mirror of https://github.com/vladmandic/human
145 lines
7.1 KiB
TypeScript
145 lines
7.1 KiB
TypeScript
/**
|
|
* BlazeFace, FaceMesh & Iris model implementation
|
|
*
|
|
* Based on:
|
|
* - [**MediaPipe BlazeFace**](https://drive.google.com/file/d/1f39lSzU5Oq-j_OXgS67KfN5wNsoeAZ4V/view)
|
|
* - Facial Spacial Geometry: [**MediaPipe FaceMesh**](https://drive.google.com/file/d/1VFC_wIpw4O7xBOiTgUldl79d9LA-LsnA/view)
|
|
* - Eye Iris Details: [**MediaPipe Iris**](https://drive.google.com/file/d/1bsWbokp9AklH2ANjCfmjqEzzxO1CNbMu/view)
|
|
*/
|
|
|
|
import { log, join, now } from '../util/util';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import * as blazeface from './blazeface';
|
|
import * as util from './facemeshutil';
|
|
import * as coords from './facemeshcoords';
|
|
import * as iris from './iris';
|
|
import { histogramEqualization } from '../image/enhance';
|
|
import { env } from '../util/env';
|
|
import type { GraphModel, Tensor } from '../tfjs/types';
|
|
import type { FaceResult, Point } from '../result';
|
|
import type { Config } from '../config';
|
|
|
|
type BoxCache = { startPoint: Point, endPoint: Point, landmarks: Array<Point>, confidence: number };
|
|
let boxCache: Array<BoxCache> = [];
|
|
let model: GraphModel | null = null;
|
|
let inputSize = 0;
|
|
let skipped = Number.MAX_SAFE_INTEGER;
|
|
let lastTime = 0;
|
|
const enlargeFact = 1.6;
|
|
|
|
export async function predict(input: Tensor, config: Config): Promise<FaceResult[]> {
|
|
// reset cached boxes
|
|
|
|
const skipTime = (config.face.detector?.skipTime || 0) > (now() - lastTime);
|
|
const skipFrame = skipped < (config.face.detector?.skipFrames || 0);
|
|
if (!config.skipAllowed || !skipTime || !skipFrame || boxCache.length === 0) {
|
|
const possibleBoxes = await blazeface.getBoxes(input, config); // get results from blazeface detector
|
|
lastTime = now();
|
|
boxCache = []; // empty cache
|
|
for (const possible of possibleBoxes.boxes) { // extract data from detector
|
|
const box: BoxCache = {
|
|
startPoint: possible.box.startPoint,
|
|
endPoint: possible.box.endPoint,
|
|
landmarks: possible.landmarks,
|
|
confidence: possible.confidence,
|
|
};
|
|
boxCache.push(util.squarifyBox(util.enlargeBox(util.scaleBoxCoordinates(box, possibleBoxes.scaleFactor), Math.sqrt(enlargeFact))));
|
|
}
|
|
skipped = 0;
|
|
} else {
|
|
skipped++;
|
|
}
|
|
const faces: Array<FaceResult> = [];
|
|
const newCache: Array<BoxCache> = [];
|
|
let id = 0;
|
|
for (let i = 0; i < boxCache.length; i++) {
|
|
let box = boxCache[i];
|
|
let angle = 0;
|
|
let rotationMatrix;
|
|
const face: FaceResult = { // init face result
|
|
id: id++,
|
|
mesh: [],
|
|
meshRaw: [],
|
|
box: [0, 0, 0, 0],
|
|
boxRaw: [0, 0, 0, 0],
|
|
score: 0,
|
|
boxScore: 0,
|
|
faceScore: 0,
|
|
annotations: {},
|
|
};
|
|
|
|
if (config.face.detector?.rotation && config.face.mesh?.enabled && env.kernels.includes('rotatewithoffset')) {
|
|
[angle, rotationMatrix, face.tensor] = util.correctFaceRotation(box, input, inputSize);
|
|
} else {
|
|
rotationMatrix = util.fixedRotationMatrix;
|
|
face.tensor = util.cutBoxFromImageAndResize(box, input, config.face.mesh?.enabled ? [inputSize, inputSize] : [blazeface.size(), blazeface.size()]);
|
|
}
|
|
if (config?.filter?.equalization) {
|
|
const equilized = await histogramEqualization(face.tensor as Tensor);
|
|
tf.dispose(face.tensor);
|
|
face.tensor = equilized;
|
|
}
|
|
face.boxScore = Math.round(100 * box.confidence) / 100;
|
|
if (!config.face.mesh?.enabled) { // mesh not enabled, return resuts from detector only
|
|
face.box = util.getClampedBox(box, input);
|
|
face.boxRaw = util.getRawBox(box, input);
|
|
face.boxScore = Math.round(100 * box.confidence || 0) / 100;
|
|
face.score = face.boxScore;
|
|
face.mesh = box.landmarks.map((pt) => [
|
|
((box.startPoint[0] + box.endPoint[0])) / 2 + ((box.endPoint[0] + box.startPoint[0]) * pt[0] / blazeface.size()),
|
|
((box.startPoint[1] + box.endPoint[1])) / 2 + ((box.endPoint[1] + box.startPoint[1]) * pt[1] / blazeface.size()),
|
|
]);
|
|
face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]);
|
|
for (const key of Object.keys(coords.blazeFaceLandmarks)) face.annotations[key] = [face.mesh[coords.blazeFaceLandmarks[key] as number]]; // add annotations
|
|
} else if (!model) { // mesh enabled, but not loaded
|
|
if (config.debug) log('face mesh detection requested, but model is not loaded');
|
|
} else { // mesh enabled
|
|
const [contours, confidence, contourCoords] = model.execute(face.tensor as Tensor) as Array<Tensor>; // first returned tensor represents facial contours which are already included in the coordinates.
|
|
const faceConfidence = await confidence.data();
|
|
face.faceScore = Math.round(100 * faceConfidence[0]) / 100;
|
|
const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);
|
|
let rawCoords = await coordsReshaped.array();
|
|
tf.dispose([contourCoords, coordsReshaped, confidence, contours]);
|
|
if (face.faceScore < (config.face.detector?.minConfidence || 1)) { // low confidence in detected mesh
|
|
box.confidence = face.faceScore; // reset confidence of cached box
|
|
} else {
|
|
if (config.face.iris?.enabled) rawCoords = await iris.augmentIris(rawCoords, face.tensor, config, inputSize); // augment results with iris
|
|
face.mesh = util.transformRawCoords(rawCoords, box, angle, rotationMatrix, inputSize); // get processed mesh
|
|
face.meshRaw = face.mesh.map((pt) => [pt[0] / (input.shape[2] || 0), pt[1] / (input.shape[1] || 0), (pt[2] || 0) / inputSize]);
|
|
for (const key of Object.keys(coords.meshAnnotations)) face.annotations[key] = coords.meshAnnotations[key].map((index) => face.mesh[index]); // add annotations
|
|
box = util.squarifyBox(util.enlargeBox(util.calculateLandmarksBoundingBox(face.mesh), enlargeFact)); // redefine box with mesh calculated one
|
|
face.box = util.getClampedBox(box, input); // update detected box with box around the face mesh
|
|
face.boxRaw = util.getRawBox(box, input);
|
|
face.score = face.faceScore;
|
|
newCache.push(box);
|
|
|
|
// other modules prefer different crop for a face so we dispose it and do it again
|
|
/*
|
|
tf.dispose(face.tensor);
|
|
face.tensor = config.face.detector?.rotation && config.face.mesh?.enabled && env.kernels.includes('rotatewithoffset')
|
|
? face.tensor = util.correctFaceRotation(util.enlargeBox(box, Math.sqrt(enlargeFact)), input, inputSize)[2]
|
|
: face.tensor = util.cutBoxFromImageAndResize(util.enlargeBox(box, Math.sqrt(enlargeFact)), input, [inputSize, inputSize]);
|
|
*/
|
|
}
|
|
}
|
|
faces.push(face);
|
|
}
|
|
boxCache = [...newCache]; // reset cache
|
|
return faces;
|
|
}
|
|
|
|
export async function load(config: Config): Promise<GraphModel> {
|
|
if (env.initial) model = null;
|
|
if (!model) {
|
|
model = await tf.loadGraphModel(join(config.modelBasePath, config.face.mesh?.modelPath || '')) as unknown as GraphModel;
|
|
if (!model || !model['modelUrl']) log('load model failed:', config.face.mesh?.modelPath);
|
|
else if (config.debug) log('load model:', model['modelUrl']);
|
|
} else if (config.debug) log('cached model:', model['modelUrl']);
|
|
inputSize = model.inputs[0].shape ? model.inputs[0].shape[2] : 0;
|
|
if (inputSize === -1) inputSize = 64;
|
|
return model;
|
|
}
|
|
|
|
export const triangulation = coords.TRI468;
|
|
export const uvmap = coords.UV468;
|