human/src/face/mobilefacenet.ts

88 lines
3.5 KiB
TypeScript

/**
* EfficientPose model implementation
*
* Based on: [**BecauseofAI MobileFace**](https://github.com/becauseofAI/MobileFace)
*
* Obsolete and replaced by `faceres` that performs age/gender/descriptor analysis
*/
import { log, join, now } from '../util/util';
import * as tf from '../../dist/tfjs.esm.js';
import type { Tensor, GraphModel } from '../tfjs/types';
import type { Config } from '../config';
import { env } from '../util/env';
let model: GraphModel | null;
const last: Array<number[]> = [];
let lastCount = 0;
let lastTime = 0;
let skipped = Number.MAX_SAFE_INTEGER;
export async function load(config: Config): Promise<GraphModel> {
const modelUrl = join(config.modelBasePath, config.face['mobilefacenet'].modelPath);
if (env.initial) model = null;
if (!model) {
model = await tf.loadGraphModel(modelUrl) as unknown as GraphModel;
if (!model) log('load model failed:', config.face['mobilefacenet'].modelPath);
else if (config.debug) log('load model:', modelUrl);
} else if (config.debug) log('cached model:', modelUrl);
return model;
}
/*
// convert to black&white to avoid colorization impact
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const [red, green, blue] = tf.split(crop, 3, 3);
const redNorm = tf.mul(red, rgb[0]);
const greenNorm = tf.mul(green, rgb[1]);
const blueNorm = tf.mul(blue, rgb[2]);
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
// optional increase image contrast
// or do it per-channel so mean is done on each channel
// or do it based on histogram
const mean = merge.mean();
const factor = 5;
const contrast = merge.sub(mean).mul(factor).add(mean);
*/
export async function predict(input: Tensor, config: Config, idx, count): Promise<number[]> {
if (!model) return [];
const skipFrame = skipped < (config.face['embedding']?.skipFrames || 0);
const skipTime = (config.face['embedding']?.skipTime || 0) > (now() - lastTime);
if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx]) {
skipped++;
return last[idx];
}
return new Promise(async (resolve) => {
let data: Array<number> = [];
if (config.face['embedding']?.enabled && model?.inputs[0].shape) {
const t: Record<string, Tensor> = {};
t.crop = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false); // just resize to fit the embedding model
// do a tight crop of image and resize it to fit the model
// const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
// t.crop = tf.image.cropAndResize(input, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
t.data = model?.execute(t.crop) as Tensor;
/*
// optional normalize outputs with l2 normalization
const scaled = tf.tidy(() => {
const l2 = res.norm('euclidean');
const scale = res.div(l2);
return scale;
});
// optional reduce feature vector complexity
const reshape = tf.reshape(res, [128, 2]); // split 256 vectors into 128 x 2
const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it
*/
const output = await t.data.data();
data = Array.from(output); // convert typed array to simple array
}
last[idx] = data;
lastCount = count;
lastTime = now();
resolve(data);
});
}