human/src/embedding/embedding.ts

151 lines
6.5 KiB
TypeScript

import { log, join } from '../helpers';
import * as tf from '../../dist/tfjs.esm.js';
import * as profile from '../profile';
type Tensor = typeof tf.Tensor;
type DB = Array<{ name: string, source: string, embedding: number[] }>;
let model;
export async function load(config) {
if (!model) {
model = await tf.loadGraphModel(join(config.modelBasePath, config.face.embedding.modelPath));
if (!model || !model.modelUrl) log('load model failed:', config.face.embedding.modelPath);
else if (config.debug) log('load model:', model.modelUrl);
} else if (config.debug) log('cached model:', model.modelUrl);
return model;
}
export function similarity(embedding1, embedding2, order = 2): number {
if (!embedding1 || !embedding2) return 0;
if (embedding1?.length === 0 || embedding2?.length === 0) return 0;
if (embedding1?.length !== embedding2?.length) return 0;
// general minkowski distance, euclidean distance is limited case where order is 2
const distance = embedding1
.map((val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared
.reduce((sum, now) => (sum + now), 0) // sum all distances
** (1 / order); // get root of
const res = Math.max(Math.trunc(1000 * (1 - distance)) / 1000, 0);
return res;
}
export function match(embedding: Array<number>, db: DB, threshold = 0) {
let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };
if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;
for (const f of db) {
if (f.embedding && f.name) {
const perc = similarity(embedding, f.embedding);
if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };
}
}
return best;
}
export function enhance(input): Tensor {
const image = tf.tidy(() => {
// input received from detector is already normalized to 0..1
// input is also assumed to be straightened
// const data = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model
// do a tight crop of image and resize it to fit the model
const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
const tensor = input.image || input.tensor;
if (!(tensor instanceof tf.Tensor)) return null;
const crop = (tensor.shape.length === 3)
? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing
: tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
// convert to black&white to avoid colorization impact
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const [red, green, blue] = tf.split(crop, 3, 3);
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
/*
// optional increase image contrast
// or do it per-channel so mean is done on each channel
// or do it based on histogram
const mean = merge.mean();
const factor = 5;
const contrast = merge.sub(mean).mul(factor).add(mean);
*/
// normalize brightness from 0..1
const darken = merge.sub(merge.min());
const lighten = darken.div(darken.max());
return lighten;
});
return image;
}
export async function predict(input, config): Promise<number[]> {
if (!model) return [];
return new Promise(async (resolve) => {
// let data: Array<[]> = [];
let data: Array<number> = [];
if (config.face.embedding.enabled) {
const image = enhance(input);
if (!config.profile) {
data = tf.tidy(() => {
/*
// if needed convert from NHWC to NCHW
const nchw = image.transpose([3, 0, 1, 2]);
*/
const res = model.predict(image);
/*
// optionally do it twice with flipped image and average results
const res1 = model.predict(image);
const flipped = tf.image.flipLeftRight(image);
const res2 = model.predict(flipped);
const merge = tf.stack([res1, res2], 2).squeeze();
const res = reshape.logSumExp(1);
*/
/*
// optional normalize outputs with l2 normalization
const scaled = tf.tidy(() => {
const l2 = res.norm('euclidean');
const scale = res.div(l2);
return scale;
});
*/
// optional reduce feature vector complexity
const reshape = res.reshape([128, 2]); // split 256 vectors into 128 x 2
const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it
const output: Array<number> = reduce.dataSync();
return [...output]; // convert typed array to simple array
});
} else {
const profileData = await tf.profile(() => model.predict({ img_inputs: image }));
data = [...profileData.result.dataSync()];
profileData.result.dispose();
profile.run('emotion', profileData);
}
tf.dispose(image);
}
resolve(data);
});
}
/*
git clone https://github.com/becauseofAI/MobileFace
cd MobileFace/MobileFace_Identification
mmconvert --srcFramework mxnet --inputWeight MobileFace_Identification_V3-0000.params --inputNetwork MobileFace_Identification_V3-symbol.json --inputShape 3,112,112 --dstFramework tensorflow --outputModel saved
saved_model_cli show --dir saved/
tensorflowjs_converter --input_format tf_saved_model --output_format tfjs_graph_model --saved_model_tags train saved/ graph/
~/dev/detector/signature.js graph/
2021-03-12 08:25:12 DATA: created on: 2021-03-12T13:17:11.960Z
2021-03-12 08:25:12 INFO: graph model: /home/vlado/dev/face/MobileFace/MobileFace_Identification/graph/model.json
2021-03-12 08:25:12 INFO: size: { unreliable: true, numTensors: 75, numDataBuffers: 75, numBytes: 2183192 }
2021-03-12 08:25:12 INFO: model inputs based on signature
2021-03-12 08:25:12 INFO: model outputs based on signature
2021-03-12 08:25:12 DATA: inputs: [ { name: 'data:0', dtype: 'DT_FLOAT', shape: [ -1, 112, 112, 3, [length]: 4 ] }, [length]: 1 ]
2021-03-12 08:25:12 DATA: outputs: [ { id: 0, name: 'batchnorm0/add_1:0', dytpe: 'DT_FLOAT', shape: [ -1, 256, [length]: 2 ] }, [length]: 1 ]
*/