Goe=Nn({opSnippet:Voe,packedOpSnippet:Uoe,dtype:"bool"}),Hoe={kernelName:Mp,backendName:"webgl",kernelFunc:Goe},joe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},qoe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Xoe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new qoe(r.shape,a,o,i,l):new joe(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},Koe={kernelName:zp,backendName:"webgl",kernelFunc:Xoe},Zoe=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Yoe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new Zoe(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},Joe={kernelName:Ym,backendName:"webgl",kernelFunc:Yoe};function Qoe(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=nu(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function KS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[c[S]];let w=gx(A,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=p2(r,c,n);u=T.getInnerMostAxes(u.length,i)}T.assertAxesAreInnerMostDims("max",u,i);let[f,m]=T.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=T.expandShapeToKeepDim(f,l));let y;if(d){let A=n.texData.get(h.dataId).values,b=pte(A,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=Qoe(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var eie={kernelName:Eo,backendName:"webgl",kernelFunc:KS},tie=NS+`
|
|
return max(a, b);
|
|
`,nie=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+c2+`
|
|
return result;
|
|
`,sie=Nn({opSnippet:tie,packedOpSnippet:nie,cpuKernelImpl:hte}),rie={kernelName:Ro,backendName:"webgl",kernelFunc:sie};function aie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Jc(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ds({inputs:{x:r},backend:n});let p=new Sp(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var oie={kernelName:_o,backendName:"webgl",kernelFunc:aie};function iie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new Ax(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var lie={kernelName:Lp,backendName:"webgl",kernelFunc:iie},uie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function die(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new Ax(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new cie(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var pie={kernelName:Qm,backendName:"webgl",kernelFunc:die};function hie(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Jc([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new Sp(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new uie(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var fie={kernelName:Jm,backendName:"webgl",kernelFunc:hie};function mie(e,t,n,s){let r=new Sp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Sp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var gie={kernelName:e0,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(T.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=T.computePool2DInfo(s.shape,r,a,u,o),[p,d]=mie(s,i,c,l);return[p,d]}};function yie(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=nu(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Aie={kernelName:Do,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[c[E]];let k=gx(b,s.shape,s.dtype,c,w);f=o.makeTensorInfo(w,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=p2(s,c,o);h.push(f),u=T.getInnerMostAxes(u.length,i)}T.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=T.computeOutAndReduceShapes(f.shape,u),y=m;r&&(y=T.expandShapeToKeepDim(m,l));let x=yie(f,g,y,o);for(let A of h)o.disposeIntermediateTensorInfo(A);return x}};function xie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=an({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=nu(m,m.dtype,"min",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var bie={kernelName:$o,backendName:"webgl",kernelFunc:xie},vie=NS+`
|
|
return min(a, b);
|
|
`,wie=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+c2+`
|
|
return result;
|
|
`,kie=Nn({opSnippet:vie,packedOpSnippet:wie,cpuKernelImpl:fte}),Iie={kernelName:Fo,backendName:"webgl",kernelFunc:kie},Sie=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=Ct(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Cie=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=Ct(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Yn("rc",s),l=Yn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},Tie=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Cie(s.shape,r,a):new Sie(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Nie={kernelName:Po,backendName:"webgl",kernelFunc:Tie},Eie=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Rie=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+c2+`
|
|
return result;
|
|
`,_ie=Nn({opSnippet:Eie,packedOpSnippet:Rie}),Die={kernelName:Cc,backendName:"webgl",kernelFunc:_ie},$ie=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Fie=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Pie=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,ZS=Nn({opSnippet:Fie,packedOpSnippet:Pie,checkOutOfBounds:!0}),Oie={kernelName:xo,backendName:"webgl",kernelFunc:ZS},Zv="return a - b;",YS=Nn({opSnippet:Zv,packedOpSnippet:Zv,supportsComplex:!0,cpuKernelImpl:_te}),Mie={kernelName:Yo,backendName:"webgl",kernelFunc:YS};function JS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=KS({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=YS({inputs:{a:r,b:u},backend:n}),p=jS({inputs:{x:c},backend:n}),d=h2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=ZS({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var zie={kernelName:Ko,backendName:"webgl",kernelFunc:JS};function Lie(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:JS({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new $ie(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var Bie={kernelName:t0,backendName:"webgl",kernelFunc:Lie},Wie=ur+`
|
|
return -x;
|
|
`,Vie=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Uie(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=gte(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new zi(s.shape,Vie):r=new ua(s.shape,Wie),n.runWebGLProgram(r,[s],s.dtype)}var Gie={kernelName:wl,backendName:"webgl",kernelFunc:Uie},Hie=ir.nonMaxSuppressionV3Impl;function jie(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=Hie(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var qie={kernelName:Il,backendName:"webgl",kernelFunc:jie},Xie=ir.nonMaxSuppressionV4Impl;function Kie(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=Xie(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Zie={kernelName:Tc,backendName:"webgl",kernelFunc:Kie},Yie=ir.nonMaxSuppressionV5Impl;function Jie(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=Yie(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Qie={kernelName:Sl,backendName:"webgl",kernelFunc:Jie},ele=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},tle=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),u=new ele(l,a,o,i),c=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,a],h=ve({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},nle={kernelName:Tl,backendName:"webgl",kernelFunc:tle};function _m(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Eh({inputs:{input:s},backend:n}),a=_m({inputs:{x:r},backend:n}),o=f2({inputs:{input:s},backend:n}),i=_m({inputs:{x:o},backend:n}),l=ai({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Rh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var sle={kernelName:Ul,backendName:"webgl",kernelFunc:_m};function QS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Eh({inputs:{input:s},backend:n}),a=QS({inputs:{x:r},backend:n}),o=f2({inputs:{input:s},backend:n}),i=_m({inputs:{x:o},backend:n}),l=ai({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Rh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var rle={kernelName:Cl,backendName:"webgl",kernelFunc:QS};function ale(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return H3({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=H3({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=LS({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var ole={kernelName:Nl,backendName:"webgl",kernelFunc:ale},ile=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=Ct(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},lle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=Ct(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Yn("rc",s),l=Yn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${p[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},e9=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Rh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lle(r.shape,a,o):new ile(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},ule={kernelName:Mo,backendName:"webgl",kernelFunc:e9},cle=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,dle=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+c2+`
|
|
return result;
|
|
`,ple=Nn({opSnippet:cle,packedOpSnippet:dle}),hle={kernelName:zo,backendName:"webgl",kernelFunc:ple};function fle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=T.getAxesPermutation(c,i),d=r;p!=null&&(d=an({inputs:{x:r},backend:n,attrs:{perm:p}}),c=T.getInnerMostAxes(c.length,i),l.push(d)),T.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=Ate(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=T.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=Kp(r.dtype),A=nu(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=T.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var mle={kernelName:Bo,backendName:"webgl",kernelFunc:fle},t9=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=xte(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},gle={kernelName:Nc,backendName:"webgl",kernelFunc:t9},yle="return 1.0 / x;",Ale=ct({opSnippet:yle}),xle={kernelName:Ec,backendName:"webgl",kernelFunc:Ale},ble=ur+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,vle=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,wle=ct({opSnippet:ble,packedOpSnippet:vle}),kle={kernelName:Wo,backendName:"webgl",kernelFunc:wle},Ile=ur+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Sle=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Cle=ct({opSnippet:Ile,packedOpSnippet:Sle}),Tle={kernelName:Uo,backendName:"webgl",kernelFunc:Cle},Nle=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ele=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Rle(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ele(r.shape,l,u,a,o):new Nle(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var _le={kernelName:Vo,backendName:"webgl",kernelFunc:Rle},Dle=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function $le(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Dle(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Fle={kernelName:s0,backendName:"webgl",kernelFunc:$le},Ple=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ole=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Mle(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ole(r.shape,l,u,a,o):new Ple(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var zle={kernelName:Rc,backendName:"webgl",kernelFunc:Mle},Lle=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Ble(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Lle(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Wle={kernelName:n0,backendName:"webgl",kernelFunc:Ble},Vle=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=Ct(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Ule=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Yn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=Ct(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Gle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ds({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ule(r.shape,i):new Vle(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Hle={kernelName:Rl,backendName:"webgl",kernelFunc:Gle},jle=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},qle={kernelName:Gl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new jle(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},Xle=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Kle=ct({opSnippet:Xle}),Zle={kernelName:_l,backendName:"webgl",kernelFunc:Kle},Yle="return inversesqrt(x);",Jle=ct({opSnippet:Yle,cpuKernelImpl:bte}),Qle={kernelName:Go,backendName:"webgl",kernelFunc:Jle},n9=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=Ct(r.length),l=Ct(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function eue(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new n9(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var tue={kernelName:Dl,backendName:"webgl",kernelFunc:eue},nue=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=Y().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${o}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${i} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function sue(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=new nue(r.shape[0],r.shape[1],a.shape[1],o),l=[[r.shape[1]]];return n.runWebGLProgram(i,[r,a],"int32",l)}var rue={kernelName:r0,backendName:"webgl",kernelFunc:sue},aue=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=Ct(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function oue(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new aue(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Fn(r.dtype,a.dtype))}var iue={kernelName:$l,backendName:"webgl",kernelFunc:oue},lue=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${T.SELU_SCALEALPHA};
|
|
float scale = ${T.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,uue=ct({opSnippet:lue}),cue={kernelName:_c,backendName:"webgl",kernelFunc:uue},due=rd+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,pue=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,hue=ct({opSnippet:due,packedOpSnippet:pue,cpuKernelImpl:wte}),fue={kernelName:jo,backendName:"webgl",kernelFunc:hue},mue=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,gue=ct({opSnippet:mue}),yue={kernelName:Dc,backendName:"webgl",kernelFunc:gue},Aue=rd+`
|
|
return sin(x);
|
|
`,xue=ct({opSnippet:Aue}),bue={kernelName:Ho,backendName:"webgl",kernelFunc:xue},vue=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,wue=ct({opSnippet:vue}),kue={kernelName:Pl,backendName:"webgl",kernelFunc:wue},Iue=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Sue=ct({opSnippet:Iue}),Cue={kernelName:$c,backendName:"webgl",kernelFunc:Sue},Tue=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=e9({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(c.shape,a,i,!1),d=T.getPermuted(p.length,a.length,!1),h=T.getReshapedPermuted(c.shape,a,i,!1),f=ve({inputs:{x:c},backend:n,attrs:{shape:p}}),m=an({inputs:{x:f},backend:n,attrs:{perm:d}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},Nue={kernelName:Ol,backendName:"webgl",kernelFunc:Tue};function Eue(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=Ite(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Rue={kernelName:Wp,backendName:"webgl",kernelFunc:Eue};function _ue(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=Ste(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Due={kernelName:Fc,backendName:"webgl",kernelFunc:_ue};function $ue(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=IS(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Fue={kernelName:Vp,backendName:"webgl",kernelFunc:$ue};function Pue(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=IS(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Oue={kernelName:Up,backendName:"webgl",kernelFunc:Pue};function Mue(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=vte(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new n9(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var zue={kernelName:Gp,backendName:"webgl",kernelFunc:Mue};function Lue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=ad({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Bue={kernelName:Ml,backendName:"webgl",kernelFunc:Lue},Yv="return sqrt(x);",Wue=ct({opSnippet:Yv,packedOpSnippet:Yv,cpuKernelImpl:Cte}),Vue={kernelName:qo,backendName:"webgl",kernelFunc:Wue},Uue="return x * x;",Gue=ct({opSnippet:Uue}),Hue={kernelName:Pc,backendName:"webgl",kernelFunc:Gue},Jv="return (a - b) * (a - b);",jue=Nn({opSnippet:Jv,packedOpSnippet:Jv}),que={kernelName:Zo,backendName:"webgl",kernelFunc:jue};function Xue({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=ur+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new ua(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Kue={kernelName:Qo,backendName:"webgl",kernelFunc:Xue},Zue=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=Ct(n.length),a=Ct(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Yue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Gt.computeOutShape(x,A,b),E=ad({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),R=We(r.shape,r.dtype,E),$=Tte(h,R,b,x);w=n.makeTensorInfo(f,r.dtype,$.values)}else{let E=new Zue(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let k=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),k}var Jue={kernelName:zl,backendName:"webgl",kernelFunc:Yue};function Que(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Nte(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var ece={kernelName:Hp,backendName:"webgl",kernelFunc:Que};function tce(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=Ete(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var nce={kernelName:a0,backendName:"webgl",kernelFunc:tce};function sce(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Rte(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var rce={kernelName:o0,backendName:"webgl",kernelFunc:sce},ace="return tan(x);",oce=ct({opSnippet:ace}),ice={kernelName:Ll,backendName:"webgl",kernelFunc:oce},lce=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,uce=ct({opSnippet:lce}),cce={kernelName:Jo,backendName:"webgl",kernelFunc:uce},dce=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=Ct(this.rank),r=pce(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function pce(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function s9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=Dte(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new dce(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var hce={kernelName:xa,backendName:"webgl",kernelFunc:s9},fce=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},mce=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Ni(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Qv(e){let t=1;for(;t<e;)t*=2;return t}function gce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let $=n.readSync(r.dataId),[_,D]=$te($,u,r.dtype,a,o);return[n.makeTensorInfo(_.shape,_.dtype,_.values),n.makeTensorInfo(D.shape,D.dtype,D.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Rh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Ni(n,h);let y=Qv(a),x=Qv(c),A=null,b=()=>A===null?[g,g]:[g,A],w=($,_,D)=>{let C=b(),P=new fce(D),j=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[$],[_]],z=A;A=n.runWebGLProgram(P,C,"int32",j),Ni(n,z)};for(let $=1;$<y;$*=2){let _=$*2;for(let D=$;D>=1;D/=2)w(_,D,[m,x])}for(let $=x;$>y;$/=2){let _=b(),D=new mce([m,$/2]),P=[[c],[A===null?1:0],[y]],V=A;A=n.runWebGLProgram(D,_,"int32",P),Ni(n,V);let j=y/2,z=j*2;for(let Z=j;Z>=1;Z/=2)w(z,Z,A.shape)}let k=A;A=ad({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),Ni(n,k);let S=XS({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});Ni(n,g);let E=u.slice(0,-1);E.push(a),k=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),Ni(n,k);let R=S;return S=ve({inputs:{x:S},attrs:{shape:E},backend:n}),Ni(n,R),[S,A]}var yce={kernelName:Bl,backendName:"webgl",kernelFunc:gce},Ace=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function xce(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Ace(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var bce={kernelName:Wl,backendName:"webgl",kernelFunc:xce};function vce(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Jc(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Fte(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var wce={kernelName:i0,backendName:"webgl",kernelFunc:vce};function kce(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=ad({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=ve({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Ice={kernelName:Vl,backendName:"webgl",kernelFunc:kce},Sce=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Cce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=T.getAxesPermutation([u],i),p=r;c!=null&&(p=an({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=T.getInnerMostAxes(1,i)[0]);let d=T.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=Kp(r.dtype),g=(b,w,k,S,E)=>{let R=b.shape[0],$=b.shape[1],_=T.segment_util.segOpComputeOptimalWindowSize($,E),D={windowSize:_,inSize:$,batchSize:R,numSegments:E},C=new Sce(D,w),P=n.compileAndRun(C,[b,k],S);if(l.push(P),P.shape[1]===E)return P;let V=t9({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),j=s9({inputs:{x:V},backend:n,attrs:{reps:[$/_]}});return l.push(V),l.push(j),g(P,w,j,S,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=T.getUndoAxesPermutation(c);A=an({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Tce={kernelName:jp,backendName:"webgl",kernelFunc:Cce},Nce=[Ene,_ne,Fne,Mne,Lne,Vne,Gne,jne,Zne,Jne,tse,rse,ise,dse,fse,gse,Ase,wse,Ise,Cse,Rse,Mse,Lse,Wse,qse,Kse,Qse,cne,nre,ire,dre,yre,xre,vre,kre,Sre,Nre,_re,Fre,Ore,zre,Bre,Ure,Hre,Kre,Yre,eae,sae,aae,uae,hae,yae,bae,kae,Iae,Cae,Nae,Rae,Dae,Fae,zae,Wae,Gae,jae,Kae,Jae,noe,ooe,une,loe,are,doe,foe,yoe,pne,voe,Soe,Toe,_oe,Foe,zoe,Woe,Hoe,Koe,Joe,eie,rie,oie,lie,pie,fie,gie,Aie,bie,Iie,Nie,Die,Bie,yne,Gie,qie,Zie,Qie,Use,nle,rle,ole,ule,hle,fne,mle,gle,Gse,Oie,xle,kle,Tle,xne,_le,Fle,zle,Wle,Hle,qle,Zle,Qle,tue,rue,iue,cue,fue,yue,bue,kue,Pse,zie,Cue,Nue,Rue,Due,Fue,Oue,zue,Bue,Vue,Hue,que,Kue,Jue,ece,nce,rce,Mie,Cne,ice,cce,hce,yce,bce,Tne,wce,Ice,Tce,sle];for(let e of Nce)or(e);var jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(jt||(jt={}));var Tp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Tp||(Tp={}));var r9;function Ece(e){r9=e.wasm.cwrap(Xa,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Rce(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Tp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=jl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return r9(d,k,r.shape.length,h,S,a.shape.length,l,u,g,f,m,p||0,w),b}var _ce={kernelName:Xa,backendName:"wasm",setupFunc:Ece,kernelFunc:Rce};function En(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,jt[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Dce=En(ol);function rs(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=T.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,jt[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var $ce=!0,Fce=rs(ya,$ce),a9;function Pce(e){a9=e.wasm.cwrap(oo,null,["array","number","number","number"])}function Oce(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return a9(a,r.length,jt[s.dtype],o),s}var Mce={kernelName:oo,backendName:"wasm",setupFunc:Pce,kernelFunc:Oce};function m2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var zce={kernelName:Co,backendName:"wasm",kernelFunc:m2},o9;function Lce(e){o9=e.wasm.cwrap(Vr,null,["number","array","number","number","number","array","number"])}function ro(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Wce(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Bce(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=m2({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return o9(c,h,l.shape.length,jt[l.dtype],p,d,a.length),u}function Bce(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Wce(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Vce={kernelName:Vr,backendName:"wasm",kernelFunc:ro,setupFunc:Lce};function oi(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=T.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=T.getInnerMostAxes(o.length,r),l=ro({inputs:{x:e},attrs:{perm:i},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var i9;function Uce(e){i9=e.wasm.cwrap(dc,null,["number, number, number"])}function Gce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("all",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;i9(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Hce={kernelName:dc,backendName:"wasm",setupFunc:Uce,kernelFunc:Gce},l9;function jce(e){l9=e.wasm.cwrap(pc,null,["number, number, number"])}function qce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("any",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;l9(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Xce={kernelName:pc,backendName:"wasm",setupFunc:jce,kernelFunc:qce},u9;function Kce(e){u9=e.wasm.cwrap(io,null,["number","number","number","number","number"])}function Zce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:p}=oi(a,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==o&&(l=u,i=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[c[0]];return u9(i,jt[l.dtype],m,g,f),p&&t.disposeData(u.dataId),h}var Yce={kernelName:io,backendName:"wasm",kernelFunc:Zce,setupFunc:Kce},c9;function Jce(e){c9=e.wasm.cwrap(lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qce(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,x=c.strideWidth,A=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return c9(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,w),b}var ede={kernelName:lo,backendName:"wasm",setupFunc:Jce,kernelFunc:Qce};function ds(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var tde={kernelName:El,backendName:"wasm",kernelFunc:ds},d9;function nde(e){d9=e.wasm.cwrap(uo,null,["number","array","number","number","array","number","number","number","number"])}function sde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=jl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],k=ds({inputs:{x:r},backend:n,attrs:{shape:b}}),S=ds({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(k.dataId).id,R=n.dataIdMap.get(S.dataId).id,$=o?k.shape[2]:k.shape[1],_=i?S.shape[1]:S.shape[2],D=Math.max(g,y),C=n.makeOutput([D,$,_],k.dtype),P=n.dataIdMap.get(C.dataId).id,V=new Uint8Array(new Int32Array(k.shape).buffer),j=new Uint8Array(new Int32Array(S.shape).buffer);return d9(E,V,k.shape.length,R,j,S.shape.length,o,i,P),n.disposeData(k.dataId),n.disposeData(S.dataId),C.shape=A,C}var rde={kernelName:uo,backendName:"wasm",setupFunc:nde,kernelFunc:sde};function sl(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Gt.parseSliceParams(t,n,s),i=Gt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Gt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Cm(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)ade(l,c[0],d,a,o);else if(h===3)ode(l,c[0],c[1],d,a,o);else if(h===4)ide(l,c[0],c[1],c[2],d,a,o);else{let f=Cm(l,a,o,t.shape,t.dtype);d.set(f)}return u}function ade(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function ode(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],p=l+a[1];for(let d=i;d<c;d++)for(let h=l;h<p;h++){let f=d*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function ide(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],p=l+o[0],d=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<p;m++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let x=m*t+g*n+y*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var lde={kernelName:Fl,backendName:"wasm",kernelFunc:sl};function ude(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=ds({inputs:{x:r},backend:n,attrs:{shape:l}}),f=ro({inputs:{x:h},backend:n,attrs:{perm:u}}),m=ds({inputs:{x:f},backend:n,attrs:{shape:c}}),g=sl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var cde={kernelName:il,backendName:"wasm",kernelFunc:ude};function _h(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var dde={kernelName:co,backendName:"wasm",kernelFunc:_h},pde=En(po),p9;function hde(e){p9=e.wasm.cwrap(Aa,null,["number","number","number","number"])}function fde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return p9(i,a,o,u),l}var mde={kernelName:Aa,backendName:"wasm",setupFunc:hde,kernelFunc:fde};function h9(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=T.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return m2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(T.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return ds({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=T.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Y5(f,r,t[0].dtype,m),y=T.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=T.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<p.length;m++){let g=c[m],y=h*g,x=p[m].subarray(y,y+g);d.set(x,f),f+=g}}return o}var gde={kernelName:ll,backendName:"wasm",kernelFunc:h9},f9;function yde(e){f9=e.wasm.cwrap(ho,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ade(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=T.convertConv2DDataFormat(d),f=T.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,x=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,E=f.strideWidth,R=f.inChannels,$=f.outChannels,_=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let D=s.makeOutput(f.outShape,"float32"),C=s.dataIdMap.get(D.dataId).id;return f9(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,x,A,b,_,w,k,S,E,R,$,C),D}var xde={kernelName:ho,backendName:"wasm",setupFunc:yde,kernelFunc:Ade},m9;function bde(e){m9=e.wasm.cwrap(fo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vde(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,p=1,d=T.convertConv2DDataFormat(l),h=T.computeConv2DInfo(c,a.shape,o,p,i,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:x,inWidth:A,outChannels:b,outHeight:w,outWidth:k,strideHeight:S,strideWidth:E}=h,R=m-1-h.padInfo.top,$=g-1-h.padInfo.left,_=h.dataFormat==="channelsLast",D=v.computeStrides(h.inShape),C=v.computeStrides(r.shape),[P,V,j]=v.computeStrides(a.shape),z=D[0],Z=_?D[1]:D[2],W=_?D[2]:1,ee=_?1:D[1],Q=C[0],ie=_?C[1]:C[2],J=_?C[2]:1,ae=_?1:C[1],le=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(le.dataId).id,we=t.dataIdMap.get(r.dataId).id,Re=t.dataIdMap.get(a.dataId).id;return m9(we,Re,f,m,g,x,A,y,w,k,b,S,E,R,$,P,V,j,z,Z,W,ee,Q,ie,J,ae,ye),le}var wde={kernelName:fo,backendName:"wasm",setupFunc:bde,kernelFunc:vde},kde=En(mo),Ide=En(go),j3;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(j3||(j3={}));var g9;function Sde(e){g9=e.wasm.cwrap(cl,null,["number","number","number","number","array","number","number","number","number","number"])}function Cde(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=o,h=[c,p,d,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=_h({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return g9(g,y,x,c,w,p,d,j3[r],a,b),m!=null&&t.disposeData(m.dataId),A}var Tde={kernelName:cl,backendName:"wasm",setupFunc:Sde,kernelFunc:Cde},y9;function Nde(e){y9=e.wasm.cwrap(ul,null,["number","number","number","number","number","number"])}function Ede(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=ro({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;y9(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=ro({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Rde={kernelName:ul,backendName:"wasm",setupFunc:Nde,kernelFunc:Ede},A9;function _de(e){A9=e.wasm.cwrap(yo,null,["number","number","number","number","number","number"])}function Dde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=ro({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;A9(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=ro({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var $de={kernelName:yo,backendName:"wasm",setupFunc:_de,kernelFunc:Dde},x9;function Fde(e){x9=e.wasm.cwrap(dl,null,["number","number","number","array","number","array","array","number","number"])}function Pde(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return x9(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var Ode={kernelName:dl,backendName:"wasm",setupFunc:Fde,kernelFunc:Pde},b9;function Mde(e){b9=e.wasm.cwrap(Ao,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zde(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,E=h.inChannels,R=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(h.outShape,"float32"),D=s.dataIdMap.get(_.dataId).id;return b9(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,$,b,w,k,S,E,R,D),_}var Lde={kernelName:Ao,backendName:"wasm",setupFunc:Mde,kernelFunc:zde},Bde=En(bo),Wde=!1,Vde=rs(pl,Wde,"bool"),Ude=En(vo,"float32");function q3(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ds({inputs:{x:r},backend:s,attrs:{shape:i}})}var Gde={kernelName:hl,backendName:"wasm",kernelFunc:q3};function v9(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Hde={kernelName:bc,backendName:"wasm",kernelFunc:v9},w9;function jde(e){w9=e.wasm.cwrap(ml,null,["number","number","number","number","number","number"])}function qde(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return w9(a,i,l,u,c,o),r}var Xde={kernelName:ml,backendName:"wasm",kernelFunc:qde,setupFunc:jde},Kde=En(wo),Zde=!1,Yde=rs(ko,Zde),k9;function Jde(e){k9=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","number"])}function Qde(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return k9(c,p,d,h,f,r,g),m}var epe={kernelName:Io,backendName:"wasm",setupFunc:Jde,kernelFunc:Qde},I9;function tpe(e){I9=e.wasm.cwrap(Ka,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function npe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=Tp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${A})`);b=J.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,$=m.padInfo.left,_=m.dilationHeight,D=m.dilationWidth,C=m.strideHeight,P=m.strideWidth,V=m.inChannels,j=m.padInfo.type==="SAME"?1:0,z=m.batchSize,Z=m.inHeight,W=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(ee.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return I9(y,z,Z,W,x,w,k,b,S,E,R,$,j,_,D,C,P,V,A,g,ie,f||0,Q),ee}var spe={kernelName:Ka,backendName:"wasm",setupFunc:tpe,kernelFunc:npe},S9;function rpe(e){S9=e.wasm.cwrap(Za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ape(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=Tp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${A})`);b=J.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,$=m.padInfo.left,_=m.dilationHeight,D=m.dilationWidth,C=m.strideHeight,P=m.strideWidth,V=m.inChannels,j=m.padInfo.type==="SAME"?1:0,z=m.batchSize,Z=m.inHeight,W=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(ee.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return S9(y,z,Z,W,x,w,k,b,S,E,R,$,j,_,D,C,P,V,A,g,ie,f||0,Q),ee}var ope={kernelName:Za,backendName:"wasm",setupFunc:rpe,kernelFunc:ape},C9;function ipe(e){C9=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","array","number"])}function lpe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Ay.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return C9(h,jt[s.dtype],m,o,p,i,g,y),u}var upe={kernelName:yl,backendName:"wasm",setupFunc:ipe,kernelFunc:lpe},T9;function cpe(e){T9=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function dpe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let R=0;R<u.length;++R){let $=u[R];v.assert($<=c-1&&$>=0,()=>`GatherV2: the index value ${$} is not in [0, ${c-1}]`)}let p=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=ds({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=ds({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,S=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return T9(A,jt[r.dtype],S,y,w,p.batchSize,E,k),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var ppe={kernelName:gl,backendName:"wasm",setupFunc:cpe,kernelFunc:dpe},hpe=!1,fpe=rs(Al,hpe,"bool"),mpe=!1,gpe=rs(So,mpe,"bool"),N9;function ype(e){N9=e.wasm.cwrap(To,null,["number","number","number","number"])}function Ape(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;N9(r,jt[t.dtype],n,o)}return a}var xpe={kernelName:To,backendName:"wasm",setupFunc:ype,kernelFunc:Ape},bpe=!1,vpe=rs(xl,bpe,"bool"),wpe=!1,kpe=rs(bl,wpe,"bool"),Ipe=En(No),Spe=!1,Cpe=rs(vl,Spe,"bool"),E9;function Tpe(e){E9=e.wasm.cwrap(Eo,null,["number","number","number","number"])}function Npe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("max",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;E9(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Epe={kernelName:Eo,backendName:"wasm",setupFunc:Tpe,kernelFunc:Npe},Rpe=!1,_pe=rs(Ro,Rpe),R9;function Dpe(e){R9=e.wasm.cwrap(_o,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $pe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(S.dataId).id;return R9(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,k,E),S}var Fpe={kernelName:_o,backendName:"wasm",setupFunc:Dpe,kernelFunc:$pe},_9;function Ppe(e){_9=e.wasm.cwrap(Do,null,["number, number, number"])}function Ope(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=_h({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;_9(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=T.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var Mpe={kernelName:Do,backendName:"wasm",setupFunc:Ppe,kernelFunc:Ope},D9;function zpe(e){D9=e.wasm.cwrap($o,null,["number","number","number","number"])}function Lpe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;T.assertAxesAreInnerMostDims("min",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;D9(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Bpe={kernelName:$o,backendName:"wasm",setupFunc:zpe,kernelFunc:Lpe},Wpe=!1,Vpe=rs(Fo,Wpe),X3;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(X3||(X3={}));var $9;function Upe(e){$9=e.wasm.cwrap(Po,null,["number","array","number","number","array","array","number","number"])}function Gpe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return $9(o,u,t.shape.length,jt[t.dtype],d,h,X3[r],l),i}var Hpe={kernelName:Po,backendName:"wasm",kernelFunc:Gpe,setupFunc:Upe},jpe=!0,qpe=rs(Oo,jpe),Xpe=En(wl);function xx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var F9;function Kpe(e){F9=e.wasm.cwrap(Il,"number",["number","number","number","number","number"])}function Zpe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=F9(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=xx(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var Ype={kernelName:Il,backendName:"wasm",setupFunc:Kpe,kernelFunc:Zpe},P9;function Jpe(e){P9=e.wasm.cwrap(Tc,"number",["number","number","number","number","number","bool"])}function Qpe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=P9(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=xx(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var ehe={kernelName:Tc,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},O9;function the(e){O9=e.wasm.cwrap(Sl,"number",["number","number","number","number","number","number"])}function nhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=O9(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=xx(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var she={kernelName:Sl,backendName:"wasm",setupFunc:the,kernelFunc:nhe},rhe=!1,ahe=rs(kl,rhe,"bool"),M9;function ohe(e){M9=e.wasm.cwrap(Tl,null,["number","number","number","number","number"])}function ihe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return M9(p,a,o,i,u),l}var lhe={kernelName:Tl,backendName:"wasm",setupFunc:ohe,kernelFunc:ihe};function uhe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var che={kernelName:Cl,backendName:"wasm",kernelFunc:uhe};function dhe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return q3({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=q3({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=h9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var phe={kernelName:Nl,backendName:"wasm",kernelFunc:dhe},z9;function hhe(e){z9=e.wasm.cwrap(Mo,null,["number","array","number","number","array","array","number","number"])}function fhe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return v9({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return z9(o,c,t.shape.length,jt[t.dtype],h,f,r,u),i}var L9={kernelName:Mo,backendName:"wasm",kernelFunc:fhe,setupFunc:hhe},mhe=!1,ghe=rs(zo,mhe),B9;function yhe(e){B9=e.wasm.cwrap(Lo,null,["number","number","number"])}function Ahe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=_h({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return B9(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var xhe={kernelName:Lo,backendName:"wasm",setupFunc:yhe,kernelFunc:Ahe},W9;function bhe(e){W9=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function vhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;W9(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var whe={kernelName:Bo,backendName:"wasm",setupFunc:bhe,kernelFunc:vhe},khe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=ex(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Ihe={kernelName:Nc,backendName:"wasm",kernelFunc:khe},She=!0,Che=rs(xo,She),The=En(Wo),Nhe=En(Uo),V9;function Ehe(e){V9=e.wasm.cwrap(Vo,null,["number","number","number","number","number","number","number","number","number","number"])}function Rhe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=_h({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return V9(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var _he={kernelName:Vo,backendName:"wasm",setupFunc:Ehe,kernelFunc:Rhe},U9;function Dhe(e){U9=e.wasm.cwrap(Rl,null,["number","array","number","array","number","number"])}function $he(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return m2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);U9(l,c,o.length,p,r.shape.length,u);let d=ds({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var Fhe={kernelName:Rl,backendName:"wasm",kernelFunc:$he,setupFunc:Dhe},G9;function Phe(e){G9=e.wasm.cwrap(Gl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Ohe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=T.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return G9(u,p,d,h,f,a,m,g,b,A.length,c),l}var Mhe={kernelName:Gl,backendName:"wasm",kernelFunc:Ohe,setupFunc:Phe},zhe=En(_l),Lhe=En(Go),H9;function Bhe(e){H9=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number","array","number","number"])}function Whe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=xy.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return H9(f,g,jt[a.dtype],l,u,c,y,d,x),i}var Vhe={kernelName:Dl,backendName:"wasm",setupFunc:Bhe,kernelFunc:Whe},j9;function Uhe(e){j9=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ghe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return j9(o,i,l,h,c),u}var Hhe={kernelName:$l,backendName:"wasm",kernelFunc:Ghe,setupFunc:Uhe},q9;function jhe(e){q9=e.wasm.cwrap(jo,null,["number","number"])}function qhe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||q9(s,a),r}var Xhe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:jhe,kernelFunc:qhe},Khe=En(Ho),X9;function Zhe(e){X9=e.wasm.cwrap(Ko,null,["number","number","number","number"])}function Yhe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||X9(r,o,i,l),a}var Jhe={kernelName:Ko,backendName:"wasm",setupFunc:Zhe,kernelFunc:Yhe};function Qhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=L9.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(u.shape,a,i,!1),p=T.getPermuted(c.length,a.length,!1),d=T.getReshapedPermuted(u.shape,a,i,!1),m=ds({inputs:{x:u},backend:n,attrs:{shape:c}}),x=ro({inputs:{x:m},backend:n,attrs:{perm:p}}),w=ds({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var efe={kernelName:Ol,backendName:"wasm",kernelFunc:Qhe},K9;function tfe(e){K9=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function nfe(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=n,i=s.shape[0],l=s.shape[1],u=t.readSync(a.dataId)[0],c=[i+u,l],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,x=t.makeOutput([u],"bool"),A=t.dataIdMap.get(x.dataId).id,b=t.makeOutput([i],s.dtype),w=t.dataIdMap.get(b.dataId).id,k=t.makeOutput([4],"int32"),S=t.dataIdMap.get(k.dataId).id,E=K9(p,d,jt[r.dtype],i,u,l,h,m,y,A,w,S),R=t.readSync(k.dataId),$;switch(R[0]){case 1:{$=T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{$=T.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:$=T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:$=""}if(t.disposeData(k.dataId),$)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(x.dataId),t.disposeData(b.dataId),new Error($);let _=f,D=g;return E!==c[0]&&(_=sl({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),D=sl({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[_,D,x,b]}var sfe={kernelName:Wp,backendName:"wasm",setupFunc:tfe,kernelFunc:nfe},Z9;function rfe(e){Z9=e.wasm.cwrap(Fc,null,["number","number","number","number","number","number","number"])}function afe(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;Z9(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=T.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var ofe={kernelName:Fc,backendName:"wasm",setupFunc:rfe,kernelFunc:afe},Y9;function J9(e){Y9=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function Q9(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;Y9(d,jt[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function ife(e){return Q9(e,!0)}var lfe={kernelName:Vp,backendName:"wasm",setupFunc:J9,kernelFunc:ife};function ufe(e){return Q9(e,!1)}var cfe={kernelName:Up,backendName:"wasm",setupFunc:J9,kernelFunc:ufe};function dfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=sl({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var pfe={kernelName:Ml,backendName:"wasm",kernelFunc:dfe},hfe=En(qo),ffe=En(Pc),mfe=!0,gfe=rs(Zo,mfe),eC;function yfe(e){eC=e.wasm.cwrap(Qo,null,["number","number","number","number"])}function Afe(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return eC(o,r,jt[a.dtype],l),i}var xfe={kernelName:Qo,backendName:"wasm",setupFunc:yfe,kernelFunc:Afe},tC;function bfe(e){tC=e.wasm.cwrap(zl,null,["number","array","number","array","array","array","array","array","number","number"])}function vfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ds({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),S=sl({inputs:{x:r},backend:t,attrs:{begin:x,size:k}});w=ds({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}else{let k=t.makeOutput(h,"float32"),S=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),R=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(b).buffer),D=new Uint8Array(new Int32Array(h).buffer),C=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),P=t.dataIdMap.get(k.dataId).id;tC(S,E,r.shape.length,R,$,_,D,C,h.length,P),w=ds({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}return w}var wfe={kernelName:zl,backendName:"wasm",setupFunc:bfe,kernelFunc:vfe},kfe=!0,Ife=rs(Yo,kfe),nC;function Sfe(e){nC=e.wasm.cwrap(Xo,null,["number","number","number","number"])}function Cfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=oi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;nC(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Tfe={kernelName:Xo,backendName:"wasm",setupFunc:Sfe,kernelFunc:Cfe},Nfe=En(Ll),Efe=En(Jo),sC;function Rfe(e){sC=e.wasm.cwrap(xa,null,["number","array","number","array","number","number"])}function _fe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d<i.length;d++)i[d]=r.shape[d]*o[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),p=n.dataIdMap.get(c.dataId).id;return sC(a,l,r.shape.length,u,i.length,jt[c.dtype],p),c}var Dfe={kernelName:xa,backendName:"wasm",setupFunc:Rfe,kernelFunc:_fe},rC;function $fe(e){rC=e.wasm.cwrap(Bl,null,["number","array","number","number","number","bool","number","number"])}var Ffe=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return rC(o,i,s.shape.length,jt[s.dtype],r,a,c,d),[u,p]},Pfe={kernelName:Bl,backendName:"wasm",setupFunc:$fe,kernelFunc:Ffe},aC;function Ofe(e){aC=e.wasm.cwrap(Wl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Mfe(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),A=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,E=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return aC(w,S,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,E,R,l,A),x}var zfe={kernelName:Wl,backendName:"wasm",setupFunc:Ofe,kernelFunc:Mfe};function Lfe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),p=new Array(i).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=sl({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Bfe={kernelName:Vl,backendName:"wasm",kernelFunc:Lfe};function Wfe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Vfe={kernelName:Ul,backendName:"wasm",kernelFunc:Wfe},Ufe=[_ce,Dce,Fce,Mce,Hce,Xce,Yce,ede,rde,cde,dde,pde,mde,gde,xde,wde,kde,Ide,Tde,Rde,$de,Ode,Lde,Bde,Vde,Ude,Gde,Hde,Xde,Kde,Yde,epe,spe,ope,upe,ppe,fpe,gpe,zce,xpe,vpe,kpe,Ipe,Cpe,Epe,_pe,Fpe,Mpe,Bpe,Vpe,Hpe,qpe,Xpe,Ype,ehe,she,ahe,lhe,che,phe,L9,ghe,xhe,whe,Ihe,Che,The,Nhe,tde,_he,Fhe,Mhe,zhe,Lhe,Vhe,Hhe,Xhe,Khe,lde,Jhe,efe,sfe,ofe,lfe,cfe,pfe,hfe,ffe,gfe,xfe,wfe,Ife,Tfe,Nfe,Efe,Dfe,Pfe,zfe,Vce,Bfe,Vfe];for(let e of Ufe)or(e);var K3=Y();K3.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));K3.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(K3.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var e7=rl(zR()),Gfe=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Hfe=rl(LR()),oC=class extends ic{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(iC),Z3=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Ep(this,sn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return Xfe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function jfe(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function t7(e,t,n){if(Dm!=null)return Dm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),up!=null&&up[s]!=null?up[s]:n+s}async function qfe(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Gfe.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?t7(e,t,op!=null?op:l):l+i},bx&&(r.instantiateWasm=jfe(t7(e,t,op!=null?op:"")));let a=!1;r.onAbort=()=>{if(a||cp)return;cp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Dm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+e7.default.toString()],{type:"text/javascript"}),o=(0,e7.default)(r)):o=(0,Hfe.default)(r),o.then(i=>{a=!0,cp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Xfe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Kfe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Dm=null,op=null,up={},cp=!1,bx=!1;function Zfe(e,t=!1){if(my("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),cp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Dm=e,bx=t}function vx(e,t=!1){if(cp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")op=e;else{up=e;let n=Kfe.filter(s=>up[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}bx=t}var iC=-1,Z3=-1;function Yfe(e){iC=e}function Jfe(){if(Z3===-1)throw new Error("WASM backend not initialized.");return Z3}var Qfe="3.18.0",eme=2;Hl("wasm",async()=>{let{wasm:e}=await qfe();return new oC(e)},eme);var ii=Y();ii.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);ii.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);ii.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);ii.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);ii.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);ii.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);ii.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);ii.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Ze;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Ze||(Ze={}));var tme="return a + b;",nme="return areal * breal - aimag * bimag;",sme="return areal * bimag + aimag * breal;",rme="return a / b;",ame="return a * b;",ome="return (a - b) * (a - b);",ime="return a - b;",lme="return f32(a == b);",ume="return vec4<f32>(a == b);",cme="return f32(a > b);",dme="return vec4<f32>(a > b);",pme="return f32(a >= b);",hme="return vec4<f32>(a >= b);",fme="return f32(a < b);",mme="return vec4<f32>(a < b);",gme="return f32(a <= b);",yme="return vec4<f32>(a <= b);",Ame="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",xme=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,bme=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,lC=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,vme=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,wme=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,kme="return f32(a != b);",Ime="return vec4<f32>(a != b);",Sme=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,Cme=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${lC}
|
|
return resultTemp;
|
|
`,Tme="if (a < 0.0) { return b * a; } return a;",Nme=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function n7(e,t){let n=t?lC:bme;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function Dh(e,t){switch(e){case Ze.MUL:return ame;case Ze.ADD:return tme;case Ze.SUB:return ime;case Ze.DIV:return rme;case Ze.EQUAL:return t?ume:lme;case Ze.GREATER:return t?dme:cme;case Ze.GREATER_EQUAL:return t?hme:pme;case Ze.LESS:return t?mme:fme;case Ze.LESS_EQUAL:return t?yme:gme;case Ze.LOGICAL_AND:return t?xme:Ame;case Ze.NOT_EQUAL:return t?Ime:kme;case Ze.SQUARED_DIFFERENCE:return ome;case Ze.INT_DIV:return t?wme:vme;case Ze.PRELU:return t?Nme:Tme;case Ze.MAX:return n7("max",t);case Ze.MIN:return n7("min",t);case Ze.POW:return t?Cme:Sme;case Ze.COMPLEX_MULTIPLY_REAL:return nme;case Ze.COMPLEX_MULTIPLY_IMAG:return sme;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Pe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.RELU=12]="RELU",e[e.RELU6=13]="RELU6",e[e.LEAKYRELU=14]="LEAKYRELU",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(Pe||(Pe={}));var Eme="return abs(a);",Rme="return ceil(a);",_me="return cos(a);",Dme=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,$me="return exp(a) - 1.0;",Fme="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Pme=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Ome="return exp(a);",Mme="return floor(a);",zme="return a;",Lme=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,Bme="return f32(!(a >= 1.0));",Wme="return -a;",Vme="if (a < 0.0) { return uniforms.alpha * a; } return a;",Ume=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,Gme="return select(a, 0.0, a < 0.0);",Hme="return clamp(a, 0.0, 6.0);",jme="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",qme=`
|
|
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
|
|
`,Xme="return 1.0/sqrt(a);",Kme="return 1.0 / (1.0 + exp(-1.0 * a));",Zme="return sin(a);",Yme=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Jme="return sqrt(a);",Qme="return a * a;",e0e=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,t0e="return f32(i32((a)));";function _i(e,t){switch(e){case Pe.ABS:return Eme;case Pe.COS:return _me;case Pe.COSH:return Dme;case Pe.CEIL:return Rme;case Pe.ELU:return t?Pme:Fme;case Pe.EXP:return Ome;case Pe.EXPM1:return $me;case Pe.FLOOR:return Mme;case Pe.LINEAR:return zme;case Pe.LOG:return Lme;case Pe.LOGICAL_NOT:return Bme;case Pe.NEG:return Wme;case Pe.LEAKYRELU:return t?Ume:Vme;case Pe.RELU:return t?qme:Gme;case Pe.RELU6:return t?jme:Hme;case Pe.RSQRT:return Xme;case Pe.SIGMOID:return Kme;case Pe.SIN:return Zme;case Pe.SINH:return Yme;case Pe.SQRT:return Jme;case Pe.SQUARE:return Qme;case Pe.TANH:return e0e;case Pe.TO_INT:return t0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function li(e,t=!1){if(e===null)return null;if(e==="linear")return _i(Pe.LINEAR);if(e==="relu")return _i(Pe.RELU,t);if(e==="elu")return _i(Pe.ELU,t);if(e==="relu6")return _i(Pe.RELU6,t);if(e==="prelu")return Dh(Ze.PRELU,t);if(e==="sigmoid")return _i(Pe.SIGMOID,t);if(e==="leakyrelu")return _i(Pe.LEAKYRELU,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function n0e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function wn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ja(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function tm(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function wx(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function su(){return`
|
|
${wx()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function ot(){return`
|
|
${su()}
|
|
let index = getGlobalIndex();
|
|
`}function s0e(e,t,n,s=!1){let r=[];if(r.push(`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`),s===!0)return r.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${tm(t.dtype,n.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[s7,r.join(`
|
|
`),r7(t.shape),n.getUserCode()].join(`
|
|
`);let a=!1,o=!1,i="struct Uniforms { NAN : f32, ";n.variableNames.forEach((m,g)=>{let y=wn(e[g].shape.length);(y==="vec5"||y==="vec6")&&(o=!0),(a||o)&&(i+="@align(16) "),a=o,i+=`${m.charAt(0).toLowerCase()+m.slice(1)}Shape : ${y}, `});let l=wn(t.shape.length);o=l==="vec5"||l==="vec6",(a||o)&&(i+="@align(16) "),a=o,i+=`outShape : ${l}, `;let u=t.shape.length-1,c=wn(u);o=c==="vec5"||c==="vec6",(a||o)&&(i+="@align(16) "),a=o,i+=`
|
|
outShapeStrides: ${c}, `,n.size&&(a&&(i+="@align(16) "),a=!1,i+="size : i32, "),n.uniforms&&(a&&(i+="@align(16) "),i+=n.uniforms),i+="};",r.push(i),n.atomic?r.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):r.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${tm(t.dtype,n.isVec4)}>;
|
|
`),n.variableNames.forEach((m,g)=>{r.push(`
|
|
@group(0) @binding(${1+g}) var<storage, read> ${m}: array<${n.variableTypes?n.variableTypes[g]:tm(e[g].dtype,n.isVec4)}>;
|
|
`)}),i!==""&&r.push(`
|
|
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[p,d]=u0e(t.shape,n.dispatchLayout),h=[s7,r.join(`
|
|
`),r7(t.shape),p,r0e(t.shape.length)];if(n.atomic||h.push(a0e(t.shape,t.dtype,n.isVec4)),d===t.shape.length){let m=e.map((g,y)=>o0e(g,t.shape,n.variableTypes?n.variableTypes[y]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);h.push(m)}return h.push(n.getUserCode()),h.join(`
|
|
`)}var s7=`
|
|
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
|
|
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
|
|
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
|
|
}
|
|
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
|
|
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function r0e(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;case 5:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u;
|
|
}
|
|
`;break;case 6:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u * uniforms.outShapeStrides.u +
|
|
coords.v;
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function a0e(e,t,n){let s=e.length,r=tm(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=wn(s);n?a+=`
|
|
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return a}function o0e(e,t,n,s){let r=i0e(e,n);return e.shape.length<=t.length&&(r+=l0e(e,t,n,s)),r}function i0e(e,t){let n=e.name,s=e.shape.length,r=wn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}[0]);
|
|
}
|
|
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,u=`${s}D`;return s===0&&(u="1D"),t?`
|
|
fn ${a}(${i}) -> vec4<f32> {
|
|
return vec4<f32>(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${i}) -> f32 {
|
|
return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function l0e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=wn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> f32 {
|
|
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let c=T.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}Coords(coords : ${u}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${ja(g+p)} = 0;`).join(`
|
|
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=wn(i),y=e.shape.map((x,A)=>`coords.${ja(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
|
|
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${o}Coords(coordsIn : ${u}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${o}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${o}Coords(coordsIn : ${u}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function u0e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords() -> ${wn(a)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,a];let o="",i=[n,s,r],l=0;for(let d=0;d<i.length;d++){let h=i[d];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=n0e(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<l;d++)u.push(`d${d}`);let c=wn(l),p=`fn getOutputCoords() -> ${c} {
|
|
${o}
|
|
`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,[p,l]}function r7(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=wn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${ja(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${ja(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${ja(i)}`;return`${l}; ${u};`}).join(""),`
|
|
fn getCoordsFromIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var uC={};Ve(uC,{ArrayBufferToTypedArray:()=>dC,GPUBytesPerElement:()=>nm,computeDispatch:()=>Le,computeWorkGroupSizeForConv2d:()=>kx,computeWorkGroupSizeForMatMul:()=>cC,computeWorkPerThreadForConv2d:()=>Ix,flatDispatchLayout:()=>tt,isWebGPUSupported:()=>Sx,tilesFitEvenlyIntoShape:()=>ma});var Vi=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function ma(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function Le(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(Vi(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(Vi(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(Vi(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function kx(e,t){let n=Vi(e.x.map(r=>t[r])),s=Vi(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function cC(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Ix(e,t){let n=Vi(e.x.map(r=>t[r])),s=Vi(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function tt(e){return{x:e.map((t,n)=>n)}}function nm(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function dC(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function Sx(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function pC(e,t,n,s,r=4){return v.assert((s%4===0||s%3===0)&&e[0]===4&&(r===3||r===4),()=>`tileInner must be divisible by 4|3. ColPerThread must be 4.
|
|
innerElementSize must be 3|4.`),`
|
|
var<workgroup> mm_Asub : array<array<vec${r}<f32>, ${s/r}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let InnerElementSize = ${r};
|
|
let TileInner = ${s};
|
|
|
|
${su()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / InnerElementSize;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];
|
|
BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];
|
|
${r===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
let ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
${r===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var c0e=class{constructor(e,t,n,s,r,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=[this.tileAOuter,this.tileInner],r=[this.tileInner,this.tileBOuter];return[ma(s,this.aShape.slice(1)),ma(r,n.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=li(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${this.batchAEqualOne?`
|
|
let batchASize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${this.batchBEqualOne?`
|
|
let batchBSize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${pC(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}};function Cx(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${su()}
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function d0e(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${su()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var p0e=class{constructor(e,t,n,s,r,a=!1,o=!1,i=null,l=null,u=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let c=a?e[1]:e[2];this.workGroupSize=cC(t[1],c,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let p=i!=null,d=u!=null;p&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=a,this.transposeB=o,this.addBias=p,this.activation=l,this.hasPreluActivationWeights=d,this.batchAEqualOne=s,this.batchBEqualOne=r;let h=this.outputShape[2],f=this.transposeB?[this.outputShape[0],h,c]:[this.outputShape[0],c,h];[this.fitA,this.fitB]=this.getShapeFit(f),this.shaderKey=`matMulPacked_${this.workPerThread}_${a}_${o}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]===0&&s%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[ma(r,this.aShape.slice(1)),ma(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let o=li(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batch = 0;
|
|
let batchASize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
`}
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?Cx([this.workPerThread,this.workPerThread,1],this.workGroupSize):d0e(this.workGroupSize)}
|
|
`}};function h0e(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${su()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var f0e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e;this.transposeA===!1?e="return f32(A[batch * batchASize + row * uniforms.dimInner + col]);":e="return f32(A[batch * batchASize + col * uniforms.dimAOuter + row]);";let t;this.transposeB===!1?t="return f32(B[batch * batchBSize + row * uniforms.dimBOuter + col]);":t="return f32(B[batch * batchBSize + col * uniforms.dimInner + row]);";let n="",s="";if(this.activation){let o=li(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(batchIn: i32, row : i32, col : i32) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batchASize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = batchIn;
|
|
`}
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batchIn: i32, row : i32, col : i32) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = batchIn;
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${h0e()}
|
|
`}};function m0e(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${su()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var g0e=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let o=li(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${o}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batch = 0;
|
|
let batchASize = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${m0e(this.workGroupSize)}
|
|
`}};function at(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var y0e={kernelName:El,backendName:"webgpu",kernelFunc:at};function Tx({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=jl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],k=s?[x,f,d]:[x,d,f],S=at({inputs:{x:e},backend:r,attrs:{shape:w}}),E=at({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[S,E],$=Math.max(y,x),_=y===1,D=x===1,C=p%4===0&&f%4===0&&!n&&!s,P;h*f<=32?P=new f0e([$,h,f],_,D,n,s,a,l,o):!n&&!s&&(h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h))?P=new g0e(w,k,[$,h,f],a,l,o):C?P=new c0e(w,[$,h,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),_,D,a,l,o):P=new p0e(w,[$,h,f],Y().get("WEBGPU_MATMUL_WORK_PER_THREAD"),_,D,n,s,a,l,o);let V=[S,E];a&&V.push(a),o&&V.push(o);let j=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}];l==="leakyrelu"&&(j.push({type:"float32",data:[i]}),P.uniforms+=" alpha : f32,");let z=r.runWebGPUProgram(P,V,e.dtype,j),Z=at({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let W of R)r.disposeData(W.dataId);return Z}function A0e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return Tx({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var x0e={kernelName:Xa,backendName:"webgpu",kernelFunc:A0e},a7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${Dh(this.op,!1)}
|
|
}
|
|
|
|
${ot()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},b0e=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=tt(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Dh(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${ot()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},v0e=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${Dh(this.op,this.isVec4)}
|
|
}
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},hC=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${Dh(this.op,!1)}
|
|
}
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function o7(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0)return new v0e(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new b0e(e,t,n,a):new hC(e,t,n)}function js(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var w0e={kernelName:Co,backendName:"webgpu",kernelFunc:js};function od(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=js({inputs:{x:s},backend:n}),l=js({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var k0e={kernelName:_p,backendName:"webgpu",kernelFunc:od},$h=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${_i(this.op,!1)}
|
|
}
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function Rn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new $h(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function as({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==Ze.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=o7(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Fn(y.dtype,x.dtype))});else{let g=new a7(Ze.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new a7(Ze.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=od({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Fn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?T.fromUint8ToStringArray(p):p,f=o.dtype==="string"?T.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=o7(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var{addImpl:I0e,ceilImpl:S0e,concatImpl:C0e,equalImpl:T0e,expImpl:N0e,expm1Impl:E0e,floorImpl:R0e,gatherNdImpl:_0e,gatherV2Impl:D0e,greaterEqualImpl:$0e,greaterImpl:F0e,lessEqualImpl:P0e,lessImpl:O0e,logImpl:M0e,maxImpl:z0e,maximumImpl:L0e,minimumImpl:B0e,multiplyImpl:W0e,negImpl:V0e,notEqualImpl:U0e,prodImpl:G0e,rangeImpl:H0e,rsqrtImpl:j0e,scatterImpl:q0e,simpleAbsImpl:X0e,sliceImpl:K0e,stridedSliceImpl:Z0e,stringNGramsImpl:Y0e,subImpl:J0e,tileImpl:Q0e,topKImpl:e2e,transposeImpl:t2e,uniqueImpl:axe}=X5,n2e=Rn({opType:Pe.ABS,cpuKernelImpl:X0e}),s2e={kernelName:ol,backendName:"webgpu",kernelFunc:n2e},r2e=as({opSnippet:Ze.ADD,cpuKernelImpl:I0e,supportsComplex:!0}),a2e={kernelName:ya,backendName:"webgpu",kernelFunc:r2e},o2e=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${ot()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function i2e(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return js({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Fn(i,l)),a=s.map(i=>i.shape),o=new o2e(a);return n.runWebGPUProgram(o,s,r)}var l2e={kernelName:oo,backendName:"webgpu",kernelFunc:i2e},fC=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];T.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=T.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${ja(this.inputShape.length-1)}`,n=()=>{let r="";if(this.outputShape.length===1)this.inputShape.length!==1&&(r+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)r+=`outputCoords.${ja(a)},`;return r};return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
${ot()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let reduceLength = ${t()};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = getX(${n()} k);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(reduceLength), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},u2e=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${wx()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},c2e=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=wn(this.outputShape.length),t=d2e(this.newDim);return`
|
|
${ot()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function d2e(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${ja(s)}`;return n.join()}function ga(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=o.tensorMap.get(r.dataId).values,d=t2e(p,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,d)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let c=new u2e(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}let u=new c2e(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}var p2e={kernelName:Vr,backendName:"webgpu",kernelFunc:ga};function h2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ga({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=new fC(l.shape,o[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var f2e={kernelName:io,backendName:"webgpu",kernelFunc:h2e};function m2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ga({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new fC(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var g2e={kernelName:hc,backendName:"webgpu",kernelFunc:m2e},mC=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},gC=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function y2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return js({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new gC(c):(p=new mC(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var A2e={kernelName:lo,backendName:"webgpu",kernelFunc:y2e};function x2e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Tx({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var b2e={kernelName:uo,backendName:"webgpu",kernelFunc:x2e},v2e=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${wn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=wn(this.rank),t=w2e(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Y3[a]} = uniforms.start[${a}] + coords.${Y3[a]};`),`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},Y3=["x","y","z","w","u","v"];function w2e(e){if(e===1)return"sourceLoc";if(e<=6)return Y3.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function id(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=K0e(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new v2e(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var k2e={kernelName:Fl,backendName:"webgpu",kernelFunc:id},I2e=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=at({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ga({inputs:{x:f},backend:n,attrs:{perm:u}}),g=at({inputs:{x:m},backend:n,attrs:{shape:c}}),y=id({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},S2e={kernelName:il,backendName:"webgpu",kernelFunc:I2e},yC=as({opSnippet:Ze.NOT_EQUAL,dtype:"bool",cpuKernelImpl:U0e}),C2e={kernelName:kl,backendName:"webgpu",kernelFunc:yC};function Fh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return js({inputs:{x:r.complexTensorInfos.real},backend:n})}var T2e={kernelName:Bp,backendName:"webgpu",kernelFunc:Fh};function N2e(e,t){let n=new $h(e.shape,Pe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function J3(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return js({inputs:{x:r},backend:n});let o=Vt(r.shape),i=J3({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=od({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Fh({inputs:{input:r},backend:n}),i=J3({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=js({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return N2e(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=yC({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var E2e={kernelName:co,backendName:"webgpu",kernelFunc:J3},R2e=Rn({opType:Pe.CEIL,cpuKernelImpl:S0e}),_2e={kernelName:po,backendName:"webgpu",kernelFunc:R2e},D2e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${ot()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},$2e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${ot()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function F2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new D2e(r.shape):i=new $2e(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var P2e={kernelName:Aa,backendName:"webgpu",kernelFunc:F2e},O2e=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${ot()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function g2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return js({inputs:{x:r.complexTensorInfos.imag},backend:n})}var M2e={kernelName:Op,backendName:"webgpu",kernelFunc:g2};function Q3(e,t,n){let s=e[0].dtype;if(s==="complex64"){let h=e.map(x=>Fh({inputs:{input:x},backend:n})),f=e.map(x=>g2({inputs:{input:x},backend:n})),m=Q3(h,t,n),g=Q3(f,t,n),y=od({inputs:{real:m,imag:g},backend:n});return h.forEach(x=>n.disposeData(x.dataId)),f.forEach(x=>n.disposeData(x.dataId)),n.disposeData(m.dataId),n.disposeData(g.dataId),y}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let h=e.map(b=>{let w=v.sizeFromShape(b.shape.slice(t));return at({inputs:{x:b},backend:n,attrs:{shape:[-1,w]}})}),f=h.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),m=T.computeOutShape(h.map(b=>b.shape),1),g=h[0].shape[0]===1,y=C0e(f,m,s,g),x=T.computeOutShape(e.map(b=>b.shape),t),A=n.makeTensorInfo(x,s,y);return h.forEach(b=>n.disposeData(b.dataId)),A}let{tensors2D:a,outShape:o}=z2e(e,t,n),i=a.map(h=>h.shape),l=new O2e(i),u=[],c=new Array(i.length-1);if(c.length>0){c[0]=i[0][1],u.push({type:"int32",data:[c[0]]});for(let h=1;h<c.length;h++)c[h]=c[h-1]+i[h][1],u.push({type:"int32",data:[c[h]]})}let p=n.runWebGPUProgram(l,a,a[0].dtype,u);a.forEach(h=>n.disposeData(h.dataId));let d=at({inputs:{x:p},backend:n,attrs:{shape:o}});return n.disposeData(p.dataId),d}function z2e(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>at({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function AC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return js({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),Q3(i,a,n)}var L2e={kernelName:ll,backendName:"webgpu",kernelFunc:AC},B2e=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.innerElementSize=this.convInfo.inChannels%4===0?4:3,this.innerElementSize===3?this.variableTypes=["f32","vec4<f32>"]:this.variableTypes=["vec4<f32>","vec4<f32>"],this.addBias&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),this.hasPreluActivationWeights&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>")),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.workGroupSize[0]*this.innerElementSize,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.innerElementSize}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],n=this.outputShape[1]*this.outputShape[2],s=this.outputShape[3],r=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ma(e,[n,r]),ma(t,[r,s])]}getUserCode(){let e=pC(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize),t=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
|
|
var resData = vec${this.innerElementSize}<f32>(0.0);
|
|
// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (xRow >= 0 && xRow < uniforms.xShape[1] && xCol >= 0 && xCol < uniforms.xShape[2]) {
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
xRow,
|
|
xCol,
|
|
inChCoord);
|
|
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
${this.innerElementSize===3?"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);":"resData = x[xIndex / 4];"}
|
|
}
|
|
return resData;`,n=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return vec${this.innerElementSize}<f32>(0.0);
|
|
`,s=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,r="",a="";if(this.activation){let l=li(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${l}
|
|
}`:r=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${l}
|
|
}`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec${this.innerElementSize}<f32> {
|
|
let r = row;
|
|
let c = col * ${this.innerElementSize};
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${o}
|
|
${a}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},W2e=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[1],y:[2,3],z:[0]},this.workGroupSize=kx(this.dispatchLayout,this.outputShape),this.elementsPerThread=Ix(this.dispatchLayout,this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}_${this.isChannelsLast}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.convInfo.outHeight*this.convInfo.outWidth,o=this.convInfo.outChannels,i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ma(s,[a,i]),ma(r,[i,o])]}getUserCode(){let e=this.isChannelsLast?`
|
|
let coord = vec4<i32>(batch, xRow, xCol, col % inChannels);
|
|
`:`
|
|
let coord = vec4<i32>(batch, col % inChannels, xRow, xCol);
|
|
`,t=this.isChannelsLast?`
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / outWidth,
|
|
row % outWidth,
|
|
col);
|
|
`:`
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
col,
|
|
row / outWidth,
|
|
row % outWidth);
|
|
`,n=Cx(this.elementsPerThread,this.workGroupSize),s=`
|
|
let inChannels = uniforms.wShape[2];
|
|
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
let outRow = row / outWidth;
|
|
let outCol = row % outWidth;
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * inChannels);
|
|
let WCol = col / inChannels % uniforms.filterDims[1];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
${e}
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,r=this.fitA?`${s}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${s}
|
|
}
|
|
return 0.0;
|
|
`,a=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,o="",i="";if(this.activation){let c=li(this.activation,!1);this.hasPreluActivationWeights?o=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${c}
|
|
}`:o=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${c}
|
|
}
|
|
`,i="value = activation(value, outCoord);"}let l=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${o}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${r}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${a}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
${t}
|
|
${l}
|
|
${i}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${n}
|
|
`}};function V2e({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d,h;if(p){let g=n.inHeight*n.inWidth*n.inChannels;d=at({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,g]}}),h=at({inputs:{x:t},backend:s,attrs:{shape:[1,g,n.outChannels]}})}else d=at({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),h=at({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});let f=Tx({a:l?d:h,b:l?h:d,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),m=at({inputs:{x:f},backend:s,attrs:{shape:n.outShape}});return s.disposeData(d.dataId),s.disposeData(h.dataId),s.disposeData(f.dataId),m}function xC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast",p;if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return V2e({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let h=(n.inChannels%4===0||n.inChannels%3===0)&&n.outChannels%4===0&&c,f=[n.padInfo.top,n.padInfo.left],m=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]}];h?p=new B2e(n,l,i,u):p=new W2e(n,l,i,u);let g=n.outHeight*n.outWidth,y=n.outChannels,x=n.filterHeight*n.filterWidth*n.inChannels;m.push({type:"int32",data:[g]},{type:"int32",data:[y]},{type:"int32",data:[x]});let A=[e,t];return l&&A.push(r),u&&A.push(a),i==="leakyrelu"&&(m.push({type:"float32",data:[o]}),p.uniforms+=" alpha : f32,"),s.runWebGPUProgram(p,A,e.dtype,m)}function U2e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return xC({x:r,filter:a,convInfo:d,backend:s})}var G2e={kernelName:ho,backendName:"webgpu",kernelFunc:U2e},H2e=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=kx(this.dispatchLayout,this.outputShape),this.elementsPerThread=Ix(this.dispatchLayout,this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${Cx(this.elementsPerThread,this.workGroupSize)}
|
|
`}},j2e=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${ot()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function q2e(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(Y().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new j2e(d);else{f=new H2e(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var X2e={kernelName:fo,backendName:"webgpu",kernelFunc:q2e},K2e=Rn({opType:Pe.COS}),Z2e={kernelName:mo,backendName:"webgpu",kernelFunc:K2e},Y2e=Rn({opType:Pe.COSH}),J2e={kernelName:go,backendName:"webgpu",kernelFunc:Y2e},Q2e=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${o};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${i};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},e1e=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Q2e(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},t1e={kernelName:cl,backendName:"webgpu",kernelFunc:e1e},Np;(function(e){e.Prod="*",e.Sum="+"})(Np||(Np={}));var i7=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Np.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${l7(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
var coords = getCoordsFromIndex(index);
|
|
|
|
let end = ${u7(e,"coords",this.op)};
|
|
var val = ${n};
|
|
let pow2 = i32(pow(2.0, uniforms.index));
|
|
if (${r}) {
|
|
let idx = ${a};
|
|
${u7(e,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${l7(e,"coords",this.op)});
|
|
}
|
|
setOutputAtIndex(index, val);
|
|
}
|
|
}
|
|
`}};function l7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function u7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function bC(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=ga({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=js({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new i7(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new i7(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=ga({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function n1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return bC(Np.Prod,r,n,a,o,i)}var s1e={kernelName:ul,backendName:"webgpu",kernelFunc:n1e};function r1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return bC(Np.Sum,r,n,a,o,i)}var a1e={kernelName:yo,backendName:"webgpu",kernelFunc:r1e},o1e=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function i1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new o1e(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var l1e={kernelName:dl,backendName:"webgpu",kernelFunc:i1e},vC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=li(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${wx()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},wC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=li(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${r}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let n=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${su()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${n}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function u1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]);let p=T.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d=[{type:"int32",data:[p.padInfo.top,p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]},{type:"int32",data:[p.inHeight,p.inWidth]}],h;return p.batchSize===1&&p.inHeight===p.outHeight&&p.inWidth===p.outWidth&&p.strideHeight===1&&p.strideWidth===1&&p.filterHeight===p.filterWidth&&p.inChannels===p.outChannels&&p.dilationHeight===1&&p.dilationWidth===1&&p.filterHeight===3&&p.inChannels%4===0?h=new vC(p):(h=new wC(p),d.push({type:"int32",data:[p.filterHeight]},{type:"int32",data:[p.filterWidth]},{type:"int32",data:[p.outChannels/p.inChannels]})),n.runWebGPUProgram(h,[r,a],r.dtype,d)}var c1e={kernelName:Ao,backendName:"webgpu",kernelFunc:u1e},kC=as({opSnippet:Ze.MUL,cpuKernelImpl:W0e,supportsComplex:!0}),d1e={kernelName:Oo,backendName:"webgpu",kernelFunc:kC},p1e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=T.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${ot()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function Ph(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=T.getAxesPermutation(l,a),c=e;u!=null&&(c=ga({inputs:{x:e},attrs:{perm:u},backend:r}),l=T.getInnerMostAxes(l.length,a),o.push(c)),T.assertAxesAreInnerMostDims(s,l,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=T.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=z0e(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=G0e(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":Kp(e.dtype),b=[{type:"int32",data:[m]}],w=new p1e(x,s),k=r.runWebGPUProgram(w,[c],A,b);o.push(k),f=at({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Nx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Ph(r,a,o,"sum",n)}var h1e={kernelName:Xo,backendName:"webgpu",kernelFunc:Nx};function f1e(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=ga({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=at({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=kC({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Nx({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var m1e={kernelName:Pp,backendName:"webgpu",kernelFunc:f1e},g1e=Rn({opType:Pe.ELU}),y1e={kernelName:bo,backendName:"webgpu",kernelFunc:g1e},A1e=as({opSnippet:Ze.EQUAL,dtype:"bool",cpuKernelImpl:T0e}),x1e={kernelName:pl,backendName:"webgpu",kernelFunc:A1e},IC=Rn({opType:Pe.EXP,cpuKernelImpl:N0e,dtype:"float32"}),b1e={kernelName:vo,backendName:"webgpu",kernelFunc:IC};function ey(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),at({inputs:{x:a},backend:s,attrs:{shape:i}})}var v1e={kernelName:hl,backendName:"webgpu",kernelFunc:ey},w1e=Rn({opType:Pe.EXPM1,cpuKernelImpl:E0e}),k1e={kernelName:fl,backendName:"webgpu",kernelFunc:w1e},I1e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function ld(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new I1e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var S1e={kernelName:bc,backendName:"webgpu",kernelFunc:ld},C1e=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},T1e={kernelName:ml,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new C1e(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},N1e=Rn({opType:Pe.FLOOR,cpuKernelImpl:R0e}),E1e={kernelName:wo,backendName:"webgpu",kernelFunc:N1e},R1e=as({opSnippet:Ze.INT_DIV,dtype:"int32"}),_1e={kernelName:ko,backendName:"webgpu",kernelFunc:R1e},D1e=class{constructor(e,t=!1){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.useImport=t,this.shaderKey=`fromPixels_${this.useImport}`}getUserCode(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${ot()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}},$1e={kernelName:pp,backendName:"webgpu",kernelFunc:F1e},$u;function F1e(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a];if(Y().getBool("WEBGPU_USE_IMPORT")&&o)return c7({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!0});if((o||i)&&($u==null&&($u=document.createElement("canvas").getContext("2d")),$u.canvas.width=c,$u.canvas.height=p,$u.drawImage(r,0,0,c,p),r=$u.canvas),u||l||o||i)return c7({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let y=h.length,x=0;for(let A=0;A<y;A++)A%4<a&&(f[x++]=h[A])}let m=n.makeTensorInfo(d,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}function c7(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),u=new D1e(r,a),c=[{type:"uint32",data:[i]},{type:"uint32",data:[o]},{type:"uint32",data:[...l]},{type:"uint32",data:[...u.dispatch]}];return n.runFromPixelsProgram(u,r,c,a,t)}var P1e=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${ot()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},O1e={kernelName:Io,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new P1e(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function M1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s;if(c!=="NHWC")throw new Error(`WebGPU backend FusedConv2D does not support dataFormat:'${c}'. Please use 'NHWC'.`);let m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return xC({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var z1e={kernelName:Ka,backendName:"webgpu",kernelFunc:M1e};function L1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=T.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?b=new vC(m,y,d,x):(b=new wC(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var B1e={kernelName:Za,backendName:"webgpu",kernelFunc:L1e},W1e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${wn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function V1e(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=at({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=at({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=_0e(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new W1e(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=at({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var U1e={kernelName:yl,backendName:"webgpu",kernelFunc:V1e},G1e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=H1e(this.aShape);return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function H1e(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function SC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=at({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=at({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let A=n.tensorMap.get(h.dataId).values,b=We(h.shape,h.dtype,A),k=n.tensorMap.get(d.dataId).values,S=We(d.shape,d.dtype,k),E=D0e(S,b,f);return p.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new G1e(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=at({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var j1e={kernelName:gl,backendName:"webgpu",kernelFunc:SC},q1e=as({opSnippet:Ze.GREATER,cpuKernelImpl:F0e,dtype:"bool"}),X1e={kernelName:Al,backendName:"webgpu",kernelFunc:q1e},K1e=as({opSnippet:Ze.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:$0e}),Z1e={kernelName:So,backendName:"webgpu",kernelFunc:K1e};function Y1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new $h(r.shape,Pe.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var J1e={kernelName:To,backendName:"webgpu",kernelFunc:Y1e},Q1e=as({opSnippet:Ze.LESS,dtype:"bool",cpuKernelImpl:O0e}),ege={kernelName:xl,backendName:"webgpu",kernelFunc:Q1e},tge=as({opSnippet:Ze.LESS_EQUAL,dtype:"bool",cpuKernelImpl:P0e}),nge={kernelName:bl,backendName:"webgpu",kernelFunc:tge},sge=Rn({opType:Pe.LOG,cpuKernelImpl:M0e}),rge={kernelName:No,backendName:"webgpu",kernelFunc:sge},age=as({opSnippet:Ze.LOGICAL_AND,dtype:"bool"}),oge={kernelName:vl,backendName:"webgpu",kernelFunc:age},ige=Rn({opType:Pe.LOGICAL_NOT}),lge={kernelName:Sc,backendName:"webgpu",kernelFunc:ige};function CC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Ph(r,a,o,"max",n)}var uge={kernelName:Eo,backendName:"webgpu",kernelFunc:CC},cge=as({opSnippet:Ze.MAX,cpuKernelImpl:L0e}),dge={kernelName:Ro,backendName:"webgpu",kernelFunc:cge};function pge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(v.arraysEqual(c.inShape,c.outShape))return js({inputs:{x:r},backend:n});p=new gC(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new mC(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var hge={kernelName:_o,backendName:"webgpu",kernelFunc:pge};function fge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Ph(r,o,a,"mean",n)}var mge={kernelName:Do,backendName:"webgpu",kernelFunc:fge};function gge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Ph(r,a,o,"min",n)}var yge={kernelName:$o,backendName:"webgpu",kernelFunc:gge},Age=as({opSnippet:Ze.MIN,cpuKernelImpl:B0e}),xge={kernelName:Fo,backendName:"webgpu",kernelFunc:Age},bge=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=wn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let start = ${o}(${t});
|
|
let end = ${o}(${n});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} else if(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${i}));
|
|
}
|
|
}
|
|
`}},vge={kernelName:Po,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new bge(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function wge(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=V0e(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new $h(s.shape,Pe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var kge={kernelName:wl,backendName:"webgpu",kernelFunc:wge};function Ige(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=ir.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Sge={kernelName:Il,backendName:"webgpu",kernelFunc:Ige};function Cge(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=ir.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Tge={kernelName:Sl,backendName:"webgpu",kernelFunc:Cge};function $m(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Fh({inputs:{input:s},backend:n}),a=$m({inputs:{x:r},backend:n}),o=g2({inputs:{input:s},backend:n}),i=$m({inputs:{x:o},backend:n}),l=od({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return ld({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Nge={kernelName:Ul,backendName:"webgpu",kernelFunc:$m};function TC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Fh({inputs:{input:s},backend:n}),a=TC({inputs:{x:r},backend:n}),o=g2({inputs:{input:s},backend:n}),i=$m({inputs:{x:o},backend:n}),l=od({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return ld({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Ege={kernelName:Cl,backendName:"webgpu",kernelFunc:TC};function Rge(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ey({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=ey({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=AC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var _ge={kernelName:Nl,backendName:"webgpu",kernelFunc:Rge},Dge=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=wn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${a};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${o} || ${i}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},NC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return js({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return ld({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new Dge(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},$ge={kernelName:Mo,backendName:"webgpu",kernelFunc:NC},Fge=as({opSnippet:Ze.POW}),Pge={kernelName:zo,backendName:"webgpu",kernelFunc:Fge};function Oge(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new hC(Ze.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var Mge={kernelName:Lo,backendName:"webgpu",kernelFunc:Oge};function zge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Ph(r,a,o,"prod",n)}var Lge={kernelName:Bo,backendName:"webgpu",kernelFunc:zge},Bge=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=H0e(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Wge={kernelName:Nc,backendName:"webgpu",kernelFunc:Bge},EC=as({opSnippet:Ze.DIV}),Vge={kernelName:xo,backendName:"webgpu",kernelFunc:EC},Uge=Rn({opType:Pe.RELU}),Gge={kernelName:Wo,backendName:"webgpu",kernelFunc:Uge},Hge=Rn({opType:Pe.RELU6}),jge={kernelName:Uo,backendName:"webgpu",kernelFunc:Hge},qge=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Xge(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new qge(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var Kge={kernelName:Vo,backendName:"webgpu",kernelFunc:Xge},Zge=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Yge(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Zge(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Jge={kernelName:Rc,backendName:"webgpu",kernelFunc:Yge},Qge=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${ot()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},e3e={kernelName:Gl,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Qge(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},t3e=Rn({opType:Pe.RSQRT,cpuKernelImpl:j0e}),n3e={kernelName:Go,backendName:"webgpu",kernelFunc:t3e},s3e=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=tt(e),this.dispatch=Le(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`;let i=wn(r.length);this.uniforms=`sliceDim : i32, strides: ${i}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${ot()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${o};
|
|
let flatIndex = getOutputIndexFromCoords(${r});
|
|
|
|
${i}
|
|
}
|
|
}`}};function r3e(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=at({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=at({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=ld({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new s3e(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=at({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var a3e={kernelName:Dl,backendName:"webgpu",kernelFunc:r3e},o3e=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function i3e(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new o3e(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Fn(r.dtype,a.dtype))}var l3e={kernelName:$l,backendName:"webgpu",kernelFunc:i3e},u3e=Rn({opType:Pe.SIGMOID}),c3e={kernelName:jo,backendName:"webgpu",kernelFunc:u3e},d3e=Rn({opType:Pe.SIN}),p3e={kernelName:Ho,backendName:"webgpu",kernelFunc:d3e},h3e=Rn({opType:Pe.SINH}),f3e={kernelName:Pl,backendName:"webgpu",kernelFunc:h3e},RC=as({opSnippet:Ze.SUB,cpuKernelImpl:J0e,supportsComplex:!0}),m3e={kernelName:Yo,backendName:"webgpu",kernelFunc:RC};function g3e(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=CC({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=at({inputs:{x:i},backend:n,attrs:{shape:l}}),c=RC({inputs:{a:r,b:u},backend:n}),p=IC({inputs:{x:c},backend:n}),d=Nx({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=at({inputs:{x:d},backend:n,attrs:{shape:l}}),f=EC({inputs:{a:p,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(u.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var y3e={kernelName:Ko,backendName:"webgpu",kernelFunc:g3e},A3e=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=NC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(c.shape,a,i,!1),d=T.getPermuted(p.length,a.length,!1),h=T.getReshapedPermuted(c.shape,a,i,!1),f=at({inputs:{x:c},backend:n,attrs:{shape:p}}),m=ga({inputs:{x:f},backend:n,attrs:{perm:d}}),g=at({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeData(y.dataId)),g},x3e={kernelName:Ol,backendName:"webgpu",kernelFunc:A3e},b3e=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`;let l=wn(r.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${l},`;let u="";n===1?u="i":n===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let c="";s===1?c="i":s===2&&(c="i, coords[1]"),this.updatesSnippet=`getUpdates(${c})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${ot()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function v3e(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let x=n.bufferSync(r),A=n.bufferSync(a),b=v.decodeString(n.readSync(o.dataId)[0]),w=q0e(x,A,i,d,c,u,l,p,b,h);return n.makeTensorInfo(i,w.dtype,w.values)}let f=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:p}],m=new b3e(u,l,r.shape.length,a.shape.length,p,[d,1],h),g=n.runWebGPUProgram(m,[a,r,o],a.dtype,f),y=at({inputs:{x:g},backend:n,attrs:{shape:i}});return n.disposeData(g.dataId),y}var w3e={kernelName:Gp,backendName:"webgpu",kernelFunc:v3e};function k3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=id({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var I3e={kernelName:Ml,backendName:"webgpu",kernelFunc:k3e},S3e=Rn({opType:Pe.SQRT}),C3e={kernelName:qo,backendName:"webgpu",kernelFunc:S3e},T3e={kernelName:Pc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new $h(n.shape,Pe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},N3e=as({opSnippet:Ze.SQUARED_DIFFERENCE}),E3e={kernelName:Zo,backendName:"webgpu",kernelFunc:N3e},R3e=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=wn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function _3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=at({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),S=id({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=at({inputs:{x:S},backend:n,attrs:{shape:f}}),n.disposeData(S.dataId)}else if(n.shouldExecuteOnCPU([r])){let S=n.readSync(r.dataId),E=We(r.shape,r.dtype,S),R=Z0e(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,R.values)}else{let S=new R3e(h),E=[{type:"int32",data:x},{type:"int32",data:b}],R=n.runWebGPUProgram(S,[r],r.dtype,E);w=at({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeData(R.dataId)}return w}var D3e={kernelName:zl,backendName:"webgpu",kernelFunc:_3e};function $3e(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Y0e(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var F3e={kernelName:Hp,backendName:"webgpu",kernelFunc:$3e},P3e=Rn({opType:Pe.TANH}),O3e={kernelName:Jo,backendName:"webgpu",kernelFunc:P3e},M3e=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=z3e(this.rank,"uniforms.");return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function z3e(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function L3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=Q0e(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new M3e(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var B3e={kernelName:xa,backendName:"webgpu",kernelFunc:L3e},W3e=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},V3e=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function Fu(e,t){t!==null&&e.disposeData(t.dataId)}function d7(e){let t=1;for(;t<e;)t*=2;return t}function U3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,S]=e2e(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(S.shape,S.dtype,S.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,ld({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=v.sizeFromShape(i)/l,p=at({inputs:{x:r},attrs:{shape:[c,l]},backend:n}),d=d7(a),h=d7(l),f=null,m=()=>f===null?[p,p]:[p,f],g=(w,k,S)=>{let E=m(),R=new W3e(S),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],D=f;f=n.runWebGPUProgram(R,E,"int32",_),Fu(n,D)};for(let w=1;w<d;w*=2){let k=w*2;for(let S=w;S>=1;S/=2)g(k,S,[c,h])}for(let w=h;w>d;w/=2){let k=m(),S=new V3e([c,w/2]),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],$=f;f=n.runWebGPUProgram(S,k,"int32",R),Fu(n,$);let _=d/2,D=_*2;for(let C=_;C>=1;C/=2)g(D,C,f.shape)}let y=f;f=id({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Fu(n,y);let x=SC({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Fu(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=at({inputs:{x:f},attrs:{shape:A},backend:n}),Fu(n,y);let b=x;return x=at({inputs:{x},attrs:{shape:A},backend:n}),Fu(n,b),[x,f]}var G3e={kernelName:Bl,backendName:"webgpu",kernelFunc:U3e},H3e=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=tt(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${ot()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function j3e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new H3e(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var q3e={kernelName:Wl,backendName:"webgpu",kernelFunc:j3e};function X3e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=id({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=at({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var K3e={kernelName:Vl,backendName:"webgpu",kernelFunc:X3e},Z3e=[x0e,s2e,a2e,l2e,f2e,g2e,A2e,b2e,S2e,E2e,_2e,P2e,k0e,L2e,G2e,X2e,Z2e,J2e,t1e,s1e,a1e,l1e,c1e,m1e,y1e,x1e,b1e,v1e,k1e,S1e,T1e,$1e,E1e,_1e,O1e,z1e,B1e,U1e,j1e,X1e,Z1e,w0e,M2e,J1e,ege,nge,rge,oge,lge,uge,dge,hge,mge,yge,xge,vge,d1e,kge,Sge,Tge,C2e,Ege,_ge,$ge,Pge,Mge,Lge,Wge,T2e,Vge,Gge,jge,y0e,Kge,Jge,e3e,n3e,a3e,l3e,c3e,p3e,f3e,k2e,D3e,F3e,y3e,x3e,w3e,I3e,C3e,T3e,E3e,m3e,h1e,O3e,B3e,G3e,q3e,p2e,K3e,Nge];for(let e of Z3e)or(e);var Y3e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=p7(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({mappedAtCreation:n,size:e,usage:t});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=p7(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function p7(e,t){return`${e}_${t}`}var J3e=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=f7(n),a=e*t*r,o=h7(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=h7(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=f7(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function h7(e,t,n,s){return`${e}_${t}_${n}_${s}`}function f7(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var Q3e=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},m7=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=s0e(s,o,t,a),l=e.createShaderModule({code:i,label:t.constructor.name});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function g7(e,t,n=[],s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}var eye=Y().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),y7=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},y2=class extends ic{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,this.fromPixelTextureLayout=null,this.fromPixelImportTextureLayout=null,!Sx())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Y3e(this.device),this.textureManager=new J3e(this.device),this.tensorMap=new Ep(this,sn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return y2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.textureDisposalQueue.forEach(e=>this.textureManager.releaseTexture(e.texture,e.width,e.height,e.format,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}getTextureManager(){return this.textureManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*nm(n);return this.tensorMap.set(s,{dtype:n,shape:t,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*nm(s);this.tensorMap.set(e,{dtype:s,shape:n,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Y().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=T.mergeRealAndImagArrays(a,o)}else{let r=t.values!=null?t.values:await this.getBufferData(t.bufferInfo.buffer,t.bufferInfo.byteSize);s=dC(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,bufferInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a.buffer==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=v.sizeFromShape(r)*nm(s),i=this.acquireBuffer(o);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=sn().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.bufferInfo.buffer=i,{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let n=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=n.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),n.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(n,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let r={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:n};this.stagingDisposalQueue.push(r)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={byteSize:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformDisposalQueue.push(o),{offset:0,size:t,buffer:a}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let k=this.tensorMap.get(r.dataId);return k.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}e.dispatch=y7(this.device,e);let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(k=>k.shape),i="int32";o.map(k=>{a.push({type:i,data:k})});let l=v.computeStrides(r.shape);if(a.push({type:i,data:l}),e.size){let k=v.sizeFromShape(e.outputShape);a.push({type:i,data:[e.isVec4?k/4:k]})}s&&(a=[...a,...s]);let u=this.makeUniforms(a),c=t.map((k,S)=>{if(k.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(k.dataId),{dtype:this.tensorMap.get(k.dataId).dtype,shape:k.shape,name:e.variableNames[S]}}),p=c.map(k=>k.dtype).concat(r.dtype),d=c.map(k=>T.getBroadcastDims(k.shape,r.shape)),h=c.map(k=>v.arraysEqual(k.shape,r.shape)).join("_"),f=d.map(k=>k.join("_")).join(";"),m=g7(e,o,p,f,h),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),x=this.getAndSavePipeline(m,()=>m7(this.device,e,y,c,r)),A=this.activeTimers!=null,b=Q3e(this.device,g,t.map(k=>this.tensorToBinding(k)),this.tensorToBinding(r),u);this.ensureCommandEncoderReady();let w=this.getComputePass();return A&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,0),w.setPipeline(x),w.setBindGroup(0,b),w.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),A&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(k=>{this.commandQueueOwnedIds.add(k.dataId)}),this.commandQueueOwnedIds.add(r.dataId),Y().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),A&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}getFromPixelTextureLayout(e){return e?(this.fromPixelImportTextureLayout===null&&(this.fromPixelImportTextureLayout=this.createFromPixelTextureLayout(!0)),this.fromPixelImportTextureLayout):(this.fromPixelTextureLayout===null&&(this.fromPixelTextureLayout=this.createFromPixelTextureLayout(!1)),this.fromPixelTextureLayout)}createFromPixelTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),e?t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}):t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}copyExternalImageToTexture(e,t){let n=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,s="rgba8unorm",r=this.textureManager.acquireTexture(t[1],t[0],s,n),a=r.createView();this.queue.copyExternalImageToTexture({source:e},{texture:r},[t[1],t[0]]);let o={width:t[1],height:t[0],format:s,usage:n,texture:r};return this.textureDisposalQueue.push(o),a}runFromPixelsProgram(e,t,n,s,r){e.dispatch=y7(this.device,e);let a=this.makeTensorInfo(t,"int32");if(v.sizeFromShape(a.shape)===0){let m=this.tensorMap.get(a.dataId);return m.values=v.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId);let o=g7(e,[a.shape]),i=this.getFromPixelTextureLayout(s),l=this.getAndSavePipeline(o,()=>m7(this.device,e,i.pipelineLayout,[],a,!0)),u;if(s){let m={source:r};u=this.device.importExternalTexture(m)}else u=this.copyExternalImageToTexture(r,a.shape);let c=this.tensorToBinding(a),p=this.makeUniforms(n),d=this.device.createBindGroup({layout:i.bindGroupLayout,entries:[{binding:0,resource:{buffer:c.buffer}},{binding:1,resource:u},{binding:2,resource:{buffer:p.buffer}}]});this.ensureCommandEncoderReady();let h=this.getComputePass(),f=this.activeTimers!=null;return f&&this.supportTimeQuery&&h.writeTimestamp(this.querySet,0),h.setPipeline(l),h.setBindGroup(0,d),h.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),f&&this.supportTimeQuery&&h.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(a.dataId),this.dispatchNumberInEncoder++,Y().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),f&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=eye){return Y().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};y2.nextDataId=0;var _C={};Ve(_C,{WebGPUBackend:()=>y2,webgpu_util:()=>uC});Sx()&&Hl("webgpu",async()=>{Y().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Y().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new y2(a,r)},3);var tye="3.18.0",nye="3.18.0",sye="3.18.0",rye="3.18.0",aye="3.18.0",oye="3.18.0",iye="3.18.0",Oh={tfjs:tye,"tfjs-core":nye,"tfjs-data":sye,"tfjs-layers":rye,"tfjs-converter":aye,"tfjs-backend-webgl":oye,"tfjs-backend-wasm":iye};var DC=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var $C=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,FC=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,PC=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,OC=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,MC=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var Ex=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},Rx=class{constructor(t,n,s){ge(this,"uniform",{});ge(this,"attribute",{});ge(this,"gl");ge(this,"id");ge(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(oe(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`),null)):(oe("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){oe("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){oe(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),Ex(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);Ex(n,"uniform",this.uniform),Ex(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function zC(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=os(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){oe("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let k=p.createTexture();return p.bindTexture(p.TEXTURE_2D,k),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,k,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new Rx(p,DC,x),!i)return oe("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?FC:$C,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,k=.715,S=.072;y.colorMatrix([w+A*(1-w)+b*-w,k+A*-k+b*-k,S+A*-S+b*(1-S),0,0,w+A*-w+b*.143,k+A*(1-k)+b*.14,S+A*-S+b*-.283,0,0,w+A*-w+b*-(1-w),k+A*-k+b*k,S+A*(1-S)+b*S,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,k=g(MC);!k||(p.uniform1fv(k.uniform.m,A),p.uniform2f(k.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(OC);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(PC);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;A<a.length;A++){n=A===a.length-1;let b=a[A];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function A2(e){let t=e.shape.length===4?et(e):e,n=Yt(t,3,2),s=[ha(n[0]),ha(n[1]),ha(n[2])],r=[mn(n[0]),mn(n[1]),mn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[fe(n[0],s[0]),fe(n[1],s[1]),fe(n[2],s[2])],l=[fe(r[0],s[0]),fe(r[1],s[1]),fe(r[2],s[2])],u=[pe(o,l[0]),pe(o,l[1]),pe(o,l[2])],c=[L(i[0],u[0]),L(i[1],u[1]),L(i[2],u[2])],p=ln([c[0],c[1],c[2]],2),d=U(p,[1,t.shape[0],t.shape[1],3]);return ne([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var x2=3840,ft=null,cn=null,ud=null,Pt,ka={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function os(e,t){let n;if(me.browser)if(me.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof me.Canvas!="undefined"?n=new me.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function b2(e,t){let n=t||os(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function cd(e,t,n=!0){if(!e)return t.debug&&oe("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof st)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof me.Canvas!="undefined"&&e instanceof me.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof st){let s=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)s=Zt(e,0);else if(e.shape[2]===4){let r=Kl(e,[0,0,0],[-1,-1,3]);s=Zt(r,0),ne(r)}}else e.shape.length===4&&(e.shape[3]===3?s=Jn(e):e.shape[3]===4&&(s=Yi(e,[0,0,0,0],[-1,-1,-1,3])));if(s==null||s.shape.length!==4||s.shape[0]!==1||s.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(s.dtype==="int32"){let r=he(s,"float32");ne(s),s=r}return{tensor:s,canvas:t.filter.return?cn:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&oe("input stream is not ready"),{tensor:null,canvas:ft};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&oe("cannot determine input dimensions"),{tensor:null,canvas:ft};let a=s,o=r;if(a>x2&&(a=x2,o=Math.trunc(a*r/s)),o>x2&&(o=x2,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!ft||(ft==null?void 0:ft.width)!==a||(ft==null?void 0:ft.height)!==o)&&(ft=os(a,o));let i=ft.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,ft==null?void 0:ft.width,ft==null?void 0:ft.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,ft==null?void 0:ft.width,ft==null?void 0:ft.height),(!cn||ft.width!==cn.width||(ft==null?void 0:ft.height)!==(cn==null?void 0:cn.height))&&(cn=os(ft.width,ft.height)),t.filter.enabled&&me.webgl.supported?(Pt||(Pt=me.browser?new zC:null),me.filter=!!Pt,!Pt||!Pt.add?(t.debug&&oe("input process error: cannot initialize filters"),me.webgl.supported=!1,t.filter.enabled=!1,b2(ft,cn)):(Pt.reset(),t.filter.brightness!==0&&Pt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Pt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Pt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Pt.add("blur",t.filter.blur),t.filter.saturation!==0&&Pt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Pt.add("hue",t.filter.hue),t.filter.negative&&Pt.add("negative"),t.filter.sepia&&Pt.add("sepia"),t.filter.vintage&&Pt.add("brownie"),t.filter.sepia&&Pt.add("sepia"),t.filter.kodachrome&&Pt.add("kodachrome"),t.filter.technicolor&&Pt.add("technicolor"),t.filter.polaroid&&Pt.add("polaroid"),t.filter.pixelate!==0&&Pt.add("pixelate",t.filter.pixelate),Pt.get()>0?cn=Pt.apply(ft):cn=Pt.draw(ft))):(b2(ft,cn),Pt&&(Pt=null),me.filter=!!Pt),!n)return{tensor:null,canvas:cn};if(!cn)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(me.browser&&Xs)l=Xs?Xs.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let d=new Uint8Array(e.data.buffer);l=yt(d,[e.height,e.width,u],"int32")}else if((!ud||cn.width!==ud.width||cn.height!==ud.height)&&(ud=os(cn.width,cn.height)),Xs&&me.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Xs.fromPixels(cn):(ud=b2(cn),l=Xs.fromPixels(ud));else{let f=b2(cn).getContext("2d").getImageData(0,0,a,o);u=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=yt(m,[a,o,u])}if(u===4){let d=Kl(l,[0,0,0],[-1,-1,3]);ne(l),l=d}if(!l)throw new Error("input error: cannot create tensor");let c=he(l,"float32"),p=t.filter.equalization?await A2(c):Zt(c,0);return ne([l,c]),{tensor:p,canvas:t.filter.return?cn:null}}}async function LC(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!ka.inputTensor)ka.inputTensor=Jn(t);else if(ka.inputTensor.shape[1]!==t.shape[1]||ka.inputTensor.shape[2]!==t.shape[2])ne(ka.inputTensor),ka.inputTensor=Jn(t);else{let s={};s.diff=fe(t,ka.inputTensor),s.squared=L(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ne([ka.inputTensor,s.diff,s.squared,s.sum]),ka.inputTensor=Jn(t),n=a<=(e.cacheSensitivity||0)}return n}async function BC(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||oe("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||oe("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Jn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Se.resizeBilinear(n,[t.shape[1],t.shape[2]]):Jn(n),s.diff=fe(s.input1,s.input2),s.squared=L(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ne([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var _x=class{constructor(){ge(this,"browser");ge(this,"node");ge(this,"worker");ge(this,"platform","");ge(this,"agent","");ge(this,"backends",[]);ge(this,"initial");ge(this,"filter");ge(this,"tfjs");ge(this,"offscreen");ge(this,"perfadd",!1);ge(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});ge(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});ge(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});ge(this,"cpu",{model:void 0,flags:[]});ge(this,"kernels",[]);ge(this,"Canvas");ge(this,"Image");ge(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Oh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(sn().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&ts()==="wasm"&&(this.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=os(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(ts()==="webgl"||ts()==="humangl")){let s=qs().gpgpu!=="undefined"?await qs().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(s){this.webgpu.supported=!1}try{this.kernels=Gr(ts()).map(s=>s.kernelName.toLowerCase())}catch(s){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},me=new _x;var Dx={};ra(Dx,{age:()=>dye,antispoof:()=>pye,blazeface:()=>mye,"blazeface-back":()=>hye,"blazeface-front":()=>fye,"blazepose-detector2d":()=>gye,"blazepose-detector3d":()=>yye,"blazepose-full":()=>Aye,"blazepose-heavy":()=>xye,"blazepose-lite":()=>bye,default:()=>Qye,efficientpose:()=>vye,emotion:()=>wye,faceboxes:()=>kye,facemesh:()=>Eye,"facemesh-attention":()=>Sye,"facemesh-attention-alt":()=>Iye,"facemesh-detection-full":()=>Cye,"facemesh-detection-short":()=>Tye,"facemesh-orig":()=>Nye,faceres:()=>_ye,"faceres-deep":()=>Rye,gear:()=>Dye,gender:()=>Fye,"gender-ssrnet-imdb":()=>$ye,handdetect:()=>Pye,"handlandmark-full":()=>Oye,"handlandmark-lite":()=>Mye,"handlandmark-sparse":()=>zye,handskeleton:()=>Lye,handtrack:()=>Bye,iris:()=>Wye,liveness:()=>Vye,"mb3-centernet":()=>Uye,meet:()=>Gye,mobileface:()=>Hye,mobilefacenet:()=>jye,"movenet-lightning":()=>qye,"movenet-multipose":()=>Xye,"movenet-thunder":()=>Kye,nanodet:()=>Zye,posenet:()=>Yye,selfie:()=>Jye});var dye=161240,pye=853098,hye=538928,fye=402048,mye=538928,gye=7499400,yye=5928856,Aye=6338290,xye=27501554,bye=2725490,vye=5651240,wye=820516,kye=2013002,Iye=2387598,Sye=2382414,Cye=1026192,Tye=201268,Nye=2955780,Eye=1477958,Rye=13957620,_ye=6978814,Dye=1498916,$ye=161236,Fye=201808,Pye=3515612,Oye=5431368,Mye=2023432,zye=5286322,Lye=5502280,Bye=2964837,Wye=2599092,Vye=592976,Uye=4030290,Gye=372228,Hye=2183192,jye=5171976,qye=4650216,Xye=9448838,Kye=12477112,Zye=7574558,Yye=5032780,Jye=212886,Qye={age:dye,antispoof:pye,"blazeface-back":hye,"blazeface-front":fye,blazeface:mye,"blazepose-detector2d":gye,"blazepose-detector3d":yye,"blazepose-full":Aye,"blazepose-heavy":xye,"blazepose-lite":bye,efficientpose:vye,emotion:wye,faceboxes:kye,"facemesh-attention-alt":Iye,"facemesh-attention":Sye,"facemesh-detection-full":Cye,"facemesh-detection-short":Tye,"facemesh-orig":Nye,facemesh:Eye,"faceres-deep":Rye,faceres:_ye,gear:Dye,"gender-ssrnet-imdb":$ye,gender:Fye,handdetect:Pye,"handlandmark-full":Oye,"handlandmark-lite":Mye,"handlandmark-sparse":zye,handskeleton:Lye,handtrack:Bye,iris:Wye,liveness:Vye,"mb3-centernet":Uye,meet:Gye,mobileface:Hye,mobilefacenet:jye,"movenet-lightning":qye,"movenet-multipose":Xye,"movenet-thunder":Kye,nanodet:Zye,posenet:Yye,selfie:Jye};var is={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},$r={};async function eAe(e,t){return is.debug&&oe("load model fetch:",e,t),fetch(e,t)}function WC(e){is.cacheModels=e.cacheModels,is.verbose=e.debug,is.modelBasePath=e.modelBasePath}async function je(e){var u,c,p;let t=E4(is.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;$r[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:Dx[s],inCache:!1},is.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let a={};try{a=is.cacheSupported&&is.cacheModels?await $n.listModels():{}}catch(d){is.cacheSupported=!1}$r[s].inCache=is.cacheSupported&&is.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(d,h)=>eAe(d,h)},i=new Ih($r[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),is.debug&&oe("model load handler:",i.handler);let d=await i.handler.load();$r[s].sizeFromManifest=((u=d==null?void 0:d.weightData)==null?void 0:u.byteLength)||0,i.loadSync(d),$r[s].sizeLoadedWeights=((p=(c=i==null?void 0:i.artifacts)==null?void 0:c.weightData)==null?void 0:p.byteLength)||0,is.verbose&&oe("load model:",i.modelUrl,{bytes:$r[s].sizeLoadedWeights},is),l=!0}catch(d){oe("error loading model:",t,d)}if(l&&is.cacheModels&&is.cacheSupported&&!$r[s].inCache)try{let d=await i.save(r);oe("model saved:",r,d)}catch(d){oe("error saving model:",t,d)}return i}var $x="2.9.0";var n1={};ra(n1,{Models:()=>jh,getModelStats:()=>Gb,load:()=>Hb,reset:()=>t1,validate:()=>jb});var cr,Fx=[],sAe=["white","black","asian","indian","other"],rAe=[15,23,28,35.5,45.5,55.5,65],VC=0,UC=0,Px=Number.MAX_SAFE_INTEGER;async function GC(e){var t;return me.initial&&(cr=null),cr?e.debug&&oe("cached model:",cr.modelUrl):cr=await je((t=e.face.gear)==null?void 0:t.modelPath),cr}async function Ox(e,t,n,s){var o,i;if(!cr)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=Px<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>ue()-UC;return t.skipAllowed&&a&&r&&VC===s&&Fx[n]?(Px++,Fx[n]):(Px=0,new Promise(async l=>{var y,x;if(!(cr!=null&&cr.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Se.cropAndResize(e,c,[0],[cr.inputs[0].shape[2],cr.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=cr.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:sAe[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[rAe[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);p.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>ne(u[A])),Fx[n]=p,VC=s,UC=ue(),l(p)}))}var nt={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function jC(){nt.tf255=Ce(255,"float32"),nt.tf1=Ce(1,"float32"),nt.tf2=Ce(2,"float32"),nt.tf05=Ce(.5,"float32"),nt.tf127=Ce(127.5,"float32"),nt.rgb=$t([.2989,.587,.114],"float32")}var $s,v2=[],qC=0,XC=0,Mx=Number.MAX_SAFE_INTEGER;async function KC(e){return me.initial&&($s=null),$s?e.debug&&oe("cached model:",$s.modelUrl):$s=await je(e.face.ssrnet.modelPathAge),$s}async function zx(e,t,n,s){var o,i,l,u;if(!$s)return{age:0};let r=Mx<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>ue()-XC;return t.skipAllowed&&r&&a&&qC===s&&((l=v2[n])==null?void 0:l.age)&&((u=v2[n])==null?void 0:u.age)>0?(Mx++,v2[n]):(Mx=0,new Promise(async c=>{if(!($s!=null&&$s.inputs)||!$s.inputs[0]||!$s.inputs[0].shape)return;let p={};p.resize=Se.resizeBilinear(e,[$s.inputs[0].shape[2],$s.inputs[0].shape[1]],!1),p.enhance=L(p.resize,nt.tf255);let d={age:0};if(t.face.ssrnet.enabled&&(p.age=$s.execute(p.enhance)),p.age){let h=await p.age.data();d.age=Math.trunc(10*h[0])/10}Object.keys(p).forEach(h=>ne(p[h])),v2[n]=d,qC=s,XC=ue(),c(d)}))}var dr,w2=[],YC=0,JC=0,Lx=Number.MAX_SAFE_INTEGER,Bx=[.2989,.587,.114];async function QC(e){return me.initial&&(dr=null),dr?e.debug&&oe("cached model:",dr.modelUrl):dr=await je(e.face.ssrnet.modelPathGender),dr}async function Wx(e,t,n,s){var o,i,l,u;if(!dr)return{gender:"unknown",genderScore:0};let r=Lx<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>ue()-JC;return t.skipAllowed&&r&&a&&YC===s&&((l=w2[n])==null?void 0:l.gender)&&((u=w2[n])==null?void 0:u.genderScore)>0?(Lx++,w2[n]):(Lx=0,new Promise(async c=>{if(!(dr!=null&&dr.inputs[0].shape))return;let p={};p.resize=Se.resizeBilinear(e,[dr.inputs[0].shape[2],dr.inputs[0].shape[1]],!1),p.enhance=K(()=>{let[f,m,g]=Yt(p.resize,3,3),y=L(f,Bx[0]),x=L(m,Bx[1]),A=L(g,Bx[2]),b=u0([y,x,A]);return L(fe(b,nt.tf05),2)});let d={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(p.gender=dr.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(f=>ne(p[f])),w2[n]=d,YC=s,JC=ue(),c(d)}))}var On,k2=[],Vx=Number.MAX_SAFE_INTEGER,tT=0,nT=0;async function sT(e){var t;return me.initial&&(On=null),On?e.debug&&oe("cached model:",On.modelUrl):On=await je((t=e.face.antispoof)==null?void 0:t.modelPath),On}async function Ux(e,t,n,s){var o,i;if(!On)return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>ue()-nT,a=Vx<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&tT===s&&k2[n]?(Vx++,k2[n]):(Vx=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[On!=null&&On.inputs[0].shape?On.inputs[0].shape[2]:0,On!=null&&On.inputs[0].shape?On.inputs[0].shape[1]:0],!1),c=On==null?void 0:On.execute(u),p=(await c.data())[0];k2[n]=Math.round(100*p)/100,tT=s,nT=ue(),ne([u,c]),l(k2[n])}))}var pr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Gx={count:468,mouth:13,symmetryLine:[13,pr.midwayBetweenEyes[0]]},ru={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Hx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],zh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],au=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var oAe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],iAe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],lAe=[33,133,362,263,1,78,308],d8e=oAe.map(e=>zh[e]),p8e=iAe.map(e=>zh[e]),h8e=lAe.map(e=>zh[e]);function ui(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var uAe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],cAe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],dAe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],pAe=[[474,475],[475,476],[476,477],[477,474]],hAe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],fAe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],mAe=[[469,470],[470,471],[471,472],[472,469]],gAe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],f8e={lips:ui(uAe),leftEye:ui(cAe),leftEyebrow:ui(dAe),leftIris:ui(pAe),rightEye:ui(hAe),rightEyebrow:ui(fAe),rightIris:ui(mAe),faceOval:ui(gAe)};var dd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],I2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],S2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],C2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],iT=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},qx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Se.cropAndResize(t,[a],[0],n),i=pe(o,nt.tf255);return ne(o),i},T2=(e,t)=>{let n=I2(e),s=dd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},N2=e=>{let t=I2(e),n=dd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},lT=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Xx=[[1,0,0],[0,1,0],[0,0,1]],yAe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),AAe=(e,t)=>yAe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var aT=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],ou=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},xAe=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},oT=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ou(e[r],xAe(t,a)))}return n},uT=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=aT(t[0],t[1]),o=oT(a,r),i=aT(-t[0],-t[1]);return oT(o,i)},bAe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ou(t[0],n),-ou(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},vAe=(e,t)=>[ou(e,t[0]),ou(e,t[1])];function cT(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let p=r*(c+.5);for(let d=0;d<i;d++)n.push([p,u])}}}return n}function dT(e,t,n,s,r){let a=dd(t),o=e.map(h=>[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?uT(n,[0,0]):Xx,u=i?o.map(h=>[...vAe(h,l),h[2]]):o,c=i?bAe(s):Xx,p=I2(t),d=[ou(p,c[0]),ou(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function pT(e,t,n,s){let r=t.landmarks.length>=Gx.count?Gx.symmetryLine:ru.symmetryLine,a=0,o=Xx,i;if(e&&me.kernels.includes("rotatewithoffset"))if(a=AAe(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=I2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Se.rotateWithOffset(n,a,0,c);o=uT(-a,u),i=qx(t,p,[s,s]),ne(p)}else i=qx(t,n,[s,s]);else i=qx(t,n,[s,s]);return[a,o,i]}var wAe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},hT=(e,t)=>{let n=wAe(e),s=dd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var fT=6,kAe=1.4,Yr,mT=null,ci=0,Lh=null,pd=()=>ci;async function gT(e){var t;return me.initial&&(Yr=null),Yr?e.debug&&oe("cached model:",Yr.modelUrl):Yr=await je((t=e.face.detector)==null?void 0:t.modelPath),ci=Yr.inputs[0].shape?Yr.inputs[0].shape[2]:0,Lh=Ce(ci,"int32"),mT=Ir(cT(ci)),Yr}function IAe(e){let t={};t.boxStarts=Oe(e,[0,1],[-1,2]),t.centers=ce(t.boxStarts,mT),t.boxSizes=Oe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,Lh),t.centersNormalized=pe(t.centers,Lh),t.halfBoxSize=pe(t.boxSizesNormalized,nt.tf2),t.starts=fe(t.centersNormalized,t.halfBoxSize),t.ends=ce(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,Lh),t.endNormalized=L(t.ends,Lh);let n=zc([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ne(t[s])),n}async function yT(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Se.resizeBilinear(e,[ci,ci]),n.div=pe(n.resized,nt.tf127),n.normalized=fe(n.div,nt.tf05);let s=Yr==null?void 0:Yr.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=St([p[0],p[2]],2),n.concat512=St([p[1],p[3]],2),n.concat=St([n.concat512,n.concat384],1),n.batch=et(n.concat,0)}else Array.isArray(s)?n.batch=et(s[0]):n.batch=et(s);ne(s),n.boxes=IAe(n.batch),n.logits=Oe(n.batch,[0,0],[-1,1]),n.sigmoid=Cn(n.logits),n.scores=et(n.sigmoid),n.nms=await Se.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p<r.length;p++){let d=o[r[p]];if(d>(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=Oe(n.boxes,[r[p],0],[1,-1]),h.slice=Oe(n.batch,[r[p],fT-1],[1,-1]),h.squeeze=et(h.slice),h.landmarks=U(h.squeeze,[fT,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=iT(m,[(e.shape[2]||0)/ci,(e.shape[1]||0)/ci]),y=T2(g,t.face.scale||kAe),x=N2(y);a.push(x),Object.keys(h).forEach(A=>ne(h[A]))}}return Object.keys(n).forEach(p=>ne(n[p])),a}var E2={};ra(E2,{connected:()=>Yx,kpt:()=>Zx});var Zx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Yx={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var xT=224,SAe,CAe=5,R2=[8,16,32,32,32];async function bT(){let e=[],t=0;for(;t<CAe;){let n=0,s=t;for(;s<R2.length&&R2[s]===R2[t];)n+=2,s++;let r=R2[t],a=Math.ceil(xT/r),o=Math.ceil(xT/r);for(let i=0;i<a;++i)for(let l=0;l<o;++l)for(let u=0;u<n;++u)e.push({x:(l+.5)/o,y:(i+.5)/a});t=s}SAe={x:$t(e.map(n=>n.x)),y:$t(e.map(n=>n.y))}}function Ia(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function vT(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function _2(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var IT={initial:!0},Fs={detector:null,landmarks:null},hd={detector:[224,224],landmarks:[256,256]},Jx=Number.MAX_SAFE_INTEGER,NAe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},$2=null,Bh,di=[[0,0],[0,0],[0,0],[0,0]],wT=0,kT=e=>1-1/(1+Math.exp(e));async function ST(e){if(IT.initial&&(Fs.detector=null),!Fs.detector&&e.body.detector&&e.body.detector.modelPath){Fs.detector=await je(e.body.detector.modelPath);let t=Object.values(Fs.detector.modelSignature.inputs);hd.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,hd.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&Fs.detector&&oe("cached model:",Fs.detector.modelUrl);return await bT(),Fs.detector}async function CT(e){if(IT.initial&&(Fs.landmarks=null),Fs.landmarks)e.debug&&oe("cached model:",Fs.landmarks.modelUrl);else{Fs.landmarks=await je(e.body.modelPath);let t=Object.values(Fs.landmarks.modelSignature.inputs);hd.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,hd.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Fs.landmarks}async function EAe(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let s;if(Bh&&(n.cropped=Se.cropAndResize(e,[Bh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let r=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];di=[[0,0],r,a,[0,0]],n.pad=Ks(n.cropped||e,di),n.resize=Se.resizeBilinear(n.pad,[t,t]),s=pe(n.resize,nt.tf255)}else e.shape[1]!==t?(n.resize=Se.resizeBilinear(n.cropped||e,[t,t]),s=pe(n.resize,nt.tf255)):s=pe(n.cropped||e,nt.tf255);return Object.keys(n).forEach(r=>ne(n[r])),s}function RAe(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+di[2][0]+di[2][1])/t[0]-di[2][0]),Math.trunc(n.position[1]*(t[1]+di[1][0]+di[1][1])/t[1]-di[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(Bh)for(let n of e)n.positionRaw=[n.positionRaw[0]+Bh[1],n.positionRaw[1]+Bh[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}async function _Ae(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function DAe(e,t,n){var f;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(f=Fs.landmarks)==null?void 0:f.execute(e,NAe.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(m=>ne(s[m]));let i=[],l=5;for(let m=0;m<a.length/l;m++){let g=kT(a[l*m+3]),y=kT(a[l*m+4]),x=Math.trunc(100*g*y*r)/100,A=[a[l*m+0]/hd.landmarks[0],a[l*m+1]/hd.landmarks[1],a[l*m+2]+0],b=[Math.trunc(n[0]*A[0]),Math.trunc(n[1]*A[1]),A[2]],w=[o[l*m+0],o[l*m+1],o[l*m+2]+0];i.push({part:Zx[m],positionRaw:A,position:b,distance:w,score:x})}if(r<(t.body.minConfidence||0))return null;_Ae(i);let u=RAe(i,n),c=u.map(m=>m.position),p=Ia(c,[n[0],n[1]]),d={};for(let[m,g]of Object.entries(Yx)){let y=[];for(let x=0;x<g.length-1;x++){let A=u.find(w=>w.part===g[x]),b=u.find(w=>w.part===g[x+1]);A&&b&&y.push([A.position,b.position])}d[m]=y}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function Qx(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>ue()-wT,r=Jx<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&$2!==null)Jx++;else{let a={};a.landmarks=await EAe(e,256),$2=await DAe(a.landmarks,t,n),Object.keys(a).forEach(o=>ne(a[o])),wT=ue(),Jx=0}return $2?[$2]:[]}var fd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Sa,iu=0,eb=[],NT=0,tb=Number.MAX_SAFE_INTEGER;async function ET(e){if(me.initial&&(Sa=null),Sa)e.debug&&oe("cached model:",Sa.modelUrl);else{Sa=await je(e.object.modelPath);let t=Object.values(Sa.modelSignature.inputs);iu=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Sa}async function $Ae(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=et(e);let o=Yt(s.squeeze,6,1);s.stack=ln([o[1],o[0],o[3],o[2]],1),s.boxes=et(s.stack),s.scores=et(o[4]),s.classes=et(o[5]),ne([e,...o]),s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5],d=fd[p].label,[h,f]=[a[0][u][0]/iu,a[0][u][1]/iu],m=[h,f,a[0][u][2]/iu-h,a[0][u][3]/iu-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>ne(s[u])),r}async function nb(e,t){let n=(t.object.skipTime||0)>ue()-NT,s=tb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&eb.length>0?(tb++,eb):(tb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[iu,iu]),i=t.object.enabled?Sa==null?void 0:Sa.execute(o,["tower_0/detections"]):null;NT=ue(),ne(o);let l=await $Ae(i,a,t);eb=l,r(l)}))}var F2={};ra(F2,{connected:()=>rb,kpt:()=>sb});var sb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],rb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Mn,_T=0,ls={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},ab=Number.MAX_SAFE_INTEGER;async function DT(e){return me.initial&&(Mn=null),Mn?e.debug&&oe("cached model:",Mn.modelUrl):Mn=await je(e.body.modelPath),Mn}async function FAe(e,t){let[n,s]=e.shape,r=U(e,[s*n]),a=mn(r,0),o=(await a.data())[0];if(ne([r,a]),o>t){let i=Cs(r,0),l=Xl(i,n),u=(await l.data())[0],c=pe(i,Ce(n,"int32")),p=(await c.data())[0];return ne([l,c]),[u,p,o]}return[0,0,o]}async function ob(e,t){let n=(t.body.skipTime||0)>ue()-_T,s=ab<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(ls.keypoints).length>0?(ab++,[ls]):(ab=0,new Promise(async r=>{var p;let a=K(()=>{if(!(Mn!=null&&Mn.inputs[0].shape))return null;let d=Se.resizeBilinear(e,[Mn.inputs[0].shape[2],Mn.inputs[0].shape[1]],!1),h=L(d,nt.tf2);return fe(h,nt.tf1)}),o;if(t.body.enabled&&(o=Mn==null?void 0:Mn.execute(a)),_T=ue(),ne(a),o){ls.keypoints.length=0;let d=o.squeeze();ne(o);let h=d.unstack(2);ne(d);for(let f=0;f<h.length;f++){let[m,g,y]=await FAe(h[f],t.body.minConfidence);y>(((p=t.body)==null?void 0:p.minConfidence)||0)&&ls.keypoints.push({score:Math.round(100*y)/100,part:sb[f],positionRaw:[m/Mn.inputs[0].shape[2],g/Mn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/Mn.inputs[0].shape[2]),Math.round(e.shape[1]*g/Mn.inputs[0].shape[1])]})}h.forEach(f=>ne(f))}ls.score=ls.keypoints.reduce((d,h)=>h.score>d?h.score:d,0);let i=ls.keypoints.map(d=>d.position[0]),l=ls.keypoints.map(d=>d.position[1]);ls.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=ls.keypoints.map(d=>d.positionRaw[0]),c=ls.keypoints.map(d=>d.positionRaw[1]);ls.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[d,h]of Object.entries(rb)){let f=[];for(let m=0;m<h.length-1;m++){let g=ls.keypoints.find(x=>x.part===h[m]),y=ls.keypoints.find(x=>x.part===h[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}ls.annotations[d]=f}r([ls])}))}var PAe=["angry","disgust","fear","happy","sad","surprise","neutral"],Ys,P2=[],FT=0,PT=0,ib=Number.MAX_SAFE_INTEGER;async function OT(e){var t;return me.initial&&(Ys=null),Ys?e.debug&&oe("cached model:",Ys.modelUrl):Ys=await je((t=e.face.emotion)==null?void 0:t.modelPath),Ys}async function lb(e,t,n,s){var o,i;if(!Ys)return[];let r=ib<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>ue()-PT;return t.skipAllowed&&a&&r&&FT===s&&P2[n]&&P2[n].length>0?(ib++,P2[n]):(ib=0,new Promise(async l=>{var c,p;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let d={},h=Ys!=null&&Ys.inputs[0].shape?Ys.inputs[0].shape[2]:0;d.resize=Se.resizeBilinear(e,[h,h],!1),d.channels=L(d.resize,nt.rgb),d.grayscale=ke(d.channels,3,!0),d.grayscaleSub=fe(d.grayscale,nt.tf05),d.grayscaleMul=L(d.grayscaleSub,nt.tf2),d.emotion=Ys==null?void 0:Ys.execute(d.grayscaleMul),PT=ue();let f=await d.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((p=t.face.emotion)==null?void 0:p.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:PAe[m]});u.sort((m,g)=>g.score-m.score),Object.keys(d).forEach(m=>ne(d[m]))}P2[n]=u,FT=s,l(u)}))}var Ps,ub=[],zT=0,LT=0,BT=Number.MAX_SAFE_INTEGER;async function WT(e){return me.initial&&(Ps=null),Ps?e.debug&&oe("cached model:",Ps.modelUrl):Ps=await je(e.face.mobilefacenet.modelPath),Ps}async function cb(e,t,n,s){var o,i;if(!Ps)return[];let r=BT<(((o=t.face.embedding)==null?void 0:o.skipFrames)||0),a=(((i=t.face.embedding)==null?void 0:i.skipTime)||0)>ue()-LT;return t.skipAllowed&&a&&r&&zT===s&&ub[n]?(BT++,ub[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.embedding)==null?void 0:c.enabled)&&(Ps==null?void 0:Ps.inputs[0].shape)){let p={};p.crop=Se.resizeBilinear(e,[Ps.inputs[0].shape[2],Ps.inputs[0].shape[1]],!1),p.data=Ps==null?void 0:Ps.execute(p.crop);let d=await p.data.data();u=Array.from(d)}ub[n]=u,zT=s,LT=ue(),l(u)})}var Ca,pi=0,OAe=2.3,db=pr.leftEyeLower0,pb=pr.rightEyeLower0,md={leftBounds:[db[0],db[db.length-1]],rightBounds:[pb[0],pb[pb.length-1]]},gd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function jT(e){var t;return me.initial&&(Ca=null),Ca?e.debug&&oe("cached model:",Ca.modelUrl):Ca=await je((t=e.face.iris)==null?void 0:t.modelPath),pi=Ca.inputs[0].shape?Ca.inputs[0].shape[2]:0,pi===-1&&(pi=64),Ca}function O2(e,t,n,s){for(let r=0;r<Hx.length;r++){let{key:a,indices:o}=Hx[r],i=pr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var MAe=e=>{let t=e[md.leftBounds[0]][2],n=e[md.rightBounds[0]][2];return t-n},UT=(e,t,n,s,r,a=!1)=>{let o=N2(T2(lT([e[n],e[s]]),OAe)),i=dd(o),l=Se.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[pi,pi]);if(a&&me.kernels.includes("flipleftright")){let u=Se.flipLeftRight(l);ne(l),l=u}return{box:o,boxSize:i,crop:l}},GT=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<gd.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/pi:o/pi)*n[0]+t.startPoint[0],i/pi*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(gd.index)}},HT=(e,t,n)=>{let s=e[pr[`${n}EyeUpper0`][gd.upperCenter]][2],r=e[pr[`${n}EyeLower0`][gd.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function qT(e,t,n,s){if(!Ca)return n.debug&&oe("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=UT(e,t,md.leftBounds[0],md.leftBounds[1],s,!0),{box:i,boxSize:l,crop:u}=UT(e,t,md.rightBounds[0],md.rightBounds[1],s,!0),c=St([o,u]);ne(o),ne(u);let p=Ca.execute(c);ne(c);let d=await p.data();ne(p);let h=d.slice(0,gd.numCoordinates*3),{rawCoords:f,iris:m}=GT(h,r,a,!0),g=d.slice(gd.numCoordinates*3),{rawCoords:y,iris:x}=GT(g,i,l,!1),A=MAe(e);Math.abs(A)<30?(O2(e,f,"left",null),O2(e,y,"right",null)):A<1?O2(e,f,"left",["EyeUpper0","EyeLower0"]):O2(e,y,"right",["EyeUpper0","EyeLower0"]);let b=HT(e,m,"left"),w=HT(e,x,"right");return e.concat(b).concat(w)}var zAe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],LAe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],BAe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],WAe=[[474,475],[475,476],[476,477],[477,474]],VAe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],UAe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],GAe=[[469,470],[470,471],[471,472],[472,469]],HAe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function hi(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var jAe={lips:hi(zAe),leftEye:hi(LAe),leftEyebrow:hi(BAe),leftIris:hi(WAe),rightEye:hi(VAe),rightEyebrow:hi(UAe),rightIris:hi(GAe),faceOval:hi(HAe)},qAe=Object.entries(jAe).map(([e,t])=>t.map(n=>[n,e])).flat(),U8e=new Map(qAe),Wh=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],lu=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],uu=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function ZT(e,t){let n={lips:await t.filter(a=>a.size===160)[0].data(),irisL:await t.filter(a=>a.size===10)[0].data(),eyeL:await t.filter(a=>a.size===142)[0].data(),irisR:await t.filter(a=>a.size===10)[1].data(),eyeR:await t.filter(a=>a.size===142)[1].data()},s=lu.reduce((a,o)=>a+=e[o][2],0)/lu.length;for(let a=0;a<n.irisL.length/2;a++)e.push([n.irisL[2*a+0],n.irisL[2*a+1],s]);let r=uu.reduce((a,o)=>a+=e[o][2],0)/uu.length;for(let a=0;a<n.irisR.length/2;a++)e.push([n.irisR[2*a+0],n.irisR[2*a+1],r]);for(let a=0;a<n.eyeL.length/2;a++)e[lu[a]]=[n.eyeL[2*a+0],n.eyeL[2*a+1],e[lu[a]][2]];for(let a=0;a<n.eyeR.length/2;a++)e[uu[a]]=[n.eyeR[2*a+0],n.eyeR[2*a+1],e[uu[a]][2]];for(let a=0;a<n.lips.length/2;a++)e[Wh[a]]=[n.lips[2*a+0],n.lips[2*a+1],e[Wh[a]][2]];return e}var Jr={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},zn=null,cu=0;async function YT(e,t){var i,l,u,c,p,d,h,f,m,g,y;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>ue()-Jr.timestamp,s=Jr.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!n||!s||Jr.boxes.length===0?(Jr.boxes=await yT(e,t),Jr.timestamp=ue(),Jr.skipped=0):Jr.skipped++;let r=[],a=[],o=0;for(let x=0;x<Jr.boxes.length;x++){let A=Jr.boxes[x],b=0,w,k={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,k.tensor]=pT((u=t.face.detector)==null?void 0:u.rotation,A,e,(c=t.face.mesh)!=null&&c.enabled?cu:pd()),(p=t==null?void 0:t.filter)!=null&&p.equalization){let S=await A2(k.tensor);ne(k.tensor),k.tensor=S}if(k.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!zn)t.debug&&oe("face mesh detection requested, but model is not loaded");else{let S=zn.execute(k.tensor),R=await S.find($=>$.shape[$.shape.length-1]===1).data();if(k.faceScore=Math.round(100*R[0])/100,k.faceScore<(((h=t.face.detector)==null?void 0:h.minConfidence)||1)){if(A.confidence=k.faceScore,(f=t.face.mesh)!=null&&f.keepInvalid){k.box=S2(A,e),k.boxRaw=C2(A,e),k.score=k.boxScore,k.mesh=A.landmarks.map($=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*$[0]/pd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*$[1]/pd()]),k.meshRaw=k.mesh.map($=>[$[0]/(e.shape[2]||1),$[1]/(e.shape[1]||1),($[2]||0)/cu]);for(let $ of Object.keys(ru))k.annotations[$]=[k.mesh[ru[$]]]}}else{let $=S.find(P=>P.shape[P.shape.length-1]===1404),_=U($,[-1,3]),D=await _.array();ne(_),(m=t.face.attention)!=null&&m.enabled?D=await ZT(D,S):(g=t.face.iris)!=null&&g.enabled&&(D=await qT(D,k.tensor,t,cu)),k.mesh=dT(D,A,b,w,cu),k.meshRaw=k.mesh.map(P=>[P[0]/(e.shape[2]||0),P[1]/(e.shape[1]||0),(P[2]||0)/cu]);for(let P of Object.keys(pr))k.annotations[P]=pr[P].map(V=>k.mesh[V]);k.score=k.faceScore;let C={...hT(k.mesh,A),confidence:A.confidence,landmarks:A.landmarks};k.box=S2(C,e),k.boxRaw=C2(C,e),a.push(C)}ne(S)}else{k.box=S2(A,e),k.boxRaw=C2(A,e),k.score=k.boxScore,k.mesh=A.landmarks.map(S=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*S[0]/pd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*S[1]/pd()]),k.meshRaw=k.mesh.map(S=>[S[0]/(e.shape[2]||0),S[1]/(e.shape[1]||0),(S[2]||0)/cu]);for(let S of Object.keys(ru))k.annotations[S]=[k.mesh[ru[S]]]}k.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(k):ne(k.tensor)}return Jr.boxes=a,r}async function JT(e){var t,n,s,r,a,o;return me.initial&&(zn=null),((n=(t=e==null?void 0:e.face)==null?void 0:t.attention)==null?void 0:n.enabled)&&(zn==null?void 0:zn.signature)&&Object.keys(((s=zn==null?void 0:zn.signature)==null?void 0:s.outputs)||{}).length<6&&(zn=null),zn?e.debug&&oe("cached model:",zn.modelUrl):(r=e.face.attention)!=null&&r.enabled?zn=await je((a=e.face.attention)==null?void 0:a.modelPath):zn=await je((o=e.face.mesh)==null?void 0:o.modelPath),cu=zn.inputs[0].shape?zn.inputs[0].shape[2]:0,zn}var QT=au,eN=zh;var Os,M2=[],tN=0,nN=0,fb=Number.MAX_SAFE_INTEGER;async function sN(e){var t;return me.initial&&(Os=null),Os?e.debug&&oe("cached model:",Os.modelUrl):Os=await je((t=e.face.description)==null?void 0:t.modelPath),Os}function mb(e){let t=e.image||e.tensor||e;if(!(Os!=null&&Os.inputs[0].shape))return t;let n=Se.resizeBilinear(t,[Os.inputs[0].shape[2],Os.inputs[0].shape[1]],!1),s=L(n,nt.tf255);return ne(n),s}async function gb(e,t,n,s){var o,i,l,u;if(!Os)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=fb<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>ue()-tN;return t.skipAllowed&&r&&a&&nN===s&&((l=M2[n])==null?void 0:l.age)&&((u=M2[n])==null?void 0:u.age)>0?(fb++,M2[n]):(fb=0,new Promise(async c=>{var d,h;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let f=mb(e),m=Os==null?void 0:Os.execute(f);tN=ue(),ne(f);let y=await(await m.find(R=>R.shape[1]===1)).data(),x=Math.trunc(200*Math.abs(y[0]-.5))/100;x>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(p.gender=y[0]<=.5?"female":"male",p.genderScore=Math.min(.99,x));let A=Cs(m.find(R=>R.shape[1]===100),1),b=(await A.data())[0];ne(A);let k=await m.find(R=>R.shape[1]===100).data();p.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let S=m.find(R=>R.shape[1]===1024),E=S?await S.data():[];p.descriptor=Array.from(E),m.forEach(R=>ne(R))}M2[n]=p,nN=s,c(p)}))}function z2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Vh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function oN(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Se.cropAndResize(t,a,[0],n)}function iN(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function L2(e,t=1.5){let n=Vh(e),s=z2(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function B2(e){let t=Vh(e),n=z2(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function KAe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function lN(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return KAe(n)}var rN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function fi(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function ZAe(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function aN(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(fi(e[r],ZAe(t,a)))}return n}function Ab(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=rN(t[0],t[1]),o=aN(a,r),i=rN(-t[0],-t[1]);return aN(o,i)}function uN(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-fi(t[0],n),-fi(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function xb(e,t){return[fi(e,t[0]),fi(e,t[1])]}var dN=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var W2=class{constructor(t){ge(this,"model");ge(this,"anchors");ge(this,"anchorsTensor");ge(this,"inputSize");ge(this,"inputSizeTensor");ge(this,"doubleInputSizeTensor");this.model=t,this.anchors=dN.map(n=>[n.x,n.y]),this.anchorsTensor=Ir(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=$t([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=$t([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=Oe(t,[0,0],[-1,2]),n.boxSizes=Oe(t,[0,2],[-1,2]),n.div=pe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ce(n.div,this.anchorsTensor),n.halfBoxSizes=pe(n.boxSizes,this.doubleInputSizeTensor),n.sub=fe(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=L(n.sub,this.inputSizeTensor),n.add=ce(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=L(n.add,this.inputSizeTensor);let s=zc([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ne(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=U(t,[-1,7,2]),s.div=pe(s.reshape,this.inputSizeTensor),s.landmarks=ce(s.div,this.anchors[n]);let r=L(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ne(s[a])),r}async predict(t,n){let s={};s.resize=Se.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=pe(s.resize,nt.tf127),s.image=fe(s.div,nt.tf1),s.batched=this.model.execute(s.image),s.predictions=et(s.batched),s.slice=Oe(s.predictions,[0,0],[-1,1]),s.sigmoid=Cn(s.slice),s.scores=et(s.sigmoid);let r=await s.scores.data();s.boxes=Oe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Se.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l={};l.box=Oe(s.norm,[i,0],[1,-1]),l.slice=Oe(s.predictions,[i,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,i),l.palmLandmarks=U(l.norm,[-1,2]);let u=await l.box.data(),c=u.slice(0,2),p=u.slice(2,4),d=await l.palmLandmarks.array(),h={startPoint:c,endPoint:p,palmLandmarks:d,confidence:r[i]},f=iN(h,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);o.push(f),Object.keys(l).forEach(m=>ne(l[m]))}return Object.keys(s).forEach(i=>ne(s[i])),o}};var QAe=5,pN=1.65,hN=[0,5,9,13,17,1,2],e5e=0,t5e=2,fN=0,V2=class{constructor(t,n){ge(this,"handDetector");ge(this,"handPoseModel");ge(this,"inputSize");ge(this,"storedBoxes");ge(this,"skipped");ge(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>xb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return L2(B2(r),QAe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=L2(B2(n),pN);s.palmLandmarks=[];for(let r=0;r<hN.length;r++)s.palmLandmarks.push(t[hN[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=z2(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Ab(s,[0,0]),u=i.map(h=>[...xb(h,l),h[2]]),c=uN(r),p=[...Vh(n),1],d=[fi(p,c[0]),fi(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>ue()-fN,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(n.hand.landmarks){let c=n.hand.rotation?lN(u.palmLandmarks[e5e],u.palmLandmarks[t5e]):0,p=Vh(u),d=[p[0]/t.shape[2],p[1]/t.shape[1]],h=n.hand.rotation&&me.kernels.includes("rotatewithoffset")?Se.rotateWithOffset(t,c,0,d):t.clone(),f=Ab(-c,p),m=s?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=oN(m,h,[this.inputSize,this.inputSize]),y=pe(g,nt.tf255);ne(g),ne(h);let[x,A]=this.handPoseModel.execute(y);fN=ue(),ne(y);let b=(await x.data())[0];if(ne(x),b>=n.hand.minConfidence/4){let w=U(A,[-1,3]),k=await w.array();ne(A),ne(w);let S=this.transformRawCoords(k,m,c,f),E=this.getBoxForHandLandmarks(S);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:S,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(R)}else this.storedBoxes[l]=null;ne(A)}else{let c=L2(B2(u),pN),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var us={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>us.nameMapping[e],getPoints:e=>us.pointsMapping[e]},gi={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>gi.nameMapping[e]},qt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>qt.nameMapping[e]},mi=class{constructor(t){ge(this,"name");ge(this,"curls");ge(this,"directions");ge(this,"weights");ge(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Fr,index:Ta,middle:Na,ring:du,pinky:pu}=us,{none:Pr,half:s5e,full:Or}=gi,{verticalUp:yd,verticalDown:rke,horizontalLeft:bb,horizontalRight:r5e,diagonalUpRight:a5e,diagonalUpLeft:Ad,diagonalDownRight:ake,diagonalDownLeft:oke}=qt,yi=new mi("thumbs up");yi.curl(Fr,Pr,1);yi.direction(Fr,yd,1);yi.direction(Fr,Ad,.25);yi.direction(Fr,a5e,.25);for(let e of[us.index,us.middle,us.ring,us.pinky])yi.curl(e,Or,1),yi.direction(e,bb,1),yi.direction(e,r5e,1);var dn=new mi("victory");dn.curl(Fr,s5e,.5);dn.curl(Fr,Pr,.5);dn.direction(Fr,yd,1);dn.direction(Fr,Ad,1);dn.curl(Ta,Pr,1);dn.direction(Ta,yd,.75);dn.direction(Ta,Ad,1);dn.curl(Na,Pr,1);dn.direction(Na,yd,1);dn.direction(Na,Ad,.75);dn.curl(du,Or,1);dn.direction(du,yd,.2);dn.direction(du,Ad,1);dn.direction(du,bb,.2);dn.curl(pu,Or,1);dn.direction(pu,yd,.2);dn.direction(pu,Ad,1);dn.direction(pu,bb,.2);dn.weight(Ta,2);dn.weight(Na,2);var Ai=new mi("point");Ai.curl(Fr,Or,1);Ai.curl(Ta,Pr,.5);Ai.curl(Na,Or,.5);Ai.curl(du,Or,.5);Ai.curl(pu,Or,.5);Ai.weight(Ta,2);Ai.weight(Na,2);var xi=new mi("middle finger");xi.curl(Fr,Pr,1);xi.curl(Ta,Or,.5);xi.curl(Na,Or,.5);xi.curl(du,Or,.5);xi.curl(pu,Or,.5);xi.weight(Ta,2);xi.weight(Na,2);var xd=new mi("open palm");xd.curl(Fr,Pr,.75);xd.curl(Ta,Pr,.75);xd.curl(Na,Pr,.75);xd.curl(du,Pr,.75);xd.curl(pu,Pr,.75);var mN=[yi,dn,Ai,xi,xd];var o5e=.7,hu={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function gN(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function AN(e,t){if(!e||!t)return[0,0];let n=gN(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=gN(e[1],e[2],t[1],t[2]);return[n,s]}function yN(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function i5e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>hu.NO_CURL_START_LIMIT?y=gi.none:g>hu.HALF_CURL_START_LIMIT?y=gi.half:y=gi.full,y}function xN(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=qt.horizontalLeft:r=qt.horizontalRight:s===Math.abs(t)?t>0?r=qt.horizontalLeft:r=qt.horizontalRight:n>0?r=qt.horizontalLeft:r=qt.horizontalRight,r}function bN(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=qt.verticalDown:r=qt.verticalUp:s===Math.abs(t)?t<0?r=qt.verticalDown:r=qt.verticalUp:n<0?r=qt.verticalDown:r=qt.verticalUp,r}function l5e(e,t,n,s,r,a,o,i){let l,u=bN(e,t,n,s),c=xN(r,a,o,i);return u===qt.verticalUp?c===qt.horizontalLeft?l=qt.diagonalUpLeft:l=qt.diagonalUpRight:c===qt.horizontalLeft?l=qt.diagonalDownLeft:l=qt.diagonalDownRight,l}function u5e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=hu.DISTANCE_VOTE_POWER:m>.66?h+=hu.DISTANCE_VOTE_POWER:f+=hu.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],k=n[0],S=n[1];A===g?(k=n[0],S=n[1]):A===x&&(b=t[0],w=t[1]);let $=AN([b,w],[k,S]),_=yN($,hu.TOTAL_ANGLE_VOTE_POWER);d+=_[0],h+=_[1],f+=_[2];for(let C of s){let P=yN(C,hu.SINGLE_ANGLE_VOTE_POWER);d+=P[0],h+=P[1],f+=P[2]}let D;return d===Math.max(d,h,f)?D=bN(l,i,u,p):f===Math.max(h,f)?D=xN(a,r,o,c):D=l5e(l,i,u,p,a,r,o,c),D}function vN(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of us.all){let o=us.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=AN(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of us.all){let o=a===us.thumb?1:0,i=us.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=i5e(l,u,c),d=u5e(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function U2(e){if(!e||e.length===0)return null;let t=vN(e),n={};for(let s of us.all)n[us.getName(s)]={curl:gi.getName(t.curls[s]),direction:qt.getName(t.directions[s])};return n}function wN(e){let t=[];if(!e||e.length===0)return t;let n=vN(e);for(let s of mN){let r=s.matchAgainst(n.curls,n.directions);r>=o5e&&t.push({name:s.name,confidence:r})}return t}var kN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},bd,vd,IN;async function wb(e,t){let n=await IN.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(kN))a[c]=kN[c].map(p=>n[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=U2(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function kb(e){var n,s;me.initial&&(bd=null,vd=null),!bd||!vd?[bd,vd]=await Promise.all([e.hand.enabled?je((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?je((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&oe("cached model:",bd.modelUrl),e.debug&&oe("cached model:",vd.modelUrl));let t=new W2(bd);return IN=new V2(t,vd),[bd,vd]}var An=[null,null],c5e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],bi=[[0,0],[0,0]],d5e=["hand","fist","pinch","point","face","tip","pinchtip"],CN=4,TN=1.6,p5e=512,h5e=1.4,G2=Number.MAX_SAFE_INTEGER,Ib=0,Ea=[0,0],Qt={boxes:[],hands:[]},NN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function EN(e){var t;if(me.initial&&(An[0]=null),An[0])e.debug&&oe("cached model:",An[0].modelUrl);else{H2(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),An[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let n=Object.values(An[0].modelSignature.inputs);bi[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,bi[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return An[0]}async function RN(e){var t;if(me.initial&&(An[1]=null),An[1])e.debug&&oe("cached model:",An[1].modelUrl);else{An[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=Object.values(An[1].modelSignature.inputs);bi[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,bi[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return An[1]}async function f5e(e,t){let n=[];if(!e||!An[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,p5e),o=Math.round(a*r/8)*8;s.resize=Se.resizeBilinear(e,[a,o]),s.cast=he(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await An[0].executeAsync(s.cast,c5e),s.boxes=et(s.rawBoxes,[0,2]),s.scores=et(s.rawScores,[0]);let i=Qn(s.scores,1);ne(i[CN]),i.splice(CN,1),s.filtered=ln(i,1),ne(i),s.max=mn(s.filtered,1),s.argmax=Cs(s.filtered,1);let l=0;s.nms=await Se.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=Oe(s.boxes,d,1),f=await h.data();ne(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=_2(m,h5e),y=[Math.trunc(m[0]*Ea[0]),Math.trunc(m[1]*Ea[1]),Math.trunc(m[2]*Ea[0]),Math.trunc(m[3]*Ea[1])],x=c[d],A=d5e[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>ne(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Sb(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&An[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Se.cropAndResize(e,[a],[0],[bi[1][0],bi[1][1]],"bilinear"),r.div=pe(r.crop,nt.tf255),[r.score,r.keypoints]=An[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=U(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/bi[1][1],p[1]/bi[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[Ea[0]*(p[0]+t.boxRaw[0]),Ea[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=U2(s.keypoints);for(let p of Object.keys(NN))s.annotations[p]=NN[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>ne(r[l]))}return s}async function Cb(e,t){var r,a;if(!An[0]||!An[1]||!((r=An[0])!=null&&r.inputs[0].shape)||!((a=An[1])!=null&&a.inputs[0].shape))return[];Ea=[e.shape[2]||0,e.shape[1]||0],G2++;let n=(t.hand.skipTime||0)>ue()-Ib,s=G2<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Qt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>ue()-Ib,l=G2<3*(t.hand.skipFrames||0);t.skipAllowed&&Qt.hands.length===t.hand.maxDetected?Qt.hands=await Promise.all(Qt.boxes.map(c=>Sb(e,c,t))):t.skipAllowed&&i&&l&&Qt.hands.length>0?Qt.hands=await Promise.all(Qt.boxes.map(c=>Sb(e,c,t))):(Qt.boxes=await f5e(e,t),Ib=ue(),Qt.hands=await Promise.all(Qt.boxes.map(c=>Sb(e,c,t))),G2=0);let u=[...Qt.boxes];if(Qt.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c<Qt.hands.length;c++){let p=vT(Qt.hands[c].keypoints,Ea);if(p.box[2]/(e.shape[2]||1)>.05&&p.box[3]/(e.shape[1]||1)>.05&&Qt.hands[c].fingerScore&&Qt.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=_2(p.box,TN),h=_2(p.boxRaw,TN);Qt.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;c<Qt.hands.length;c++){let p=Ia(Qt.hands[c].keypoints,Ea);Qt.hands[c].box=p.box,Qt.hands[c].boxRaw=p.boxRaw}o(Qt.hands)})}var Ln,j2=[],Tb=Number.MAX_SAFE_INTEGER,DN=0,$N=0;async function FN(e){var t;return me.initial&&(Ln=null),Ln?e.debug&&oe("cached model:",Ln.modelUrl):Ln=await je((t=e.face.liveness)==null?void 0:t.modelPath),Ln}async function Nb(e,t,n,s){var o,i;if(!Ln)return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>ue()-$N,a=Tb<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&DN===s&&j2[n]?(Tb++,j2[n]):(Tb=0,new Promise(async l=>{let u=Se.resizeBilinear(e,[Ln!=null&&Ln.inputs[0].shape?Ln.inputs[0].shape[2]:0,Ln!=null&&Ln.inputs[0].shape?Ln.inputs[0].shape[1]:0],!1),c=Ln==null?void 0:Ln.execute(u),p=(await c.data())[0];j2[n]=Math.round(100*p)/100,DN=s,$N=ue(),ne([u,c]),l(j2[n])}))}var Uh={};ra(Uh,{connected:()=>X2,horizontal:()=>Eb,kpt:()=>q2,relative:()=>_b,vertical:()=>Rb});var q2=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Eb=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Rb=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],_b=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],X2={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var ON=.005,Ms={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Db(e){for(let t of Eb){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Rb){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of _b){let s=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function MN(e){for(let t=0;t<e.length;t++)if(e[t]&&Ms.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Ms.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Ms.keypoints[t].positionRaw[1])];n[0]<ON&&n[1]<ON?e[t]=Ms.keypoints[t]:Ms.keypoints[t]=e[t]}else Ms.keypoints[t]=e[t];return e}function zN(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Ms.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Ks(e,Ms.padding),n.resize=Se.resizeBilinear(n.pad,[t,t]);let s=he(n.resize,"int32");return Object.keys(n).forEach(r=>ne(n[r])),s}function LN(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Ms.padding[2][0]+Ms.padding[2][1])/t[0]-Ms.padding[2][0],s.position[1]*(t[1]+Ms.padding[1][0]+Ms.padding[1][1])/t[1]-Ms.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Ia(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var zs,K2=0,$b=Number.MAX_SAFE_INTEGER,fu={boxes:[],bodies:[],last:0};async function BN(e){return me.initial&&(zs=null),zs?e.debug&&oe("cached model:",zs.modelUrl):(H2(["size"],e),zs=await je(e.body.modelPath)),K2=zs.inputs[0].shape?zs.inputs[0].shape[2]:0,K2<64&&(K2=256),zs}async function g5e(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;c<s.length;c++)if(a=s[c][2],a>t.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:q2[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=Ia(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(X2)){let d=[];for(let h=0;h<p.length-1;h++){let f=r.find(g=>g.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return Db(u),o.push(u),o}async function y5e(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:q2[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=Ia(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(X2)){let h=[];for(let f=0;f<d.length-1;f++){let m=i.find(y=>y.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};Db(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function Fb(e,t){if(!zs||!(zs!=null&&zs.inputs[0].shape))return[];t.skipAllowed||(fu.boxes.length=0),$b++;let n=(t.body.skipTime||0)>ue()-fu.last,s=$b<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?fu.bodies:new Promise(async r=>{let a={};$b=0,a.input=zN(e,K2),a.res=zs==null?void 0:zs.execute(a.input),fu.last=ue();let o=await a.res.array();fu.bodies=a.res.shape[2]===17?await g5e(o,t,e):await y5e(o,t,e);for(let i of fu.bodies)LN(i,[e.shape[2]||1,e.shape[1]||1]),MN(i.keypoints);Object.keys(a).forEach(i=>ne(a[i])),r(fu.bodies)})}var wd,Z2=[],VN=0,Pb=Number.MAX_SAFE_INTEGER,J2=0,Y2=2.5;async function UN(e){if(!wd||me.initial){wd=await je(e.object.modelPath);let t=Object.values(wd.modelSignature.inputs);J2=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&oe("cached model:",wd.modelUrl);return wd}async function A5e(e,t,n){let s=0,r=[];for(let l of[1,2,4])K(async()=>{let u=l*13,c=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)===fd.length)),p=et(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)<fd.length)),h=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),f=await c.array();for(let m=0;m<c.shape[0];m++)for(let g=0;g<c.shape[1];g++){let y=f[m][g];if(y>(n.object.minConfidence||0)&&g!==61){let x=(.5+Math.trunc(m%u))/u,A=(.5+Math.trunc(m/u))/u,b=h[m].map(D=>D*(u/l/J2)),[w,k]=[x-Y2/l*b[0],A-Y2/l*b[1]],[S,E]=[x+Y2/l*b[2]-w,A+Y2/l*b[3]-k],R=[w,k,S,E];R=R.map(D=>Math.max(0,Math.min(D,1)));let $=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],_={id:s++,score:Math.round(100*y)/100,class:g+1,label:fd[g].label,box:$.map(D=>Math.trunc(D)),boxRaw:R};r.push(_)}}});e.forEach(l=>ne(l));let a=r.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),o=r.map(l=>l.score),i=[];if(a&&a.length>0){let l=await Se.nonMaxSuppressionAsync(a,o,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);i=await l.data(),ne(l)}return r=r.filter((l,u)=>i.includes(u)).sort((l,u)=>u.score-l.score),r}async function Ob(e,t){let n=(t.object.skipTime||0)>ue()-VN,s=Pb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Z2.length>0?(Pb++,Z2):(Pb=0,!me.kernels.includes("mod")||!me.kernels.includes("sparsetodense")?Z2:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Se.resizeBilinear(e,[J2,J2],!1),i=pe(o,nt.tf255),l=i.transpose([0,3,1,2]);ne(i),ne(o);let u;t.object.enabled&&(u=wd.execute(l)),VN=ue(),ne(l);let c=await A5e(u,a,t);Z2=c,r(c)}))}var Hh=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],x5e=Hh.length,Gh=Hh.reduce((e,t,n)=>(e[t]=n,e),{}),b5e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Rke=b5e.map(([e,t])=>[Gh[e],Gh[t]]),HN=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function jN(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function qN(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var Q2=class{constructor(t,n){ge(this,"priorityQueue");ge(this,"numberOfElements");ge(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function Mb(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+x5e)}}function zb(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=Mb(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function Lb(e,t,n){return e<t?t:e>n?n:e}function XN(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Bb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Mr,w5e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],e1=1,kd=16,k5e=50**2;function KN(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:Lb(Math.round(y.y/kd),0,x-1),x:Lb(Math.round(y.x/kd),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=Bb(t.position,d);for(let y=0;y<o;y++){let x=l(f,u,c),A=Mb(x.y,x.x,n,r);f=Bb({x:x.x*kd,y:x.y*kd},{x:A.x,y:A.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:Hh[n],score:g}}function I5e(e,t,n,s,r){let a=HN.map(([d,h])=>[Gh[d],Gh[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=zb(e.part,kd,n);c[e.part.id]={score:e.score,part:Hh[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=KN(d,c[h],f,t,n,r))}for(let d=0;d<u;++d){let h=i[d],f=o[d];c[h]&&!c[f]&&(c[f]=KN(d,c[h],f,t,n,s))}return c}function S5e(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-e1,0),u=Math.min(n+e1+1,a);for(let c=l;c<u;++c){let p=Math.max(s-e1,0),d=Math.min(s+e1+1,o);for(let h=p;h<d;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function C5e(e,t){let[n,s,r]=t.shape,a=new Q2(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||S5e(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function ZN(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?XN(n,t,a.y,a.x)<=k5e:!1})}function T5e(e,t){return t.reduce((s,{position:r,score:a},o)=>(ZN(e,r,o)||(s+=a),s),0)/t.length}function N5e(e,t,n,s,r,a){let o=[],i=C5e(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=zb(l.part,kd,e);if(ZN(o,u,l.part.id))continue;let c=I5e(l,t,e,n,s);c=c.filter(h=>h.score>a);let p=T5e(o,c),d=jN(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function Wb(e,t){let n=K(()=>{if(!Mr.inputs[0].shape)return[];let o=Se.resizeBilinear(e,[Mr.inputs[0].shape[2],Mr.inputs[0].shape[1]]),i=fe(pe(he(o,"float32"),127.5),1),u=Mr.execute(i,w5e).map(c=>et(c,[0]));return u[1]=Cn(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ne(o);let r=await N5e(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Mr.inputs[0].shape?qN(r,[e.shape[1],e.shape[2]],[Mr.inputs[0].shape[2],Mr.inputs[0].shape[1]]):[]}async function YN(e){return!Mr||me.initial?Mr=await je(e.body.modelPath):e.debug&&oe("cached model:",Mr.modelUrl),Mr}var Qr,Vb=!1;async function Ub(e){return!Qr||me.initial?Qr=await je(e.segmentation.modelPath):e.debug&&oe("cached model:",Qr.modelUrl),Qr}async function QN(e,t,n){var m,g;if(Vb)return{data:[],canvas:null,alpha:null};Vb=!0,Qr||await Ub(n);let s=await cd(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Se.resizeBilinear(s.tensor,[Qr.inputs[0].shape?Qr.inputs[0].shape[1]:0,Qr.inputs[0].shape?Qr.inputs[0].shape[2]:0],!1),ne(s.tensor),o.norm=pe(o.resize,nt.tf255),o.res=Qr.execute(o.norm),o.squeeze=et(o.res,0),o.squeeze.shape[2]===2?(o.softmax=Zl(o.squeeze),[o.bg,o.fg]=Qn(o.softmax,2),o.expand=Zt(o.fg,2),o.pad=Zt(o.expand,0),o.crop=Se.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=et(o.crop,0)):o.data=Se.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(me.node&&!me.Canvas&&typeof ImageData=="undefined")return n.debug&&oe("canvas support missing"),Object.keys(o).forEach(y=>ne(o[y])),{data:i,canvas:null,alpha:null};let l=os(r,a);Xs&&await Xs.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=os(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=c.data[4*y+0];d.putImageData(h,0,0);let f=null;if(t&&p){f=os(r,a);let y=await cd(t,n);ne(y.tensor);let x=f.getContext("2d");x.drawImage(y.canvas,0,0,f.width,f.height),x.drawImage(p,0,0)}return Object.keys(o).forEach(y=>ne(o[y])),Vb=!1,{data:i,canvas:p,alpha:l}}var jh=class{constructor(){ge(this,"ssrnetage",null);ge(this,"gear",null);ge(this,"blazeposedetect",null);ge(this,"blazepose",null);ge(this,"centernet",null);ge(this,"efficientpose",null);ge(this,"mobilefacenet",null);ge(this,"emotion",null);ge(this,"facedetect",null);ge(this,"faceiris",null);ge(this,"facemesh",null);ge(this,"faceres",null);ge(this,"ssrnetgender",null);ge(this,"handpose",null);ge(this,"handskeleton",null);ge(this,"handtrack",null);ge(this,"liveness",null);ge(this,"movenet",null);ge(this,"nanodet",null);ge(this,"posenet",null);ge(this,"segmentation",null);ge(this,"antispoof",null)}},Gb=e=>{let t=0,n=0,s=0;for(let a of Object.values($r))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values($r).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values($r)}};function t1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function Hb(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k,S,E,R,$,_,D,C,P,V;me.initial&&t1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await kb(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await kb(e.config))),e.config.body.enabled&&!e.models.blazepose&&((o=(a=e.config.body)==null?void 0:a.modelPath)==null?void 0:o.includes("blazepose"))&&(e.models.blazepose=CT(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=ST(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(i=e.config.body)==null?void 0:i.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=DT(e.config)),e.config.body.enabled&&!e.models.movenet&&((c=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:c.includes("movenet"))&&(e.models.movenet=BN(e.config)),e.config.body.enabled&&!e.models.posenet&&((d=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:d.includes("posenet"))&&(e.models.posenet=YN(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=gT(e.config)),e.config.face.enabled&&((h=e.config.face.antispoof)==null?void 0:h.enabled)&&!e.models.antispoof&&(e.models.antispoof=sT(e.config)),e.config.face.enabled&&((f=e.config.face.liveness)==null?void 0:f.enabled)&&!e.models.liveness&&(e.models.liveness=FN(e.config)),e.config.face.enabled&&((m=e.config.face.description)==null?void 0:m.enabled)&&!e.models.faceres&&(e.models.faceres=sN(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=OT(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((x=e.config.face.attention)!=null&&x.enabled)&&!e.models.faceiris&&(e.models.faceiris=jT(e.config)),e.config.face.enabled&&((A=e.config.face.mesh)==null?void 0:A.enabled)&&!e.models.facemesh&&(e.models.facemesh=JT(e.config)),e.config.face.enabled&&((b=e.config.face.gear)==null?void 0:b.enabled)&&!e.models.gear&&(e.models.gear=GC(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=KC(e.config)),e.config.face.enabled&&((k=e.config.face.ssrnet)==null?void 0:k.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=QC(e.config)),e.config.face.enabled&&((S=e.config.face.mobilefacenet)==null?void 0:S.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=WT(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((R=(E=e.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:R.includes("handtrack"))&&(e.models.handtrack=EN(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((_=($=e.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:_.includes("handtrack"))&&(e.models.handskeleton=RN(e.config)),e.config.object.enabled&&!e.models.centernet&&((C=(D=e.config.object)==null?void 0:D.modelPath)==null?void 0:C.includes("centernet"))&&(e.models.centernet=ET(e.config)),e.config.object.enabled&&!e.models.nanodet&&((V=(P=e.config.object)==null?void 0:P.modelPath)==null?void 0:V.includes("nanodet"))&&(e.models.nanodet=UN(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Ub(e.config));for await(let j of Object.keys(e.models))e.models[j]&&typeof e.models[j]!="undefined"&&(e.models[j]=await e.models[j])}async function jb(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models)){let s=e.models[n];if(!s)continue;let r=[],a=s==null?void 0:s.executor;if(a&&a.graph.nodes)for(let i of Object.values(a.graph.nodes)){let l=i.op.toLowerCase();r.includes(l)||r.push(l)}else!a&&e.config.debug&&oe("model signature not determined:",n);let o=[];for(let i of r)!t.includes(i)&&!e.env.kernels.includes(i)&&!e.env.kernels.includes(i.replace("_",""))&&!e.env.kernels.includes(i.replace("native",""))&&!e.env.kernels.includes(i.replace("v2",""))&&o.push(i);e.config.debug&&o.length>0&&oe("model validation failed:",n,o)}}var Ot={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function E5e(){let e=Ot.gl;!e||(Ot.extensions=e.getSupportedExtensions())}async function tE(e){var t;if(e.config.backend==="humangl"&&(Ot.name in sn().registry&&(!Ot.gl||!Ot.gl.getParameter(Ot.gl.VERSION))&&(oe("error: humangl backend invalid context"),t1(e)),!yy(Ot.name))){try{Ot.canvas=await os(100,100)}catch(s){oe("error: cannot create canvas:",s);return}try{if(Ot.gl=(t=Ot.canvas)==null?void 0:t.getContext("webgl2",Ot.webGLattr),!Ot.gl.getParameter(Ot.gl.VERSION).includes("2.0")){oe("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Ot.canvas&&(Ot.canvas.addEventListener("webglcontextlost",async r=>{throw oe("error: humangl:",r.type),oe("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Ot.canvas.addEventListener("webglcontextrestored",r=>{oe("error: humangl context restored:",r)}),Ot.canvas.addEventListener("webglcontextcreationerror",r=>{oe("error: humangl context create:",r)}))}catch(s){oe("error: cannot get WebGL context:",s);return}try{l2(2,Ot.gl)}catch(s){oe("error: cannot set WebGL context:",s);return}try{let s=new Gu(Ot.gl);Hl(Ot.name,()=>new sd(s),Ot.priority)}catch(s){oe("error: cannot register WebGL backend:",s);return}try{Gr("webgl").forEach(r=>{let a={...r,backendName:Ot.name};or(a)})}catch(s){oe("error: cannot update WebGL backend registration:",s);return}let n=qs().getGPGPUContext?qs().getGPGPUContext().gl:null;if(n)oe(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{oe("error: no current gl context:",n,Ot.gl);return}try{Rr.set("WEBGL_VERSION",2)}catch(s){oe("error: cannot set WebGL backend flags:",s);return}E5e(),oe("backend registered:",Ot.name)}}function R5e(){if(!me.kernels.includes("mod")){let e={kernelName:"Mod",backendName:ts(),kernelFunc:t=>K(()=>fe(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};or(e),me.kernels.push("mod")}if(!me.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:ts(),kernelFunc:t=>K(()=>Mc(t.inputs.a/t.inputs.b)*t.inputs.b+Xl(t.inputs.a,t.inputs.b))};or(e),me.kernels.push("floormod")}}async function s1(e,t=!1){if(e.state="backend",t||me.initial||e.config.backend&&e.config.backend.length>0&&ts()!==e.config.backend){let n=ue();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&oe("running inside web worker"),me.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&oe("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),me.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&oe(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),me.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")oe("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&oe("enumerated webgpu adapter:",r),!r)oe("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;oe("webgpu adapter info:",a)}}e.config.backend==="humangl"&&await tE(e);let s=Object.keys(sn().registryFactory);if(e.config.debug&&oe("available backends:",s),s.includes(e.config.backend)||(oe(`error: backend ${e.config.backend} not found in registry`),e.config.backend=me.node?"tensorflow":"webgl",e.config.debug&&oe(`override: setting backend ${e.config.backend}`)),e.config.debug&&oe("setting backend:",e.config.backend),e.config.backend==="wasm"){try{Y().set("CANVAS2D_WILL_READ_FREQUENTLY",!0)}catch(o){}if(e.config.debug&&oe("wasm path:",e.config.wasmPath),typeof(He==null?void 0:He.setWasmPaths)!="undefined")await vx(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&oe(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&oe("warning: wasm simd support is not enabled")}try{await gy(e.config.backend),await Oc(),jC()}catch(r){return oe("error: cannot set backend:",e.config.backend,r),!1}}if(ts()==="humangl"&&(Rr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Rr.set("WEBGL_CPU_FORWARD",!0),Rr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Rr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(oe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Rr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),qs().getGPGPUContext)){let s=await qs().getGPGPUContext().gl;e.config.debug&&oe(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}ts(),fy(),await Oc(),e.performance.initBackend=Math.trunc(ue()-n),e.config.backend=ts(),await me.updateBackend(),R5e()}return!0}function H2(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&oe("kernelFunc",n,t.backend)}};or(s)}me.kernels=Gr(ts()).map(n=>n.kernelName.toLowerCase())}var Qb={};ra(Qb,{all:()=>Jb,body:()=>Sd,canvas:()=>Yb,face:()=>Id,gesture:()=>Nd,hand:()=>Cd,object:()=>Td,options:()=>Bn,person:()=>Zb});var Js=e=>{if(!e)oe("draw error: invalid canvas");else if(!e.getContext)oe("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)oe("draw error: cannot get canvas context");else return t}return null},mu=e=>Math.round(e*180/Math.PI),Ra=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function _a(e,t,n,s,r){e.fillStyle=Ra(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ea(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function qb(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=Ra(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function sE(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){qb(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Xb(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}var Bn={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var mt;function D5e(e,t){if(mt.drawLabels){let n=[];if(n.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&n.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&n.push(`age: ${e.age||""}`),e.iris&&n.push(`distance: ${e.iris}`),e.real&&n.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&n.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let s=e.emotion.map(r=>`${Math.trunc(100*r.score)}% ${r.emotion}`);s.length>3&&(s.length=3),n.push(s.join(" "))}e.rotation&&e.rotation.angle&&e.rotation.gaze&&(e.rotation.angle.roll&&n.push(`roll: ${mu(e.rotation.angle.roll)}\xB0 yaw:${mu(e.rotation.angle.yaw)}\xB0 pitch:${mu(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&n.push(`gaze: ${mu(e.rotation.gaze.bearing)}\xB0`)),n.length===0&&n.push("face"),t.fillStyle=mt.color;for(let s=n.length-1;s>=0;s--){let r=Math.max(e.box[0],0),a=s*mt.lineHeight+e.box[1];mt.shadowColor&&mt.shadowColor!==""&&(t.fillStyle=mt.shadowColor,t.fillText(n[s],r+5,a+16)),t.fillStyle=mt.labelColor,t.fillText(n[s],r+4,a+15)}}}function $5e(e,t){if(e.annotations&&e.annotations.leftEyeIris&&e.annotations.leftEyeIris[0]){t.strokeStyle=mt.useDepth?"rgba(255, 200, 255, 0.3)":mt.color,t.beginPath();let n=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,s=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],n,s,0,0,2*Math.PI),t.stroke(),mt.fillPolygons&&(t.fillStyle=mt.useDepth?"rgba(255, 255, 200, 0.3)":mt.color,t.fill())}if(e.annotations&&e.annotations.rightEyeIris&&e.annotations.rightEyeIris[0]){t.strokeStyle=mt.useDepth?"rgba(255, 200, 255, 0.3)":mt.color,t.beginPath();let n=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,s=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],n,s,0,0,2*Math.PI),t.stroke(),mt.fillPolygons&&(t.fillStyle=mt.useDepth?"rgba(255, 255, 200, 0.3)":mt.color,t.fill())}}function F5e(e,t){var n;if(mt.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*mu(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*mu(e.rotation.angle.pitch)/90,a=new Path2D(`
|
|
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
|
|
C
|
|
${s} ${e.box[1]},
|
|
${s} ${e.box[1]+e.box[3]},
|
|
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
|
|
`),o=new Path2D(`
|
|
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
|
|
C
|
|
${e.box[0]} ${r},
|
|
${e.box[0]+e.box[2]} ${r},
|
|
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
|
|
`);t.stroke(o),t.stroke(a)}}function P5e(e,t){var n,s,r,a;if(mt.drawGaze&&((s=(n=e.rotation)==null?void 0:n.gaze)==null?void 0:s.strength)&&((a=(r=e.rotation)==null?void 0:r.gaze)==null?void 0:a.bearing)&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let o=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];Xb(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[o[0],o[1]],4);let i=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];Xb(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[i[0],i[1]],4)}}function O5e(e,t){if(mt.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;n<au.length/3;n++){let s=[au[n*3+0],au[n*3+1],au[n*3+2]].map(r=>e.mesh[r]);qb(t,s,mt)}$5e(e,t)}}function M5e(e,t){if(mt.drawPoints&&e.mesh.length>=468)for(let n=0;n<e.mesh.length;n++)_a(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2],mt),mt.drawAttention&&(Wh.includes(n)&&_a(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]+127,mt),lu.includes(n)&&_a(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,mt),uu.includes(n)&&_a(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,mt))}function z5e(e,t){mt.drawBoxes&&ea(t,e.box[0],e.box[1],e.box[2],e.box[3],mt)}async function Id(e,t,n){if(mt=Kt(Bn,n),!t||!e)return;let s=Js(e);if(!!s){s.font=mt.font,s.strokeStyle=mt.color,s.fillStyle=mt.color;for(let r of t)z5e(r,s),D5e(r,s),r.mesh&&r.mesh.length>0&&(M5e(r,s),O5e(r,s),F5e(r,s),P5e(r,s))}}async function Sd(e,t,n){var a;let s=Kt(Bn,n);if(!t||!e)return;let r=Js(e);if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(ea(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)!t[o].keypoints[i].score||t[o].keypoints[i].score===0||(r.fillStyle=Ra(t[o].keypoints[i].position[2],s),_a(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s));if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)!i.score||i.score===0||(r.fillStyle=Ra(i.position[2],s),r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4))}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)sE(r,l,s)}}}async function Cd(e,t,n){let s=Kt(Bn,n);if(!t||!e)return;let r=Js(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ea(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=Ra(o[2],s),_a(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=Ra(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++){r.beginPath();let u=i[l][2]||0;r.strokeStyle=Ra(l*u,s),r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function Td(e,t,n){let s=Kt(Bn,n);if(!t||!e)return;let r=Js(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ea(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function Nd(e,t,n){let s=Kt(Bn,n);if(!(!t||!e)&&s.drawGestures){let r=Js(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var Kb=0;async function Zb(e,t,n){let s=Kt(Bn,n);if(!t||!e)return;let r=Js(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ea(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}async function Yb(e,t){if(!e||!t)return;let n=Js(t);!n||n.drawImage(e,0,0)}async function Jb(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=ue(),r=Kt(Bn,n),a=Promise.all([Id(e,t.face,r),Sd(e,t.body,r),Cd(e,t.hand,r),Td(e,t.object,r),Nd(e,t.gesture,r)]);return Kb=me.perfadd?Kb+Math.round(ue()-s):Math.round(ue()-s),t.performance.draw=Kb,a}var Ed=.1,e4=.5;function L5e(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function rE(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of pr.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Ed&&Ed>0&&(r=r.map(o=>({x:o.x>.5?o.x+Ed:o.x-Ed,y:o.y>.5?o.y+Ed:o.y-Ed})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)L5e(o/t,i/t,r)||(s.set(e4*s.get(0,i,o,0),0,i,o,0),s.set(e4*s.get(0,i,o,1),0,i,o,1),s.set(e4*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return ne(s),a}var W5e=e=>{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},aE=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,k,S,E]=m,R,$,_;return A<1?A>-1?(_=Math.asin(A),$=Math.atan2(-k,g),R=Math.atan2(-w,b)):(_=-Math.PI/2,$=-Math.atan2(S,E),R=0):(_=Math.PI/2,$=Math.atan2(S,E),R=0),isNaN(R)&&(R=0),isNaN($)&&($=0),isNaN(_)&&(_=0),{pitch:2*-R,yaw:2*-$,roll:2*-_}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?W5e(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var t4=async(e,t)=>{var h,f,m,g,y,x,A,b,w,k,S,E,R,$,_,D,C,P,V,j,z,Z;let n=ue(),s,r,a,o,i,l,u,c,p=[];e.state="run:face";let d=await YT(t,e.config);if(e.performance.face=me.perfadd?(e.performance.face||0)+Math.trunc(ue()-n):Math.trunc(ue()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let W=0;W<d.length;W++){if(e.analyze("Get Face"),!d[W].tensor||d[W].tensor.isDisposedInternal){oe("Face object is disposed:",d[W].tensor);continue}if((h=e.config.face.detector)!=null&&h.mask){let ae=await rE(d[W]);ne(d[W].tensor),d[W].tensor=ae}let ee=d[W].mesh&&d[W].mesh.length>200?aE(d[W],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(f=e.config.face.emotion)!=null&&f.enabled?lb(d[W].tensor||yt([]),e.config,W,d.length):[]:(e.state="run:emotion",n=ue(),o=(m=e.config.face.emotion)!=null&&m.enabled?await lb(d[W].tensor||yt([]),e.config,W,d.length):[],e.performance.emotion=me.perfadd?(e.performance.emotion||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?Ux(d[W].tensor||yt([]),e.config,W,d.length):0:(e.state="run:antispoof",n=ue(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await Ux(d[W].tensor||yt([]),e.config,W,d.length):0,e.performance.antispoof=me.perfadd?(e.performance.antispoof||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(x=e.config.face.liveness)!=null&&x.enabled?Nb(d[W].tensor||yt([]),e.config,W,d.length):0:(e.state="run:liveness",n=ue(),u=(A=e.config.face.liveness)!=null&&A.enabled?await Nb(d[W].tensor||yt([]),e.config,W,d.length):0,e.performance.liveness=me.perfadd?(e.performance.antispoof||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(b=e.config.face.gear)!=null&&b.enabled?Ox(d[W].tensor||yt([]),e.config,W,d.length):null:(e.state="run:gear",n=ue(),r=(w=e.config.face.gear)!=null&&w.enabled?await Ox(d[W].tensor||yt([]),e.config,W,d.length):null,e.performance.gear=Math.trunc(ue()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(k=e.config.face.ssrnet)!=null&&k.enabled?zx(d[W].tensor||yt([]),e.config,W,d.length):null,a=(S=e.config.face.ssrnet)!=null&&S.enabled?Wx(d[W].tensor||yt([]),e.config,W,d.length):null):(e.state="run:ssrnet",n=ue(),s=(E=e.config.face.ssrnet)!=null&&E.enabled?await zx(d[W].tensor||yt([]),e.config,W,d.length):null,a=(R=e.config.face.ssrnet)!=null&&R.enabled?await Wx(d[W].tensor||yt([]),e.config,W,d.length):null,e.performance.ssrnet=Math.trunc(ue()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=($=e.config.face.mobilefacenet)!=null&&$.enabled?cb(d[W].tensor||yt([]),e.config,W,d.length):null:(e.state="run:mobilefacenet",n=ue(),i=(_=e.config.face.mobilefacenet)!=null&&_.enabled?await cb(d[W].tensor||yt([]),e.config,W,d.length):null,e.performance.mobilefacenet=Math.trunc(ue()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?c=(D=e.config.face.description)!=null&&D.enabled?gb(d[W].tensor||yt([]),e.config,W,d.length):null:(e.state="run:description",n=ue(),c=(C=e.config.face.description)!=null&&C.enabled?await gb(d[W].tensor||yt([]),e.config,W,d.length):null,e.performance.description=me.perfadd?(e.performance.description||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l,u]=await Promise.all([s,a,o,i,c,r,l,u])),e.analyze("Finish Face:"),((P=e.config.face.ssrnet)==null?void 0:P.enabled)&&s&&a&&(c={...c,age:s.age,gender:a.gender,genderScore:a.genderScore}),((V=e.config.face.gear)==null?void 0:V.enabled)&&r&&(c={...c,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((j=e.config.face.mobilefacenet)==null?void 0:j.enabled)&&i&&(c.descriptor=i),(z=e.config.face.iris)!=null&&z.enabled;let Q=d[W].annotations&&d[W].annotations.leftEyeIris&&d[W].annotations.leftEyeIris[0]&&d[W].annotations.rightEyeIris&&d[W].annotations.rightEyeIris[0]&&d[W].annotations.leftEyeIris.length>0&&d[W].annotations.rightEyeIris.length>0&&d[W].annotations.leftEyeIris[0]!==null&&d[W].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[W].annotations.leftEyeIris[3][0]-d[W].annotations.leftEyeIris[1][0]),Math.abs(d[W].annotations.rightEyeIris[4][1]-d[W].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ie=(Z=e.config.face.detector)!=null&&Z.return?et(d[W].tensor):null;ne(d[W].tensor),d[W].tensor&&delete d[W].tensor;let J={...d[W],id:W};c!=null&&c.age&&(J.age=c.age),c!=null&&c.gender&&(J.gender=c.gender),c!=null&&c.genderScore&&(J.genderScore=c==null?void 0:c.genderScore),c!=null&&c.descriptor&&(J.embedding=c==null?void 0:c.descriptor),c!=null&&c.race&&(J.race=c==null?void 0:c.race),o&&(J.emotion=o),l&&(J.real=l),u&&(J.live=u),Q&&Q!==0&&(J.iris=Math.trunc(500/Q/11.7)/100),ee&&(J.rotation=ee),ie&&(J.tensor=ie),p.push(J),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),p};var oE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},iE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},lE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2],d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(u=!1),p>d?p>.05&&t.push({iris:n,gesture:"looking right"}):d>.05&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(u=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},uE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=wN(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Ee={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},n4=0;function cE(e,t){var o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k,S,E,R,$,_,D,C,P,V,j;let n=ue();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(Ee.canvas=e.canvas),e.error&&(Ee.error=e.error),!Ee.body||e.body.length!==Ee.body.length)Ee.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let Z=e.body[z].box.map((J,ae)=>((r-1)*Ee.body[z].box[ae]+J)/r),W=e.body[z].boxRaw.map((J,ae)=>((r-1)*Ee.body[z].boxRaw[ae]+J)/r),ee=e.body[z].keypoints.map((J,ae)=>{var le,ye,we,Re,_e,Be,Ue,it,dt;return{score:J.score,part:J.part,position:[Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].position[0]||0)+(J.position[0]||0))/r:J.position[0],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].position[1]||0)+(J.position[1]||0))/r:J.position[1],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].position[2]||0)+(J.position[2]||0))/r:J.position[2]],positionRaw:[Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].positionRaw[0]||0)+(J.positionRaw[0]||0))/r:J.positionRaw[0],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].positionRaw[1]||0)+(J.positionRaw[1]||0))/r:J.positionRaw[1],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].positionRaw[2]||0)+(J.positionRaw[2]||0))/r:J.positionRaw[2]],distance:[Ee.body[z].keypoints[ae]?((r-1)*(((le=Ee.body[z].keypoints[ae].distance)==null?void 0:le[0])||0)+(((ye=J.distance)==null?void 0:ye[0])||0))/r:(we=J.distance)==null?void 0:we[0],Ee.body[z].keypoints[ae]?((r-1)*(((Re=Ee.body[z].keypoints[ae].distance)==null?void 0:Re[1])||0)+(((_e=J.distance)==null?void 0:_e[1])||0))/r:(Be=J.distance)==null?void 0:Be[1],Ee.body[z].keypoints[ae]?((r-1)*(((Ue=Ee.body[z].keypoints[ae].distance)==null?void 0:Ue[2])||0)+(((it=J.distance)==null?void 0:it[2])||0))/r:(dt=J.distance)==null?void 0:dt[2]]}}),Q={},ie={connected:{}};(i=(o=t.body)==null?void 0:o.modelPath)!=null&&i.includes("efficientpose")?ie=F2:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?ie=E2:(p=(c=t.body)==null?void 0:c.modelPath)!=null&&p.includes("movenet")&&(ie=Uh);for(let[J,ae]of Object.entries(ie.connected)){let le=[];for(let ye=0;ye<ae.length-1;ye++){let we=ee.find(_e=>_e.part===ae[ye]),Re=ee.find(_e=>_e.part===ae[ye+1]);we&&Re&&le.push([we.position,Re.position])}Q[J]=le}Ee.body[z]={...e.body[z],box:Z,boxRaw:W,keypoints:ee,annotations:Q}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let Z=e.hand[z].box.map((ie,J)=>((r-1)*Ee.hand[z].box[J]+ie)/r),W=e.hand[z].boxRaw.map((ie,J)=>((r-1)*Ee.hand[z].boxRaw[J]+ie)/r);Ee.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Ee.hand[z].keypoints=e.hand[z].keypoints);let ee=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((ie,J)=>ie.map((ae,le)=>((r-1)*(Ee.hand[z].keypoints[J][le]||1)+(ae||0))/r)):[],Q={};if(Object.keys(Ee.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Ee.hand[z].annotations=e.hand[z].annotations,Q=Ee.hand[z].annotations;else if(e.hand[z].annotations)for(let ie of Object.keys(e.hand[z].annotations))Q[ie]=e.hand[z].annotations[ie]&&e.hand[z].annotations[ie][0]?e.hand[z].annotations[ie].map((J,ae)=>J.map((le,ye)=>((r-1)*Ee.hand[z].annotations[ie][ae][ye]+le)/r)):null;Ee.hand[z]={...e.hand[z],box:Z,boxRaw:W,keypoints:ee,annotations:Q}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let Z=e.face[z].box.map((ee,Q)=>((r-1)*Ee.face[z].box[Q]+ee)/r),W=e.face[z].boxRaw.map((ee,Q)=>((r-1)*Ee.face[z].boxRaw[Q]+ee)/r);if(e.face[z].rotation){let ee={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};ee.matrix=(d=e.face[z].rotation)==null?void 0:d.matrix,ee.angle={roll:((r-1)*(((f=(h=Ee.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(y=Ee.face[z].rotation)==null?void 0:y.angle)==null?void 0:x.yaw)||0)+(((b=(A=e.face[z].rotation)==null?void 0:A.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Ee.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((E=(S=e.face[z].rotation)==null?void 0:S.angle)==null?void 0:E.pitch)||0))/r},ee.gaze={bearing:((r-1)*((($=(R=Ee.face[z].rotation)==null?void 0:R.gaze)==null?void 0:$.bearing)||0)+(((D=(_=e.face[z].rotation)==null?void 0:_.gaze)==null?void 0:D.bearing)||0))/r,strength:((r-1)*(((P=(C=Ee.face[z].rotation)==null?void 0:C.gaze)==null?void 0:P.strength)||0)+(((j=(V=e.face[z].rotation)==null?void 0:V.gaze)==null?void 0:j.strength)||0))/r},Ee.face[z]={...e.face[z],rotation:ee,box:Z,boxRaw:W}}Ee.face[z]={...e.face[z],box:Z,boxRaw:W}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let Z=e.object[z].box.map((ee,Q)=>((r-1)*Ee.object[z].box[Q]+ee)/r),W=e.object[z].boxRaw.map((ee,Q)=>((r-1)*Ee.object[z].boxRaw[Q]+ee)/r);Ee.object[z]={...e.object[z],box:Z,boxRaw:W}}if(e.persons){let z=e.persons;if(!Ee.persons||z.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(z));else for(let Z=0;Z<z.length;Z++)Ee.persons[Z].box=z[Z].box.map((W,ee)=>((r-1)*Ee.persons[Z].box[ee]+W)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=ue();return n4=me.perfadd?n4+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:n4}),Ee}var a4={};ra(a4,{distance:()=>qh,match:()=>r4,similarity:()=>s4});function qh(e,t,n={order:2,multiplier:25}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var dE=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function s4(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=qh(e,t,n);return dE(s,n.order||2,n.min||0,n.max||1)}function r4(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=qh(e,t[o],n);if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=dE(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function pE(e,t,n,s,r){var i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k;let a=0,o=[];for(let S of e){let E={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let P of t)S.box[0]>P.box[0]&&S.box[0]<P.box[0]+P.box[2]&&S.box[1]+S.box[3]>P.box[1]&&S.box[1]+S.box[3]<P.box[1]+P.box[3]&&(E.body=P);if(E.body)for(let P of n)P.box[0]+P.box[2]>E.body.box[0]&&P.box[0]+P.box[2]<E.body.box[0]+E.body.box[2]&&P.box[1]+P.box[3]>E.body.box[1]&&P.box[1]+P.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=P),P.box[0]<E.body.box[0]+E.body.box[2]&&P.box[0]>E.body.box[0]&&P.box[1]+P.box[3]>E.body.box[1]&&P.box[1]+P.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=P);for(let P of s)P.face!==void 0&&P.face===S.id?(i=E.gestures)==null||i.push(P):P.iris!==void 0&&P.iris===S.id?(l=E.gestures)==null||l.push(P):P.body!==void 0&&P.body===((u=E.body)==null?void 0:u.id)?(c=E.gestures)==null||c.push(P):P.hand!==void 0&&P.hand===((d=(p=E.hands)==null?void 0:p.left)==null?void 0:d.id)?(h=E.gestures)==null||h.push(P):P.hand!==void 0&&P.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(P));let R=[],$=[],_=P=>{P&&P.length===4&&(R.push(P[0],P[0]+P[2]),$.push(P[1],P[1]+P[3]))};_((y=E.face)==null?void 0:y.box),_((x=E.body)==null?void 0:x.box),_((b=(A=E.hands)==null?void 0:A.left)==null?void 0:b.box),_((k=(w=E.hands)==null?void 0:w.right)==null?void 0:k.box);let D=Math.min(...R),C=Math.min(...$);E.box=[D,C,Math.max(...R)-D,Math.max(...$)-C],r&&r[1]&&r[2]&&(E.boxRaw=[E.box[0]/r[2],E.box[1]/r[1],E.box[2]/r[2],E.box[3]/r[1]]),o.push(E)}return o}var r1=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,a1=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function q5e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(r1);break;case"body":case"full":n=await t(a1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function X5e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+r1;break;case"full":case"body":n="data:image/jpeg;base64,"+a1;break;default:n=null}let s;if(typeof Image!="undefined")s=new Image;else if(me.Image)s=new me.Image;else return;s.onload=async()=>{let r=os(s.naturalWidth,s.naturalHeight);if(!r)oe("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(void 0)})}async function K5e(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(r1):n=t(a1);let s;if("node"in He){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&oe("Warmup tfjs-node not loaded");return s}async function Z5e(e){let t;return typeof createImageBitmap=="function"?t=await q5e(e):typeof Image!="undefined"||me.Canvas!==void 0?t=await X5e(e):t=await K5e(e),t}async function Y5e(e){let t=ts(),n=qs();if(t!=="webgl"&&t!=="humangl"||!n||!n.checkCompileCompletion)return;Y().set("ENGINE_COMPILE_ONLY",!0);let s=sn().state.numTensors,r=[];for(let[i,l]of Object.entries(e).filter(([u,c])=>u!==null&&c!==null)){let u=l.inputs&&l.inputs[0]&&l.inputs[0].shape?[...l.inputs[0].shape]:[1,64,64,3],c=l.inputs&&l.inputs[0]&&l.inputs[0].dtype?l.inputs[0].dtype:"float32";for(let d=0;d<u.length;d++)u[d]===-1&&(u[d]=d===0?1:64);let p=Vt(u,c);try{let d=l.execute(p);r.push(i),Array.isArray(d)?d.forEach(h=>ne(h)):ne(d)}catch(d){oe("compile fail model:",i)}ne(p)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),oe("compile pass models:",r),oe("compile pass kernels:",a.length),Y().set("ENGINE_COMPILE_ONLY",!1);let o=sn().state.numTensors;o-s>0&&oe("tensor leak:",o-s)}async function hE(e,t){let n=ue();return e.state="warmup",t&&(e.config=Kt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:ue(),persons:[],error:null}:new Promise(async s=>{await Y5e(e.models);let r=await Z5e(e),a=ue();e.config.debug&&oe("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var Rd,Xh,Kh,o1,o4=class{constructor(t){ge(this,"version");ge(this,"config");ge(this,"result");ge(this,"state");ge(this,"process");ge(this,"tf");ge(this,"env");ge(this,"draw");ge(this,"models");ge(this,"events");ge(this,"faceTriangulation");ge(this,"faceUVMap");ge(this,"performance");Hd(this,Rd,void 0);Hd(this,Xh,void 0);Hd(this,Kh,void 0);ge(this,"gl");ge(this,"analyze",(...t)=>{if(!Gd(this,Xh))return;let n=this.tf.engine().state.numTensors,s=Gd(this,Rd);jd(this,Rd,n);let r=n-s;r!==0&&oe(...t,r)});Hd(this,o1,t=>{if(!Gd(this,Kh))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof st))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ge(this,"similarity",s4);ge(this,"distance",qh);ge(this,"match",r4);ge(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});var s;this.env=me;let n=(((s=Oh)==null?void 0:s.tfjs)||Iy).replace(/-(.*)/,"");Oa.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,Oa.modelBasePath=me.browser?"../models/":"file://models/",Oa.backend=me.browser?"humangl":"tensorflow",this.version=$x,Object.defineProperty(this,"version",{value:$x}),this.config=JSON.parse(JSON.stringify(Oa)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Kt(this.config,t)),WC(this.config),this.tf=He,this.state="idle",jd(this,Rd,0),jd(this,Xh,!1),jd(this,Kh,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new jh,this.draw={options:Bn,canvas:(r,a)=>Yb(r,a),face:(r,a,o)=>Id(r,a,o),body:(r,a,o)=>Sd(r,a,o),hand:(r,a,o)=>Cd(r,a,o),gesture:(r,a,o)=>Nd(r,a,o),object:(r,a,o)=>Td(r,a,o),person:(r,a,o)=>Zb(r,a,o),all:(r,a,o)=>Jb(r,a,o)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=QT,this.faceUVMap=eN,this.gl=Ot,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Oa)),this.config.backend=t}validate(t){return zg(Oa,t||this.config)}now(){return ue()}image(t,n=!0){return cd(t,this.config,n)}async segmentation(t,n){return QN(t,n,this.config)}enhance(t){return mb(t)}compare(t,n){return BC(this.config,t,n)}async init(){await s1(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=ue(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Kt(this.config,t)),this.env.initial&&(this.config.debug&&oe(`version: ${this.version}`),this.config.debug&&oe(`tfjs version: ${this.tf.version["tfjs-core"]}`),await s1(this)||oe("error: backend check failed"),await Oc(),this.env.browser&&(this.config.debug&&oe("configuration:",this.config),this.config.debug&&oe("environment:",this.env),this.config.debug&&oe("tf flags:",this.tf.ENV.flags))),await Hb(this),this.env.initial&&this.config.debug&&oe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await jb(this),this.emit("load"));let a=Math.trunc(ue()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return cE(t,this.config)}getModelStats(){return Gb(this)}async warmup(t){let n=ue(),s=await hE(this,t),r=ue();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={};for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({name:i[0],ms:i[1]})),a.sort((i,l)=>l.ms-i.ms),a.length=20;let o={};for(let i of a)o[i.name]=i.ms;return o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,k,S,E,R,$,_,D,C,P,V,j,z,Z,W,ee,Q;this.state="config";let r;this.config=Kt(this.config,n),this.state="check";let a=Gd(this,o1).call(this,t);a&&(oe(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:ue(),persons:[],error:a}));let o=ue();await s1(this),await this.load(),r=ue(),this.state="image";let i=await cd(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(ue()-r):Math.trunc(ue()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&oe("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:ue(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=ue(),this.config.skipAllowed=await LC(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(ue()-r):Math.trunc(ue()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?t4(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=ue(),l=this.config.face.enabled?await t4(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Kt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?Wb(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?Qx(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?ob(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?Fb(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=ue(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await Wb(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await Qx(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("efficientpose")?u=this.config.body.enabled?await ob(i.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("movenet")&&(u=this.config.body.enabled?await Fb(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Kt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?c=this.config.hand.enabled?wb(i.tensor,h):[]:(_=($=this.config.hand.detector)==null?void 0:$.modelPath)!=null&&_.includes("handtrack")&&(c=this.config.hand.enabled?Cb(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=ue(),(C=(D=this.config.hand.detector)==null?void 0:D.modelPath)!=null&&C.includes("handdetect")?c=this.config.hand.enabled?await wb(i.tensor,h):[]:(V=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&V.includes("handtrack")&&(c=this.config.hand.enabled?await Cb(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((j=this.config.object.modelPath)!=null&&j.includes("nanodet")?p=this.config.object.enabled?Ob(i.tensor,this.config):[]:(z=this.config.object.modelPath)!=null&&z.includes("centernet")&&(p=this.config.object.enabled?nb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=ue(),(Z=this.config.object.modelPath)!=null&&Z.includes("nanodet")?p=this.config.object.enabled?await Ob(i.tensor,this.config):[]:(W=this.config.object.modelPath)!=null&&W.includes("centernet")&&(p=this.config.object.enabled?await nb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=ue(),f=[...iE(l),...oE(u),...uE(c),...lE(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(ue()-o):Math.trunc(ue()-o);let m=((Q=(ee=this.process)==null?void 0:ee.tensor)==null?void 0:Q.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return pE(l,u,c,f,m)}},ne(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Rd=new WeakMap,Xh=new WeakMap,Kh=new WeakMap,o1=new WeakMap;return pR(Q5e);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* Human main module
|
|
* @default Human Library
|
|
* @summary <https://github.com/vladmandic/human>
|
|
* @author <https://github.com/vladmandic>
|
|
* @copyright <https://github.com/vladmandic>
|
|
* @license MIT
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|