human/dist/human.js

4950 lines
1.3 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var G8=Object.create,Ih=Object.defineProperty,q8=Object.getPrototypeOf,X8=Object.prototype.hasOwnProperty,K8=Object.getOwnPropertyNames,Z8=Object.getOwnPropertyDescriptor;var Q2=e=>Ih(e,"__esModule",{value:!0});var lt=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),W1=(e,t)=>{Q2(e);for(var n in t)Ih(e,n,{get:t[n],enumerable:!0})},Y8=(e,t,n)=>{if(Q2(e),t&&typeof t=="object"||typeof t=="function")for(let r of K8(t))!X8.call(e,r)&&r!=="default"&&Ih(e,r,{get:()=>t[r],enumerable:!(n=Z8(t,r))||n.enumerable});return e},Le=e=>e&&e.__esModule?e:Y8(Ih(e!=null?G8(q8(e)):{},"default",{value:e,enumerable:!0}),e);var r6=lt(m0=>{var Qv=6;function jae(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var e6=e=>{e.startEndTensor.dispose(),e.startPoint.dispose(),e.endPoint.dispose()},t6=e=>({startEndTensor:e,startPoint:Ee(e,[0,0],[-1,2]),endPoint:Ee(e,[0,2],[-1,2])}),n6=(e,t)=>{let n=L(e.startPoint,t),r=L(e.endPoint,t),a=li([n,r],1);return t6(a)};function Hae(e,t,n){let r=Ee(e,[0,1],[-1,2]),a=ie(r,t),s=Ee(e,[0,3],[-1,2]),i=be(s,n),o=be(a,n),l=be(i,2),u=ye(o,l),c=ie(o,l),h=L(u,n),d=L(c,n);return li([h,d],1)}function Gae(e,t){return W(()=>{let n=e.box?e.box:e;return n6(n,t).startEndTensor.squeeze()})}var r2=class{constructor(t,n){this.blazeFaceModel=t,this.width=n.face.detector.inputSize,this.height=n.face.detector.inputSize,this.anchorsData=jae(n.face.detector.inputSize),this.anchors=gn(this.anchorsData),this.inputSize=Ut([this.width,this.height]),this.config=n,this.scaleFaces=.8}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=W(()=>{let h=t.resizeBilinear([this.width,this.height]),d=ye(h.div(127.5),1),p=this.blazeFaceModel.predict(d),f;if(Array.isArray(p)){let g=p.sort((b,N)=>b.size-N.size),_=at([g[0],g[2]],2),w=at([g[1],g[3]],2);f=at([w,_],1).squeeze(0)}else f=p.squeeze();let m=Hae(f,this.anchors,this.inputSize),A=Ee(f,[0,0],[-1,1]),y=Sn(A).squeeze();return[f,m,y]}),s=await st.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Ee(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;h<l.length;h++){let d=i[h],p=u[d];if(p>this.config.face.detector.minConfidence){let f=t6(l[h]),m=this.anchorsData[d],A=W(()=>Ee(n,[d,Qv-1],[1,-1]).squeeze().reshape([Qv,-1]));c.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),n.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.width,t.shape[1]/this.height]}}async estimateFaces(t){let{boxes:n,scaleFactor:r}=await this.getBoundingBoxes(t),a=[];for(let s of n){let i=s.landmarks.arraySync(),o=Gae(s,r),l=n6.arraySync(),u=s.probability.arraySync(),c=s.anchor,[h,d]=r,p=i.map(m=>[(m[0]+c[0])*h,(m[1]+c[1])*d]),f={topLeft:l.slice(0,2),bottomRight:l.slice(2),landmarks:p,probability:u};e6(s.box),s.landmarks.dispose(),s.probability.dispose(),o.dispose(),a.push(f)}return a}};async function qae(e){let t=await qt(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new r2(t,e);return Me(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}m0.load=qae;m0.BlazeFaceModel=r2;m0.disposeBox=e6});var a6=lt(Fi=>{function Xae(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}Fi.scaleBoxCoordinates=Xae;function a2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}Fi.getBoxSize=a2;function s2(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}Fi.getBoxCenter=s2;function Kae(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return st.cropAndResize(t,s,[0],n)}Fi.cutBoxFromImageAndResize=Kae;function Zae(e,t=1.5){let n=s2(e),r=a2(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}Fi.enlargeBox=Zae;function Yae(e){let t=s2(e),n=a2(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}Fi.squarifyBox=Yae});var u6=lt(Sr=>{Sr.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function s6(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}Sr.normalizeRadians=s6;function Jae(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return s6(n)}Sr.computeRotation=Jae;function Qae(e){return e*180/Math.PI}Sr.radToDegrees=Qae;function i6(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Hl(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}Sr.dot=Hl;function o6(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}Sr.getColumnFrom2DArr=o6;function l6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Hl(e[a],o6(t,s)))}return n}function ese(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=i6(t[0],t[1]),i=l6(s,a),o=i6(-t[0],-t[1]);return l6(i,o)}Sr.buildRotationMatrix=ese;function tse(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Hl(t[0],n),-Hl(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}Sr.invertTransformMatrix=tse;function nse(e,t){return[Hl(e,t[0]),Hl(e,t[1])]}Sr.rotatePoint=nse;function rse(e,t){return Math.sqrt((e[0]-t[0])**2+(e[1]-t[1])**2)}Sr.xyDistanceBetweenPoints=rse});var i2=lt(Tr=>{var ase={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},sse=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],A0=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ise=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],ose=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22],lse=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29],use=[0,4,1,2,4,3,4,5,6],cse=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],hse=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],dse=[33,133,362,263,1,78,308];Tr.MESH_ANNOTATIONS=ase;Tr.MESH_TO_IRIS_INDICES_MAP=sse;Tr.TRI468=ise;Tr.TRI68=ose;Tr.TRI33=lse;Tr.TRI7=use;Tr.UV468=A0;Tr.UV68=cse.map(e=>A0[e]);Tr.UV33=hse.map(e=>A0[e]);Tr.UV7=dse.map(e=>A0[e])});var d6=lt(c6=>{var Kt=Le(a6()),pn=Le(u6()),qr=Le(i2()),pse=468,fse=13,mse=[fse,qr.MESH_ANNOTATIONS.midwayBetweenEyes[0]],Ase=3,yse=2,gse=[Ase,yse],o2=qr.MESH_ANNOTATIONS.leftEyeLower0,l2=[o2[0],o2[o2.length-1]],u2=qr.MESH_ANNOTATIONS.rightEyeLower0,c2=[u2[0],u2[u2.length-1]],xse=3,wse=4,_se=71,h2=76;function y0(e,t,n,r){for(let a=0;a<qr.MESH_TO_IRIS_INDICES_MAP.length;a++){let{key:s,indices:i}=qr.MESH_TO_IRIS_INDICES_MAP[a],o=qr.MESH_ANNOTATIONS[`${n}${s}`];if(r==null||r.includes(s))for(let u=0;u<i.length;u++){let c=i[u];e[o[u]]=[t[c][0],t[c][1],(t[c][2]+e[o[u]][2])/2]}}}var h6=class{constructor(t,n,r,a){this.storedBoxes=[],this.runsWithoutFaceDetector=0,this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.meshWidth=a.face.mesh.inputSize,this.meshHeight=a.face.mesh.inputSize,this.irisSize=a.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Kt.getBoxSize({startPoint:n.startPoint,endPoint:n.endPoint}),i=[s[0]/this.meshWidth,s[1]/this.meshHeight],o=t.map(d=>[i[0]*(d[0]-this.meshWidth/2),i[1]*(d[1]-this.meshHeight/2),d[2]]),l=r!==0?pn.buildRotationMatrix(r,[0,0]):pn.IDENTITY_MATRIX,u=r!==0?o.map(d=>[...pn.rotatePoint(d,l),d[2]]):o,c=r!==0?pn.invertTransformMatrix(a):pn.IDENTITY_MATRIX,h=[...Kt.getBoxCenter({startPoint:n.startPoint,endPoint:n.endPoint}),1];return u.map(d=>[d[0]+pn.dot(h,c[0]),d[1]+pn.dot(h,c[1]),d[2]])}getLeftToRightEyeDepthDifference(t){let n=t[l2[0]][2],r=t[c2[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=Kt.squarifyBox(Kt.enlargeBox(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Kt.getBoxSize(i),l=st.cropAndResize(n,[[i.startPoint[1]/this.meshHeight,i.startPoint[0]/this.meshWidth,i.endPoint[1]/this.meshHeight,i.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return s&&(l=st.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<h2;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(_se)}}getAdjustedIrisCoords(t,n,r){let a=t[qr.MESH_ANNOTATIONS[`${r}EyeUpper0`][xse]][2],s=t[qr.MESH_ANNOTATIONS[`${r}EyeLower0`][wse]][2],i=(a+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Kt.scaleBoxCoordinates({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=Kt.enlargeBox(o),u=Kt.squarifyBox(l),c=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:c}}this.runsWithoutFaceDetector=0}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=W(()=>this.storedBoxes.map((i,o)=>{let l,u=0,c;if(n.face.detector.rotation){let[x,b]=i.landmarks.length>=pse?mse:gse;u=pn.computeRotation(i.landmarks[x],i.landmarks[b]);let N=Kt.getBoxCenter({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=st.rotateWithOffset(t,u,0,T);c=pn.buildRotationMatrix(-u,N),l=Kt.cutBoxFromImageAndResize({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshHeight,this.meshWidth]).div(255)}else{c=pn.IDENTITY_MATRIX;let x=t.clone();l=Kt.cutBoxFromImageAndResize({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshHeight,this.meshWidth]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,confidence:i.confidence,image:l};let[,h,d]=this.meshDetector.predict(l),p=h.dataSync()[0];if(p<n.face.detector.minConfidence)return null;let m=X(d,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:b,crop:N}=this.getEyeBox(m,l,l2[0],l2[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(m,l,c2[0],c2[1]),P=this.irisModel.predict(at([N,M])).dataSync(),V=P.slice(0,h2*3),{rawCoords:q,iris:U}=this.getEyeCoords(V,x,b,!0),K=P.slice(h2*3),{rawCoords:Z,iris:te}=this.getEyeCoords(K,T,E),J=this.getLeftToRightEyeDepthDifference(m);Math.abs(J)<30?(y0(m,q,"left"),y0(m,Z,"right")):J<1?y0(m,q,"left",["EyeUpper0","EyeLower0"]):y0(m,Z,"right",["EyeUpper0","EyeLower0"]);let ae=this.getAdjustedIrisCoords(m,U,"left"),Q=this.getAdjustedIrisCoords(m,te,"right");m=m.concat(ae).concat(Q)}let A=this.transformRawCoords(m,i,u,c),y=Kt.enlargeBox(this.calculateLandmarksBoundingBox(A)),g=Kt.squarifyBox(y),_=gn(A),w={coords:_,box:y,faceConfidence:p,confidence:i.confidence,image:l};return n.face.mesh.returnRawData&&(w.rawCoords=m),this.storedBoxes[o]={...g,landmarks:_.arraySync(),confidence:i.confidence,faceConfidence:p},w}));return s=s.filter(i=>i!==null),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};c6.Pipeline=h6});var m6=lt(g0=>{var p6=Le(r6()),f6=Le(d6()),Yc=Le(i2()),d2=class{constructor(t,n,r,a){this.facePipeline=new f6.Pipeline(t,n,r,a),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():null,o=s.rawCoords,l={};if(i&&i.length>0)for(let h of Object.keys(Yc.MESH_ANNOTATIONS))l[h]=Yc.MESH_ANNOTATIONS[h].map(d=>i[d]);let u=n.face.mesh.returnRawData&&s.box?{topLeft:s.box.startPoint,bottomRight:s.box.endPoint}:null,c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-s.box.startPoint[0],Math.min(t.shape[1],s.box.endPoint[1])-s.box.startPoint[1]]:0;a.push({confidence:s.confidence||0,box:c,mesh:i,boxRaw:u,meshRaw:o,annotations:l,image:s.image?ar(s.image):null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Mi=[null,null,null];async function bse(e){Mi=await Promise.all([!Mi[0]&&e.face.enabled?p6.load(e):null,!Mi[1]&&e.face.mesh.enabled?qt(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Mi[2]&&e.face.iris.enabled?qt(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new d2(Mi[0],Mi[1],Mi[2],e);return e.face.mesh.enabled&&Me(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&Me(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}g0.load=bse;g0.MediaPipeFaceMesh=d2;g0.triangulation=Yc.TRI468});var Gl=lt(A6=>{var vse={};function kse(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};vse[e]=i,Me("Human profiler",e,i)}A6.run=kse});var g6=lt(p2=>{var y6=Le(Gl()),ql={},x0={age:0},w0=Number.MAX_SAFE_INTEGER;async function Ise(e){return ql.age||(ql.age=await qt(e.face.age.modelPath),Me(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),ql.age}async function Nse(e,t){return ql.age?w0<t.face.age.skipFrames&&t.videoOptimized&&x0.age&&x0.age>0?(w0++,x0):(t.videoOptimized?w0=0:w0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=st.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=L(r,[255]);Te(r);let s,i={};if(!t.profile)t.face.age.enabled&&(s=await ql.age.predict(a));else{let o=t.face.age.enabled?await na(()=>ql.age.predict(a)):{};s=o.result.clone(),o.result.dispose(),y6.run("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),x0=i,n(i)})):null}p2.predict=Nse;p2.load=Ise});var w6=lt(f2=>{var x6=Le(Gl()),Oi={},m2={gender:""},_0=Number.MAX_SAFE_INTEGER,A2=!1,y2=[.2989,.587,.114];async function Sse(e){return Oi.gender||(Oi.gender=await qt(e.face.gender.modelPath),A2=Oi.gender.inputs[0].shape[3]===1,Me(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),Oi.gender}async function Tse(e,t){return Oi.gender?_0<t.face.gender.skipFrames&&t.videoOptimized&&m2.gender!==""?(_0++,m2):(t.videoOptimized?_0=0:_0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=st.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;A2?a=W(()=>{let[o,l,u]=Yt(r,3,3),c=L(o,y2[0]),h=L(l,y2[1]),d=L(u,y2[2]);return cl([c,h,d]).sub(.5).mul(2)}):a=L(r,[255]),Te(r);let s,i={};if(!t.profile)t.face.gender.enabled&&(s=await Oi.gender.predict(a));else{let o=t.face.gender.enabled?await na(()=>Oi.gender.predict(a)):{};s=o.result.clone(),o.result.dispose(),x6.run("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(A2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),m2=i,n(i)})):null}f2.predict=Tse;f2.load=Sse});var v6=lt(g2=>{var _6=Le(Gl()),Ese=["angry","disgust","fear","happy","sad","surprise","neutral"],Xl={},x2=[],b0=Number.MAX_SAFE_INTEGER,w2=[.2989,.587,.114],b6=1;async function Cse(e){return Xl.emotion||(Xl.emotion=await qt(e.face.emotion.modelPath),Me(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),Xl.emotion}async function Rse(e,t){return Xl.emotion?b0<t.face.emotion.skipFrames&&t.videoOptimized&&x2.length>0?(b0++,x2):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=st.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=Yt(r,3,3);r.dispose();let o=L(a,w2[0]),l=L(s,w2[1]),u=L(i,w2[2]);a.dispose(),s.dispose(),i.dispose();let c=cl([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=W(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await na(()=>Xl.emotion.predict(h));p=f.result.dataSync(),f.result.dispose(),_6.run("emotion",f)}else{let f=await Xl.emotion.predict(h);p=f.dataSync(),Te(f)}for(let f=0;f<p.length;f++)b6*p[f]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*b6*p[f])/100),emotion:Ese[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),x2=d,n(d)})):null}g2.predict=Rse;g2.load=Cse});var I6=lt(v0=>{var k6=Le(Gl()),Kl={};async function Fse(e){return Kl.embedding||(Kl.embedding=await qt(e.face.embedding.modelPath),Me(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Kl.embedding}function Mse(e,t){if((e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function Ose(e,t){return Kl.embedding?new Promise(async n=>{let r=st.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await na(()=>Kl.embedding.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),k6.run("emotion",s)}else{let s=await Kl.embedding.predict({img_inputs:r});a=[...s.dataSync()],Te(s)}r.dispose(),n(a)}):null}v0.predict=Ose;v0.simmilarity=Mse;v0.load=Fse});var T6=lt(N6=>{var Dse=[-123.15,-115.9,-103.06];function $se(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function zse(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var S6=class{constructor(t){this.model=t}predict(t,n){return W(()=>{let a=(n.body.modelType==="ResNet"?t.toFloat().add(Dse):t.toFloat().div(127.5).sub(1)).expandDims(0),i=this.model.predict(a).map(l=>l.squeeze([0])),o=n.body.modelType==="ResNet"?zse(i):$se(i);return{heatmapScores:o.heatmap.sigmoid(),offsets:o.offsets,displacementFwd:o.displacementFwd,displacementBwd:o.displacementBwd}})}dispose(){this.model.dispose()}};N6.BaseModel=S6});var R6=lt(E6=>{function _2(e){return Math.floor(e/2)}var C6=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(_2(t),t);)this.exchange(t,_2(t)),t=_2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};E6.MaxHeap=C6});var O6=lt(F6=>{var M6=Le(R6());function Pse(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let f=d;f<p;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function Lse(e,t,n){let[r,a,s]=n.shape,i=new M6.MaxHeap(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||Pse(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}F6.buildPartWithScoreQueue=Lse});var Zl=lt(Er=>{Er.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];Er.NUM_KEYPOINTS=Er.partNames.length;Er.partIds=Er.partNames.reduce((e,t,n)=>(e[t]=n,e),{});var Wse=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];Er.connectedPartIndices=Wse.map(([e,t])=>[Er.partIds[e],Er.partIds[t]]);Er.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];Er.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});var v2=lt(qa=>{var D6=Le(Zl());function $6(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+D6.NUM_KEYPOINTS)}}qa.getOffsetPoint=$6;function Bse(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=$6(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}qa.getImageCoords=Bse;function Vse(e,t){let n=new Array(t);for(let r=0;r<t;r++)n[r]=e;return n}qa.fillArray=Vse;function b2(e,t,n){return e<t?t:e>n?n:e}qa.clamp=b2;function Use(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}qa.squaredDistance=Use;function jse(e,t){return{x:e.x+t.x,y:e.y+t.y}}qa.addVectors=jse;function Hse(e,t,n){return{y:b2(e.y,t,n),x:b2(e.x,t,n)}}qa.clampVector=Hse});var P6=lt(Jc=>{var k0=Le(Zl());function Gse(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}Jc.getPointsConfidence=Gse;function qse(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+k0.NUM_KEYPOINTS)}}function z6(e,t){let n=[];for(let r=0;r<k0.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=qse(a,s,r,t);n.push(o),n.push(i)}return gn(n,[k0.NUM_KEYPOINTS,2])}Jc.getOffsetVectors=z6;function Xse(e,t,n){return W(()=>e.toTensor().mul(ke(t,"int32")).toFloat().add(z6(e,n)))}Jc.getOffsetPoints=Xse;function Kse(e,t){return W(()=>{let n=e.div(ke(t,"int32"));return e.sub(n.mul(ke(t,"int32")))})}function Zse(e){let[t,n,r]=e.shape;return W(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(ke(n,"int32")).expandDims(1),o=Kse(s,n).expandDims(1);return at([i,o],1)})}Jc.argmax2d=Zse});var S2=lt(k2=>{var ma=Le(Zl()),Xr=Le(v2()),Yl=Le(P6()),L6=ma.poseChain.map(([e,t])=>[ma.partIds[e],ma.partIds[t]]),I2=L6.map(([,e])=>e),W6=L6.map(([e])=>e);function Yse(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function N2(e,t,n,r){return{y:Xr.clamp(Math.round(e.y/t),0,n-1),x:Xr.clamp(Math.round(e.x/t),0,r-1)}}function B6(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=N2(t.position,s,l,u),h=Yse(e,c,i),p=Xr.addVectors(t.position,h);for(let A=0;A<o;A++){let y=N2(p,s,l,u),g=Xr.getOffsetPoint(y.y,y.x,n,a);p=Xr.addVectors({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let f=N2(p,s,l,u),m=r.get(f.y,f.x,n);return{position:p,part:ma.partNames[n],score:m}}function Jse(e,t,n,r,a,s){let i=t.shape[2],o=I2.length,l=new Array(i),{part:u,score:c}=e,h=Xr.getImageCoords(u,r,n);l[u.id]={score:c,part:ma.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=I2[d],f=W6[d];l[p]&&!l[f]&&(l[f]=B6(d,l[p],f,t,n,r,s))}for(let d=0;d<o;++d){let p=W6[d],f=I2[d];l[p]&&!l[f]&&(l[f]=B6(d,l[p],f,t,n,r,a))}return l}k2.decodePose=Jse;async function Qse(e,t,n){let r=0,a=Yl.argmax2d(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=Yl.getOffsetPoints(l,n.body.outputStride,o),c=await u.buffer(),d=Array.from(Yl.getPointsConfidence(i,l)).map((f,m)=>(r+=f,{position:{y:c.get(m,0),x:c.get(m,1)},part:ma.partNames[m],score:f})),p=d.filter(f=>f.score>n.body.scoreThreshold);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}k2.decodeSinglePose=Qse});var G6=lt(V6=>{var U6=Le(O6()),j6=Le(S2()),I0=Le(v2()),eie=1;function H6(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return I0.squaredDistance(r,n,i.y,i.x)<=t})}function tie(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(H6(e,t,s,o)||(a+=i),a),0)/n.length}function nie(e,t,n,r,a){let s=[],i=U6.buildPartWithScoreQueue(a.body.scoreThreshold,eie,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),u=I0.getImageCoords(l.part,a.body.outputStride,t);if(H6(s,o,u,l.part.id))continue;let c=j6.decodePose(l,e,t,a.body.outputStride,n,r),h=tie(s,o,c);h>a.body.scoreThreshold&&s.push({keypoints:c,score:h})}return s}V6.decodeMultiplePoses=nie});var T2=lt(Xa=>{var q6=Le(Zl());function rie(e,t,n){return e<n||t<n}function aie(e,t){return q6.connectedPartIndices.reduce((n,[r,a])=>(rie(e[r].score,e[a].score,t)||n.push([e[r],e[a]]),n),[])}Xa.getAdjacentKeyPoints=aie;var{NEGATIVE_INFINITY:X6,POSITIVE_INFINITY:K6}=Number;function Z6(e){return e.reduce(({maxX:t,maxY:n,minX:r,minY:a},{position:{x:s,y:i}})=>({maxX:Math.max(t,s),maxY:Math.max(n,i),minX:Math.min(r,s),minY:Math.min(a,i)}),{maxX:X6,maxY:X6,minX:K6,minY:K6})}Xa.getBoundingBox=Z6;function sie(e){let{minX:t,minY:n,maxX:r,maxY:a}=Z6(e);return[{x:t,y:n},{x:r,y:n},{x:r,y:a},{x:t,y:a}]}Xa.getBoundingBoxPoints=sie;async function iie(e){return Promise.all(e.map(t=>t.buffer()))}Xa.toTensorBuffers3D=iie;function Y6(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:s.x*n,y:s.y*t}}))}}Xa.scalePose=Y6;function oie(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}Xa.resizeTo=oie;function lie(e,[t,n],[r,a]){return e.map(i=>Y6(i,t/r,n/a))}Xa.scaleAndFlipPoses=lie});var t4=lt(E2=>{var J6=Le(T6()),Q6=Le(G6()),e4=Le(S2()),Di=Le(T2());async function uie(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await Di.toTensorBuffers3D([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],u=i[2],c=i[3],h=await Q6.decodeMultiplePoses(o,l,u,c,n),d=Di.scaleAndFlipPoses(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function cie(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],o=[await e4.decodeSinglePose(t.heatmapScores,t.offsets,n)],l=Di.scaleAndFlipPoses(o,[a,s],[n.body.inputSize,n.body.inputSize]);r(l)})}var C2=class{constructor(t){this.baseModel=t}async estimatePoses(t,n){let r=Di.resizeTo(t,[n.body.inputSize,n.body.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await cie(t,a,n):await uie(t,a,n);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};E2.PoseNet=C2;async function hie(e){let t=await qt(e.body.modelPath),n=new J6.BaseModel(t);return Me(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new C2(n)}E2.load=hie});var n4=lt(dr=>{var N0=Le(t4()),Ka=Le(Zl()),Kr=Le(T2());dr.load=N0.load;dr.PoseNet=N0.PoseNet;dr.partChannels=Ka.partChannels;dr.partIds=Ka.partIds;dr.partNames=Ka.partNames;dr.poseChain=Ka.poseChain;dr.getAdjacentKeyPoints=Kr.getAdjacentKeyPoints;dr.getBoundingBox=Kr.getBoundingBox;dr.getBoundingBoxPoints=Kr.getBoundingBoxPoints;dr.scaleAndFlipPoses=Kr.scaleAndFlipPoses;dr.scalePose=Kr.scalePose});var o4=lt(s4=>{var i4=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=gn(this.anchors),this.inputSizeTensor=Ut([n,n]),this.doubleInputSizeTensor=Ut([n*2,n*2])}normalizeBoxes(t){return W(()=>{let n=Ee(t,[0,0],[-1,2]),r=Ee(t,[0,2],[-1,2]),a=ie(be(n,this.inputSizeTensor),this.anchorsTensor),s=be(r,this.doubleInputSizeTensor),i=L(ye(a,s),this.inputSizeTensor),o=L(ie(a,s),this.inputSizeTensor);return li([i,o],1)})}normalizeLandmarks(t,n){return W(()=>{let r=ie(be(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=W(()=>Sn(Ee(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ee(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await st.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=Ee(l,[d,0],[1,-1]),f=Ee(a,[d,5],[1,14]),m=W(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=W(()=>t.resizeBilinear([n.hand.inputSize,n.hand.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(a4({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/n.hand.inputSize,r/n.hand.inputSize]))}return o}};s4.HandDetector=i4});var A4=lt(d4=>{var fie=5,p4=1.65,f4=[0,5,9,13,17,1,2],mie=0,Aie=2,m4=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>F2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return T0(E0(a),fie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=T0(E0(n),p4);r.palmLandmarks=[];for(let a=0;a<f4.length;a++)r.palmLandmarks.push(t[f4[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=S0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=R2(r,[0,0]),u=o.map(p=>[...F2(p,l),p[2]]),c=h4(a),h=[...Qc(n),1],d=[Za(h,c[0]),Za(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?l4(o.palmLandmarks[mie],o.palmLandmarks[Aie]):0,u=Qc(o),c=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation?st.rotateWithOffset(t,l,0,c):t.clone(),d=R2(-l,u),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,f=r4(p,h,[this.inputSize,this.inputSize]),m=f.div(255);f.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(m);m.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let _=X(y,[-1,3]),w=_.arraySync();y.dispose(),_.dispose();let x=this.transformRawCoords(w,p,l,d),b=this.getBoxForHandLandmarks(x);this.storedBoxes[i]=b;let N={landmarks:x,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=T0(E0(o),p4),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};d4.HandPipeline=m4});var g4=lt(y4=>{y4.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]});var b4=lt(M2=>{var x4=Le(o4()),w4=Le(A4()),_4=Le(g4()),O2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},D2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return O2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let l of Object.keys(O2))i[l]=O2[l].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-s.box.topLeft[0],Math.min(t.shape[1],s.box.bottomRight[1])-s.box.topLeft[1]]:0;a.push({confidence:s.confidence,box:o,landmarks:s.landmarks,annotations:i})}return a}};M2.HandPose=D2;async function yie(e){let[t,n]=await Promise.all([e.hand.enabled?qt(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?qt(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new x4.HandDetector(t,e.hand.inputSize,_4.anchors),a=new w4.HandPipeline(r,n,e.hand.inputSize),s=new D2(a);return e.hand.enabled&&Me(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&Me(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}M2.load=yie});var v4=lt(eh=>{eh.body=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t};eh.face=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[35][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t};eh.iris=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t};eh.hand=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t}});var I4=lt(k4=>{var gie=function(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)},xie=function(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h=e.canvas||document.createElement("canvas"),d={},p=h.getContext("webgl");if(!p)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let N=Array.prototype.slice.call(arguments,1),T=x[b];i.push({func:T,args:N})},this.reset=function(){i=[]},this.apply=function(b){if(f(b.width,b.height),t=0,n||(n=p.createTexture()),p.bindTexture(p.TEXTURE_2D,n),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,b),i.length===0)return y(),h;for(let N=0;N<i.length;N++){r=N===i.length-1;let T=i[N];T.func.apply(this,T.args||[])}return h};let f=function(b,N){if(!(b===o&&N===l)){if(h.width=b,o=b,h.height=N,l=N,!u){let T=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,u),p.bufferData(p.ARRAY_BUFFER,T,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,o,l),s=[null,null]}},m=function(b){return s[b]=s[b]||A(o,l),s[b]},A=function(b,N){let T=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,T);let E=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,E);let M=p.createTexture();return p.bindTexture(p.TEXTURE_2D,M),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,b,N,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,M,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:T,texture:M}},y=function(b){var M,z;let N=null,T=null,E=!1;t===0?N=n:N=(M=m(a))==null?void 0:M.texture,t++,r&&!(b&_.INTERMEDIATE)?(T=null,E=t%2==0):(a=(a+1)%2,T=(z=m(a))==null?void 0:z.fbo),p.bindTexture(p.TEXTURE_2D,N),p.bindFramebuffer(p.FRAMEBUFFER,T),p.uniform1f(c.uniform.flipY,E?-1:1),p.drawArrays(p.TRIANGLES,0,6)},g=function(b){if(d[b])return c=d[b],p.useProgram(c.id),c;c=new gie(p,w.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return p.enableVertexAttribArray(c.attribute.pos),p.vertexAttribPointer(c.attribute.pos,2,p.FLOAT,!1,T,0*N),p.enableVertexAttribArray(c.attribute.uv),p.vertexAttribPointer(c.attribute.uv,2,p.FLOAT,!1,T,2*N),d[b]=c,c},_={INTERMEDIATE:1},w={};w.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),w.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`);let x={};x.colorMatrix=function(b){let N=new Float32Array(b);N[4]/=255,N[9]/=255,N[14]/=255,N[19]/=255;let T=N[18]===1&&N[3]===0&&N[8]===0&&N[13]===0&&N[15]===0&&N[16]===0&&N[17]===0&&N[19]===0?x.colorMatrix.SHADER.WITHOUT_ALPHA:x.colorMatrix.SHADER.WITH_ALPHA,E=g(T);p.uniform1fv(E.uniform.m,N),y()},x.colorMatrix.SHADER={},x.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),x.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),x.brightness=function(b){let N=(b||0)+1;x.colorMatrix([N,0,0,0,0,0,N,0,0,0,0,0,N,0,0,0,0,0,1,0])},x.saturation=function(b){let N=(b||0)*2/3+1,T=(N-1)*-.5;x.colorMatrix([N,T,T,0,0,T,N,T,0,0,T,T,N,0,0,0,0,0,1,0])},x.desaturate=function(){x.saturation(-1)},x.contrast=function(b){let N=(b||0)+1,T=-128*(N-1);x.colorMatrix([N,0,0,0,T,0,N,0,0,T,0,0,N,0,T,0,0,0,1,0])},x.negative=function(){x.contrast(-2)},x.hue=function(b){b=(b||0)/180*Math.PI;let N=Math.cos(b),T=Math.sin(b),E=.213,M=.715,z=.072;x.colorMatrix([E+N*(1-E)+T*-E,M+N*-M+T*-M,z+N*-z+T*(1-z),0,0,E+N*-E+T*.143,M+N*(1-M)+T*.14,z+N*-z+T*-.283,0,0,E+N*-E+T*-(1-E),M+N*-M+T*M,z+N*(1-z)+T*z,0,0,0,0,0,1,0])},x.desaturateLuminance=function(){x.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},x.sepia=function(){x.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},x.brownie=function(){x.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},x.vintagePinhole=function(){x.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},x.kodachrome=function(){x.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},x.technicolor=function(){x.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},x.polaroid=function(){x.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},x.shiftToBGR=function(){x.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},x.convolution=function(b){let N=new Float32Array(b),T=1/o,E=1/l,M=g(x.convolution.SHADER);p.uniform1fv(M.uniform.m,N),p.uniform2f(M.uniform.px,T,E),y()},x.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),x.detectEdges=function(){x.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},x.sobelX=function(){x.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},x.sobelY=function(){x.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},x.sharpen=function(b){let N=b||1;x.convolution.call(this,[0,-1*N,0,-1*N,1+4*N,-1*N,0,-1*N,0])},x.emboss=function(b){let N=b||1;x.convolution.call(this,[-2*N,-1*N,0,-1*N,1,1*N,0,1*N,2*N])},x.blur=function(b){let N=b/7/o,T=b/7/l,E=g(x.blur.SHADER);p.uniform2f(E.uniform.px,0,T),y(_.INTERMEDIATE),p.uniform2f(E.uniform.px,N,0),y()},x.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),x.pixelate=function(b){let N=b/o,T=b/l,E=g(x.pixelate.SHADER);p.uniform2f(E.uniform.size,N,T),y()},x.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)};k4.Canvas=xie});var T4=lt(N4=>{var S4=Le(I4()),Et=null,tn=null;function wie(e,t){let n;if(e instanceof j)n=ar(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Me("Human: invalid input",e),null;(!Et||Et.width!==s||Et.height!==i)&&(Et=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),Et.width!==s&&(Et.width=s),Et.height!==i&&(Et.height=i));let o=Et.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,Et.width,Et.height),t.filter.enabled){if((!this.fx||!tn||Et.width!==tn.width||Et.height!==tn.height)&&(tn=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Et.width,Et.height):document.createElement("canvas"),tn.width!==Et.width&&(tn.width=Et.width),tn.height!==Et.height&&(tn.height=Et.height),this.fx=sn.flags.IS_BROWSER?new S4.Canvas({canvas:tn}):null),!this.fx)return Et;this.fx.reset(),this.fx.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&this.fx.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&this.fx.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&this.fx.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&this.fx.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&this.fx.addFilter("hue",t.filter.hue),t.filter.negative&&this.fx.addFilter("negative"),t.filter.sepia&&this.fx.addFilter("sepia"),t.filter.vintage&&this.fx.addFilter("brownie"),t.filter.sepia&&this.fx.addFilter("sepia"),t.filter.kodachrome&&this.fx.addFilter("kodachrome"),t.filter.technicolor&&this.fx.addFilter("technicolor"),t.filter.polaroid&&this.fx.addFilter("polaroid"),t.filter.pixelate!==0&&this.fx.addFilter("pixelate",t.filter.pixelate),this.fx.apply(Et)}else tn=Et;let l;if(tn.data){let c=[tn.height,tn.width,3];l=md(tn.data,c,"int32")}else if(t.backend==="webgl"||tn instanceof ImageData)l=ol.fromPixels(tn);else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let h=c.getContext("2d");h==null||h.drawImage(tn,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=ol.fromPixels(d)}let u=l.toFloat();n=u.expandDims(0),l.dispose(),u.dispose()}return{tensor:n,canvas:t.filter.return?tn:null}}N4.process=wie});var _ie={};W1(_ie,{default:()=>V2});function Me(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var B1={};W1(B1,{Abs:()=>Ji,Acos:()=>Qi,Acosh:()=>eo,AdadeltaOptimizer:()=>Zd,AdagradOptimizer:()=>Yd,AdamOptimizer:()=>Jd,AdamaxOptimizer:()=>Qd,Add:()=>ba,AddN:()=>ls,All:()=>Rh,Any:()=>Fh,ArgMax:()=>us,ArgMin:()=>bu,Asin:()=>to,Asinh:()=>no,Atan:()=>ro,Atan2:()=>so,Atanh:()=>ao,AvgPool:()=>cs,AvgPool3D:()=>vu,AvgPool3DGrad:()=>Oh,AvgPoolGrad:()=>Mh,BackendWasm:()=>m3,BatchMatMul:()=>hs,BatchToSpaceND:()=>ku,Bincount:()=>Dh,BroadcastTo:()=>gg,Callback:()=>Q7,CallbackList:()=>Y3,Cast:()=>ds,Ceil:()=>io,ClipByValue:()=>va,Complex:()=>$h,ComplexAbs:()=>Iu,Concat:()=>oo,Conv2D:()=>ps,Conv2DBackpropFilter:()=>zh,Conv2DBackpropInput:()=>fs,Conv3D:()=>Nu,Conv3DBackpropFilterV2:()=>Ph,Conv3DBackpropInputV2:()=>Lh,Cos:()=>ms,Cosh:()=>lo,CropAndResize:()=>uo,Cumsum:()=>As,CustomCallback:()=>Q3,DataStorage:()=>Sh,DenseBincount:()=>Wh,DepthToSpace:()=>co,DepthwiseConv2dNative:()=>ys,DepthwiseConv2dNativeBackpropFilter:()=>Bh,DepthwiseConv2dNativeBackpropInput:()=>Vh,Diag:()=>Uh,Dilation2D:()=>Su,Dilation2DBackpropFilter:()=>Hh,Dilation2DBackpropInput:()=>jh,ENV:()=>sn,EarlyStopping:()=>tv,Elu:()=>ho,EluGrad:()=>Gh,Environment:()=>mg,Equal:()=>fo,Erf:()=>po,Exp:()=>xs,ExpandDims:()=>mo,Expm1:()=>Ao,FFT:()=>qh,Fill:()=>Tu,FlipLeftRight:()=>yo,Floor:()=>ws,FloorDiv:()=>_s,FromPixels:()=>od,FusedBatchNorm:()=>bs,FusedConv2D:()=>Qs,FusedDepthwiseConv2D:()=>ei,GPGPUContext:()=>mp,GatherNd:()=>xo,GatherV2:()=>go,GraphModel:()=>Cv,Greater:()=>wo,GreaterEqual:()=>vs,History:()=>J3,IFFT:()=>Xh,Identity:()=>_o,Imag:()=>Kh,InputSpec:()=>Gt,IsFinite:()=>bo,IsInf:()=>vo,IsNan:()=>ko,KernelBackend:()=>xu,LRN:()=>Ru,LRNGrad:()=>Yh,LayerVariable:()=>G3,LayersModel:()=>da,LeakyRelu:()=>ks,Less:()=>Io,LessEqual:()=>No,LinSpace:()=>Zh,Log:()=>Is,Log1p:()=>So,LogSoftmax:()=>xg,LogicalAnd:()=>To,LogicalNot:()=>Eu,LogicalOr:()=>Cu,MathBackendCPU:()=>Mx,MathBackendWebGL:()=>yp,Max:()=>Ns,MaxPool:()=>Ts,MaxPool3D:()=>Fu,MaxPool3DGrad:()=>Qh,MaxPoolGrad:()=>Jh,MaxPoolWithArgmax:()=>ed,Maximum:()=>Ss,Mean:()=>Es,Min:()=>Cs,Minimum:()=>Rs,MirrorPad:()=>Mu,Mod:()=>Eo,MomentumOptimizer:()=>ep,Multinomial:()=>td,Multiply:()=>Fs,Neg:()=>Co,NonMaxSuppressionV3:()=>Fo,NonMaxSuppressionV4:()=>Mo,NonMaxSuppressionV5:()=>Oo,NotEqual:()=>Ro,OP_SCOPE_SUFFIX:()=>Cg,OneHot:()=>Ms,OnesLike:()=>Do,Optimizer:()=>la,Pack:()=>$o,PadV2:()=>Os,Pool:()=>a9,Pow:()=>Ds,Prelu:()=>$s,Prod:()=>zo,RMSPropOptimizer:()=>tp,RNN:()=>Hr,Range:()=>Ou,Rank:()=>Q1,Real:()=>nd,RealDiv:()=>gs,Reciprocal:()=>Po,Reduction:()=>ln,Relu:()=>zs,Relu6:()=>Ls,Reshape:()=>Lo,ResizeBilinear:()=>Ps,ResizeBilinearGrad:()=>ad,ResizeNearestNeighbor:()=>Du,ResizeNearestNeighborGrad:()=>rd,Reverse:()=>Ws,RotateWithOffset:()=>Qo,Round:()=>Bs,Rsqrt:()=>Vs,SGDOptimizer:()=>fc,ScatterNd:()=>Wo,Select:()=>Bo,Selu:()=>Vo,Sequential:()=>Bl,Sigmoid:()=>js,Sign:()=>Ho,Sin:()=>Us,Sinh:()=>jo,Slice:()=>Uo,Softmax:()=>qs,Softplus:()=>Go,SpaceToBatchND:()=>$u,SparseToDense:()=>sd,SplitV:()=>qo,Sqrt:()=>Hs,Square:()=>zu,SquaredDifference:()=>Xs,Step:()=>Ia,StridedSlice:()=>Xo,Sub:()=>Ks,Sum:()=>Gs,SymbolicTensor:()=>vr,Tan:()=>Ko,Tanh:()=>Zs,Tensor:()=>j,TensorBuffer:()=>Ot,Tile:()=>ka,TopK:()=>Zo,Transpose:()=>Ys,Unique:()=>id,Unpack:()=>Yo,UnsortedSegmentSum:()=>Pu,Variable:()=>ju,ZerosLike:()=>Jo,_FusedMatMul:()=>Js,abs:()=>Dt,acos:()=>If,acosh:()=>Nf,add:()=>ie,addN:()=>cl,addStrict:()=>Z5,all:()=>wd,any:()=>Xu,argMax:()=>Ku,argMin:()=>Sf,asin:()=>Tf,asinh:()=>Ef,atan:()=>Cf,atan2:()=>Rf,atanh:()=>Ff,avgPool:()=>Yu,avgPool3d:()=>Df,backend:()=>kf,backend_util:()=>R,basicLSTMCell:()=>SN,batchNorm:()=>oi,batchNorm2d:()=>y5,batchNorm3d:()=>g5,batchNorm4d:()=>x5,batchToSpaceND:()=>Ju,bincount:()=>w5,booleanMaskAsync:()=>FE,broadcastTo:()=>Qu,browser:()=>ol,buffer:()=>We,callbacks:()=>tre,cast:()=>Ae,ceil:()=>$f,clipByValue:()=>An,clone:()=>ar,complex:()=>Na,concat:()=>at,concat1d:()=>_5,concat2d:()=>li,concat3d:()=>b5,concat4d:()=>v5,constraints:()=>x3,conv1d:()=>bd,conv2d:()=>ra,conv2dTranspose:()=>vd,conv3d:()=>Pf,conv3dTranspose:()=>KN,copyRegisteredKernels:()=>o9,cos:()=>ec,cosh:()=>kd,cosineWindow:()=>cm,cumsum:()=>Id,customGrad:()=>Dr,data:()=>Rv,denseBincount:()=>I5,deprecationWarn:()=>Ct,depthToSpace:()=>Lf,depthwiseConv2d:()=>ui,deregisterOp:()=>rre,device_util:()=>dd,diag:()=>rS,dilation2d:()=>Wf,disableDeprecationWarnings:()=>jI,dispose:()=>Te,disposeVariables:()=>HI,div:()=>be,divNoNan:()=>Bf,divStrict:()=>Y5,dot:()=>N5,dropout:()=>lx,elu:()=>pl,enableDebugMode:()=>UI,enableProdMode:()=>h5,enclosingPowerOfTwo:()=>ux,engine:()=>Un,env:()=>ee,equal:()=>aa,equalStrict:()=>j5,erf:()=>Vf,exp:()=>jn,expandDims:()=>Hn,expm1:()=>Uf,eye:()=>jf,fft:()=>hc,fill:()=>tc,findBackend:()=>vf,findBackendFactory:()=>XI,floor:()=>fl,floorDiv:()=>xd,forceHalfFloat:()=>T_,fused:()=>Da,gather:()=>ci,gatherND:()=>ox,gather_util:()=>Af,getBackend:()=>gd,getGradient:()=>K1,getKernel:()=>X1,getKernelsForBackend:()=>tl,gpgpu_util:()=>Jw,grad:()=>FS,grads:()=>MS,greater:()=>Gn,greaterEqual:()=>sa,greaterEqualStrict:()=>H5,greaterStrict:()=>G5,ifft:()=>gl,imag:()=>Nd,image:()=>st,inTopKAsync:()=>aC,initializers:()=>N3,input:()=>L3,io:()=>mn,irfft:()=>Vd,isFinite:()=>S5,isInf:()=>T5,isNaN:()=>E5,keep:()=>Vt,kernel_impls:()=>Lr,layers:()=>P3,leakyRelu:()=>nc,less:()=>rc,lessEqual:()=>Fa,lessEqualStrict:()=>q5,lessStrict:()=>X5,linalg:()=>_x,linspace:()=>C5,loadGraphModel:()=>qt,loadLayersModel:()=>_ne,localResponseNormalization:()=>Hf,log:()=>Tn,log1p:()=>Sd,logSigmoid:()=>F5,logSoftmax:()=>Ed,logSumExp:()=>Xf,logicalAnd:()=>sr,logicalNot:()=>ac,logicalOr:()=>Cd,logicalXor:()=>$5,losses:()=>xR,matMul:()=>Ge,math:()=>Gg,max:()=>qn,maxPool:()=>sc,maxPool3d:()=>Kf,maxPoolWithArgmax:()=>z5,maximum:()=>yr,maximumStrict:()=>J5,mean:()=>vt,memory:()=>yd,metrics:()=>Z7,min:()=>Al,minimum:()=>di,minimumStrict:()=>Q5,mirrorPad:()=>Zf,mod:()=>Rd,modStrict:()=>ex,model:()=>xne,models:()=>Y7,moments:()=>Fd,movingAverage:()=>ZE,mul:()=>L,mulStrict:()=>tx,multiRNNCell:()=>lT,multinomial:()=>P5,neg:()=>bt,nextFrame:()=>np,norm:()=>Hd,notEqual:()=>Ma,notEqualStrict:()=>K5,oneHot:()=>il,ones:()=>$r,onesLike:()=>En,op:()=>D,outerProduct:()=>pT,pad:()=>ia,pad1d:()=>AT,pad2d:()=>gT,pad3d:()=>wT,pad4d:()=>bT,pool:()=>L5,pow:()=>zr,powStrict:()=>nx,prelu:()=>oc,print:()=>Wg,prod:()=>Md,profile:()=>na,rand:()=>RT,randomGamma:()=>DT,randomNormal:()=>W5,randomUniform:()=>yl,range:()=>Od,ready:()=>p5,real:()=>lc,reciprocal:()=>Qf,registerBackend:()=>ul,registerCallbackConstructor:()=>bne,registerGradient:()=>wg,registerKernel:()=>ti,registerOp:()=>nre,regularizers:()=>J7,relu:()=>Pr,relu6:()=>Dd,removeBackend:()=>qI,reshape:()=>X,reverse:()=>Cn,reverse1d:()=>jT,reverse2d:()=>GT,reverse3d:()=>XT,reverse4d:()=>ZT,rfft:()=>dc,round:()=>em,rsqrt:()=>$d,scalar:()=>ke,scatterND:()=>ix,scatter_util:()=>yf,selu:()=>zd,separableConv2d:()=>tm,sequential:()=>wne,serialization:()=>re,setBackend:()=>d5,setPlatform:()=>KI,setWasmPath:()=>yQ,setWasmPaths:()=>y3,setWebGLContext:()=>hp,setdiff1dAsync:()=>B5,shared:()=>fm,sigmoid:()=>Sn,sign:()=>nm,signal:()=>gR,sin:()=>Pd,sinh:()=>Ld,slice:()=>Ee,slice1d:()=>Wd,slice2d:()=>rm,slice3d:()=>Bd,slice4d:()=>uc,slice_util:()=>on,softmax:()=>cc,softplus:()=>ml,spaceToBatchND:()=>ic,sparseToDense:()=>um,spectral:()=>yR,split:()=>Yt,sqrt:()=>Jt,square:()=>ut,squaredDifference:()=>pc,squaredDifferenceStrict:()=>rx,squeeze:()=>Oa,stack:()=>Rn,step:()=>xl,stridedSlice:()=>am,sub:()=>ye,subStrict:()=>ax,sum:()=>Se,sumOutType:()=>hd,tan:()=>sm,tanh:()=>dl,tensor:()=>Ar,tensor1d:()=>Ut,tensor2d:()=>gn,tensor3d:()=>md,tensor4d:()=>bE,tensor5d:()=>vE,tensor6d:()=>kE,tensor_util:()=>mr,test_util:()=>o5,tidy:()=>W,tile:()=>Ra,time:()=>GI,topk:()=>im,train:()=>fi,transpose:()=>rt,truncatedNormal:()=>Ud,unique:()=>jd,unregisterGradient:()=>i9,unregisterKernel:()=>s9,unsortedSegmentSum:()=>om,unstack:()=>ir,upcastType:()=>rr,util:()=>k,valueAndGrad:()=>OS,valueAndGrads:()=>DS,variable:()=>V5,variableGrads:()=>R5,version:()=>Uae,version_converter:()=>rae,version_core:()=>c5,version_cpu:()=>iw,version_layers:()=>MA,version_wasm:()=>g3,version_webgl:()=>S_,webgl:()=>LB,webgl_util:()=>Nw,where:()=>yn,whereAsync:()=>lm,zeros:()=>St,zerosLike:()=>Ue});var J8=Object.create,Nh=Object.defineProperty,Q8=Object.getPrototypeOf,ek=Object.prototype.hasOwnProperty,tk=Object.getOwnPropertyNames,nk=Object.getOwnPropertyDescriptor,eg=e=>Nh(e,"__esModule",{value:!0}),et=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),$e=(e,t)=>{eg(e);for(var n in t)Nh(e,n,{get:t[n],enumerable:!0})},rk=(e,t,n)=>{if(eg(e),t&&typeof t=="object"||typeof t=="function")for(let r of tk(t))!ek.call(e,r)&&r!=="default"&&Nh(e,r,{get:()=>t[r],enumerable:!(n=nk(t,r))||n.enumerable});return e},Ki=e=>e&&e.__esModule?e:rk(Nh(e!=null?J8(Q8(e)):{},"default",{value:e,enumerable:!0}),e),ak=et(()=>{}),sk=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ik=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ok=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],_=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,_=Math.max(_,d.length)),m=0,A=-32;A<_;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ck=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),V1=et(()=>{}),hk=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(x,b,N){var T=[];b=b==!0?{entropy:!0}:b||{};var E=g(y(b.entropy?[x,w(n)]:x==null?_():x,3),T),M=new m(T),z=function(){for(var P=M.g(i),V=u,q=0;P<c;)P=(P+q)*s,V*=s,q=M.g(1);for(;P>=h;)P/=2,V/=2,q>>>=1;return(P+q)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(w(M.S),n),(b.pass||N||function(P,V,q,U){return U&&(U.S&&A(U,M),P.state=function(){return A(M,{})}),q?(r[l]=P,V):P})(z,E,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(x){var b,N=x.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(x=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+x[E%N]+(b=z[E])],z[M]=b;(T.g=function(P){for(var V,q=0,U=T.i,K=T.j,Z=T.S;P--;)V=Z[U=d&U+1],q=q*s+Z[d&(Z[U]=Z[K=d&K+V])+(Z[K]=V)];return T.i=U,T.j=K,q})(s)}function A(x,b){return b.i=x.i,b.j=x.j,b.S=x.S.slice(),b}function y(x,b){var N=[],T=typeof x,E;if(b&&T=="object")for(E in x)try{N.push(y(x[E],b-1))}catch(M){}return N.length?N:T=="string"?x:x+"\0"}function g(x,b){for(var N=x+"",T,E=0;E<N.length;)b[d&E]=d&(T^=b[d&E]*19)+N.charCodeAt(E++);return w(b)}function _(){try{var x;return p&&(x=p.randomBytes)?x=x(s):(x=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(x)),w(x)}catch(T){var b=a.navigator,N=b&&b.plugins;return[+new Date,a,N,a.screen,w(n)]}}function w(x){return String.fromCharCode.apply(0,x)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=V1()}catch(x){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),dk=et((e,t)=>{var n=sk(),r=ik(),a=ok(),s=lk(),i=uk(),o=ck(),l=hk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),pk=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ak=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],_=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,_=Math.max(_,d.length)),m=0,A=-32;A<_;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xk=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(x,b,N){var T=[];b=b==!0?{entropy:!0}:b||{};var E=g(y(b.entropy?[x,w(n)]:x==null?_():x,3),T),M=new m(T),z=function(){for(var P=M.g(i),V=u,q=0;P<c;)P=(P+q)*s,V*=s,q=M.g(1);for(;P>=h;)P/=2,V/=2,q>>>=1;return(P+q)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(w(M.S),n),(b.pass||N||function(P,V,q,U){return U&&(U.S&&A(U,M),P.state=function(){return A(M,{})}),q?(r[l]=P,V):P})(z,E,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(x){var b,N=x.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(x=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+x[E%N]+(b=z[E])],z[M]=b;(T.g=function(P){for(var V,q=0,U=T.i,K=T.j,Z=T.S;P--;)V=Z[U=d&U+1],q=q*s+Z[d&(Z[U]=Z[K=d&K+V])+(Z[K]=V)];return T.i=U,T.j=K,q})(s)}function A(x,b){return b.i=x.i,b.j=x.j,b.S=x.S.slice(),b}function y(x,b){var N=[],T=typeof x,E;if(b&&T=="object")for(E in x)try{N.push(y(x[E],b-1))}catch(M){}return N.length?N:T=="string"?x:x+"\0"}function g(x,b){for(var N=x+"",T,E=0;E<N.length;)b[d&E]=d&(T^=b[d&E]*19)+N.charCodeAt(E++);return w(b)}function _(){try{var x;return p&&(x=p.randomBytes)?x=x(s):(x=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(x)),w(x)}catch(T){var b=a.navigator,N=b&&b.plugins;return[+new Date,a,N,a.screen,w(n)]}}function w(x){return String.fromCharCode.apply(0,x)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=V1()}catch(x){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),wk=et((e,t)=>{var n=pk(),r=fk(),a=mk(),s=Ak(),i=yk(),o=gk(),l=xk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),gu=et(()=>{}),_k=et(()=>{}),bk=et(()=>{}),vk=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=Ye&&In(Q.buffer),vn}function i(){return Q.buffer!=Ye&&In(Q.buffer),Zt}function o(){return Q.buffer!=Ye&&In(Q.buffer),fn}function l(){return Q.buffer!=Ye&&In(Q.buffer),an}function u(){return Q.buffer!=Ye&&In(Q.buffer),Cr}var c=typeof a!="undefined"?a:{},h={},d;for(d in c)c.hasOwnProperty(d)&&(h[d]=c[d]);var p=[],f="./this.program",m=function(v,S){throw S},A=!1,y=!1,g=!1,_=!1;A=typeof window=="object",y=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=!A&&!g&&!y;var w=c.ENVIRONMENT_IS_PTHREAD||!1;w&&(Ye=c.buffer,Qn=c.DYNAMIC_BASE,fr=c.DYNAMICTOP_PTR);var x="";function b(v){return c.locateFile?c.locateFile(v,x):x+v}var N,T,E,M,z,P;if(g){y?x=gu().dirname(x)+"/":x=__dirname+"/",N=function(v,S){return z||(z=require("fs")),P||(P=gu()),v=P.normalize(v),z.readFileSync(v,S?null:"utf8")},E=function(v){var S=N(v,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof Y2))throw v}),process.on("unhandledRejection",Yr),m=function(v){process.exit(v)},c.inspect=function(){return"[Emscripten Module object]"};var V;try{V=_k()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=V.Worker}else _?(typeof read!="undefined"&&(N=function(v){return read(v)}),E=function(v){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(S=read(v,"binary"),me(typeof S=="object"),S)},typeof scriptArgs!="undefined"?p=scriptArgs:typeof arguments!="undefined"&&(p=arguments),typeof quit=="function"&&(m=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||y)&&(y?x=self.location.href:document.currentScript&&(x=document.currentScript.src),typeof r!="undefined"&&r&&(x=r),x.indexOf("blob:")!==0?x=x.substr(0,x.lastIndexOf("/")+1):x="",g?(N=function(v,S){return z||(z=require("fs")),P||(P=gu()),v=P.normalize(v),z.readFileSync(v,S?null:"utf8")},E=function(v){var S=N(v,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S}):(N=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.send(null),S.responseText},y&&(E=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),T=function(v,S,O){var G=new XMLHttpRequest;G.open("GET",v,!0),G.responseType="arraybuffer",G.onload=function(){if(G.status==200||G.status==0&&G.response){S(G.response);return}O()},G.onerror=O,G.send(null)}),M=function(v){document.title=v});g&&typeof performance=="undefined"&&(performance=bk().performance);var q=c.print||console.log.bind(console),U=c.printErr||console.warn.bind(console);for(d in h)h.hasOwnProperty(d)&&(c[d]=h[d]);h=null,c.arguments&&(p=c.arguments),c.thisProgram&&(f=c.thisProgram),c.quit&&(m=c.quit);var K=Atomics.load,Z=Atomics.store,te=Atomics.compareExchange,J;c.wasmBinary&&(J=c.wasmBinary);var ae;c.noExitRuntime&&(ae=c.noExitRuntime),typeof WebAssembly!="object"&&U("no native wasm support detected");var Q,le=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),se,ce=0,he=0,pe=!1,ge=0;function me(v,S){v||Yr("Assertion failed: "+S)}function Ne(v){var S=c["_"+v];return me(S,"Cannot call unknown function "+v+", make sure it is exported"),S}function Ce(v,S,O,G,de){var ue={string:function(Bn){var xa=0;if(Bn!=null&&Bn!==0){var yu=(Bn.length<<2)+1;xa=Hi(yu),ot(Bn,xa,yu)}return xa},array:function(Bn){var xa=Hi(Bn.length);return ct(Bn,xa),xa}};function oe(Bn){return S==="string"?Ve(Bn):S==="boolean"?Boolean(Bn):Bn}var _e=Ne(v),Je=[],Ft=0;if(G)for(var nn=0;nn<G.length;nn++){var qi=ue[O[nn]];qi?(Ft===0&&(Ft=fu()),Je[nn]=qi(G[nn])):Je[nn]=G[nn]}var Au=_e.apply(null,Je);return Au=oe(Au),Ft!==0&&Gi(Ft),Au}function De(v,S,O,G){O=O||[];var de=O.every(function(oe){return oe==="number"}),ue=S!=="string";return ue&&de&&!G?Ne(v):function(){return Ce(v,S,O,arguments,G)}}function Xe(v,S,O){for(var G=S+O,de="";!(S>=G);){var ue=v[S++];if(!ue)return de;if(!(ue&128)){de+=String.fromCharCode(ue);continue}var oe=v[S++]&63;if((ue&224)==192){de+=String.fromCharCode((ue&31)<<6|oe);continue}var _e=v[S++]&63;if((ue&240)==224?ue=(ue&15)<<12|oe<<6|_e:ue=(ue&7)<<18|oe<<12|_e<<6|v[S++]&63,ue<65536)de+=String.fromCharCode(ue);else{var Je=ue-65536;de+=String.fromCharCode(55296|Je>>10,56320|Je&1023)}}return de}function Ve(v,S){return v?Xe(i(),v,S):""}function nt(v,S,O,G){if(!(G>0))return 0;for(var de=O,ue=O+G-1,oe=0;oe<v.length;++oe){var _e=v.charCodeAt(oe);if(_e>=55296&&_e<=57343){var Je=v.charCodeAt(++oe);_e=65536+((_e&1023)<<10)|Je&1023}if(_e<=127){if(O>=ue)break;S[O++]=_e}else if(_e<=2047){if(O+1>=ue)break;S[O++]=192|_e>>6,S[O++]=128|_e&63}else if(_e<=65535){if(O+2>=ue)break;S[O++]=224|_e>>12,S[O++]=128|_e>>6&63,S[O++]=128|_e&63}else{if(O+3>=ue)break;S[O++]=240|_e>>18,S[O++]=128|_e>>12&63,S[O++]=128|_e>>6&63,S[O++]=128|_e&63}}return S[O]=0,O-de}function ot(v,S,O){return nt(v,i(),S,O)}function je(v){for(var S=0,O=0;O<v.length;++O){var G=v.charCodeAt(O);G>=55296&&G<=57343&&(G=65536+((G&1023)<<10)|v.charCodeAt(++O)&1023),G<=127?++S:G<=2047?S+=2:G<=65535?S+=3:S+=4}return S}function ct(v,S){s().set(v,S)}var ht=65536;function Ln(v,S){return v%S>0&&(v+=S-v%S),v}var Ye,vn,Zt,kn,Yn,fn,an,Jn,Cr;function In(v){Ye=v,c.HEAP8=vn=new Int8Array(v),c.HEAP16=kn=new Int16Array(v),c.HEAP32=fn=new Int32Array(v),c.HEAPU8=Zt=new Uint8Array(v),c.HEAPU16=Yn=new Uint16Array(v),c.HEAPU32=an=new Uint32Array(v),c.HEAPF32=Jn=new Float32Array(v),c.HEAPF64=Cr=new Float64Array(v)}var $i=5256464,Ql=$i,pr=13584,Qn=5256464,fr=12656,zi=c.INITIAL_MEMORY||16777216;if(w)Q=c.wasmMemory,Ye=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:zi/ht,maximum:2147483648/ht,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw U("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),g&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ye=Q.buffer),zi=Ye.byteLength,In(Ye),w||(o()[fr>>2]=Qn);function Pi(v){for(;v.length>0;){var S=v.shift();if(typeof S=="function"){S(c);continue}var O=S.func;typeof O=="number"?S.arg===void 0?c.dynCall_v(O):c.dynCall_vi(O,S.arg):O(S.arg===void 0?null:S.arg)}}var Qa=[],eu=[],R0=[],tu=[],ah=[],nu=!1;w&&(nu=!0);function er(){if(!w){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)O0(c.preRun.shift());Pi(Qa)}}function sh(){nu=!0,Pi(eu)}function F0(){w||Pi(R0)}function M0(){if(!w){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)es(c.postRun.shift());Pi(ah)}}function O0(v){Qa.unshift(v)}function es(v){ah.unshift(v)}var Li=Math.ceil,D0=Math.floor,Zr=0,ru=null,ts=null;function $0(v){me(!w,"addRunDependency cannot be used in a pthread worker"),Zr++,c.monitorRunDependencies&&c.monitorRunDependencies(Zr)}function z0(v){if(Zr--,c.monitorRunDependencies&&c.monitorRunDependencies(Zr),Zr==0&&(ru!==null&&(clearInterval(ru),ru=null),ts)){var S=ts;ts=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Yr(v){throw c.onAbort&&c.onAbort(v),w&&console.error("Pthread aborting at "+new Error().stack),v+="",q(v),U(v),pe=!0,ge=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function au(v,S){return String.prototype.startsWith?v.startsWith(S):v.indexOf(S)===0}var P0="data:application/octet-stream;base64,";function ih(v){return au(v,P0)}var L0="file://";function oh(v){return au(v,L0)}var tr="tfjs-backend-wasm-threaded-simd.wasm";ih(tr)||(tr=b(tr));function lh(){try{if(J)return new Uint8Array(J);if(E)return E(tr);throw"both async and sync fetching of the wasm failed"}catch(v){Yr(v)}}function W0(){return!J&&(A||y)&&typeof fetch=="function"&&!oh(tr)?fetch(tr,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+tr+"'";return v.arrayBuffer()}).catch(function(){return lh()}):new Promise(function(v,S){v(lh())})}function B0(){var v={a:F1};function S(oe,_e){var Je=oe.exports;if(c.asm=Je,se=_e,!w){var Ft=fe.unusedWorkers.length;fe.unusedWorkers.forEach(function(nn){fe.loadWasmModuleToWorker(nn,function(){--Ft||z0("wasm-instantiate")})})}}w||$0("wasm-instantiate");function O(oe){S(oe.instance,oe.module)}function G(oe){return W0().then(function(_e){return WebAssembly.instantiate(_e,v)}).then(oe,function(_e){U("failed to asynchronously prepare wasm: "+_e),Yr(_e)})}function de(){if(!J&&typeof WebAssembly.instantiateStreaming=="function"&&!ih(tr)&&!oh(tr)&&typeof fetch=="function")fetch(tr,{credentials:"same-origin"}).then(function(oe){var _e=WebAssembly.instantiateStreaming(oe,v);return _e.then(O,function(Je){U("wasm streaming compile failed: "+Je),U("falling back to ArrayBuffer instantiation"),G(O)})});else return G(O)}if(c.instantiateWasm)try{var ue=c.instantiateWasm(v,S);return ue}catch(oe){return U("Module.instantiateWasm callback failed with error: "+oe),!1}return de(),{}}var V0={};function U0(){fe.initRuntime()}w||eu.push({func:function(){ou()}});var uh=0,ch=0,hh=0;function Wi(v,S,O){v=v|0,S=S|0,O=O|0,uh=v,hh=S,ch=O}c.__register_pthread_ptr=Wi;var su={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Bi=13568;function Vi(v,S){if(v<=0||v>s().length||v&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var O=Atomics.load(o(),Bi>>2),G=0;if(O==v){var de=Atomics.compareExchange(o(),Bi>>2,O,0);if(de==O&&(--S,G=1,S<=0))return 1}var ue=Atomics.notify(o(),v>>2,S);if(ue>=0)return ue+G;throw"Atomics.notify returned an unexpected value "+ue}c._emscripten_futex_wake=Vi;function j0(v){if(w)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var S=fe.pthreads[v];S.worker.terminate(),fe.freeThreadData(S),fe.runningWorkers.splice(fe.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function H0(v){if(w)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var S=fe.pthreads[v];S.worker.postMessage({cmd:"cancel"})}function G0(v){if(w)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var S=fe.pthreads[v];if(S){var O=S.worker;fe.returnWorkerToPool(O)}}var fe={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){Wi(fe.mainThreadBlock,!y,1),q2(fe.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,S=0;S<v;++S)fe.allocateUnusedWorker();fe.mainThreadBlock=12816;for(var S=0;S<232/4;++S)l()[fe.mainThreadBlock/4+S]=0;o()[fe.mainThreadBlock+12>>2]=fe.mainThreadBlock;var O=fe.mainThreadBlock+156;o()[O>>2]=O;for(var G=13056,S=0;S<128;++S)l()[G/4+S]=0;Atomics.store(l(),fe.mainThreadBlock+104>>2,G),Atomics.store(l(),fe.mainThreadBlock+40>>2,fe.mainThreadBlock),Atomics.store(l(),fe.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(fe.exitHandlers!==null){for(;fe.exitHandlers.length>0;)fe.exitHandlers.pop()();fe.exitHandlers=null}w&&ce&&G2()},threadExit:function(v){var S=Rr();S&&(Atomics.store(l(),S+4>>2,v),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+60>>2,1),Atomics.store(l(),S+64>>2,0),fe.runExitHandlers(),Vi(S+0,2147483647),Wi(0,0,0),ce=0,w&&postMessage({cmd:"exit"}))},threadCancel:function(){fe.runExitHandlers(),Atomics.store(l(),ce+4>>2,-1),Atomics.store(l(),ce+0>>2,1),Vi(ce+0,2147483647),ce=he=0,Wi(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in fe.pthreads){var S=fe.pthreads[v];S&&S.worker&&fe.returnWorkerToPool(S.worker)}fe.pthreads={};for(var O=0;O<fe.unusedWorkers.length;++O){var G=fe.unusedWorkers[O];G.terminate()}fe.unusedWorkers=[];for(var O=0;O<fe.runningWorkers.length;++O){var G=fe.runningWorkers[O],S=G.pthread;fe.freeThreadData(S),G.terminate()}fe.runningWorkers=[]},freeThreadData:function(v){if(v){if(v.threadInfoStruct){var S=o()[v.threadInfoStruct+104>>2];o()[v.threadInfoStruct+104>>2]=0,pu(S),pu(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&pu(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete fe.pthreads[v.pthread.thread],fe.unusedWorkers.push(v),fe.runningWorkers.splice(fe.runningWorkers.indexOf(v),1),fe.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,S){v.onmessage=function(O){var G=O.data,de=G.cmd;if(v.pthread&&(fe.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),G.targetThread&&G.targetThread!=Rr()){var ue=fe.pthreads[G.targetThread];ue?ue.worker.postMessage(O.data,G.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+G.targetThread+", but that thread no longer exists!"),fe.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")D1();else if(de==="spawnThread")yh(O.data);else if(de==="cleanupThread")G0(G.thread);else if(de==="killThread")j0(G.thread);else if(de==="cancelThread")H0(G.thread);else if(de==="loaded")v.loaded=!0,S&&S(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(de==="print")q("Thread "+G.threadId+": "+G.text);else if(de==="printErr")U("Thread "+G.threadId+": "+G.text);else if(de==="alert")alert("Thread "+G.threadId+": "+G.text);else if(de==="exit"){var oe=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);oe&&fe.returnWorkerToPool(v)}else de==="cancelDone"?fe.returnWorkerToPool(v):de==="objectTransfer"?fe.receiveObjectTransfer(O.data):O.data.target==="setimmediate"?v.postMessage(O.data):U("worker sent an unknown command "+de);fe.currentProxiedOperationCallerThread=void 0},v.onerror=function(O){U("pthread sent an error! "+O.filename+":"+O.lineno+": "+O.message)},g&&(v.on("message",function(O){v.onmessage({data:O})}),v.on("error",function(O){v.onerror(O)}),v.on("exit",function(O){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:se,DYNAMIC_BASE:Qn,DYNAMICTOP_PTR:fr})},allocateUnusedWorker:function(){var v=b("tfjs-backend-wasm-threaded-simd.worker.js");fe.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return fe.unusedWorkers.length==0&&(fe.allocateUnusedWorker(),fe.loadWasmModuleToWorker(fe.unusedWorkers[0])),fe.unusedWorkers.length>0?fe.unusedWorkers.pop():null},busySpinWait:function(v){for(var S=performance.now()+v;performance.now()<S;);}};function q0(v,S){$i=Ql=v,pr=S,Gi(v)}c.establishStackSpace=q0;function X0(){return ae}c.getNoExitRuntime=X0;function K0(v,S,O,G){Yr("Assertion failed: "+Ve(v)+", at: "+[S?Ve(S):"unknown filename",O,G?Ve(G):"unknown function"])}function Z0(v,S){var O=_main(v,S)}var ns;g?ns=function(){var v=process.hrtime();return v[0]*1e3+v[1]/1e6}:w?ns=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?ns=dateNow:ns=function(){return performance.now()};function Y0(v){return o()[U2()>>2]=v,v}function J0(v,S){if(w)return Aa(1,1,v,S);tu.unshift({func:v,arg:S})}function Q0(v,S){if(v==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var O=fe.pthreads[v],G=O&&O.worker;if(!G)return;G.postMessage({cmd:"processThreadQueue"})}return 1}function e1(){Yr()}function t1(v,S){v=v|0,S=S|0}function n1(v,S,O){if(v<=0||v>s().length||v&!0)return-28;if(y){var G=Atomics.wait(o(),v>>2,S,O);if(G==="timed-out")return-73;if(G==="not-equal")return-6;if(G==="ok")return 0;throw"Atomics.wait returned an unexpected value "+G}else{var de=Atomics.load(o(),v>>2);if(S!=de)return-6;var ue=performance.now(),oe=ue+O;Atomics.store(o(),Bi>>2,v);for(var _e=v;v==_e;){if(ue=performance.now(),ue>oe)return-73;D1(),v=Atomics.load(o(),Bi>>2)}return 0}}function r1(){return hh|0}function a1(){return ch|0}function s1(v,S,O){i().copyWithin(v,S,S+O)}function i1(){return navigator.hardwareConcurrency}function Aa(v,S){for(var O=arguments.length-2,G=fu(),de=Hi(O*8),ue=de>>3,oe=0;oe<O;oe++)u()[ue+oe]=arguments[2+oe];var _e=K2(v,O,de,S);return Gi(G),_e}var rs=[];function Ui(v,S){Ui.array||(Ui.array=[]);var O=Ui.array;O.length=0;for(var G;G=i()[v++];)G===100||G===102?(S=S+7&~7,O.push(u()[S>>3]),S+=8):(S=S+3&~3,O.push(o()[S>>2]),S+=4);return O}function o1(v,S,O){rs.length=S;for(var G=O>>3,de=0;de<S;de++)rs[de]=u()[G+de];var ue=v<0,oe=ue?V0[-v-1]:R1[v];if(ue){var _e=rs[1],Je=rs[2],Ft=Ui(_e,Je);return oe.apply(null,Ft)}return oe.apply(null,rs)}function l1(){return i().length}function u1(v){try{return Q.grow(v-Ye.byteLength+65535>>>16),In(Q.buffer),1}catch(S){}}function c1(v){v=v>>>0;var S=l1();if(v<=S)return!1;var O=65536,G=2147483648;if(v>G)return!1;for(var de=16777216,ue=1;ue<=4;ue*=2){var oe=S*(1+.2/ue);oe=Math.min(oe,v+100663296);var _e=Math.min(G,Ln(Math.max(de,v,oe),O)),Je=u1(_e);if(Je)return!0}return!1}var Pe={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=Pe.eventHandlers.length-1;v>=0;--v)Pe._removeHandler(v);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(tu.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,S,O){function G(oe,_e){if(oe.length!=_e.length)return!1;for(var Je in oe)if(oe[Je]!=_e[Je])return!1;return!0}for(var de in Pe.deferredCalls){var ue=Pe.deferredCalls[de];if(ue.targetFunction==v&&G(ue.argsList,O))return}Pe.deferredCalls.push({targetFunction:v,precedence:S,argsList:O}),Pe.deferredCalls.sort(function(oe,_e){return oe.precedence<_e.precedence})},removeDeferredCalls:function(v){for(var S=0;S<Pe.deferredCalls.length;++S)Pe.deferredCalls[S].targetFunction==v&&(Pe.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var v=0;v<Pe.deferredCalls.length;++v){var S=Pe.deferredCalls[v];Pe.deferredCalls.splice(v,1),--v,S.targetFunction.apply(null,S.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(v,S){for(var O=0;O<Pe.eventHandlers.length;++O)Pe.eventHandlers[O].target==v&&(!S||S==Pe.eventHandlers[O].eventTypeString)&&Pe._removeHandler(O--)},_removeHandler:function(v){var S=Pe.eventHandlers[v];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Pe.eventHandlers.splice(v,1)},registerOrRemoveHandler:function(v){var S=function(G){++Pe.inEventHandler,Pe.currentEventHandler=v,Pe.runDeferredCalls(),v.handlerFunc(G),Pe.runDeferredCalls(),--Pe.inEventHandler};if(v.callbackfunc)v.eventListenerFunc=S,v.target.addEventListener(v.eventTypeString,S,v.useCapture),Pe.eventHandlers.push(v),Pe.registerRemoveEventListeners();else for(var O=0;O<Pe.eventHandlers.length;++O)Pe.eventHandlers[O].target==v.target&&Pe.eventHandlers[O].eventTypeString==v.eventTypeString&&Pe._removeHandler(O--)},queueEventHandlerOnThread_iiii:function(v,S,O,G,de){var ue=fu(),oe=Hi(12);o()[oe>>2]=O,o()[oe+4>>2]=G,o()[oe+8>>2]=de,$1(v,637534208,S,G,oe),Gi(ue)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return fe.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function h1(v){var S=je(v)+1,O=du(S);return ot(v,O,S),O}function d1(v,S,O,G){var de=fu(),ue=Hi(12),oe=0;S&&(oe=h1(S)),o()[ue>>2]=oe,o()[ue+4>>2]=O,o()[ue+8>>2]=G,$1(v,657457152,0,oe,ue),Gi(de)}function p1(v,S,O,G){S=S?Ve(S):"",d1(v,S,O,G)}function f1(v){return v>2?Ve(v):v}var m1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function A1(v){v=f1(v);var S=m1[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return S}function iu(v){return A1(v)}function dh(v,S,O){var G=iu(v);if(!G)return-4;if(G.canvasSharedPtr&&(o()[G.canvasSharedPtr>>2]=S,o()[G.canvasSharedPtr+4>>2]=O),G.offscreenCanvas||!G.controlTransferredOffscreen){G.offscreenCanvas&&(G=G.offscreenCanvas);var de=!1;if(G.GLctxObject&&G.GLctxObject.GLctx){var ue=G.GLctxObject.GLctx.getParameter(2978);de=ue[0]===0&&ue[1]===0&&ue[2]===G.width&&ue[3]===G.height}G.width=S,G.height=O,de&&G.GLctxObject.GLctx.viewport(0,0,S,O)}else if(G.canvasSharedPtr){var oe=o()[G.canvasSharedPtr+8>>2];return p1(oe,v,S,O),1}else return-4;return 0}function ph(v,S,O){return w?Aa(2,1,v,S,O):dh(v,S,O)}function y1(v,S,O){var G=iu(v);return G?dh(v,S,O):ph(v,S,O)}function g1(v){v=v|0}function x1(v,S){v=v|0,S=S|0}function w1(v){var S=v.getExtension("ANGLE_instanced_arrays");if(S)return v.vertexAttribDivisor=function(O,G){S.vertexAttribDivisorANGLE(O,G)},v.drawArraysInstanced=function(O,G,de,ue){S.drawArraysInstancedANGLE(O,G,de,ue)},v.drawElementsInstanced=function(O,G,de,ue,oe){S.drawElementsInstancedANGLE(O,G,de,ue,oe)},1}function _1(v){var S=v.getExtension("OES_vertex_array_object");if(S)return v.createVertexArray=function(){return S.createVertexArrayOES()},v.deleteVertexArray=function(O){S.deleteVertexArrayOES(O)},v.bindVertexArray=function(O){S.bindVertexArrayOES(O)},v.isVertexArray=function(O){return S.isVertexArrayOES(O)},1}function b1(v){var S=v.getExtension("WEBGL_draw_buffers");if(S)return v.drawBuffers=function(O,G){S.drawBuffersWEBGL(O,G)},1}var Be={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferFloatViews[S]=v.subarray(0,S+1);for(var O=new Int32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferIntViews[S]=O.subarray(0,S+1)},recordError:function(v){Be.lastError||(Be.lastError=v)},getNewId:function(v){for(var S=Be.counter++,O=v.length;O<S;O++)v[O]=null;return S},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(v,S,O,G){for(var de="",ue=0;ue<S;++ue){var oe=G?o()[G+ue*4>>2]:-1;de+=Ve(o()[O+ue*4>>2],oe<0?void 0:oe)}return de},createContext:function(v,S){var O=v.getContext("webgl",S);if(!O)return 0;var G=Be.registerContext(O,S);return G},registerContext:function(v,S){var O=du(8);o()[O+4>>2]=Rr();var G={handle:O,attributes:S,version:S.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=G),Be.contexts[O]=G,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Be.initExtensions(G),O},makeContextCurrent:function(v){return Be.currentContext=Be.contexts[v],c.ctx=ya=Be.currentContext&&Be.currentContext.GLctx,!(v&&!ya)},getContext:function(v){return Be.contexts[v]},deleteContext:function(v){Be.currentContext===Be.contexts[v]&&(Be.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Be.contexts[v].GLctx.canvas),Be.contexts[v]&&Be.contexts[v].GLctx.canvas&&(Be.contexts[v].GLctx.canvas.GLctxObject=void 0),pu(Be.contexts[v].handle),Be.contexts[v]=null},initExtensions:function(v){if(v||(v=Be.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var S=v.GLctx;w1(S),_1(S),b1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query");var O=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],G=S.getSupportedExtensions()||[];G.forEach(function(de){O.indexOf(de)!=-1&&S.getExtension(de)})}},populateUniformTable:function(v){for(var S=Be.programs[v],O=Be.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},G=O.uniforms,de=ya.getProgramParameter(S,35718),ue=0;ue<de;++ue){var oe=ya.getActiveUniform(S,ue),_e=oe.name;O.maxUniformLength=Math.max(O.maxUniformLength,_e.length+1),_e.slice(-1)=="]"&&(_e=_e.slice(0,_e.lastIndexOf("[")));var Je=ya.getUniformLocation(S,_e);if(Je){var Ft=Be.getNewId(Be.uniforms);G[_e]=[oe.size,Ft],Be.uniforms[Ft]=Je;for(var nn=1;nn<oe.size;++nn){var qi=_e+"["+nn+"]";Je=ya.getUniformLocation(S,qi),Ft=Be.getNewId(Be.uniforms),Be.uniforms[Ft]=Je}}}}},v1=["default","low-power","high-performance"];function k1(v,S){var O={},G=S>>2;O.alpha=!!o()[G+(0>>2)],O.depth=!!o()[G+(4>>2)],O.stencil=!!o()[G+(8>>2)],O.antialias=!!o()[G+(12>>2)],O.premultipliedAlpha=!!o()[G+(16>>2)],O.preserveDrawingBuffer=!!o()[G+(20>>2)];var de=o()[G+(24>>2)];O.powerPreference=v1[de],O.failIfMajorPerformanceCaveat=!!o()[G+(28>>2)],O.majorVersion=o()[G+(32>>2)],O.minorVersion=o()[G+(36>>2)],O.enableExtensionsByDefault=o()[G+(40>>2)],O.explicitSwapControl=o()[G+(44>>2)],O.proxyContextToMainThread=o()[G+(48>>2)],O.renderViaOffscreenBackBuffer=o()[G+(52>>2)];var ue=iu(v);if(!ue)return-4;if(O.explicitSwapControl)return-1;var oe=Be.createContext(ue,O);return oe}function I1(v,S){return k1(v,S)}var as={splitPath:function(v){var S=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return S.exec(v).slice(1)},normalizeArray:function(v,S){for(var O=0,G=v.length-1;G>=0;G--){var de=v[G];de==="."?v.splice(G,1):de===".."?(v.splice(G,1),O++):O&&(v.splice(G,1),O--)}if(S)for(;O;O--)v.unshift("..");return v},normalize:function(v){var S=v.charAt(0)==="/",O=v.substr(-1)==="/";return v=as.normalizeArray(v.split("/").filter(function(G){return!!G}),!S).join("/"),!v&&!S&&(v="."),v&&O&&(v+="/"),(S?"/":"")+v},dirname:function(v){var S=as.splitPath(v),O=S[0],G=S[1];return!O&&!G?".":(G&&(G=G.substr(0,G.length-1)),O+G)},basename:function(v){if(v==="/")return"/";var S=v.lastIndexOf("/");return S===-1?v:v.substr(S+1)},extname:function(v){return as.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return as.normalize(v.join("/"))},join2:function(v,S){return as.normalize(v+"/"+S)}},ji={mappings:{},buffers:[null,[],[]],printChar:function(v,S){var O=ji.buffers[v];S===0||S===10?((v===1?q:U)(Xe(O,0)),O.length=0):O.push(S)},varargs:void 0,get:function(){ji.varargs+=4;var v=o()[ji.varargs-4>>2];return v},getStr:function(v){var S=Ve(v);return S},get64:function(v,S){return v}};function fh(v){return w?Aa(3,1,v):0}function mh(v,S,O,G,de){if(w)return Aa(4,1,v,S,O,G,de)}function Ah(v,S,O,G){if(w)return Aa(5,1,v,S,O,G);for(var de=0,ue=0;ue<O;ue++){for(var oe=o()[S+ue*8>>2],_e=o()[S+(ue*8+4)>>2],Je=0;Je<_e;Je++)ji.printChar(v,i()[oe+Je]);de+=_e}return o()[G>>2]=de,0}function N1(v){var S=fe.exitHandlers.pop();v&&S()}function S1(v,S){fe.exitHandlers===null&&(fe.exitHandlers=[]),fe.exitHandlers.push(function(){Z2(v,S)})}function yh(v){if(w)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var S=fe.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";fe.runningWorkers.push(S);for(var O=du(128*4),G=0;G<128;++G)o()[O+G*4>>2]=0;var de=v.stackBase+v.stackSize,ue=fe.pthreads[v.pthread_ptr]={worker:S,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},oe=ue.threadInfoStruct>>2;Atomics.store(l(),oe+(0>>2),0),Atomics.store(l(),oe+(4>>2),0),Atomics.store(l(),oe+(8>>2),0),Atomics.store(l(),oe+(68>>2),v.detached),Atomics.store(l(),oe+(104>>2),O),Atomics.store(l(),oe+(48>>2),0),Atomics.store(l(),oe+(40>>2),ue.threadInfoStruct),Atomics.store(l(),oe+(44>>2),42),Atomics.store(l(),oe+(108>>2),v.stackSize),Atomics.store(l(),oe+(84>>2),v.stackSize),Atomics.store(l(),oe+(80>>2),de),Atomics.store(l(),oe+(108+8>>2),de),Atomics.store(l(),oe+(108+12>>2),v.detached),Atomics.store(l(),oe+(108+20>>2),v.schedPolicy),Atomics.store(l(),oe+(108+24>>2),v.schedPrio);var _e=j2(),Je=_e+40;Atomics.store(l(),oe+(176>>2),Je),S.pthread=ue;var Ft={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};S.runPthread=function(){Ft.time=performance.now(),S.postMessage(Ft,v.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function T1(v,S,O){if(!S&&!O)return su.EINVAL;if(!v)return U("pthread_getschedparam called with a null thread pointer!"),su.ESRCH;var G=o()[v+12>>2];if(G!==v)return U("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),su.ESRCH;var de=Atomics.load(l(),v+108+20>>2),ue=Atomics.load(l(),v+108+24>>2);return S&&(o()[S>>2]=de),O&&(o()[O>>2]=ue),0}function Rr(){return uh|0}c._pthread_self=Rr;function E1(v,S,O,G){if(typeof SharedArrayBuffer=="undefined")return U("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return U("pthread_create called with a null thread pointer!"),28;var de=[],ue=0;if(w&&(de.length===0||ue))return X2(687865856,v,S,O,G);if(ue)return ue;var oe=0,_e=0,Je=0,Ft=0,nn=0;if(S){oe=o()[S>>2],oe+=81920,_e=o()[S+8>>2],Je=o()[S+12>>2]!==0;var qi=o()[S+16>>2]===0;if(qi){var Au=o()[S+20>>2],Bn=o()[S+24>>2],xa=fe.currentProxiedOperationCallerThread?fe.currentProxiedOperationCallerThread:Rr();T1(xa,S+20,S+24),Ft=o()[S+20>>2],nn=o()[S+24>>2],o()[S+20>>2]=Au,o()[S+24>>2]=Bn}else Ft=o()[S+20>>2],nn=o()[S+24>>2]}else oe=2097152;var yu=_e==0;yu?_e=H2(16,oe):(_e-=oe,me(_e>0));for(var Xi=du(232),P1=0;P1<232>>2;++P1)l()[(Xi>>2)+P1]=0;o()[v>>2]=Xi,o()[Xi+12>>2]=Xi;var J2=Xi+156;o()[J2>>2]=J2;var L1={stackBase:_e,stackSize:oe,allocatedOwnStack:yu,schedPolicy:Ft,schedPrio:nn,detached:Je,startRoutine:O,pthread_ptr:Xi,parent_pthread_ptr:Rr(),arg:G,transferList:de};return w?(L1.cmd="spawnThread",postMessage(L1,de)):yh(L1),0}function C1(v){return v=+v,v>=0?+D0(v+.5):+Li(v-.5)}function gh(v){if(w)return Aa(6,1,v);switch(v){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Y0(28),-1}w?fe.initWorker():fe.initMainThreadBlock();var ya;Be.init();var R1=[null,J0,ph,fh,mh,Ah,gh],F1={e:K0,r:Z0,w:Q0,a:e1,l:t1,d:n1,c:Vi,h:ns,g:r1,x:a1,q:s1,B:i1,t:o1,A:c1,u:y1,k:g1,s:x1,v:I1,m:fh,o:mh,i:Ah,p:U0,memory:Q||c.wasmMemory,y:N1,z:S1,j:E1,b:Rr,f:C1,n:gh,table:le},xh=B0();c.asm=xh;var ou=c.___wasm_call_ctors=function(){return(ou=c.___wasm_call_ctors=c.asm.C).apply(null,arguments)},lu=c._init=function(){return(lu=c._init=c.asm.D).apply(null,arguments)},wh=c._register_tensor=function(){return(wh=c._register_tensor=c.asm.E).apply(null,arguments)},ss=c._dispose_data=function(){return(ss=c._dispose_data=c.asm.F).apply(null,arguments)},uu=c._dispose=function(){return(uu=c._dispose=c.asm.G).apply(null,arguments)},M1=c._Abs=function(){return(M1=c._Abs=c.asm.H).apply(null,arguments)},O1=c._Add=function(){return(O1=c._Add=c.asm.I).apply(null,arguments)},cu=c._AddN=function(){return(cu=c._AddN=c.asm.J).apply(null,arguments)},_h=c._ArgMax=function(){return(_h=c._ArgMax=c.asm.K).apply(null,arguments)},bh=c._AvgPool=function(){return(bh=c._AvgPool=c.asm.L).apply(null,arguments)},H=c._BatchMatMul=function(){return(H=c._BatchMatMul=c.asm.M).apply(null,arguments)},ne=c._ClipByValue=function(){return(ne=c._ClipByValue=c.asm.N).apply(null,arguments)},Ie=c._Conv2D=function(){return(Ie=c._Conv2D=c.asm.O).apply(null,arguments)},Re=c._Conv2DBackpropInput=function(){return(Re=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},Qe=c._Cos=function(){return(Qe=c._Cos=c.asm.Q).apply(null,arguments)},It=c._CropAndResize=function(){return(It=c._CropAndResize=c.asm.R).apply(null,arguments)},Ke=c._Cumsum=function(){return(Ke=c._Cumsum=c.asm.S).apply(null,arguments)},He=c._DepthToSpace=function(){return(He=c._DepthToSpace=c.asm.T).apply(null,arguments)},Wt=c._DepthwiseConv2dNative=function(){return(Wt=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},Jr=c._Equal=function(){return(Jr=c._Equal=c.asm.V).apply(null,arguments)},Qr=c._Exp=function(){return(Qr=c._Exp=c.asm.W).apply(null,arguments)},vh=c._FlipLeftRight=function(){return(vh=c._FlipLeftRight=c.asm.X).apply(null,arguments)},hu=c._Floor=function(){return(hu=c._Floor=c.asm.Y).apply(null,arguments)},Wn=c._FloorDiv=function(){return(Wn=c._FloorDiv=c.asm.Z).apply(null,arguments)},ga=c._FusedBatchNorm=function(){return(ga=c._FusedBatchNorm=c.asm._).apply(null,arguments)},kh=c._FusedConv2D=function(){return(kh=c._FusedConv2D=c.asm.$).apply(null,arguments)},F4=c._FusedDepthwiseConv2D=function(){return(F4=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},M4=c._Gather=function(){return(M4=c._Gather=c.asm.ba).apply(null,arguments)},O4=c._GatherNd=function(){return(O4=c._GatherNd=c.asm.ca).apply(null,arguments)},D4=c._Greater=function(){return(D4=c._Greater=c.asm.da).apply(null,arguments)},$4=c._GreaterEqual=function(){return($4=c._GreaterEqual=c.asm.ea).apply(null,arguments)},z4=c._LeakyRelu=function(){return(z4=c._LeakyRelu=c.asm.fa).apply(null,arguments)},P4=c._Less=function(){return(P4=c._Less=c.asm.ga).apply(null,arguments)},L4=c._LessEqual=function(){return(L4=c._LessEqual=c.asm.ha).apply(null,arguments)},W4=c._Log=function(){return(W4=c._Log=c.asm.ia).apply(null,arguments)},B4=c._LogicalAnd=function(){return(B4=c._LogicalAnd=c.asm.ja).apply(null,arguments)},V4=c._Max=function(){return(V4=c._Max=c.asm.ka).apply(null,arguments)},U4=c._MaxPool=function(){return(U4=c._MaxPool=c.asm.la).apply(null,arguments)},j4=c._Maximum=function(){return(j4=c._Maximum=c.asm.ma).apply(null,arguments)},H4=c._Mean=function(){return(H4=c._Mean=c.asm.na).apply(null,arguments)},G4=c._Min=function(){return(G4=c._Min=c.asm.oa).apply(null,arguments)},q4=c._Minimum=function(){return(q4=c._Minimum=c.asm.pa).apply(null,arguments)},X4=c._Multiply=function(){return(X4=c._Multiply=c.asm.qa).apply(null,arguments)},K4=c._Neg=function(){return(K4=c._Neg=c.asm.ra).apply(null,arguments)},Z4=c._NonMaxSuppressionV3=function(){return(Z4=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},Y4=c._NonMaxSuppressionV4=function(){return(Y4=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},J4=c._NonMaxSuppressionV5=function(){return(J4=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},Q4=c._NotEqual=function(){return(Q4=c._NotEqual=c.asm.va).apply(null,arguments)},e8=c._OneHot=function(){return(e8=c._OneHot=c.asm.wa).apply(null,arguments)},t8=c._PadV2=function(){return(t8=c._PadV2=c.asm.xa).apply(null,arguments)},n8=c._Pow=function(){return(n8=c._Pow=c.asm.ya).apply(null,arguments)},r8=c._Prelu=function(){return(r8=c._Prelu=c.asm.za).apply(null,arguments)},a8=c._Prod=function(){return(a8=c._Prod=c.asm.Aa).apply(null,arguments)},s8=c._RealDiv=function(){return(s8=c._RealDiv=c.asm.Ba).apply(null,arguments)},i8=c._Relu=function(){return(i8=c._Relu=c.asm.Ca).apply(null,arguments)},o8=c._Relu6=function(){return(o8=c._Relu6=c.asm.Da).apply(null,arguments)},l8=c._ResizeBilinear=function(){return(l8=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},u8=c._Reverse=function(){return(u8=c._Reverse=c.asm.Fa).apply(null,arguments)},c8=c._RotateWithOffset=function(){return(c8=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},h8=c._Round=function(){return(h8=c._Round=c.asm.Ha).apply(null,arguments)},d8=c._Rsqrt=function(){return(d8=c._Rsqrt=c.asm.Ia).apply(null,arguments)},p8=c._ScatterNd=function(){return(p8=c._ScatterNd=c.asm.Ja).apply(null,arguments)},f8=c._SelectV2=function(){return(f8=c._SelectV2=c.asm.Ka).apply(null,arguments)},m8=c._Sigmoid=function(){return(m8=c._Sigmoid=c.asm.La).apply(null,arguments)},A8=c._Sin=function(){return(A8=c._Sin=c.asm.Ma).apply(null,arguments)},y8=c._Softmax=function(){return(y8=c._Softmax=c.asm.Na).apply(null,arguments)},g8=c._Sqrt=function(){return(g8=c._Sqrt=c.asm.Oa).apply(null,arguments)},x8=c._Square=function(){return(x8=c._Square=c.asm.Pa).apply(null,arguments)},w8=c._SquaredDifference=function(){return(w8=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},_8=c._Step=function(){return(_8=c._Step=c.asm.Ra).apply(null,arguments)},b8=c._StridedSlice=function(){return(b8=c._StridedSlice=c.asm.Sa).apply(null,arguments)},v8=c._Sub=function(){return(v8=c._Sub=c.asm.Ta).apply(null,arguments)},k8=c._Sum=function(){return(k8=c._Sum=c.asm.Ua).apply(null,arguments)},I8=c._Tanh=function(){return(I8=c._Tanh=c.asm.Va).apply(null,arguments)},N8=c._Tile=function(){return(N8=c._Tile=c.asm.Wa).apply(null,arguments)},S8=c._TopK=function(){return(S8=c._TopK=c.asm.Xa).apply(null,arguments)},T8=c._Transpose=function(){return(T8=c._Transpose=c.asm.Ya).apply(null,arguments)},E8=c.__FusedMatMul=function(){return(E8=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},du=c._malloc=function(){return(du=c._malloc=c.asm._a).apply(null,arguments)},pu=c._free=function(){return(pu=c._free=c.asm.$a).apply(null,arguments)},U2=c.___errno_location=function(){return(U2=c.___errno_location=c.asm.ab).apply(null,arguments)},j2=c._emscripten_get_global_libc=function(){return(j2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},C8=c.___em_js__initPthreadsJS=function(){return(C8=c.___em_js__initPthreadsJS=c.asm.cb).apply(null,arguments)},H2=c._memalign=function(){return(H2=c._memalign=c.asm.db).apply(null,arguments)},G2=c.___pthread_tsd_run_dtors=function(){return(G2=c.___pthread_tsd_run_dtors=c.asm.eb).apply(null,arguments)},D1=c._emscripten_main_thread_process_queued_calls=function(){return(D1=c._emscripten_main_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},R8=c._emscripten_current_thread_process_queued_calls=function(){return(R8=c._emscripten_current_thread_process_queued_calls=c.asm.gb).apply(null,arguments)},q2=c._emscripten_register_main_browser_thread_id=function(){return(q2=c._emscripten_register_main_browser_thread_id=c.asm.hb).apply(null,arguments)},F8=c._emscripten_main_browser_thread_id=function(){return(F8=c._emscripten_main_browser_thread_id=c.asm.ib).apply(null,arguments)},M8=c._emscripten_async_run_in_main_thread=function(){return(M8=c._emscripten_async_run_in_main_thread=c.asm.jb).apply(null,arguments)},O8=c._emscripten_sync_run_in_main_thread=function(){return(O8=c._emscripten_sync_run_in_main_thread=c.asm.kb).apply(null,arguments)},D8=c._emscripten_sync_run_in_main_thread_0=function(){return(D8=c._emscripten_sync_run_in_main_thread_0=c.asm.lb).apply(null,arguments)},$8=c._emscripten_sync_run_in_main_thread_1=function(){return($8=c._emscripten_sync_run_in_main_thread_1=c.asm.mb).apply(null,arguments)},z8=c._emscripten_sync_run_in_main_thread_2=function(){return(z8=c._emscripten_sync_run_in_main_thread_2=c.asm.nb).apply(null,arguments)},P8=c._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(P8=c._emscripten_sync_run_in_main_thread_xprintf_varargs=c.asm.ob).apply(null,arguments)},L8=c._emscripten_sync_run_in_main_thread_3=function(){return(L8=c._emscripten_sync_run_in_main_thread_3=c.asm.pb).apply(null,arguments)},X2=c._emscripten_sync_run_in_main_thread_4=function(){return(X2=c._emscripten_sync_run_in_main_thread_4=c.asm.qb).apply(null,arguments)},W8=c._emscripten_sync_run_in_main_thread_5=function(){return(W8=c._emscripten_sync_run_in_main_thread_5=c.asm.rb).apply(null,arguments)},B8=c._emscripten_sync_run_in_main_thread_6=function(){return(B8=c._emscripten_sync_run_in_main_thread_6=c.asm.sb).apply(null,arguments)},V8=c._emscripten_sync_run_in_main_thread_7=function(){return(V8=c._emscripten_sync_run_in_main_thread_7=c.asm.tb).apply(null,arguments)},K2=c._emscripten_run_in_main_runtime_thread_js=function(){return(K2=c._emscripten_run_in_main_runtime_thread_js=c.asm.ub).apply(null,arguments)},$1=c._emscripten_async_queue_on_thread_=function(){return($1=c._emscripten_async_queue_on_thread_=c.asm.vb).apply(null,arguments)},U8=c._emscripten_tls_init=function(){return(U8=c._emscripten_tls_init=c.asm.wb).apply(null,arguments)},fu=c.stackSave=function(){return(fu=c.stackSave=c.asm.xb).apply(null,arguments)},Hi=c.stackAlloc=function(){return(Hi=c.stackAlloc=c.asm.yb).apply(null,arguments)},Gi=c.stackRestore=function(){return(Gi=c.stackRestore=c.asm.zb).apply(null,arguments)},Z2=c.dynCall_vi=function(){return(Z2=c.dynCall_vi=c.asm.Ab).apply(null,arguments)},j8=c.dynCall_v=function(){return(j8=c.dynCall_v=c.asm.Bb).apply(null,arguments)},H8=c.dynCall_ii=function(){return(H8=c.dynCall_ii=c.asm.Cb).apply(null,arguments)};c.asm=xh,c.cwrap=De,c.PThread=fe,c.PThread=fe,c._pthread_self=Rr,c.wasmMemory=Q,c.ExitStatus=Y2;var mu;c.then=function(v){if(mu)v(c);else{var S=c.onRuntimeInitialized;c.onRuntimeInitialized=function(){S&&S(),v(c)}}return c};function Y2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}ts=function v(){mu||z1(),mu||(ts=v)};function z1(v){if(v=v||p,Zr>0||(er(),Zr>0))return;function S(){mu||(mu=!0,c.calledRun=!0,!pe&&(sh(),F0(),c.onRuntimeInitialized&&c.onRuntimeInitialized(),M0()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}if(c.run=z1,c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return w||(ae=!0),w||z1(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),kk=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],u="./this.program",c=function(H,ne){throw ne},h=!1,d=!1,p=!1,f=!1;h=typeof window=="object",d=typeof importScripts=="function",p=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!p&&!d;var m="";function A(H){return s.locateFile?s.locateFile(H,m):m+H}var y,g,_,w,x,b;p?(d?m=gu().dirname(m)+"/":m=__dirname+"/",y=function(H,ne){return x||(x=require("fs")),b||(b=gu()),H=b.normalize(H),x.readFileSync(H,ne?null:"utf8")},_=function(H){var ne=y(H,!0);return ne.buffer||(ne=new Uint8Array(ne)),U(ne.buffer),ne},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof uu))throw H}),process.on("unhandledRejection",Qa),c=function(H){process.exit(H)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(H){return read(H)}),_=function(H){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(H)):(ne=read(H,"binary"),U(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(c=function(H){quit(H)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||d)&&(d?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(H){var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.send(null),ne.responseText},d&&(_=function(H){var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),g=function(H,ne,Ie){var Re=new XMLHttpRequest;Re.open("GET",H,!0),Re.responseType="arraybuffer",Re.onload=function(){if(Re.status==200||Re.status==0&&Re.response){ne(Re.response);return}Ie()},Re.onerror=Ie,Re.send(null)},w=function(H){document.title=H});var N=s.print||console.log.bind(console),T=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(u=s.thisProgram),s.quit&&(c=s.quit);var E;s.wasmBinary&&(E=s.wasmBinary);var M;s.noExitRuntime&&(M=s.noExitRuntime),typeof WebAssembly!="object"&&T("no native wasm support detected");var z,P=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),V=!1,q=0;function U(H,ne){H||Qa("Assertion failed: "+ne)}function K(H){var ne=s["_"+H];return U(ne,"Cannot call unknown function "+H+", make sure it is exported"),ne}function Z(H,ne,Ie,Re,Qe){var It={string:function(Wn){var ga=0;if(Wn!=null&&Wn!==0){var kh=(Wn.length<<2)+1;ga=lu(kh),se(Wn,ga,kh)}return ga},array:function(Wn){var ga=lu(Wn.length);return ce(Wn,ga),ga}};function Ke(Wn){return ne==="string"?Q(Wn):ne==="boolean"?Boolean(Wn):Wn}var He=K(H),Wt=[],Jr=0;if(Re)for(var Qr=0;Qr<Re.length;Qr++){var vh=It[Ie[Qr]];vh?(Jr===0&&(Jr=ou()),Wt[Qr]=vh(Re[Qr])):Wt[Qr]=Re[Qr]}var hu=He.apply(null,Wt);return hu=Ke(hu),Jr!==0&&wh(Jr),hu}function te(H,ne,Ie,Re){Ie=Ie||[];var Qe=Ie.every(function(Ke){return Ke==="number"}),It=ne!=="string";return It&&Qe&&!Re?K(H):function(){return Z(H,ne,Ie,arguments,Re)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ae(H,ne,Ie){for(var Re=ne+Ie,Qe=ne;H[Qe]&&!(Qe>=Re);)++Qe;if(Qe-ne>16&&H.subarray&&J)return J.decode(H.subarray(ne,Qe));for(var It="";ne<Qe;){var Ke=H[ne++];if(!(Ke&128)){It+=String.fromCharCode(Ke);continue}var He=H[ne++]&63;if((Ke&224)==192){It+=String.fromCharCode((Ke&31)<<6|He);continue}var Wt=H[ne++]&63;if((Ke&240)==224?Ke=(Ke&15)<<12|He<<6|Wt:Ke=(Ke&7)<<18|He<<12|Wt<<6|H[ne++]&63,Ke<65536)It+=String.fromCharCode(Ke);else{var Jr=Ke-65536;It+=String.fromCharCode(55296|Jr>>10,56320|Jr&1023)}}return It}function Q(H,ne){return H?ae(ge,H,ne):""}function le(H,ne,Ie,Re){if(!(Re>0))return 0;for(var Qe=Ie,It=Ie+Re-1,Ke=0;Ke<H.length;++Ke){var He=H.charCodeAt(Ke);if(He>=55296&&He<=57343){var Wt=H.charCodeAt(++Ke);He=65536+((He&1023)<<10)|Wt&1023}if(He<=127){if(Ie>=It)break;ne[Ie++]=He}else if(He<=2047){if(Ie+1>=It)break;ne[Ie++]=192|He>>6,ne[Ie++]=128|He&63}else if(He<=65535){if(Ie+2>=It)break;ne[Ie++]=224|He>>12,ne[Ie++]=128|He>>6&63,ne[Ie++]=128|He&63}else{if(Ie+3>=It)break;ne[Ie++]=240|He>>18,ne[Ie++]=128|He>>12&63,ne[Ie++]=128|He>>6&63,ne[Ie++]=128|He&63}}return ne[Ie]=0,Ie-Qe}function se(H,ne,Ie){return le(H,ge,ne,Ie)}function ce(H,ne){pe.set(H,ne)}var he,pe,ge,me,Ne,Ce,De,Xe,Ve;function nt(H){he=H,s.HEAP8=pe=new Int8Array(H),s.HEAP16=me=new Int16Array(H),s.HEAP32=Ce=new Int32Array(H),s.HEAPU8=ge=new Uint8Array(H),s.HEAPU16=Ne=new Uint16Array(H),s.HEAPU32=De=new Uint32Array(H),s.HEAPF32=Xe=new Float32Array(H),s.HEAPF64=Ve=new Float64Array(H)}var ot=s.INITIAL_MEMORY||16777216;function je(H){for(;H.length>0;){var ne=H.shift();if(typeof ne=="function"){ne(s);continue}var Ie=ne.func;typeof Ie=="number"?ne.arg===void 0?s.dynCall_v(Ie):s.dynCall_vi(Ie,ne.arg):Ie(ne.arg===void 0?null:ne.arg)}}var ct=[],ht=[],Ln=[],Ye=[],vn=!1,Zt=!1;function kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Cr(s.preRun.shift());je(ct)}function Yn(){vn=!0,je(ht)}function fn(){je(Ln)}function an(){Zt=!0}function Jn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)In(s.postRun.shift());je(Ye)}function Cr(H){ct.unshift(H)}function In(H){Ye.unshift(H)}var $i=Math.ceil,Ql=Math.floor,pr=0,Qn=null,fr=null;function zi(H){pr++,s.monitorRunDependencies&&s.monitorRunDependencies(pr)}function Pi(H){if(pr--,s.monitorRunDependencies&&s.monitorRunDependencies(pr),pr==0&&(Qn!==null&&(clearInterval(Qn),Qn=null),fr)){var ne=fr;fr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Qa(H){throw s.onAbort&&s.onAbort(H),H+="",N(H),T(H),V=!0,q=1,H="abort("+H+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(H)}function eu(H,ne){return String.prototype.startsWith?H.startsWith(ne):H.indexOf(ne)===0}var R0="data:application/octet-stream;base64,";function tu(H){return eu(H,R0)}var ah="file://";function nu(H){return eu(H,ah)}var er="tfjs-backend-wasm.wasm";tu(er)||(er=A(er));function sh(){try{if(E)return new Uint8Array(E);if(_)return _(er);throw"both async and sync fetching of the wasm failed"}catch(H){Qa(H)}}function F0(){return!E&&(h||d)&&typeof fetch=="function"&&!nu(er)?fetch(er,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+er+"'";return H.arrayBuffer()}).catch(function(){return sh()}):new Promise(function(H,ne){H(sh())})}function M0(){var H={env:Yr,wasi_snapshot_preview1:Yr};function ne(Ke,He){var Wt=Ke.exports;s.asm=Wt,z=Wt.memory,nt(z.buffer),Pi("wasm-instantiate")}zi("wasm-instantiate");function Ie(Ke){ne(Ke.instance)}function Re(Ke){return F0().then(function(He){return WebAssembly.instantiate(He,H)}).then(Ke,function(He){T("failed to asynchronously prepare wasm: "+He),Qa(He)})}function Qe(){if(!E&&typeof WebAssembly.instantiateStreaming=="function"&&!tu(er)&&!nu(er)&&typeof fetch=="function")fetch(er,{credentials:"same-origin"}).then(function(Ke){var He=WebAssembly.instantiateStreaming(Ke,H);return He.then(Ie,function(Wt){T("wasm streaming compile failed: "+Wt),T("falling back to ArrayBuffer instantiation"),Re(Ie)})});else return Re(Ie)}if(s.instantiateWasm)try{var It=s.instantiateWasm(H,ne);return It}catch(Ke){return T("Module.instantiateWasm callback failed with error: "+Ke),!1}return Qe(),{}}ht.push();function O0(H){nt(z.buffer)}var es={splitPath:function(H){var ne=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return ne.exec(H).slice(1)},normalizeArray:function(H,ne){for(var Ie=0,Re=H.length-1;Re>=0;Re--){var Qe=H[Re];Qe==="."?H.splice(Re,1):Qe===".."?(H.splice(Re,1),Ie++):Ie&&(H.splice(Re,1),Ie--)}if(ne)for(;Ie;Ie--)H.unshift("..");return H},normalize:function(H){var ne=H.charAt(0)==="/",Ie=H.substr(-1)==="/";return H=es.normalizeArray(H.split("/").filter(function(Re){return!!Re}),!ne).join("/"),!H&&!ne&&(H="."),H&&Ie&&(H+="/"),(ne?"/":"")+H},dirname:function(H){var ne=es.splitPath(H),Ie=ne[0],Re=ne[1];return!Ie&&!Re?".":(Re&&(Re=Re.substr(0,Re.length-1)),Ie+Re)},basename:function(H){if(H==="/")return"/";var ne=H.lastIndexOf("/");return ne===-1?H:H.substr(ne+1)},extname:function(H){return es.splitPath(H)[3]},join:function(){var H=Array.prototype.slice.call(arguments,0);return es.normalize(H.join("/"))},join2:function(H,ne){return es.normalize(H+"/"+ne)}},Li={mappings:{},buffers:[null,[],[]],printChar:function(H,ne){var Ie=Li.buffers[H];ne===0||ne===10?((H===1?N:T)(ae(Ie,0)),Ie.length=0):Ie.push(ne)},varargs:void 0,get:function(){Li.varargs+=4;var H=Ce[Li.varargs-4>>2];return H},getStr:function(H){var ne=Q(H);return ne},get64:function(H,ne){return H}};function D0(H){return 0}function Zr(H,ne,Ie,Re,Qe){}function ru(H,ne,Ie,Re){for(var Qe=0,It=0;It<Ie;It++){for(var Ke=Ce[ne+It*8>>2],He=Ce[ne+(It*8+4)>>2],Wt=0;Wt<He;Wt++)Li.printChar(H,ge[Ke+Wt]);Qe+=He}return Ce[Re>>2]=Qe,0}function ts(H){_h(H)}function $0(H){ts(H)}function z0(H){return H=+H,H>=0?+Ql(H+.5):+$i(H-.5)}var Yr={emscripten_notify_memory_growth:O0,fd_close:D0,fd_seek:Zr,fd_write:ru,proc_exit:$0,roundf:z0},au=M0();s.asm=au;var P0=s._init=function(){return(P0=s._init=s.asm.init).apply(null,arguments)},ih=s._register_tensor=function(){return(ih=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},L0=s._dispose_data=function(){return(L0=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},oh=s._dispose=function(){return(oh=s._dispose=s.asm.dispose).apply(null,arguments)},tr=s._Abs=function(){return(tr=s._Abs=s.asm.Abs).apply(null,arguments)},lh=s._Add=function(){return(lh=s._Add=s.asm.Add).apply(null,arguments)},W0=s._AddN=function(){return(W0=s._AddN=s.asm.AddN).apply(null,arguments)},B0=s._ArgMax=function(){return(B0=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},V0=s._AvgPool=function(){return(V0=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},U0=s._BatchMatMul=function(){return(U0=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},uh=s._ClipByValue=function(){return(uh=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},ch=s._Conv2D=function(){return(ch=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},hh=s._Conv2DBackpropInput=function(){return(hh=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Wi=s._Cos=function(){return(Wi=s._Cos=s.asm.Cos).apply(null,arguments)},su=s._CropAndResize=function(){return(su=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Bi=s._Cumsum=function(){return(Bi=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Vi=s._DepthToSpace=function(){return(Vi=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},j0=s._DepthwiseConv2dNative=function(){return(j0=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},H0=s._Equal=function(){return(H0=s._Equal=s.asm.Equal).apply(null,arguments)},G0=s._Exp=function(){return(G0=s._Exp=s.asm.Exp).apply(null,arguments)},fe=s._FlipLeftRight=function(){return(fe=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},q0=s._Floor=function(){return(q0=s._Floor=s.asm.Floor).apply(null,arguments)},X0=s._FloorDiv=function(){return(X0=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},K0=s._FusedBatchNorm=function(){return(K0=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Z0=s._FusedConv2D=function(){return(Z0=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},ns=s._FusedDepthwiseConv2D=function(){return(ns=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Y0=s._Gather=function(){return(Y0=s._Gather=s.asm.Gather).apply(null,arguments)},J0=s._GatherNd=function(){return(J0=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Q0=s._Greater=function(){return(Q0=s._Greater=s.asm.Greater).apply(null,arguments)},e1=s._GreaterEqual=function(){return(e1=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},t1=s._LeakyRelu=function(){return(t1=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},n1=s._Less=function(){return(n1=s._Less=s.asm.Less).apply(null,arguments)},r1=s._LessEqual=function(){return(r1=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},a1=s._Log=function(){return(a1=s._Log=s.asm.Log).apply(null,arguments)},s1=s._LogicalAnd=function(){return(s1=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},i1=s._Max=function(){return(i1=s._Max=s.asm.Max).apply(null,arguments)},Aa=s._MaxPool=function(){return(Aa=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},rs=s._Maximum=function(){return(rs=s._Maximum=s.asm.Maximum).apply(null,arguments)},Ui=s._Mean=function(){return(Ui=s._Mean=s.asm.Mean).apply(null,arguments)},o1=s._Min=function(){return(o1=s._Min=s.asm.Min).apply(null,arguments)},l1=s._Minimum=function(){return(l1=s._Minimum=s.asm.Minimum).apply(null,arguments)},u1=s._Multiply=function(){return(u1=s._Multiply=s.asm.Multiply).apply(null,arguments)},c1=s._Neg=function(){return(c1=s._Neg=s.asm.Neg).apply(null,arguments)},Pe=s._NonMaxSuppressionV3=function(){return(Pe=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},h1=s._NonMaxSuppressionV4=function(){return(h1=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},d1=s._NonMaxSuppressionV5=function(){return(d1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},p1=s._NotEqual=function(){return(p1=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},f1=s._OneHot=function(){return(f1=s._OneHot=s.asm.OneHot).apply(null,arguments)},m1=s._PadV2=function(){return(m1=s._PadV2=s.asm.PadV2).apply(null,arguments)},A1=s._Pow=function(){return(A1=s._Pow=s.asm.Pow).apply(null,arguments)},iu=s._Prelu=function(){return(iu=s._Prelu=s.asm.Prelu).apply(null,arguments)},dh=s._Prod=function(){return(dh=s._Prod=s.asm.Prod).apply(null,arguments)},ph=s._RealDiv=function(){return(ph=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},y1=s._Relu=function(){return(y1=s._Relu=s.asm.Relu).apply(null,arguments)},g1=s._Relu6=function(){return(g1=s._Relu6=s.asm.Relu6).apply(null,arguments)},x1=s._ResizeBilinear=function(){return(x1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},w1=s._Reverse=function(){return(w1=s._Reverse=s.asm.Reverse).apply(null,arguments)},_1=s._RotateWithOffset=function(){return(_1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},b1=s._Round=function(){return(b1=s._Round=s.asm.Round).apply(null,arguments)},Be=s._Rsqrt=function(){return(Be=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},v1=s._ScatterNd=function(){return(v1=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},k1=s._SelectV2=function(){return(k1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},I1=s._Sigmoid=function(){return(I1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},as=s._Sin=function(){return(as=s._Sin=s.asm.Sin).apply(null,arguments)},ji=s._Softmax=function(){return(ji=s._Softmax=s.asm.Softmax).apply(null,arguments)},fh=s._Sqrt=function(){return(fh=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},mh=s._Square=function(){return(mh=s._Square=s.asm.Square).apply(null,arguments)},Ah=s._SquaredDifference=function(){return(Ah=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},N1=s._Step=function(){return(N1=s._Step=s.asm.Step).apply(null,arguments)},S1=s._StridedSlice=function(){return(S1=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},yh=s._Sub=function(){return(yh=s._Sub=s.asm.Sub).apply(null,arguments)},T1=s._Sum=function(){return(T1=s._Sum=s.asm.Sum).apply(null,arguments)},Rr=s._Tanh=function(){return(Rr=s._Tanh=s.asm.Tanh).apply(null,arguments)},E1=s._Tile=function(){return(E1=s._Tile=s.asm.Tile).apply(null,arguments)},C1=s._TopK=function(){return(C1=s._TopK=s.asm.TopK).apply(null,arguments)},gh=s._Transpose=function(){return(gh=s._Transpose=s.asm.Transpose).apply(null,arguments)},ya=s.__FusedMatMul=function(){return(ya=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},R1=s._malloc=function(){return(R1=s._malloc=s.asm.malloc).apply(null,arguments)},F1=s._free=function(){return(F1=s._free=s.asm.free).apply(null,arguments)},xh=s.__start=function(){return(xh=s.__start=s.asm._start).apply(null,arguments)},ou=s.stackSave=function(){return(ou=s.stackSave=s.asm.stackSave).apply(null,arguments)},lu=s.stackAlloc=function(){return(lu=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},wh=s.stackRestore=function(){return(wh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=au,s.cwrap=te;var ss;s.then=function(H){if(ss)H(s);else{var ne=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){ne&&ne(),H(s)}}return s};function uu(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}var M1=!1;fr=function H(){ss||cu(),ss||(fr=H)};function O1(H){var ne=s.__start;try{ne();var Ie=0;_h(Ie,!0)}catch(Qe){if(Qe instanceof uu)return;if(Qe=="unwind"){M=!0;return}else{var Re=Qe;Qe&&typeof Qe=="object"&&Qe.stack&&(Re=[Qe,Qe.stack]),T("exception thrown: "+Re),c(1,Qe)}}finally{M1=!0}}function cu(H){if(H=H||l,pr>0||(kn(),pr>0))return;function ne(){ss||(ss=!0,s.calledRun=!0,!V&&(Yn(),fn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),bh&&O1(H),Jn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=cu;function _h(H,ne){ne&&M&&H===0||(M||(V=!0,q=H,an(),s.onExit&&s.onExit(H)),c(H,new uu(H)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var bh=!0;return s.noInitialRun&&(bh=!1),M=!0,cu(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Ik=et((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Nk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Sk=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Tk=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ek=et((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,y,g=[],_=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,_=Math.max(_,d.length)),m=0,A=-32;A<_;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Ck=et((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Rk=et((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function f(x,b,N){var T=[];b=b==!0?{entropy:!0}:b||{};var E=g(y(b.entropy?[x,w(r)]:x==null?_():x,3),T),M=new m(T),z=function(){for(var P=M.g(i),V=u,q=0;P<c;)P=(P+q)*s,V*=s,q=M.g(1);for(;P>=h;)P/=2,V/=2,q>>>=1;return(P+q)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,g(w(M.S),r),(b.pass||N||function(P,V,q,U){return U&&(U.S&&A(U,M),P.state=function(){return A(M,{})}),q?(a[l]=P,V):P})(z,E,"global"in b?b.global:this==a,b.state)}function m(x){var b,N=x.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(x=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+x[E%N]+(b=z[E])],z[M]=b;(T.g=function(P){for(var V,q=0,U=T.i,K=T.j,Z=T.S;P--;)V=Z[U=d&U+1],q=q*s+Z[d&(Z[U]=Z[K=d&K+V])+(Z[K]=V)];return T.i=U,T.j=K,q})(s)}function A(x,b){return b.i=x.i,b.j=x.j,b.S=x.S.slice(),b}function y(x,b){var N=[],T=typeof x,E;if(b&&T=="object")for(E in x)try{N.push(y(x[E],b-1))}catch(M){}return N.length?N:T=="string"?x:x+"\0"}function g(x,b){for(var N=x+"",T,E=0;E<N.length;)b[d&E]=d&(T^=b[d&E]*19)+N.charCodeAt(E++);return w(b)}function _(){try{var x;return p&&(x=p.randomBytes)?x=x(s):(x=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(x)),w(x)}catch(T){var b=n.navigator,N=b&&b.plugins;return[+new Date,n,N,n.screen,w(r)]}}function w(x){return String.fromCharCode.apply(0,x)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=V1()}catch(x){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),tg=et((e,t)=>{var n=Ik(),r=Nk(),a=Sk(),s=Tk(),i=Ek(),o=Ck(),l=Rk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Fk=et(()=>{}),Mk="2.8.5",Ok="2.8.5",Dk="2.8.5",$k="2.8.5",zk="2.8.5",Pk=1e-7,Lk=1e-4,Sh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},xu=class{decComplexRef(e){}time(e){return Y("time")}read(e){return Y("read")}readSync(e){return Y("readSync")}numDataIds(){return Y("numDataIds")}disposeData(e){return Y("disposeData")}write(e,t,n){return Y("write")}move(e,t,n,r){return Y("move")}memory(){return Y("memory")}floatPrecision(){return Y("floatPrecision")}epsilon(){return this.floatPrecision()===32?Pk:Lk}batchMatMul(e,t,n,r){return Y("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:r,bias:a,activation:s,preluActivationWeights:i}){return Y("fusedBatchMatMul")}slice(e,t,n){return Y("slice")}stridedSlice(e,t,n,r){return Y("stridedSlice")}unstack(e,t){return Y("unstack")}reverse(e,t){return Y("reverse")}concat(e,t){return Y("concat")}neg(e){return Y("neg")}add(e,t){return Y("add")}addN(e){return Y("addN")}subtract(e,t){return Y("subtract")}multiply(e,t){return Y("multiply")}realDivide(e,t){return Y("realDivide")}floorDiv(e,t){return Y("floorDiv")}sum(e,t){return Y("sum")}prod(e,t){return Y("prod")}unsortedSegmentSum(e,t,n){return Y("unsortedSegmentSum")}argMin(e,t){return Y("argMin")}argMax(e,t){return Y("argMax")}equal(e,t){return Y("equal")}notEqual(e,t){return Y("notEqual")}less(e,t){return Y("less")}lessEqual(e,t){return Y("lessEqual")}greater(e,t){return Y("greater")}greaterEqual(e,t){return Y("greaterEqual")}logicalNot(e){return Y("logicalNot")}logicalAnd(e,t){return Y("logicalAnd")}logicalOr(e,t){return Y("logicalOr")}where(e){return Y("where")}select(e,t,n){return Y("select")}topk(e,t,n){return Y("topk")}min(e,t){return Y("min")}minimum(e,t){return Y("minimum")}mod(e,t){return Y("mod")}max(e,t){return Y("max")}maximum(e,t){return Y("maximum")}all(e,t){return Y("all")}any(e,t){return Y("any")}squaredDifference(e,t){return Y("squaredDifference")}ceil(e){return Y("ceil")}floor(e){return Y("floor")}round(e){return Y("round")}sign(e){return Y("sign")}isNaN(e){return Y("isNaN")}isInf(e){return Y("isInf")}isFinite(e){return Y("isFinite")}pow(e,t){return Y("pow")}exp(e){return Y("exp")}expm1(e){return Y("expm1")}softmax(e,t){return Y("softmax")}log(e){return Y("log")}log1p(e){return Y("log1p")}sqrt(e){return Y("sqrt")}rsqrt(e){return Y("rsqrt")}square(e){return Y("square")}reciprocal(e){return Y("reciprocal")}relu(e){return Y("relu")}relu6(e){return Y("relu6")}prelu(e,t){return Y("prelu")}elu(e){return Y("elu")}eluDer(e,t){return Y("eluDer")}selu(e){return Y("selu")}int(e){return Y("int")}clip(e,t,n){return Y("clip")}abs(e){return Y("abs")}complexAbs(e){return Y("complexAbs")}sigmoid(e){return Y("sigmoid")}softplus(e){return Y("softplus")}sin(e){return Y("sin")}cos(e){return Y("cos")}tan(e){return Y("tan")}asin(e){return Y("asin")}acos(e){return Y("acos")}atan(e){return Y("atan")}atan2(e,t){return Y("atan2")}sinh(e){return Y("sinh")}cosh(e){return Y("cosh")}tanh(e){return Y("tanh")}asinh(e){return Y("asinh")}acosh(e){return Y("acosh")}atanh(e){return Y("atanh")}erf(e){return Y("erf")}step(e,t){return Y("step")}fusedConv2d({input:e,filter:t,convInfo:n,bias:r,activation:a,preluActivationWeights:s}){return Y("fusedConv2d")}conv2d(e,t,n){return Y("conv2d")}conv2dDerInput(e,t,n){return Y("conv2dDerInput")}conv2dDerFilter(e,t,n){return Y("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:r,activation:a,preluActivationWeights:s}){return Y("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,n){return Y("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,n){return Y("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,n){return Y("depthwiseConv2DDerFilter")}conv3d(e,t,n){return Y("conv3d")}conv3dDerInput(e,t,n){return Y("conv3dDerInput")}conv3dDerFilter(e,t,n){return Y("conv3dDerFilter")}maxPool(e,t){return Y("maxPool")}maxPoolBackprop(e,t,n,r){return Y("maxPoolBackprop")}avgPool(e,t){return Y("avgPool")}avgPoolBackprop(e,t,n){return Y("avgPoolBackprop")}avgPool3d(e,t){return Y("avgPool3d")}avgPool3dBackprop(e,t,n){return Y("avgPool3dBackprop")}maxPool3d(e,t){return Y("maxPool3d")}maxPool3dBackprop(e,t,n,r){return Y("maxPool3dBackprop")}reshape(e,t){return Y("reshape")}cast(e,t){return Y("cast")}tile(e,t){return Y("tile")}pad(e,t,n){return Y("pad")}transpose(e,t){return Y("transpose")}gather(e,t,n,r=0){return Y("gather")}gatherND(e,t){return Y("gatherND")}scatterND(e,t,n){return Y("scatterND")}batchToSpaceND(e,t,n){return Y("batchToSpaceND")}spaceToBatchND(e,t,n){return Y("spaceToBatchND")}resizeBilinear(e,t,n,r,a){return Y("resizeBilinear")}resizeBilinearBackprop(e,t,n){return Y("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,n,r,a){return Y("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,n){return Y("resizeNearestNeighborBackprop")}batchNorm(e,t,n,r,a,s){return Y("batchNorm")}localResponseNormalization4D(e,t,n,r,a){return Y("localResponseNormalization4D")}LRNGrad(e,t,n,r,a,s,i){return Y("LRNGrad")}multinomial(e,t,n,r){return Y("multinomial")}oneHot(e,t,n,r){return Y("oneHot")}cumsum(e,t,n,r){return Y("cumsum")}nonMaxSuppression(e,t,n,r,a){return Y("nonMaxSuppression")}fft(e){return Y("fft")}ifft(e){return Y("ifft")}complex(e,t){return Y("complex")}real(e){return Y("real")}imag(e){return Y("imag")}cropAndResize(e,t,n,r,a,s){return Y("cropAndResize")}depthToSpace(e,t,n){return Y("depthToSpace")}split(e,t,n){return Y("split")}sparseToDense(e,t,n,r){return Y("sparseToDense")}diag(e){return Y("diag")}fill(e,t,n){return Y("fill")}onesLike(e){return Y("onesLike")}zerosLike(e){return Y("zerosLike")}linspace(e,t,n){return Y("linspace")}dispose(){return Y("dispose")}};function Y(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function ng(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function wu(e,t,n){return Math.max(e,Math.min(t,n))}function Wk(e){return e%2==0?e:e+1}function Bk(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function Vk(e,t){let n=Math.random();return t*n+(1-n)*e}function Uk(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function tt(e,t,n=""){F(ea(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function is(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function os(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||rn(e)&&!n)for(let r=0;r<e.length;++r)os(e[r],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function jk(e){return e.length===0}function ea(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Bt(e){return e%1==0}function Hk(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function Gk(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function qk(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return ng(t),t}function _u(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function Xk(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function Kk(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function nr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Bt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function rg(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:nr(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function ag(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function sg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ig(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function og(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function lg(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function rn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function ug(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function cg(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function wa(e){return typeof e=="string"||e instanceof String}function hg(e){return typeof e=="boolean"}function dg(e){return typeof e=="number"}function Th(e){return Array.isArray(e)?Th(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":dg(e)?"float32":wa(e)?"string":hg(e)?"bool":"float32"}function _a(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Eh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Zi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function pg(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=pg(e+o*i,s,n)}return r}function Yi(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return pg(0,e,t)}function U1(e,t){let n=Ch(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Ch(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function Zk(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return Yi(e,new Float32Array(n));if(t==="int32")return Yi(e,new Int32Array(n));if(t==="bool")return Yi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function j1(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Yk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function Jk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function H1(e){return e&&e.then&&typeof e.then=="function"}var fg="tfjsflags",mg=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(H1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=Qk(this.global.location.search);fg in e&&e[fg].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=e9(n,r)})}};function Qk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(t9(t,r[0],r[1]),r.join("="))),t}function t9(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function e9(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return sn}var sn=null;function n9(e){sn=e}var G1;function Ag(){if(G1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");G1=e}return G1}function r9(){let e=Ag();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function yg(e,t){let n=r9();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Ji="Abs",Qi="Acos",eo="Acosh",ba="Add",ls="AddN",Rh="All",Fh="Any",us="ArgMax",bu="ArgMin",to="Asin",no="Asinh",ro="Atan",ao="Atanh",so="Atan2",cs="AvgPool",Mh="AvgPoolGrad",vu="AvgPool3D",Oh="AvgPool3DGrad",hs="BatchMatMul",ku="BatchToSpaceND",Dh="Bincount",gg="BroadcastTo",ds="Cast",io="Ceil",va="ClipByValue",$h="Complex",Iu="ComplexAbs",oo="Concat",ps="Conv2D",zh="Conv2DBackpropFilter",fs="Conv2DBackpropInput",Nu="Conv3D",Ph="Conv3DBackpropFilterV2",Lh="Conv3DBackpropInputV2",ms="Cos",lo="Cosh",As="Cumsum",uo="CropAndResize",Wh="DenseBincount",co="DepthToSpace",ys="DepthwiseConv2dNative",Bh="DepthwiseConv2dNativeBackpropFilter",Vh="DepthwiseConv2dNativeBackpropInput",Uh="Diag",Su="Dilation2D",jh="Dilation2DBackpropInput",Hh="Dilation2DBackpropFilter",gs="RealDiv",ho="Elu",Gh="EluGrad",po="Erf",fo="Equal",xs="Exp",mo="ExpandDims",Ao="Expm1",qh="FFT",Tu="Fill",yo="FlipLeftRight",ws="Floor",_s="FloorDiv",bs="FusedBatchNorm",go="GatherV2",xo="GatherNd",wo="Greater",vs="GreaterEqual",_o="Identity",Xh="IFFT",Kh="Imag",bo="IsFinite",vo="IsInf",ko="IsNan",ks="LeakyRelu",Io="Less",No="LessEqual",Zh="LinSpace",Is="Log",So="Log1p",To="LogicalAnd",Eu="LogicalNot",Cu="LogicalOr",xg="LogSoftmax",Ru="LRN",Yh="LRNGrad",Ns="Max",Ss="Maximum",Ts="MaxPool",Jh="MaxPoolGrad",Fu="MaxPool3D",Qh="MaxPool3DGrad",ed="MaxPoolWithArgmax",Es="Mean",Cs="Min",Rs="Minimum",Mu="MirrorPad",Eo="Mod",td="Multinomial",Fs="Multiply",Co="Neg",Ro="NotEqual",Fo="NonMaxSuppressionV3",Mo="NonMaxSuppressionV4",Oo="NonMaxSuppressionV5",Do="OnesLike",Ms="OneHot",$o="Pack",Os="PadV2",a9="Pool",Ds="Pow",$s="Prelu",zo="Prod",Ou="Range",nd="Real",Po="Reciprocal",zs="Relu",Lo="Reshape",Du="ResizeNearestNeighbor",rd="ResizeNearestNeighborGrad",Ps="ResizeBilinear",ad="ResizeBilinearGrad",Ls="Relu6",Ws="Reverse",Bs="Round",Vs="Rsqrt",Wo="ScatterNd",Bo="Select",Vo="Selu",Uo="Slice",Us="Sin",jo="Sinh",Ho="Sign",js="Sigmoid",Go="Softplus",Hs="Sqrt",Gs="Sum",$u="SpaceToBatchND",qo="SplitV",qs="Softmax",Xs="SquaredDifference",zu="Square",Ks="Sub",sd="SparseToDense",Xo="StridedSlice",Ko="Tan",Zs="Tanh",ka="Tile",Zo="TopK",Ys="Transpose",id="Unique",Yo="Unpack",Pu="UnsortedSegmentSum",Jo="ZerosLike",Ia="Step",od="FromPixels",Qo="RotateWithOffset",Js="_FusedMatMul",Qs="FusedConv2D",ei="FusedDepthwiseConv2D",el=yg("kernelRegistry",()=>new Map),Lu=yg("gradRegistry",()=>new Map);function X1(e,t){let n=q1(e,t);return el.get(n)}function K1(e){return Lu.get(e)}function tl(e){let t=el.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ti(e){let{kernelName:t,backendName:n}=e,r=q1(t,n);el.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),el.set(r,e)}function wg(e){let{kernelName:t}=e;Lu.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Lu.set(t,e)}function s9(e,t){let n=q1(e,t);if(!el.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);el.delete(n)}function i9(e){if(!Lu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Lu.delete(e)}function o9(e,t){tl(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ti(r)})}function q1(e,t){return`${t}_${e}`}var k={};$e(k,{arraysEqual:()=>ea,assert:()=>F,assertNonNegativeIntegerDimensions:()=>j1,assertNonNull:()=>is,assertShapesMatch:()=>tt,bytesFromStringArray:()=>cg,bytesPerElement:()=>ug,checkConversionForErrors:()=>ig,clamp:()=>wu,computeStrides:()=>Zi,createScalarValue:()=>l9,createShuffledIndices:()=>qk,decodeString:()=>ud,distSquared:()=>Uk,encodeString:()=>Wu,fetch:()=>u9,flatten:()=>os,getArrayFromDType:()=>sg,getTypedArrayFromDType:()=>ag,hasEncodingLoss:()=>lg,indexToLoc:()=>Jk,inferDtype:()=>Th,inferFromImplicitShape:()=>Kk,isBoolean:()=>hg,isFunction:()=>_a,isInt:()=>Bt,isNumber:()=>dg,isPromise:()=>H1,isScalarShape:()=>jk,isString:()=>wa,isTypedArray:()=>rn,isValidDtype:()=>og,locToIndex:()=>Yk,makeOnesTypedArray:()=>U1,makeZerosNestedTypedArray:()=>Zk,makeZerosTypedArray:()=>Ch,nearestDivisor:()=>Eh,nearestLargerEven:()=>Wk,now:()=>Z1,parseAxisParam:()=>nr,randUniform:()=>Vk,repeatedTry:()=>Xk,rightPad:()=>_u,shuffle:()=>ng,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>Gk,squeezeShape:()=>rg,sum:()=>Bk,tanh:()=>Hk,toNestedArray:()=>Yi,toTypedArray:()=>ld});function l9(e,t){return t==="string"?Wu(e):ld([e],t)}function c9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function ld(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=os(e)),ee().getBool("DEBUG")&&ig(e,t),c9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Z1(){return ee().platform.now()}function u9(e,t){return ee().platform.fetch(e,t)}function Wu(e,t="utf-8"){return t=t||"utf-8",ee().platform.encode(e,t)}function ud(e,t="utf-8"){return t=t||"utf-8",ee().platform.decode(e,t)}var p9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new d9)}profileKernel(e,t,n){let r,a=()=>{r=n()},s=this.backendTimer.time(a);if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i<r.length;i++){let o=r[i];o.data().then(l=>{h9(l,o.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function h9(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var d9=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?_u(`${r}ms`,9):r.error,o=_u(e,25),l=t.rank,u=t.size,c=_u(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function f9(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){u.outputs.forEach(m=>r[m.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function m9(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!ea(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var _g=20,Bu=3,Y1=7;function y9(e,t,n,r){let a=Zi(t),s=A9(e,t,n,a),i=t.length,o=cd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function A9(e,t,n,r){let a=Mt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Uu(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Vu(l[c+h],0,n).length)}return i}function Vu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(Y1))} + ${parseFloat(e[1].toFixed(Y1))}j`:wa(e)?r=`'${e}'`:n==="bool"?r=bg(e):r=parseFloat(e.toFixed(Y1)).toString(),_u(r,t)}function bg(e){return e===0?"false":"true"}function cd(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Uu(e);return[Vu(m[0],0,n)]}return n==="bool"?[bg(e[0])]:[e[0].toString()]}if(l===1){if(o>_g){let A=Bu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Bu)*i,o*i));return n==="complex64"&&(y=Uu(y),g=Uu(g)),["["+y.map((_,w)=>Vu(_,a[w],n)).join(", ")+", ..., "+g.map((_,w)=>Vu(_,a[o-Bu+w],n)).join(", ")+"]"]}let m=n==="complex64"?Uu(e):Array.from(e);return["["+m.map((A,y)=>Vu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>_g){for(let m=0;m<Bu;m++){let A=m*h,y=A+h;d.push(...cd(e.slice(A,y),u,n,c,a,!1))}d.push("...");for(let m=o-Bu;m<o;m++){let A=m*h,y=A+h;d.push(...cd(e.slice(A,y),u,n,c,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;d.push(...cd(e.slice(A,y),u,n,c,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Uu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ot=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||sg(t,this.size),this.strides=Zi(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Fr().makeTensor(this.values,this.shape,this.dtype)}},Fr=null,nl=null,g9=null;function x9(e){Fr=e}function w9(e){nl=e}function _9(e){g9=e}var j=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=Zi(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return nl.buffer(this.shape,this.dtype,e)}bufferSync(){return nl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Yi(this.shape,e)}arraySync(){return Yi(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Fr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>ud(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Fr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ud(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Fr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Fr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return nl.print(this,e)}clone(){return this.throwIfDisposed(),nl.clone(this)}toString(e=!1){let t=this.dataSync();return y9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),nl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Fr().makeVariable(this,e,t,n)}};Object.defineProperty(j,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});var ju=class extends j{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ea(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Fr().disposeTensor(this),this.dataId=e.dataId,Fr().incRef(this,null)}dispose(){Fr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ju,Symbol.hasInstance,{value:e=>e instanceof j&&e.assign!=null&&e.assign instanceof Function});var mr={};$e(mr,{assertTypesMatch:()=>vg,getTensorsInContainer:()=>J1,isTensorInList:()=>b9,makeTypesMatch:()=>_t});var Q1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Q1||(Q1={}));var ef;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(ef||(ef={}));var tf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(tf||(tf={}));var nf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(nf||(nf={}));var rf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(rf||(rf={}));var v9={float32:nf,int32:ef,bool:tf,complex64:rf};function rr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return v9[e][t]}function hd(e){return rr(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=rr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function vg(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function b9(e,t){return t.some(n=>n.id===e.id)}function J1(e){let t=[],n=new Set;return kg(e,t,n),t}function kg(e,t,n){if(e==null)return;if(e instanceof j){t.push(e);return}if(!k9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),kg(s,t,n))}}function k9(e){return Array.isArray(e)||typeof e=="object"}var Ig=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Hu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Ig}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new p9(this.backendInstance),!0}setupRegisteredKernels(){tl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){tl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof xu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t);r.disposeData(t),n.backend=e,e.move(t,a,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Hu.nextTensorId++}nextVariableId(){return Hu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernelFunc(u=>u.cast(s,i),o,null,ds,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n,r,a){let s=null,i=null;return this.runKernelFunc(s,t,i,e,n,r,a)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e,t,n,r,a,s,i){let o,l=[],u=this.isTapeOn();r==null&&(r=this.state.activeScope!=null?this.state.activeScope.name:"");let c=this.state.numBytes,h=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let d;this.backendName==null&&this.backend;let p=X1(r,this.backendName),f;if(p!=null)d=()=>{let A=this.backend.numDataIds();f=p.kernelFunc({inputs:t,attrs:a,backend:this.backend});let y=Array.isArray(f)?f:[f];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(r,A,y);let g=y.map(_=>{if(_.rank!=null)return _;let{dataId:w,shape:x,dtype:b}=_;return this.makeTensorFromDataId(w,x,b)});if(u){let _=this.getTensorsForGradient(r,t,g);if(_==null){i==null&&(i=[]);let w=g.filter((x,b)=>i[b]);_=(s||[]).slice().concat(w)}l=this.saveTensorsForBackwardMode(_)}return g};else{if(e==null)throw new Error(`Error running ${r}: Neither modular kernel nor forward func passed`);let A=y=>{!u||(l=y.map(g=>this.keep(this.clone(g))))};d=()=>{let y=this.backend.numDataIds();f=this.tidy(()=>e(this.backend,A));let g=Array.isArray(f)?f:[f];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(r,y,g),g}}let m;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?o=d():(m=this.profiler.profileKernel(r,t,()=>d()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(m),o=m.outputs)}),u&&this.addTapeNode(r,t,o,n,l,a),this.state.profiling&&this.state.activeProfile.kernels.push({name:r,bytesAdded:this.state.numBytes-c,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-h,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(A=>t[A]!=null?t[A].shape:null),outputShapes:o.map(A=>A.shape),kernelTimeMs:m.timeMs,extraInfo:m.extraInfo}),Array.isArray(f)?o:o[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=K1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return null}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&wa(e[0])&&(a=e.map(o=>Wu(o)));let s=r.write(a,t,n),i=new j(t,n,s,this.nextTensorId());if(this.incRef(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=cg(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new j(t,n,e,this.nextTensorId());return this.incRef(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new ju(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*ug(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r,refCount:0}),this.state.numBytes+=r}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof ju||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=K1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=Ch(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=J1(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof j,()=>"The result y returned by f() must be a tensor.");let s=f9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?I9(a.shape):n,m9(i,s,l=>this.tidy(l),N9);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(_a(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(a=>a instanceof j),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};return t.forEach((a,s)=>{r[s]=a}),this.runKernelFunc((a,s)=>(n=e(...t,s),F(n.value instanceof j,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(_a(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),r,(a,s)=>{let i=n.gradFunc(a,s),o=Array.isArray(i)?i:[i];F(o.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(o.every(u=>u instanceof j),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let l={};return o.forEach((u,c)=>{l[c]=()=>u}),l})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Z1(),n=await this.backend.time(e);return n.wallMs=Z1()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Ig;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Hu.nextTensorId=0;Hu.nextVariableId=0;function I9(e){let t=U1(Mt(e),"float32");return $.makeTensor(t,e,"float32")}function Ng(){let e=Ag();if(e._tfengine==null){let t=new mg(e);e._tfengine=new Hu(t)}return n9(e._tfengine.ENV),x9(()=>e._tfengine),e._tfengine}var $=Ng();function N9(e,t){let n={a:e,b:t};return $.runKernel(ba,n)}var dd={};$e(dd,{isBrowser:()=>Sg,isMobile:()=>S9});function T9(){return typeof navigator!="undefined"&&navigator!=null}function S9(){if(T9()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Sg(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Mr=ee();Mr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Mr.registerFlag("IS_BROWSER",()=>Sg());Mr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Mr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Mr.registerFlag("PROD",()=>!1);Mr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Mr.getBool("DEBUG"));Mr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Mr.registerFlag("IS_TEST",()=>!1);Mr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Or(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Tg(e,r,[]),r}function Tg(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)Tg(e[a],r,n.concat(a))}function Eg(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function C(e,t,n,r="numeric"){if(e instanceof j)return Eg(r,e.dtype,t,n),e;let a=Th(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),Eg(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Or(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?ld(e,a):os(e,[],!0);return $.makeTensor(i,s,a)}function Gu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>C(a,`${t}[${s}]`,n,r))}var Cg="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Cg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return H1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function E9(e,t){let n=C(e,"real","complex"),r=C(t,"imag","complex");tt(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel($h,a)}var Na=D({complex_:E9});function Sa(e,t,n,r){if(r==null&&(r=Th(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){j1(t);let a=Mt(t),s=Mt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Mt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?ld(e,r):os(e,[],!0),$.makeTensor(e,t,r)}function Ar(e,t,n){let r=Or(e,n);return Sa(e,t,r,n)}var af={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},pd=4;async function R9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+pd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=pd,f.set(y,m),m+=y.length}h(f)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:C9(s),specs:n}}function Rg(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Mt(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=af[h.dtype],p=e.slice(a,a+u*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=F9()),c=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Mt(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+pd))[0];a+=pd;let f=new Uint8Array(e.slice(a,a+p));c.push(f),a+=p}}else{let h=af[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<p.length;y++)p[y]=c[y*2],f[y]=c[y*2+1];let m=Ar(p,l,"float32"),A=Ar(f,l,"float32");n[i]=Na(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=Ar(c,l,o))}return n}function C9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var sf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Fg(e){return sf?Buffer.byteLength(e):new Blob([e]).size}function M9(e){if(sf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function O9(e){if(sf){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function of(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Mg(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Fg(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Fg(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function D9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function $9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function z9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function F9(){let e=D9(),t=$9(),n=z9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},P9=e=>Nt.registerSaveRouter(e),L9=e=>Nt.registerLoadRouter(e),W9=e=>Nt.getSaveHandlers(e),B9=(e,t)=>Nt.getLoadHandlers(e,t),lf="tensorflowjs",uf=1,ni="models_store",Ta="model_info_store";function Og(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function cf(e){let t=e.result;t.createObjectStore(ni,{keyPath:"modelPath"}),t.createObjectStore(Ta,{keyPath:"modelPath"})}var ri=class{constructor(e){if(this.indexedDB=Og(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(lf,uf);a.onupgradeneeded=()=>cf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ni,"readonly"),o=i.objectStore(ni).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=qu(t),o=s.transaction(Ta,"readwrite"),l=o.objectStore(Ta),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(ni,"readwrite");let h=c.objectStore(ni).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ta);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};ri.URL_SCHEME="indexeddb://";var Dg=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ri.URL_SCHEME)?V9(e.slice(ri.URL_SCHEME.length)):null;Nt.registerSaveRouter(Dg);Nt.registerLoadRouter(Dg);function V9(e){return new ri(e)}function U9(e){return e.startsWith(ri.URL_SCHEME)?e.slice(ri.URL_SCHEME.length):e}var j9=class{constructor(){this.indexedDB=Og()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(lf,uf);n.onupgradeneeded=()=>cf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ta,"readonly"),s=a.objectStore(Ta).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=U9(e),new Promise((t,n)=>{let r=this.indexedDB.open(lf,uf);r.onupgradeneeded=()=>cf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ta,"readwrite"),i=s.objectStore(Ta),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(ni,"readwrite");let h=l.objectStore(ni).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ta="/",rl="tensorflowjs_models",$g="info",H9="model_topology",G9="weight_specs",q9="weight_data",X9="model_metadata";function zg(e){return{info:[rl,e,$g].join(ta),topology:[rl,e,H9].join(ta),weightSpecs:[rl,e,G9].join(ta),weightData:[rl,e,q9].join(ta),modelMetadata:[rl,e,X9].join(ta)}}function K9(e){let t=e.split(ta);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ta)}function Z9(e){return e.startsWith(ai.URL_SCHEME)?e.slice(ai.URL_SCHEME.length):e}var ai=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=zg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=qu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,M9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=O9(s),t}};ai.URL_SCHEME="localstorage://";var Pg=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ai.URL_SCHEME)?Y9(e.slice(ai.URL_SCHEME.length)):null;Nt.registerSaveRouter(Pg);Nt.registerLoadRouter(Pg);function Y9(e){return new ai(e)}var J9=class{constructor(){F(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=rl+ta,n=ta+$g;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=K9(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=Z9(e);let t=zg(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},al="://",Vn=class{constructor(){this.managers={}}static getInstance(){return Vn.instance==null&&(Vn.instance=new Vn),Vn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(al)&&(e=e.slice(0,e.indexOf(al))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Vn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function fd(e){if(e.indexOf(al)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Vn.getSchemes().join(",")}`);return{scheme:e.split(al)[0],path:e.split(al)[1]}}async function Lg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Nt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Nt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=fd(e).scheme,l=fd(e).path,u=o===fd(e).scheme,c=await a.load();n&&u&&await Vn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Vn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Q9(){let e=Vn.getSchemes(),t={};for(let n of e){let r=await Vn.getManager(n).listModels();for(let a in r){let s=n+al+a;t[s]=r[a]}}return t}async function eI(e){let t=fd(e);return Vn.getManager(t.scheme).removeModel(t.path)}async function tI(e,t){return Lg(e,t,!1)}async function nI(e,t){return Lg(e,t,!0)}var rI=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new rI);try{Vn.registerManager(ai.URL_SCHEME,new J9)}catch(e){}try{Vn.registerManager(ri.URL_SCHEME,new j9)}catch(e){}}var aI={importFetch:()=>ak()},hf,sI=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(hf==null&&(hf=aI.importFetch()),hf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new sI);function We(e,t="float32",n){return t=t||"float32",j1(e),new Ot(e,t,n)}function iI(e,t){let n=C(e,"x","cast");if(!og(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ds,r,a)}var Ae=D({cast_:iI});function oI(e){let t={x:C(e,"x","clone","string_or_numeric")};return $.runKernel(_o,t)}var ar=D({clone_:oI});function Wg(e,t=!1){console.log(e.toString(t))}Ng();var lI={buffer:We,cast:Ae,clone:ar,print:Wg};w9(lI);var mn={};$e(mn,{browserFiles:()=>uI,browserHTTPRequest:()=>hI,concatenateArrayBuffers:()=>of,copyModel:()=>tI,decodeWeights:()=>Rg,encodeWeights:()=>R9,fromMemory:()=>dI,getLoadHandlers:()=>B9,getModelArtifactsInfoForJSON:()=>qu,getSaveHandlers:()=>W9,http:()=>pf,isHTTPScheme:()=>df,listModels:()=>Q9,loadWeights:()=>cI,moveModel:()=>nI,registerLoadRouter:()=>L9,registerSaveRouter:()=>P9,removeModel:()=>eI,weightsLoaderFactory:()=>Bg,withSaveHandler:()=>pI});var fI="model",mI=".json",AI=".weights.bin";function Vg(e){return new Promise(t=>setTimeout(t)).then(e)}var sl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(sl.URL_SCHEME)&&(e=e.slice(sl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=fI),this.modelTopologyFileName=e+mI,this.weightDataFileName=e+AI}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Vg(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Vg(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:qu(e)}}}};sl.URL_SCHEME="downloads://";var yI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:c,weightData:of(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Mg(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Mg(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},xI=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(sl.URL_SCHEME)?gI(e.slice(sl.URL_SCHEME.length)):null;Nt.registerSaveRouter(xI);function gI(e="model"){return new sl(e)}function uI(e){return new yI(e)}function Ug(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function jg(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Ug(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Ug(i,t.onProgress,o,l)}async function cI(e,t="",n,r){return Bg(a=>jg(a,{requestInit:r}))(e,t,n)}function Bg(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=af[y]*Mt(A.shape),_=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((w,x)=>{w===A.name&&(_(),i[x]=!0)}):_(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let _=0;_<f;_++)m+=c[d+_].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let _=0;_<f;_++){let w=new Uint8Array(c[d+_]);y.set(w,g),g+=w.byteLength}s[p].forEach(_=>{let w=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),x=Rg(w,[_.manifestEntry]);for(let b in x)h[b]=x[b]}),d+=f}),h}}var wI="application/octet-stream",_I="application/json",ff=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:_I}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:wI}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:qu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=bI(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await jg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,of(l)]}};ff.URL_SCHEME_REGEX=/^https?:\/\//;function bI(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function df(e){return e.match(ff.URL_SCHEME_REGEX)!=null}var Hg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>df(r)):n=df(e),n)return pf(e,t)}return null};Nt.registerSaveRouter(Hg);Nt.registerLoadRouter(Hg);function pf(e,t){return new ff(e,t)}function hI(e,t){return pf(e,t)}var mf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},vI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function dI(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new mf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new mf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new mf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function pI(e){return new vI(e)}var Gg={};$e(Gg,{confusionMatrix:()=>kI});function II(e,t,n=!1,r=!1){let a=C(e,"a","matMul"),s=C(t,"b","matMul");[a,s]=_t(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(hs,i,o)}var Ge=D({matMul_:II});function NI(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:C(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Ms,a,s)}var il=D({oneHot_:NI});function SI(e,t){let n=C(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Ys,r,a)}var rt=D({transpose_:SI});function TI(e,t,n){let r=C(e,"labels","confusionMatrix"),a=C(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=il(Ae(r,"int32"),n),i=il(Ae(a,"int32"),n),o=rt(s),l=Ge(o,i);return Ae(l,"int32")}var kI=D({confusionMatrix_:TI}),ol={};$e(ol,{fromPixels:()=>CI,toPixels:()=>EI});function md(e,t,n){if(is(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Or(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Sa(e,t,r,n)}var ll;function RI(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(X1(od,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(od,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(ll==null&&(ll=document.createElement("canvas").getContext("2d")),ll.canvas.width=l,ll.canvas.height=u,ll.drawImage(e,0,0,l,u),c=ll.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=c[p*4+f]}return md(h,[u,l,t],"int32")}async function EI(e,t){let n=C(e,"img","toPixels");if(!(e instanceof j)){let u=n;n=Ae(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var CI=D({fromPixels_:RI}),Af={};$e(Af,{prepareAndValidate:()=>qg});function qg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...Zi(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var yf={};$e(yf,{calculateShapes:()=>Xg,validateInput:()=>xf,validateUpdateShape:()=>gf});function gf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function xf(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}gf(n,t,e)}function Xg(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Mt(t.shape)/o,u=[...Zi(n.slice(0,a)),1],c=Mt(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var on={};$e(on,{assertParamsValid:()=>FI,computeFlatOffset:()=>OI,computeOutShape:()=>Kg,getNormalizedAxes:()=>Yg,isSliceContinous:()=>MI,maskToAxes:()=>Ad,parseSliceParams:()=>r5,sliceInfo:()=>DI,startForAxis:()=>t5,startIndicesWithElidedDims:()=>Jg,stopForAxis:()=>n5,stopIndicesWithElidedDims:()=>Qg,stridesForAxis:()=>e5,stridesWithElidedDims:()=>Zg});function FI(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Ad(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Kg(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function Zg(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function a5(e,t,n){return n<=e?n:n-(t-1)}function s5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function Yg(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],f=n+1;c=Jg(i,p,f,r,e),h=Qg(o,p,f,a,e),d=Zg(s,p,f,e)}else for(let p=0;p<u;p++)c[p]=t5(i,r,s,e,p,l),h[p]=n5(o,a,s,e,p,l),d[p]=e5(s,p,l);return{begin:c,end:h,strides:d}}function Jg(e,t,n,r,a){let s=[...a],i=s5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=a5(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function Qg(e,t,n,r,a){let s=[...a],i=s5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=a5(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=wu(0,s[o],a[o])}return s}function e5(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function t5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=wu(0,i,l-1),i}function n5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=wu(0,i,l):i=wu(-1,i,l-1),i}function MI(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function OI(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function r5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function DI(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Ad(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=Ad(o),m=e.slice();f.forEach(b=>{u[b]=0,c[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=Yg(m,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let _=Ad(l);_.forEach(b=>{c[b]=u[b]+1,h[b]=1});let w=Kg(u,c,h),x=w.filter((b,N)=>_.indexOf(N)===-1);return{nonStrided:h.every(b=>b===1),$begin:u,$end:c,$strides:h,size:w,newShape:m,outShape:x}}var re={};$e(re,{Serializable:()=>i5,SerializationMap:()=>si,registerClass:()=>Ea});var i5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},si=class{constructor(){this.classNameMap={}}static getMap(){return si.instance==null&&(si.instance=new si),si.instance}static register(e){si.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ea(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),si.register(e)}var o5={};$e(o5,{TEST_EPSILON_FLOAT16:()=>l5,encodeStrings:()=>u5,expectArrayBuffersEqual:()=>BI,expectArraysClose:()=>$I,expectArraysEqual:()=>PI,expectNumbersClose:()=>LI,expectPromiseToFail:()=>zI,expectValuesInRange:()=>WI,testEpsilon:()=>wf});var VI=.001,l5=.1;function $I(e,t,n){return n==null&&(n=wf()),_f(e,t,(r,a)=>bf(r,a,n))}function wf(){return $.backend.floatPrecision()===32?VI:l5}function _f(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Or(e),o=Or(t);if(!ea(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:os(e),s=rn(t)?t:os(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function zI(e,t){e().then(()=>t.fail(),()=>t())}function PI(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return wa(e)||wa(e[0])||wa(t)||wa(t[0])?_f(e,n,(r,a)=>r==a):_f(e,t,(r,a)=>bf(r,a,0))}function LI(e,t,n){if(n==null&&(n=wf()),!bf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function bf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function WI(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function BI(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function u5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?u5(n):e[t]=Wu(n)}return e}var c5="2.8.5";function h5(){ee().set("PROD",!0)}function UI(){ee().set("DEBUG",!0)}function jI(){ee().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Ct(e){ee().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}_9(Ct);function HI(){$.disposeVariables()}function Un(){return $}function yd(){return $.memory()}function na(e){return $.profile(e)}function W(e,t){return $.tidy(e,t)}function Te(e){J1(e).forEach(t=>t.dispose())}function Vt(e){return $.keep(e)}function GI(e){return $.time(e)}function d5(e){return $.setBackend(e)}function p5(){return $.ready()}function gd(){return $.backendName}function qI(e){$.removeBackend(e)}function vf(e){return $.findBackend(e)}function XI(e){return $.findBackendFactory(e)}function ul(e,t,n=1){return $.registerBackend(e,t,n)}function kf(){return $.backend}function KI(e,t){ee().setPlatform(e,t)}function ZI(e,t){let n=C(e,"a","add"),r=C(t,"b","add");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(ba,a)}var ie=D({add_:ZI});function YI(e,t){let n=C(e,"a","floorDiv"),r=C(t,"b","floorDiv");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(_s,a)}var xd=D({floorDiv_:YI});function JI(e,t){let n=C(e,"a","div"),r=C(t,"b","div");if([n,r]=_t(n,r),n.dtype==="int32"&&r.dtype==="int32")return xd(n,r);let a={a:n,b:r},s={};return $.runKernel(gs,a,s)}var be=D({div_:JI});function QI(e,t){let n=C(e,"a","mul"),r=C(t,"b","mul");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Fs,a)}var L=D({mul_:QI});function eN(e){let t=C(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Iu,n)}else{let n={x:t};return $.runKernel(Ji,n)}}var Dt=D({abs_:eN});function tN(e){let t={x:C(e,"x","acos")};return $.runKernel(Qi,t)}var If=D({acos_:tN});function nN(e){let t={x:C(e,"x","acosh")};return $.runKernel(eo,t)}var Nf=D({acosh_:nN});function rN(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>C(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!ea(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ls,r)}var cl=D({addN_:rN});function aN(e,t=null,n=!1){let r={x:C(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(Rh,r,a)}var wd=D({all_:aN});function sN(e,t=null,n=!1){let r={x:C(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(Fh,r,a)}var Xu=D({any_:sN});function iN(e,t=0){let n={x:C(e,"x","argMax")},r={axis:t};return $.runKernel(us,n,r)}var Ku=D({argMax_:iN});function oN(e,t=0){let n={x:C(e,"x","argMin")},r={axis:t};return $.runKernel(bu,n,r)}var Sf=D({argMin_:oN});function lN(e){let t={x:C(e,"x","asin")};return $.runKernel(to,t)}var Tf=D({asin_:lN});function uN(e){let t={x:C(e,"x","asinh")};return $.runKernel(no,t)}var Ef=D({asinh_:uN});function cN(e){let t={x:C(e,"x","atan")};return $.runKernel(ro,t)}var Cf=D({atan_:cN});function hN(e,t){let n=C(e,"a","atan2"),r=C(t,"b","atan2");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(so,a)}var Rf=D({atan2_:hN});function dN(e){let t={x:C(e,"x","atanh")};return $.runKernel(ao,t)}var Ff=D({atanh_:dN});function pN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=f5(a);return Zu(e,o,n,s,r,null,null,l)}function m5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=_d(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Zu(e,u,n,r,a,s,!1,i)}function fN(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=Mf(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return A5(e,c,n,r,a,!1,h,s)}function Zu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=_d(n),[y,g]=_d(r),_=hl(d,y),w=hl(p,g),{padInfo:x,outHeight:b,outWidth:N}=mN(a,u,c,m,A,_,w,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,b,N]:o==="channelsLast"&&(E=[l,b,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:b,outWidth:N,outChannels:T,padInfo:x,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:_,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function A5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,_]=Mf(n),[w,x,b]=Mf(r),N=hl(p,w),T=hl(f,x),E=hl(m,b),{padInfo:M,outDepth:z,outHeight:P,outWidth:V}=AN(a,u,c,h,y,g,_,N,T,E,o),q=s?A*d:A,U;return i==="channelsFirst"?U=[l,q,z,P,V]:i==="channelsLast"&&(U=[l,z,P,V,q]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:z,outHeight:P,outWidth:V,outChannels:q,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:w,dilationHeight:x,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function yN(e,t,n,r,a){r==null&&(r=Of(e,t,n));let s=e[0],i=e[1],o=ii((s-t+2*r)/n+1,a),l=ii((i-t+2*r)/n+1,a);return[o,l]}function gN(e,t,n,r,a,s){a==null&&(a=Of(e,t,r));let i=e[0],o=e[1],l=e[2],u=ii((i-t+2*a)/r+1,s),c=ii((o-t+2*a)/r+1,s),h=ii((l-t+2*a)/r+1,s);return[u,c,h,n]}function Of(e,t,n,r=1){let a=hl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function _d(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Mf(e){return typeof e=="number"?[e,e,e]:e}function hl(e,t){return t<=1?e:e+(e-1)*(t-1)}function mN(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=yN([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;u={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=ii((t-s+d+p)/r+1,o),h=ii((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function AN(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=gN([t,n,r,1],o,1,a,e,c);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+u-r,g=Math.floor(m/2),_=m-g,w=Math.floor(A/2),x=A-w,b=Math.floor(y/2),N=y-b;h={top:w,bottom:x,left:b,right:N,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function ii(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ca(e){let[t,n,r]=_d(e);return t===1&&n===1&&r===1}function Nn(e,t){return Ca(e)||Ca(t)}function f5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function xN(e,t){let n={x:C(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Lo,n,r)}var X=D({reshape_:xN});function wN(e,t,n,r,a){let s=C(e,"x","avgPool","float32"),i=1;F(Nn(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=X(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Bt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(cs,u,c);return h=Ae(h,s.dtype),l?X(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Yu=D({avgPool_:wN});function _N(e,t,n,r,a,s="NDHWC",i){i==null?i=[1,1,1]:Ct("dilations is deprecated, this field will be gone in v3.0.0.");let o=C(e,"x","avgPool3d","float32"),l=o,u=!1;o.rank===4&&(u=!0,l=X(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${l.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),F(Nn(n,i),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Bt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:l},h={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s,dilations:i},d=$.runKernel(vu,c,h);return d=Ae(d,l.dtype),u?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Df=D({avgPool3d_:_N});function bN(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Gu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return ar(n[0]);let r=n,a={axis:t};return $.runKernel(oo,r,a)}var at=D({concat_:bN});function vN(e){let t={x:C(e,"x","sigmoid")};return $.runKernel(js,t)}var Sn=D({sigmoid_:vN});function kN(e,t,n){let r=C(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Uo,a,s)}var Ee=D({slice_:kN});function IN(e){let t={x:C(e,"x","tanh")};return $.runKernel(Zs,t)}var dl=D({tanh_:IN});function NN(e,t,n,r,a,s){let i=C(e,"forgetBias","basicLSTMCell"),o=C(t,"lstmKernel","basicLSTMCell"),l=C(n,"lstmBias","basicLSTMCell"),u=C(r,"data","basicLSTMCell"),c=C(a,"c","basicLSTMCell"),h=C(s,"h","basicLSTMCell"),d=at([u,h],1),p=Ge(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Ee(f,[0,0],y),_=Ee(f,[0,A],y),w=Ee(f,[0,A*2],y),x=Ee(f,[0,A*3],y),b=ie(L(Sn(g),dl(_)),L(c,Sn(ie(i,w)))),N=L(dl(b),Sn(x));return[b,N]}var SN=D({basicLSTMCell_:NN});function TN(e,t,n){let r=C(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(ku,s,i)}var Ju=D({batchToSpaceND_:TN});function EN(e){let t;return e.rank===0||e.rank===1?t=X(e,[1,1,1,e.size]):e.rank===2?t=X(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=X(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function CN(e,t,n,r,a,s){s==null&&(s=.001);let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;r!=null&&(c=C(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:EN(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(bs,h,d);return X(p,i.shape)}var oi=D({batchNorm_:CN});function RN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),oi(i,o,l,c,u,s)}var y5=D({batchNorm2d_:RN});function FN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),oi(i,o,l,c,u,s)}var g5=D({batchNorm3d_:FN});function MN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),oi(i,o,l,c,u,s)}var x5=D({batchNorm4d_:MN});function ON(e,t,n){let r=C(e,"x","bincount"),a=C(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Dh,s,i)}var w5=D({bincount_:ON});function DN(e,t){let n=C(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=X(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return ar(n);let i={x:n},o={reps:s};return $.runKernel(ka,i,o)}var Qu=D({broadcastTo_:DN});function $N(e){let t={x:C(e,"x","ceil")};return $.runKernel(io,t)}var $f=D({ceil_:$N});function zN(e,t,n){let r=C(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(va,a,s)}var An=D({clipByValue_:zN});function PN(e){return at(e,0)}var _5=D({concat1d_:PN});function LN(e,t){return at(e,t)}var li=D({concat2d_:LN});function WN(e,t){return at(e,t)}var b5=D({concat3d_:WN});function BN(e,t){return at(e,t)}var v5=D({concat4d_:BN});function VN(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","conv2d"),l=C(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=X(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Bt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Nn(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(ps,d,p);return c?X(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ra=D({conv2d_:VN});function UN(e,t,n,r,a="NWC",s=1,i){let o=C(e,"x","conv1d"),l=C(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=X(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Bt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Nn(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=X(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=X(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=ra(d,h,[1,n],r,"NHWC",[1,s],i);return c?X(p,[p.shape[2],p.shape[3]]):X(p,[p.shape[0],p.shape[2],p.shape[3]])}var bd=D({conv1d_:UN});function jN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=X(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Bt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(fs,d,p);return u?X(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var zf=D({conv2DBackpropInput_:jN});function HN(e,t,n,r,a,s){let i=C(e,"x","conv2dTranspose"),o=C(t,"filter","conv2dTranspose");return zf(n,i,o,r,a,"NHWC",s)}var vd=D({conv2dTranspose_:HN});function GN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=C(e,"x","conv3d"),o=C(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=X(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Nn(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Nu,c,h);return u?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Pf=D({conv3d_:GN});function qN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=X(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Lh,c,h);return o?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var k5=D({conv3DBackpropInput_:qN});function XN(e,t,n,r,a){let s=C(e,"x","conv3dTranspose"),i=C(t,"filter","conv3dTranspose");return k5(n,s,i,r,a)}var KN=D({conv3dTranspose_:XN});function ZN(e){let t={x:C(e,"x","cos")};return $.runKernel(ms,t)}var ec=D({cos_:ZN});function YN(e){let t={x:C(e,"x","cosh")};return $.runKernel(lo,t)}var kd=D({cosh_:YN});function JN(e,t=0,n=!1,r=!1){let a={x:C(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(As,a,s)}var Id=D({cumsum_:JN});function QN(e,t,n,r=!1){let a=C(e,"x","denseBincount"),s=C(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Wh,i,o)}var I5=D({denseBincount_:QN});function eS(e,t,n="NHWC"){let r=C(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(co,o,l)}var Lf=D({depthToSpace_:eS});function tS(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","depthwiseConv2d"),l=C(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=X(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Bt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(ys,h,d);return c?X(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ui=D({depthwiseConv2d_:tS});function nS(e){let t={x:C(e,"x","diag")};return $.runKernel(Uh,t)}var rS=D({diag_:nS});function aS(e,t,n,r,a=[1,1],s="NHWC"){let i=C(e,"x","dilation2d"),o=C(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=X(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Su,c,h);return u?X(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Wf=D({dilation2d_:aS});function sS(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function $t(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function yt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function iS(e,t){let n=C(e,"a","equal"),r=C(t,"b","equal");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(fo,a)}var aa=D({equal_:iS});function oS(e,t,n){let r=C(t,"a","where"),a=C(n,"b","where"),s=C(e,"condition","where","bool"),i=yt(r.shape,a.shape),o=Qu(r,i),l=Qu(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&tt(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(Bo,u)}var yn=D({where_:oS});function lS(e){let t={x:C(e,"x","zerosLike")};return $.runKernel(Jo,t)}var Ue=D({zerosLike_:lS});function uS(e,t){let n=C(e,"a","div"),r=C(t,"b","div");[n,r]=_t(n,r);let a=be(n,r),s=Ue(a),i=aa(r,s);return yn(i,s,a)}var Bf=D({divNoNan_:uS});function cS(e,t){let n=C(e,"t1","dot"),r=C(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=X(n,[1,-1]),o=X(r,[-1,1]),l=Ge(i,o);return X(l,[])}else if(n.rank===1&&r.rank===2){let i=X(n,[1,-1]),o=X(r,[r.shape[0],r.shape[1]]),l=Ge(i,o);return X(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=X(r,[-1,1]),o=Ge(n,i);return X(o,[o.size])}else{let i=X(r,[r.shape[0],r.shape[1]]);return Ge(n,i)}}var N5=D({dot_:cS});function hS(e){let t={x:C(e,"x","elu")};return $.runKernel(ho,t)}var pl=D({elu_:hS});function dS(e){let t=C(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));let n={x:t};return $.runKernel(po,n)}var Vf=D({erf_:dS});function pS(e){let t={x:C(e,"x","exp")};return $.runKernel(xs,t)}var jn=D({exp_:pS});function fS(e,t=0){let n=C(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(mo,r,a)}var Hn=D({expandDims_:fS});function mS(e){let t={x:C(e,"x","expm1")};return $.runKernel(Ao,t)}var Uf=D({expm1_:mS});function AS(e,t){let n=C(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(ka,r,a)}var Ra=D({tile_:AS});function yS(e,t,n,r="float32"){t==null&&(t=e);let a=We([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=X(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ra(Hn(i,0),[n[0],1,1]);if(n.length===2)return Ra(Hn(Hn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ra(Hn(Hn(Hn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var jf=D({eye_:yS});function tc(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(Tu,{},r)}function gS(e){let t={x:C(e,"x","floor")};return $.runKernel(ws,t)}var fl=D({floor_:gS});function xS(e,t,n=0,r=0){let a=C(e,"x","gather"),s=C(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(go,i,o)}var ci=D({gather_:xS});function wS(e,t){let n=C(e,"a","greater"),r=C(t,"b","greater");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(wo,a)}var Gn=D({greater_:wS});function _S(e,t){let n=C(e,"a","greaterEqual"),r=C(t,"b","greaterEqual");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(vs,a)}var sa=D({greaterEqual_:_S});function bS(e){let t={input:C(e,"input","imag")};return $.runKernel(Kh,t)}var Nd=D({imag_:bS});function vS(e){let t={x:C(e,"x","isFinite")};return $.runKernel(bo,t)}var S5=D({isFinite_:vS});function kS(e){let t={x:C(e,"x","isInf")};return $.runKernel(vo,t)}var T5=D({isInf_:kS});function IS(e){let t={x:C(e,"x","isNaN")};return $.runKernel(ko,t)}var E5=D({isNaN_:IS});function NS(e,t=.2){let n={x:C(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(ks,n,r)}var nc=D({leakyRelu_:NS});function SS(e,t){let n=C(e,"a","less"),r=C(t,"b","less");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Io,a)}var rc=D({less_:SS});function TS(e,t){let n=C(e,"a","lessEqual"),r=C(t,"b","lessEqual");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(No,a)}var Fa=D({lessEqual_:TS});function C5(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(Zh,{},r)}function ES(e,t=5,n=1,r=1,a=.5){let s=C(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),F(Bt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=X(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(Ru,l,u);return o?X(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Hf=D({localResponseNormalization_:ES});function CS(e){let t={x:C(e,"x","log")};return $.runKernel(Is,t)}var Tn=D({log_:CS});function RS(e){let t={x:C(e,"x","log1p")};return $.runKernel(So,t)}var Sd=D({log1p_:RS});function FS(e){return F(_a(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=C(t,"x","tf.grad","string_or_numeric"),a=n!=null?C(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&tt(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Td(i),i[0]})}}function MS(e){return F(_a(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Gu(t,"args","tf.grads","string_or_numeric"),a=n!=null?C(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&tt(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Td(i),i})}}function OS(e){return F(_a(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof j,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof j,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Td(r),{grad:r[0],value:a}}}function DS(e){return F(_a(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof j),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof j,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&tt(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Td(r.grads),r}}function R5(e,t){F(_a(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof ju),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Dr(e){return $.customGrad(e)}function Td(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function $S(e){let t={x:C(e,"x","neg")};return $.runKernel(Co,t)}var bt=D({neg_:$S});function zS(e){let t={x:C(e,"x","softplus")};return $.runKernel(Go,t)}var ml=D({softplus_:zS});function PS(e){let t=C(e,"x","logSigmoid");return Dr(n=>({value:bt(ml(bt(n))),gradFunc:r=>L(r,Sn(bt(n)))}))(t)}var F5=D({logSigmoid_:PS});function LS(e,t=null,n=!1){let r={x:C(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ns,r,a)}var qn=D({max_:LS});function WS(e,t){let n=C(e,"a","sub"),r=C(t,"b","sub");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Ks,a)}var ye=D({sub_:WS});function BS(e,t=null,n=!1){let r=C(e,"x","sum");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Gs,a,s)}var Se=D({sum_:BS});function VS(e,t=-1){let n=C(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Dr((r,a)=>{let s=!0,i=qn(r,t,!0),o=ye(r,i),l=ye(Ae(o,"float32"),Tn(Se(jn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=jn(h);return ye(u,L(Se(u,t,d),p))}}})(n)}var Ed=D({logSoftmax_:VS});function Gf(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function M5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function O5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function hi(e,t){let n=t.map(r=>1);return M5(e,n,t)}function US(e,t,n){F(Gf(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function D5(e,t){if(Gf(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function qf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function jS(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function HS(e,t=null,n=!1){let r=C(e,"x","logSumExp"),a=nr(t,r.shape),s=qn(r,a,!0),i=ye(r,s),o=jn(i),l=Se(o,a),u=Tn(l),c=ie(X(s,u.shape),u);if(n){let h=hi(c.shape,a);return X(c,h)}return c}var Xf=D({logSumExp_:HS});function GS(e,t){let n=C(e,"a","logicalAnd","bool"),r=C(t,"b","logicalAnd","bool");yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(To,a)}var sr=D({logicalAnd_:GS});function qS(e){let t={x:C(e,"x","logicalNot","bool")};return $.runKernel(Eu,t)}var ac=D({logicalNot_:qS});function XS(e,t){let n=C(e,"a","logicalOr","bool"),r=C(t,"b","logicalOr","bool");yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Cu,a)}var Cd=D({logicalOr_:XS});function KS(e,t){let n=C(e,"a","logicalXor","bool"),r=C(t,"b","logicalXor","bool");return yt(n.shape,r.shape),sr(Cd(e,t),ac(sr(e,t)))}var $5=D({logicalXor_:KS});function ZS(e,t,n,r,a){let s=C(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=X(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Nn(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Bt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(Ts,u,c);return l?X(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var sc=D({maxPool_:ZS});function YS(e,t=[1,1,1],n,r,a,s="NDHWC",i){i==null?i=[1,1,1]:Ct("dilations is deprecated, this field will be gone in v3.0.0.");let o=C(e,"x","maxPool3d"),l=o,u=!1;o.rank===4&&(u=!0,l=X(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${l.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),F(Nn(n,i),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Bt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:l},h={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s,dilations:i},d=$.runKernel(Fu,c,h);return u?X(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Kf=D({maxPool3d_:YS});function JS(e,t,n,r,a=!1){let s={x:C(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(ed,s,i);return{result:o[0],indexes:o[1]}}var z5=D({maxPoolWithArgmax_:JS});function QS(e,t){let n=C(e,"a","maximum"),r=C(t,"b","maximum");[n,r]=_t(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ss,a)}var yr=D({maximum_:QS});function eT(e,t=null,n=!1){let r={x:C(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Es,r,a)}var vt=D({mean_:eT});function tT(e,t=null,n=!1){let r={x:C(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Cs,r,a)}var Al=D({min_:tT});function nT(e,t){let n=C(e,"a","minimum"),r=C(t,"b","minimum");[n,r]=_t(n,r),n.dtype==="bool"&&(n=Ae(n,"int32"),r=Ae(r,"int32")),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Rs,a)}var di=D({minimum_:nT});function rT(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=C(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Mu,i,s)}var Zf=D({mirrorPad_:rT});function aT(e,t){let n=C(e,"a","mod"),r=C(t,"b","mod");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Eo,a)}var Rd=D({mod_:aT});function sT(e){let t=C(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ut=D({square_:sT});function iT(e,t=null,n=!1){e=C(e,"x","moments");let r=nr(t,e.shape),a=vt(e,r,n),s=a.shape;n||(s=hi(a.shape,r));let i=ut(ye(Ae(e,"float32"),X(a,s))),o=vt(i,r,n);return{mean:a,variance:o}}var Fd=D({moments_:iT});function oT(e,t,n,r){let a=C(t,"data","multiRNNCell"),s=Gu(n,"c","multiRNNCell"),i=Gu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var lT=D({multiRNNCell_:oT});function uT(e,t,n,r=!1){let a=C(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?X(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(td,o,l);return i===1?X(u,[u.size]):u}var P5=D({multinomial_:uT});function cT(e,t){let n=C(e,"a","notEqual"),r=C(t,"b","notEqual");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ro,a)}var Ma=D({notEqual_:cT});function St(e,t="float32"){if(t==="complex64"){let r=St(e,"float32"),a=St(e,"float32");return Na(r,a)}let n=Ch(Mt(e),t);return $.makeTensor(n,e,t)}function $r(e,t="float32"){if(t==="complex64"){let r=$r(e,"float32"),a=St(e,"float32");return Na(r,a)}let n=U1(Mt(e),t);return $.makeTensor(n,e,t)}function hT(e){let t={x:C(e,"x","onesLike")};return $.runKernel(Do,t)}var En=D({onesLike_:hT});function dT(e,t){let n=C(e,"v1","outerProduct"),r=C(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=X(n,[-1,1]),s=X(r,[1,-1]);return Ge(a,s)}var pT=D({outerProduct_:dT});function fT(e,t,n=0){let r=C(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Os,s,a)}var ia=D({pad_:fT});function mT(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ia(e,[t],n)}var AT=D({pad1d_:mT});function yT(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ia(e,t,n)}var gT=D({pad2d_:yT});function xT(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ia(e,t,n)}var wT=D({pad3d_:xT});function _T(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ia(e,t,n)}var bT=D({pad4d_:_T});function vT(e,t,n){let r=C(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel($u,a,s)}var ic=D({spaceToBatchND_:vT});function NT(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=C(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=X(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Nn(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=m5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=IT([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,f]=kT([u.inHeight,u.inWidth],c,h),m=d?r:"valid",A=d?o:ic(o,c,p),y=(n==="avg"?()=>Yu(A,t,s,m):()=>sc(A,t,s,m))(),g=d?y:Ju(y,c,f);return l?X(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function kT(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function IT(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var L5=D({pool_:NT});function ST(e,t){let n=C(e,"base","pow"),r=C(t,"exp","pow");[n,r]=_t(n,r);let a={a:n,b:r};return $.runKernel(Ds,a)}var zr=D({pow_:ST});function TT(e,t){let n=C(e,"x","prelu"),r=C(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel($s,a)}var oc=D({prelu_:TT});function ET(e,t=null,n=!1){let r=C(e,"x","prod");r.dtype==="bool"&&(r=Ae(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(zo,a,s)}var Md=D({prod_:ET});function CT(e,t,n){let r=Mt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var RT=D({rand_:CT}),Yf=Ki(dk()),Jf=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Yf.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},FT=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Yf.alea(a.toString()),this.randn=new Jf(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},MT=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Yf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function OT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new FT(t,n,r,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var DT=D({randomGamma_:OT});function $T(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Jf(t,n,r,!1,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var W5=D({randomNormal_:$T});function zT(e,t=0,n=1,r="float32",a){let s=We(e,r),i=new MT(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var yl=D({randomUniform_:zT});function Od(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(Ou,{},a)}function PT(e){let t={input:C(e,"input","real")};return $.runKernel(nd,t)}var lc=D({real_:PT});function LT(e){let t={x:C(e,"x","reciprocal")};return $.runKernel(Po,t)}var Qf=D({reciprocal_:LT});function WT(e){let t={x:C(e,"x","relu")};return $.runKernel(zs,t)}var Pr=D({relu_:WT});function BT(e){let t={x:C(e,"x","relu6")};return $.runKernel(Ls,t)}var Dd=D({relu6_:BT});function VT(e,t){let n={x:C(e,"x","reverse")},r={dims:t};return $.runKernel(Ws,n,r)}var Cn=D({reverse_:VT});function UT(e){let t=C(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Cn(t,0)}var jT=D({reverse1d_:UT});function HT(e,t){let n=C(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Cn(n,t)}var GT=D({reverse2d_:HT});function qT(e,t){let n=C(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Cn(n,t)}var XT=D({reverse3d_:qT});function KT(e,t){let n=C(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Cn(n,t)}var ZT=D({reverse4d_:KT});function YT(e){let t={x:C(e,"x","round")};return $.runKernel(Bs,t)}var em=D({round_:YT});function JT(e){let t={x:C(e,"x","rsqrt")};return $.runKernel(Vs,t)}var $d=D({rsqrt_:JT});function ke(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Sa(e,[],[],t)}function QT(e){let t={x:C(e,"x","selu")};return $.runKernel(Vo,t)}var zd=D({selu_:QT});function eE(e,t,n,r,a,s=[1,1],i="NHWC"){let o=C(e,"x","separableConv2d"),l=C(t,"depthwiseFilter","separableConv2d"),u=C(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=X(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let f=ui(c,l,r,a,i,s),m=ra(f,u,1,"valid",i);return h?X(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var tm=D({separableConv2d_:eE});async function tE(e,t){let n=C(e,"x","setdiff1d"),r=C(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new Ot([o],n.dtype),u=new Ot([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var B5=tE;function nE(e){let t={x:C(e,"x","sign")};return $.runKernel(Ho,t)}var nm=D({sign_:nE});function rE(e){let t={x:C(e,"x","sin")};return $.runKernel(Us,t)}var Pd=D({sin_:rE});function aE(e){let t={x:C(e,"x","sinh")};return $.runKernel(jo,t)}var Ld=D({sinh_:aE});function sE(e,t,n){let r=C(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ee(r,[t],[n])}var Wd=D({slice1d_:sE});function iE(e,t,n){let r=C(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var rm=D({slice2d_:iE});function oE(e,t,n){let r=C(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var Bd=D({slice3d_:oE});function lE(e,t,n){let r=C(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var uc=D({slice4d_:lE});function uE(e,t=-1){let n=C(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(qs,r,a)}var cc=D({softmax_:uE});function cE(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(qh,t)}var hc=D({fft_:cE});function hE(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Xh,t)}var gl=D({ifft_:hE});function dE(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=X(e,[n,t]);r=gl(a)}else{let a=[n,2*(t-1)],s=X(lc(e),[n,t]),i=X(Nd(e),[n,t]),o=Cn(Ee(s,[0,1],[n,t-2]),1),l=L(Cn(Ee(i,[0,1],[n,t-2]),1),ke(-1)),u=at([s,o],1),c=at([i,l],1),h=X(Na(u,c),[a[0],a[1]]);r=gl(h)}if(r=lc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=X(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Vd=D({irfft_:dE});function pE(e,t,n=0){let r={x:C(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(qo,r,a)}var Yt=D({split_:pE});function fE(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Ee(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=at([e,St(f)],e.shape.length-1),n=t}else a=e;let s=Ue(a),i=X(Na(a,s),[r,n]),o=hc(i),l=Math.floor(n/2)+1,u=lc(o),c=Nd(o),h=Yt(u,[l,n-l],u.shape.length-1),d=Yt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,X(Na(h[0],d[0]),p)}var dc=D({rfft_:fE});function mE(e){let t={x:C(e,"x","sqrt")};return $.runKernel(Hs,t)}var Jt=D({sqrt_:mE});function AE(e,t){let n=C(e,"a","squaredDifference"),r=C(t,"b","squaredDifference");[n,r]=_t(n,r),yt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Xs,a,s)}var pc=D({squaredDifference_:AE});function yE(e,t){let n=C(e,"x","squeeze");return X(n,rg(n.shape,t).newShape)}var Oa=D({squeeze_:yE});function gE(e,t=0){let n=Gu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel($o,r,a)}var Rn=D({stack_:gE});function xE(e,t=0){let n={x:C(e,"x","step")},r={alpha:t};return $.runKernel(Ia,n,r)}var xl=D({step_:xE});function wE(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:C(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Xo,u,c)}var am=D({stridedSlice_:wE});function _E(e){let t={x:C(e,"x","tan")};return $.runKernel(Ko,t)}var sm=D({tan_:_E});function Ut(e,t){is(e);let n=Or(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Sa(e,null,n,t)}function gn(e,t,n){if(is(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Or(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Sa(e,t,r,n)}function bE(e,t,n){if(is(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Or(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Sa(e,t,r,n)}function vE(e,t,n){if(is(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Or(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Sa(e,t,r,n)}function kE(e,t,n){if(is(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Or(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Sa(e,t,r,n)}function IE(e,t=1,n=!0){let r=C(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(Zo,s,i);return{values:o,indices:l}}var im=D({topk_:IE});function NE(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Jf(t,n,r,!0,a),i=We(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Ud=D({truncatedNormal_:NE});function SE(e,t=0){let n=C(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(id,r,a);return{values:s,indices:i}}var jd=D({unique_:SE});function TE(e,t,n){let r=C(e,"x","unsortedSegmentSum"),a=C(t,"segmentIds","unsortedSegmentSum","int32");F(Bt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Pu,s,i)}var om=D({unsortedSegmentSum_:TE});function EE(e,t=0){let n=C(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Yo,r,a)}var ir=D({unstack_:EE});function V5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function U5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=We(e,"int32"),a=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function CE(e){let t=C(e,"condition","whereAsync","bool"),n=await t.data(),r=U5(t.shape,n);return e!==t&&t.dispose(),r}var lm=CE;async function RE(e,t,n){let r=C(e,"tensor","boolMask"),a=C(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),tt(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=X(r,u),h=X(a,[-1]),d=await lm(h),p=Oa(d,[1]),f=ci(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),f}var FE=RE;function ME(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","notEqualStrict"),r=C(t,"b","notEqualStrict");return tt(n.shape,r.shape,"Error in notEqualStrict: "),Ma(n,r)}function OE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","lessStrict"),r=C(t,"b","lessStrict");return tt(n.shape,r.shape,"Error in lessStrict: "),rc(n,r)}function DE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","equalStrict"),r=C(t,"b","equalStrict");return tt(n.shape,r.shape,"Error in equalStrict: "),aa(n,r)}function $E(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","lessEqualStrict"),r=C(t,"b","lessEqualStrict");return tt(n.shape,r.shape,"Error in lessEqualStrict: "),Fa(n,r)}function zE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","greaterStrict"),r=C(t,"b","greaterStrict");return tt(n.shape,r.shape,"Error in greaterStrict: "),Gn(n,r)}function PE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","greaterEqualStrict"),r=C(t,"b","greaterEqualStrict");return tt(n.shape,r.shape,"Error in greaterEqualStrict: "),sa(n,r)}var j5=D({equalStrict_:DE}),H5=D({greaterEqualStrict_:PE}),G5=D({greaterStrict_:zE}),q5=D({lessEqualStrict_:$E}),X5=D({lessStrict_:OE}),K5=D({notEqualStrict_:ME});function LE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","addStrict"),r=C(t,"b","addStrict");return tt(n.shape,r.shape,"Error in addStrict: "),ie(n,r)}function WE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","subStrict"),r=C(t,"b","subStrict");return tt(n.shape,r.shape,"Error in subStrict: "),ye(n,r)}function BE(e,t){return Ct("strict variants of ops have been deprecated and will be removed in future"),tt(e.shape,t.shape,"Error in powStrict: "),zr(e,t)}function VE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","mul"),r=C(t,"b","mul");return tt(n.shape,r.shape,"Error in multiplyStrict: "),L(n,r)}function UE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","div"),r=C(t,"b","div");return tt(n.shape,r.shape,"Error in divideStrict: "),be(n,r)}function jE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","modStrict"),r=C(t,"b","modStrict");return tt(n.shape,r.shape,"Error in modStrict: "),Rd(n,r)}function HE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","minimumStrict"),r=C(t,"b","minimumStrict");return tt(n.shape,r.shape,"Error in minimumStrict: "),di(n,r)}function GE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","maximumStrict"),r=C(t,"b","maximumStrict");return tt(n.shape,r.shape,"Error in maximumStrict: "),yr(n,r)}function qE(e,t){Ct("strict variants of ops have been deprecated and will be removed in future");let n=C(e,"a","squaredDifferenceStrict"),r=C(t,"b","squaredDifferenceStrict");return tt(n.shape,r.shape,"Error in squaredDifferenceStrict: "),pc(n,r)}var Z5=D({addStrict_:LE}),Y5=D({divStrict_:UE}),J5=D({maximumStrict_:GE}),Q5=D({minimumStrict_:HE}),ex=D({modStrict_:jE}),tx=D({mulStrict_:VE}),nx=D({powStrict_:BE}),rx=D({squaredDifferenceStrict_:qE}),ax=D({subStrict_:WE});function XE(e,t="euclidean",n=null,r=!1){e=C(e,"x","norm");let a=sx(e,t,n),s=a.shape;if(r){let i=nr(n,e.shape);s=hi(a.shape,i)}return X(a,s)}function sx(e,t,n=null){if(e.rank===0)return Dt(e);if(e.rank!==1&&n===null)return sx(X(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Dt(e),n);if(t===Infinity)return qn(Dt(e),n);if(t===-Infinity)return Al(Dt(e),n);if(t==="euclidean"||t===2)return Jt(Se(zr(Dt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return qn(Se(Dt(e),n[0]),n[1]-1);if(t===Infinity)return qn(Se(Dt(e),n[1]),n[0]);if(t===-Infinity)return Al(Se(Dt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Jt(Se(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Hd=D({norm_:XE});function KE(e,t,n,r,a=!0){let s=C(e,"v","movingAverage"),i=C(t,"x","movingAverage"),o=C(n,"decay","movingAverage");vg(s,i),F(ea(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=ye(l,o),c=L(ye(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=C(r,"step","movingAverage");c=be(c,ye(l,zr(o,h)))}return ie(s,c)}var ZE=D({movingAverage_:KE});function YE(e,t,n){let r=C(e,"indices","scatterND","int32"),a=C(t,"updates","scatterND");xf(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Wo,s,i)}var ix=D({scatterND_:YE});function JE(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function QE(e,t,n,r=0){let a=C(e,"sparseIndices","sparseToDense","int32"),s=C(t,"sparseValues","sparseToDense"),i=C(r,"defaultValue","sparseToDense",s.dtype);JE(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(sd,o,l)}var um=D({sparseToDense_:QE});function eC(e,t){let n=C(t,"indices","gatherND","int32"),r={params:C(e,"x","gatherND"),indices:n};return $.runKernel(xo,r)}var ox=D({gatherND_:eC});function tC(e,t){if(t==null)return e.shape.slice();if(ea(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function nC(e,t,n,r){let a=C(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof j?a.clone():a;let s=tC(a,n),i=1-t,o=be(fl(ie(yl(s,0,1,"float32",r),i)),i);return L(a,o)}var lx=D({dropout_:nC});function ux(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function cm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return Ut(a,"float32")}async function rC(e,t,n=1){let r=C(e,"predictions","inTopK"),a=C(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),tt(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=ag("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),c[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),Ar(c,a.shape,"bool")}var aC=rC,Da={};$e(Da,{conv2d:()=>sC,depthwiseConv2d:()=>iC,matMul:()=>oC});function lC(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=X(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=X(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Bt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(zh,h,d)}var hm=D({conv2DBackpropFilter_:lC});function Gd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,xl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function qd(e,t){let n=t,r=$t(e.shape,t.shape);return r.length>0&&(n=Se(n,r)),X(n,e.shape)}function Xd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Pr(e);if(t==="elu")return pl(e);if(t==="relu6")return Dd(e);if(t==="prelu")return oc(e,n);if(t==="leakyrelu")return nc(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Kd=(e,t)=>!(e>0)||t==="linear";function uC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Kd($.state.gradientDepth,l)===!1){let x=ra(e,t,n,r,a,s,i);return o!=null&&(x=ie(x,o)),Xd(x,l,u,c)}let h=C(e,"x","conv2d"),d=C(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=X(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Bt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Nn(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Zu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=_t(A,h),yt(m.outShape,A.shape));let y;u!=null&&(y=C(u,"prelu weights","fused conv2d"));let g=(x,b)=>{let[N,T,E,M]=b,z=Gd(x,E,l);F(Ca(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=zf(T.shape,z,N,n,r),V=hm(T,z,N.shape,n,r),q=[P,V];if(M!=null){let U=qd(M,z);q.push(U)}return q},_={x:p,filter:d,bias:A,preluActivationWeights:y},w={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Dr((x,b,N)=>{let T=$.runKernel(Qs,_,w);return N([b,x,T]),f&&(T=X(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Dr((x,b,N,T)=>{let E=$.runKernel(Qs,_,w);return T([b,x,E,N]),f&&(E=X(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var sC=D({fusedConv2d_:uC});function cC(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=X(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=X(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(Bh,u,c)}var cx=D({depthwiseConv2dNativeBackpropFilter_:cC});function hC(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=X(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(Vh,u,c);return l?X(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var hx=D({depthwiseConv2dNativeBackpropInput_:hC});function dC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Kd($.state.gradientDepth,l)===!1){let x=ui(e,t,n,r,a,s,i);return o!=null&&(x=ie(x,o)),Xd(x,l,u,c)}let h=C(e,"x","depthwiseConv2d"),d=C(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=X(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Nn(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Bt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Zu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=_t(A,h),yt(m.outShape,A.shape));let y;u!=null&&(y=C(u,"prelu weights","fused depthwiseConv2d"));let g=(x,b)=>{F(Ca(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=b,z=Gd(x,E,l),P=hx(T.shape,z,N,n,r,s,i),V=cx(T,z,N.shape,n,r,s,i);if(M!=null){let q=qd(A,z);return[P,V,q]}return[P,V]},_={x:p,filter:d,bias:A,preluActivationWeights:y},w={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Dr((x,b,N)=>{let T=$.runKernel(ei,_,w);return N([b,x,T]),f&&(T=X(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Dr((x,b,N,T)=>{let E=$.runKernel(ei,_,w);return T([b,x,E,N]),f&&(E=X(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var iC=D({fusedDepthwiseConv2d_:dC});function pC({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Kd($.state.gradientDepth,s)===!1){let M=Ge(e,t,n,r);return a!=null&&(M=ie(M,a)),Xd(M,s,i,o)}let l=C(e,"a","fused matMul"),u=C(t,"b","fused matMul");[l,u]=_t(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=Mt(f),y=Mt(m);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(ea(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),_=n?X(l,[A,c,d]):X(l,[A,d,c]),w=r?X(u,[y,p,h]):X(u,[y,h,p]),x;a!=null&&(x=C(a,"bias","fused matMul"),[x]=_t(x,l),yt(g,x.shape));let b;i!=null&&(b=C(i,"prelu weights","fused matMul"));let N=(M,z)=>{let[P,V,q,U]=z,K=Gd(X(M,q.shape),q,s),Z,te;if(!n&&!r?(Z=Ge(K,V,!1,!0),te=Ge(P,K,!0,!1)):!n&&r?(Z=Ge(K,V,!1,!1),te=Ge(K,P,!0,!1)):n&&!r?(Z=Ge(V,K,!1,!0),te=Ge(P,K,!1,!1)):(Z=Ge(V,K,!0,!0),te=Ge(K,P,!0,!0)),a!=null){let J=qd(U,K);return[Z,te,J]}else return[Z,te]},T={a:_,b:w,bias:x,preluActivationWeights:b},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Dr((M,z,P)=>{let V=$.runKernel(Js,T,E);return P([M,z,V]),{value:X(V,g),gradFunc:N}})(_,w):Dr((M,z,P,V)=>{let q=$.runKernel(Js,T,E);return V([M,z,q,P]),{value:X(q,g),gradFunc:N}})(_,w,x)}var oC=D({fusedMatMul_:pC});function fC(e){return cm(e,.54,.46)}var mC=D({hammingWindow_:fC});function AC(e){return cm(e,.5,.5)}var dx=D({hannWindow_:AC});function yC(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ee(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=at([Ee(e,s,t-o),tc([o],a)]);i.push(l),s+=n}return i.length===0?gn([],[0,t]):X(at(i),[i.length,t])}var px=D({frame_:yC});function gC(e,t,n,r,a=dx){r==null&&(r=ux(t));let s=px(e,t,n),i=L(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(dc(Ee(i,[l,0],[1,t]),r));return at(o)}var xC=D({stft_:gC});function wC(e,t,n,r,a="bilinear",s=0){let i=C(e,"image","cropAndResize"),o=C(t,"boxes","cropAndResize","float32"),l=C(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(uo,c,h)}var _C=D({cropAndResize_:wC});function bC(e){let t=C(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(yo,n,{})}var vC=D({flipLeftRight_:bC});function kC(e,t,n=0,r=.5){let a=C(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Qo,s,i)}var IC=D({rotateWithOffset_:kC});function wl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function NC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppression"),i=C(t,"scores","nonMaxSuppression"),o=wl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Fo,{boxes:s,scores:i},l)}var SC=D({nonMaxSuppression_:NC});function EC(e,t,n){let r=TC(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function TC(e,t,n){return RC(e,t,n||CC)}function CC(e,t){return e>t?1:e<t?-1:0}function RC(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function fx(e,t,n,r,a){return dm(e,t,n,r,a,0)}function mx(e,t,n,r,a,s){return dm(e,t,n,r,a,0,!1,s,!0)}function Ax(e,t,n,r,a,s){return dm(e,t,n,r,a,s,!0)}function dm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(yx);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y<a)break;let w=!1;for(let x=h.length-1;x>=_;--x){let b=FC(e,g,h[x]);if(b>=r){w=!0;break}if(A.score=A.score*MC(r,c,b),A.score<=a)break}A.suppressBeginIndex=h.length,w||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&EC(u,A,yx))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function FC(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-u)*(d-c);if(p<=0||f<=0)return 0;let m=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),_=Math.max(y-m,0)*Math.max(g-A,0);return _/(p+f-_)}function MC(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function yx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function OC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppressionAsync"),i=C(t,"scores","nonMaxSuppressionAsync"),o=wl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=fx(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ut(h,"int32")}var DC=OC;function $C(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=wl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Oo,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var zC=D({nonMaxSuppressionWithScore_:$C});async function PC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=wl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=Ax(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ut(d,"int32"),selectedScores:Ut(p)}}var LC=PC;function WC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=wl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(Mo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var BC=D({nonMaxSuppressionPadded_:WC});async function VC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=wl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=mx(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ut(f,"int32"),validOutputs:ke(m,"int32")}}var UC=VC;function jC(e,t,n=!1,r=!1){let a=C(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=X(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Ps,o,l);return i?X(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var gx=D({resizeBilinear_:jC});function HC(e,t,n=!1,r=!1){let a=C(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=X(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Du,o,l);return i?X(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var xx=D({resizeNearestNeighbor_:HC});function GC(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=C(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=X(Od(0,s,1,"int32"),[-1,1]),l=Od(0,i,1,"int32"),u=ye(o,l),c=sr(Fa(u,ke(+t,"int32")),sa(u,ke(-n,"int32"))),h=St([s,i],r.dtype);return X(Rn(ir(X(r,[-1,s,i])).map(d=>yn(c,d,h))),a)}var qC=D({bandPart_:GC});function XC(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Yt(e,e.shape[0],0).map(a=>Oa(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=L(Se(L(n[i],s)),n[i]);s=ye(s,o)}return be(s,Hd(s,"euclidean"))}));return t?Rn(n,0):n}var KC=D({gramSchmidt_:XC});function ZC(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return wx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=ir(X(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=wx(l,t);a.push(u),s.push(c)});let i=X(Rn(a,0),e.shape),o=X(Rn(s,0),e.shape);return[i,o]}}function wx(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=jf(n),s=ar(e),i=gn([[1]],[1,1]),o=ar(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Ee(s,[u,u],[n-u,1]),f=Hd(p),m=Ee(s,[u,u],[1,1]),A=yn(Gn(m,0),gn([[-1]]),gn([[1]])),y=ye(m,L(A,f)),g=be(p,y);g.shape[0]===1?o=ar(i):o=at([i,Ee(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=bt(be(Ge(A,y),f)),w=Ee(s,[u,0],[n-u,r]),x=L(_,o),b=rt(o);if(u===0)s=ye(w,Ge(x,Ge(b,w)));else{let E=ye(w,Ge(x,Ge(b,w)));s=at([Ee(s,[0,0],[u,r]),E],0)}let N=rt(x),T=Ee(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=ye(T,Ge(Ge(T,o),N));else{let E=ye(T,Ge(Ge(T,o),N));a=at([Ee(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Te([c,h,d])}return!t&&n>r&&(a=Ee(a,[0,0],[n,r]),s=Ee(s,[0,0],[r,r])),[a,s]})}var YC=D({qr_:ZC}),ln;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ln||(ln={}));function JC(e,t,n=ln.SUM_BY_NONZERO_WEIGHTS){let r=C(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=C(t,"weights","computeWeightedLoss"));let s=a==null?r:L(r,a);if(n===ln.NONE)return s;if(n===ln.SUM)return Se(s);if(n===ln.MEAN){if(a==null)return vt(s);{let i=r.size/a.size,o=be(Se(s),Se(a));return i>1?be(o,ke(i)):o}}if(n===ln.SUM_BY_NONZERO_WEIGHTS){if(a==null)return be(Se(s),ke(r.size));{let i=L(a,$r(r.shape)),o=Ae(Se(Ma(i,ke(0))),"float32");return be(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var oa=D({computeWeightedLoss_:JC});function QC(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","absoluteDifference"),s=C(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=C(n,"weights","absoluteDifference")),tt(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(ye(a,s));return oa(o,i,r)}var eR=D({absoluteDifference_:QC});function tR(e,t,n,r,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","cosineDistance"),i=C(t,"predictions","cosineDistance"),o=null;r!=null&&(o=C(r,"weights","cosineDistance")),tt(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=ye(l,Se(L(s,i),n,!0));return oa(u,o,a)}var nR=D({cosineDistance_:tR});function rR(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","hingeLoss"),s=C(t,"predictions","hingeLoss"),i=null;n!=null&&(i=C(n,"weights","hingeLoss")),tt(a.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);a=ye(L(ke(2),a),o);let l=Pr(ye(o,L(a,s)));return oa(l,i,r)}var aR=D({hingeLoss_:rR});function sR(e,t,n,r=1,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","huberLoss"),i=C(t,"predictions","huberLoss"),o=null;n!=null&&(o=C(n,"weights","huberLoss")),tt(s.shape,i.shape,"Error in huberLoss: ");let l=ke(r),u=Dt(ye(i,s)),c=di(u,l),h=ye(u,c),d=ie(L(ke(.5),ut(c)),L(l,h));return oa(d,o,a)}var iR=D({huberLoss_:sR});function oR(e,t,n,r=1e-7,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","logLoss"),i=C(t,"predictions","logLoss"),o=null;n!=null&&(o=C(n,"weights","logLoss")),tt(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(r),c=bt(L(s,Tn(ie(i,u)))),h=L(ye(l,s),Tn(ie(ye(l,i),u))),d=ye(c,h);return oa(d,o,a)}var lR=D({logLoss_:oR});function uR(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","meanSquaredError"),s=C(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=C(n,"weights","meanSquaredError")),tt(a.shape,s.shape,"Error in meanSquaredError: ");let o=pc(a,s);return oa(o,i,r)}var cR=D({meanSquaredError_:uR});function hR(e,t){let n=C(e,"labels","sigmoidCrossEntropyWithLogits"),r=C(t,"logits","sigmoidCrossEntropyWithLogits");tt(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Pr(r),s=L(r,n),i=Sd(jn(bt(Dt(r))));return ie(ye(a,s),i)}function dR(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"multiClassLabels","sigmoidCrossEntropy"),i=C(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","sigmoidCrossEntropy")),tt(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=ke(r),c=ke(1),h=ke(.5);s=ie(L(s,ye(c,u)),L(h,u))}let l=hR(s,i);return oa(l,o,a)}var pR=D({sigmoidCrossEntropy_:dR});function fR(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Dr((r,a,s)=>{let i=Xf(a,[n],!0),o=ye(Ae(a,"float32"),i);s([r,o]);let l=bt(L(o,r));return{value:Se(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=hi(u.shape,[n]);return[L(X(u,p),ye(Ae(h,"float32"),jn(d))),L(X(u,p),ye(jn(d),Ae(h,"float32")))]}}})(e,t)}function mR(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"onehotLabels","softmaxCrossEntropy"),i=C(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","softmaxCrossEntropy")),tt(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=ke(r),c=ke(1),h=ke(s.shape[1]);s=ie(L(s,ye(c,u)),be(u,h))}let l=fR(s,i);return oa(l,o,a)}var AR=D({softmaxCrossEntropy_:mR}),yR={fft:hc,ifft:gl,rfft:dc,irfft:Vd},gR={hammingWindow:mC,hannWindow:dx,frame:px,stft:xC},st={flipLeftRight:vC,resizeNearestNeighbor:xx,resizeBilinear:gx,rotateWithOffset:IC,cropAndResize:_C,nonMaxSuppression:SC,nonMaxSuppressionAsync:DC,nonMaxSuppressionWithScore:zC,nonMaxSuppressionWithScoreAsync:LC,nonMaxSuppressionPadded:BC,nonMaxSuppressionPaddedAsync:UC},_x={bandPart:qC,gramSchmidt:KC,qr:YC},xR={absoluteDifference:eR,computeWeightedLoss:oa,cosineDistance:nR,hingeLoss:aR,huberLoss:iR,logLoss:lR,meanSquaredError:cR,sigmoidCrossEntropy:pR,softmaxCrossEntropy:AR},la=class extends i5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Te(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return R5(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(la,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Zd=class extends la{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:W(()=>Ue(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:W(()=>Ue(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;W(()=>{let l=ie(L(i,this.rho),L(ut(s),1-this.rho)),u=L(be(Jt(ie(o,this.epsilon)),Jt(ie(i,this.epsilon))),s),c=ie(L(o,this.rho),L(ut(u),1-this.rho));i.assign(l),o.assign(c);let h=ie(L(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Zd.className="Adadelta";Ea(Zd);var Yd=class extends la{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:W(()=>tc(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;W(()=>{let i=ie(s,ut(a));s.assign(i);let o=ie(L(be(a,Jt(ie(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Yd.className="Adagrad";Ea(Yd);var Jd=class extends la{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:W(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:W(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=ie(L(u,this.beta1),L(l,1-this.beta1)),d=ie(L(c,this.beta2),L(ut(l),1-this.beta2)),p=be(h,n),f=be(d,r);u.assign(h),c.assign(d);let m=ie(L(be(p,ie(Jt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),W(()=>{this.accBeta1.assign(zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Jd.className="Adam";Ea(Jd);var Qd=class extends la{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ye(1,this.accBeta1),r=be(-this.learningRate,ie(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=ie(L(u,this.beta1),L(l,1-this.beta1)),d=L(c,this.beta2),p=Dt(l),f=yr(d,p);u.assign(h),c.assign(f);let m=ie(L(be(r,n),be(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Qd.className="Adamax";Ea(Qd);var fc=class extends la{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];W(()=>{let s=ie(L(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};fc.className="SGD";Ea(fc);var ep=class extends fc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&W(()=>{let i,o=ie(L(this.m,a),s);this.useNesterov?i=ie(L(this.c,ie(s,L(o,this.m))),r):i=ie(L(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ep.className="Momentum";Ea(ep);var tp=class extends la{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:W(()=>Ue(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:W(()=>Ue(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;W(()=>{let l=ie(L(i,this.decay),L(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=ie(L(u,this.decay),L(s,1-this.decay)),h=be(L(s,this.learningRate),Jt(ye(l,ie(ut(c),this.epsilon)))),d=ie(L(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=ye(r,d);r.assign(p)}else{let u=ie(L(i,this.decay),L(ut(s),1-this.decay)),c=ie(L(o,this.momentum),be(L(s,this.learningRate),Jt(ie(u,this.epsilon))));i.assign(u),o.assign(c);let h=ye(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};tp.className="RMSProp";Ea(tp);var pi=class{static sgd(e){return new fc(e)}static momentum(e,t,n=!1){return new ep(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new tp(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Jd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Zd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Qd(e,t,n,r,a)}static adagrad(e,t=.1){return new Yd(e,t)}},fi={sgd:pi.sgd,momentum:pi.momentum,adadelta:pi.adadelta,adagrad:pi.adagrad,rmsprop:pi.rmsprop,adamax:pi.adamax,adam:pi.adam},wR=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function np(){return new Promise(e=>wR(()=>e()))}var R={};$e(R,{ERF_A1:()=>RR,ERF_A2:()=>FR,ERF_A3:()=>MR,ERF_A4:()=>OR,ERF_A5:()=>DR,ERF_P:()=>CR,PARALLELIZE_THRESHOLD:()=>pm,SELU_SCALE:()=>vx,SELU_SCALEALPHA:()=>bx,applyActivation:()=>Xd,assertAndGetBroadcastShape:()=>yt,assertAxesAreInnerMostDims:()=>US,assertParamsConsistent:()=>_R,assignToTypedArray:()=>UR,axesAreInnerMostDims:()=>Gf,calculateShapes:()=>Xg,castTensor:()=>qR,combineLocations:()=>M5,complexWithEvenIndex:()=>WR,complexWithOddIndex:()=>BR,computeConv2DInfo:()=>Zu,computeConv3DInfo:()=>A5,computeDefaultPad:()=>Of,computeDilation2DInfo:()=>pN,computeOptimalWindowSize:()=>vR,computeOutAndReduceShapes:()=>O5,computeOutShape:()=>bR,computePool2DInfo:()=>m5,computePool3DInfo:()=>fN,convertConv2DDataFormat:()=>f5,eitherStridesOrDilationsAreOne:()=>Nn,expandShapeToKeepDim:()=>hi,exponent:()=>HR,exponents:()=>jR,fromStringArrayToUint8:()=>ZR,fromUint8ToStringArray:()=>KR,getAxesPermutation:()=>D5,getBroadcastDims:()=>sS,getComplexWithIndex:()=>VR,getFusedBiasGradient:()=>qd,getFusedDyActivation:()=>Gd,getImageCenter:()=>kR,getInnerMostAxes:()=>jS,getPermuted:()=>NR,getReductionAxes:()=>$t,getReshaped:()=>IR,getReshapedPermuted:()=>SR,getSliceBeginCoords:()=>TR,getSliceSize:()=>ER,getUndoAxesPermutation:()=>qf,log:()=>zR,mergeRealAndImagArrays:()=>PR,prepareAndValidate:()=>qg,prepareSplitSize:()=>GR,reshapeTensor:()=>XR,segment_util:()=>kx,shouldFuse:()=>Kd,slice_util:()=>on,splitRealAndImagArrays:()=>LR,tupleValuesAreOne:()=>Ca,upcastType:()=>rr,validateInput:()=>xf,validateUpdateShape:()=>gf,warn:()=>$R});function _R(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function bR(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var pm=30;function vR(e){return e<=pm?e:Eh(e,Math.floor(Math.sqrt(e)))}function kR(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function IR(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function NR(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function SR(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function TR(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function ER(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var bx=1.7580993408473768,vx=1.0507009873554805,CR=.3275911,RR=.254829592,FR=-.284496736,MR=1.421413741,OR=-1.453152027,DR=1.061405429;function $R(...e){ee().getBool("IS_TEST")||console.warn(...e)}function zR(...e){ee().getBool("IS_TEST")||console.log(...e)}function PR(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function LR(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function WR(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function BR(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function VR(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function UR(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function jR(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function HR(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function GR(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var kx={};$e(kx,{collectGatherOpShapeInfo:()=>QR,computeOutShape:()=>JR,segOpComputeOptimalWindowSize:()=>YR});function YR(e,t){let n=!1,r;for(e<=pm?(r=e,n=!0):r=Eh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Eh(e,r+1);return r}function JR(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function QR(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function qR(e,t,n){if(t==="complex64"){if(e.dtype==="complex64")return e.clone();let r=St(e.shape),a=Ae(e,"float32"),s=n.complex(a,r);return r.dispose(),a.dispose(),s}if(!lg(e.dtype,t))return $.makeTensorFromDataId(e.dataId,e.shape,t);if(e.dtype==="complex64"){let r=n.real(e),a=Ae(r,t);return r.dispose(),a}if(t==="int32")return n.int(e);if(t==="bool"){let r=ke(0,e.dtype),a=n.notEqual(e,r);return r.dispose(),a}else throw new Error(`Error in Cast: failed to cast ${e.dtype} to ${t}`)}function XR(e,t){return $.makeTensorFromDataId(e.dataId,t,e.dtype)}function KR(e){try{return e.map(t=>ud(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function ZR(e){return e.map(t=>Wu(t))}var Lr={};$e(Lr,{nonMaxSuppressionV3Impl:()=>fx,nonMaxSuppressionV4Impl:()=>mx,nonMaxSuppressionV5Impl:()=>Ax,whereImpl:()=>U5});var Ix={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,xl(Ae(n,"float32"),-1))}}},eF={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ut(Ae(n,"float32")),a=Jt(ye(ke(1),r));return bt(be(e,a))}}}},tF={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jt(ye(ut(Ae(n,"float32")),1));return be(e,r)}}}},nF={kernelName:ba,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=e,i=$t(n.shape,a);return i.length>0&&(s=Se(s,i)),X(s,n.shape)},b:()=>{let s=e,i=$t(r.shape,a);return i.length>0&&(s=Se(s,i)),X(s,r.shape)}}}},rF={kernelName:ls,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},aF={kernelName:us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},sF={kernelName:bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},iF={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,Jt(ye(ke(1),ut(Ae(n,"float32")))))}}},oF={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jt(ie(ke(1),ut(Ae(n,"float32"))));return be(e,r)}}}},lF={kernelName:so,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=ie(ut(n),ut(r)),i=L(e,be(r,s)),o=$t(n.shape,a);return o.length>0&&(i=Se(i,o)),X(i,n.shape)},b:()=>{let s=ie(ut(n),ut(r)),i=bt(L(e,be(n,s))),o=$t(r.shape,a);return o.length>0&&(i=Se(i,o)),X(i,r.shape)}}}},uF={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,ie(ut(Ae(n,"float32")),1))}}},cF={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,ye(ke(1),ut(Ae(n,"float32"))))}}};function hF(e,t,n,r,a=[1,1,1],s,i){let o=C(e,"dy","avgPool3dGrad"),l=C(t,"input","avgPool3dGrad"),u=o,c=l,h=!1;l.rank===4&&(h=!0,u=X(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=X(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),F(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),F(Nn(r,a),()=>`Error in avgPool3dGrad: Either strides or dilations must be 1. Got strides ${r} and dilations '${a}'`),i!=null&&F(Bt(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:u,input:c},p={filterSize:n,strides:r,dilations:a,pad:s,dimRoundingMode:i},f=$.runKernel(Oh,d,p);return h?X(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var dF=D({avgPool3dGrad_:hF}),pF={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,dilations:i,pad:o,dimRoundingMode:l}=n,u=i==null?[1,1,1]:i;return{x:()=>dF(e,r,a,s,u,o,l)}}};function fF(e,t,n,r,a){let s=C(e,"dy","avgPoolGrad"),i=C(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=X(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=X(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Mh,c,h);return u?X(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var mF=D({avgPoolGrad_:fF}),AF={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>mF(e,r,a,s,i)}}},yF={kernelName:hs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ge(e,a,!1,!0),b:()=>Ge(r,e,!0,!1)}:!s&&i?{a:()=>Ge(e,a,!1,!1),b:()=>Ge(e,r,!0,!1)}:s&&!i?{a:()=>Ge(a,e,!1,!0),b:()=>Ge(r,e,!1,!1)}:{a:()=>Ge(a,e,!0,!0),b:()=>Ge(e,r,!0,!0)}}},gF={kernelName:ku,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>ic(e,r,a)}}},xF={kernelName:gg,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},wF={kernelName:ds,gradFunc:e=>({x:()=>e.clone()})},_F={kernelName:io,gradFunc:e=>({x:()=>Ue(e)})},bF={kernelName:va,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>yn(sr(sa(r,a),Fa(r,s)),e,Ue(e))}}},vF={kernelName:Iu,inputsToSave:["x"],gradFunc:Ix.gradFunc},kF={kernelName:oo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=nr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Yt(e,i,s).map(o=>()=>o)}},IF={kernelName:ps,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Ca(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>zf(r.shape,e,a,i,o,l),filter:()=>hm(r,e,a.shape,i,o,l)}}},NF={kernelName:fs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ra(e,a,s,i,o,1,l),filter:()=>hm(e,r,a.shape,s,i,o,l)}}};function SF(e,t,n,r,a){let s=e;e.rank===4&&(s=X(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=X(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Ph,o,l)}var TF=D({conv3DBackpropFilter_:SF}),EF={kernelName:Nu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Ca(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>k5(i.shape,e,o,a,s),filter:()=>TF(i,e,o.shape,a,s)}}},CF={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bt(Pd(Ae(n,"float32"))),e)}}},RF={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ld(Ae(n,"float32")),e)}}},FF={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=D5([a],r.rank),l=Id(e,a,s,!i);return o!=null&&(l=rt(l,o)),l}}}},MF={kernelName:ys,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Ca(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Nn(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Bt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>hx(l.shape,e,u,a,s,r,i),filter:()=>cx(l,e,u.shape,a,s,r,i)}}},OF={kernelName:Su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(jh,s,n),filter:()=>$.runKernel(Hh,i,n)}}},DF={kernelName:ho,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Gh,r)}}},$F={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(jn(bt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,r)}}},zF={kernelName:xs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},PF={kernelName:mo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>X(e,n.shape)}}},LF={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,jn(n))}}},WF={kernelName:ws,gradFunc:e=>({x:()=>Ue(e)})},BF={kernelName:_s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=be(e,Ae(r,"float32")),i=$t(n.shape,a);return i.length>0?X(Se(s,i),n.shape):s},b:()=>{let s=L(e,Ae(n,"float32")),i=$t(r.shape,a);i.length>0&&(s=X(Se(s,i),r.shape));let o=ut(r);return bt(be(s,Ae(o,"float32")))}}}},VF={kernelName:bs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ke(1):o,u=$t(s.shape,a.shape),c=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)c.push(a.shape[m]);c.push(1)}let h=ye(a,s),d=L(e,l),p=$d(ie(i,ke(r))),f=L(L(L(p,p),p),ke(-.5));return{x:()=>s.rank===1?X(L(L(e,Ra(X(p,[1,1,1,s.shape[0]]),c)),l),a.shape):X(L(L(e,p),l),a.shape),mean:()=>{let m=L(L(p,ke(-1)),d);return s.rank===1&&(m=Se(m,u)),X(m,s.shape)},variance:()=>{let m=L(L(f,h),d);return s.rank===1&&(m=Se(m,u)),X(m,s.shape)},scale:()=>{let m=L(h,p),A=L(e,m);return s.rank===1&&(A=Se(A,u)),X(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Se(m,u)),X(m,s.shape)}}}},UF={kernelName:go,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=nr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Nx(0,c),f=Nx(c+1,c+1+d),m=Sx([u,[l],h]),A=X(e,m),y=X(a,[l]),g=Sx([[c],p,f]),_=rt(A,g),w=om(_,y,r.shape[i]),x=qf(g);return w=rt(w,x),w},indices:()=>a}}};function Nx(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Sx(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var jF={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Ue(n),b:()=>Ue(r)}}},HF={kernelName:_o,gradFunc:e=>({x:()=>Ae(e,"float32")})},GF={kernelName:bo,gradFunc:e=>({x:()=>Ue(e)})},qF={kernelName:vo,gradFunc:e=>({x:()=>Ue(e)})},XF={kernelName:ko,gradFunc:e=>({x:()=>Ue(e)})},KF={kernelName:ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=Gn(r,0);return{x:()=>yn(s,e,L(e,a))}}},ZF={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,ie(n,1))}}},YF={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,Ae(n,"float32"))}}},JF={kernelName:xg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=jn(r);return ye(e,L(Se(e,a,s),i))}}}};function QF(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Yh,o,l)}var eM=D({localResponseNormalizationBackprop_:QF}),tM={kernelName:Ru,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>eM(r,a,e,s,i,o,l)}}};function Tx(e,t,n,r){return t.rank<n.rank&&(t=X(t,hi(t.shape,r))),e.rank<n.rank&&(e=X(e,hi(e.shape,r))),{x:()=>L(e,Ae(aa(n,t),e.dtype))}}var Ex={kernelName:Ns,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=nr(a,s.shape),l=Tx(e,i,s,o);return{x:()=>l.x()}}},nM={kernelName:Ss,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,Ae(sa(n,r),"float32")),b:()=>L(e,Ae(rc(n,r),"float32"))}}};function rM(e,t,n,r,a,s=[1,1,1],i,o){let l=C(e,"dy","maxPool3dGrad"),u=C(t,"input","maxPool3dGrad"),c=C(n,"output","maxPool3dGrad"),h=l,d=u,p=c,f=!1;u.rank===4&&(f=!0,h=X(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=X(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),p=X(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),F(h.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),F(Nn(a,s),()=>`Error in maxPool3dGrad: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`),o!=null&&F(Bt(i),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${i}.`);let m={dy:h,input:d,output:p},A={filterSize:r,strides:a,dilations:s,pad:i,dimRoundingMode:o},y=$.runKernel(Qh,m,A);return f?X(y,[y.shape[1],y.shape[2],y.shape[3],y.shape[4]]):y}var aM=D({maxPool3dGrad_:rM}),sM={kernelName:Fu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,dilations:o,pad:l,dimRoundingMode:u}=n,c=o==null?[1,1,1]:o;return{x:()=>aM(e,r,a,s,i,c,l,u)}}};function iM(e,t,n,r,a,s,i){let o=C(e,"dy","maxPoolGrad"),l=C(t,"input","maxPoolGrad"),u=C(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Bt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Jh,c,h)}var oM=D({maxPoolGrad_:iM}),lM={kernelName:Ts,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>oM(e,r,a,s,i,o)}}},uM={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=nr(a,r.shape),i=O5(r.shape,s)[1],o=Mt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=X(e,l);return be(L(u,$r(r.shape,"float32")),o)}}}},cM={kernelName:Cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=nr(a,s.shape),l=Tx(e,i,s,o);return{x:()=>l.x()}}},hM={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,Ae(Fa(n,r),"float32")),b:()=>L(e,Ae(Gn(n,r),"float32"))}}},dM={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ee(e,s,r.shape)}}},pM={kernelName:Eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=$t(n.shape,a);return s.length>0?X(Se(e,s),n.shape):e},b:()=>{let s=L(e,bt(fl(be(n,r)))),i=$t(r.shape,a);return i.length>0?X(Se(s,i),r.shape):s}}}},fM={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=L(e,Ae(r,"float32")),i=$t(n.shape,a);return i.length>0?X(Se(s,i),n.shape):s},b:()=>{let s=L(e,Ae(n,"float32")),i=$t(r.shape,a);return i.length>0?X(Se(s,i),r.shape):s}}}},mM={kernelName:Co,gradFunc:e=>({x:()=>bt(e)})},AM={kernelName:Ms,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>St(n.shape,"float32")}}},yM={kernelName:Do,gradFunc:e=>({x:()=>Ue(e)})},gM={kernelName:$o,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ir(e,r).map(a=>()=>a)}},Cx={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ee(e,s,r.shape)}}},xM={kernelName:Ds,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=yt(s.shape,i.shape);return{a:()=>{let l=Ae(i,"float32"),u=L(e,L(l,zr(s,ye(l,ke(1))))),c=$t(s.shape,o);return c.length>0&&(u=Se(u,c)),X(u,s.shape)},b:()=>{let l=Gn(s,0),u=yn(l,Tn(s),Ue(s)),c=L(e,L(a,u)),h=$t(i.shape,o);return h.length>0&&(c=Se(c,h)),X(c,i.shape)}}}},wM={kernelName:$s,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=Gn(n,0);return{x:()=>yn(a,e,L(e,r)),alpha:()=>{let s=yn(a,Ue(e),L(e,n)),i=$t(r.shape,e.shape);return i.length>0&&(s=Se(s,i)),X(s,r.shape)}}}},_M={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=be(e,Ae(r,"float32")),i=$t(n.shape,a);return i.length>0?X(Se(s,i),n.shape):s},b:()=>{let s=L(e,Ae(n,"float32")),i=$t(r.shape,a);i.length>0&&(s=X(Se(s,i),r.shape));let o=ut(r);return bt(be(s,Ae(o,"float32")))}}}},bM={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,bt(ut(n)))}}},vM={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(Fa(n,6),xl(n));return{x:()=>L(e,Ae(r,"float32"))}}},kM={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ae(xl(n),"float32"))}}},IM={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>X(e,n.shape)}}},NM={kernelName:Ps,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ad,a,n)}}},SM={kernelName:Du,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(rd,a,n)}}},TM={kernelName:Ws,gradFunc:(e,t,n)=>{let{dims:r}=n,a=nr(r,e.shape);return{x:()=>Cn(e,a)}}},EM={kernelName:Bs,gradFunc:e=>({x:()=>Ue(e)})},CM={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>bt(be(e,L(zr(n,1.5),2)))}}},RM={kernelName:Bo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>Ae(Ue(n),"float32"),t:()=>L(e,Ae(n,e.dtype)),e:()=>L(e,Ae(ac(n),e.dtype))}}},FM={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Gn(n,ke(0)),a=ke(bx),s=ke(vx),i=L(e,s),o=L(L(e,a),jn(Ae(n,"float32")));return yn(r,i,o)}}}},MM={kernelName:js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,ye(ke(1),n)))}}},OM={kernelName:Ho,gradFunc:e=>({x:()=>Ue(e)})},DM={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ec(Ae(n,"float32")),e)}}},$M={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(kd(Ae(n,"float32")),e)}}},zM={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=r5(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>ia(e,u)}}},PM={kernelName:qs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=L(e,r);return{logits:()=>ye(i,L(Se(i,[a],s),r))}}},LM={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Sn(n))}}},Rx={kernelName:$u,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Ju(e,r,a)}}},Fx={kernelName:qo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>at(e,r)}}},WM={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,L(Jt(Ae(n,"float32")),2))}}},BM={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(Ae(n,"float32"),2))}}},VM={kernelName:Xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ke(2);return{a:()=>L(e,L(a,ye(n,r))),b:()=>L(e,L(a,ye(r,n)))}}},UM={kernelName:Ia,gradFunc:e=>({x:()=>Ue(e)})},jM={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=yt(n.shape,r.shape);return{a:()=>{let s=e,i=$t(n.shape,a);return i.length>0&&(s=Se(s,i)),X(s,n.shape)},b:()=>{let s=e,i=$t(r.shape,a);return i.length>0&&(s=Se(s,i)),X(bt(s),r.shape)}}}},HM={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;nr(s,r.shape).forEach(l=>{a[l]=1});let i=X(e,a),o=L(i,$r(r.shape,"float32"));return{x:()=>o}}},GM={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,ut(ec(n)))}}},qM={kernelName:Zs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ye(ke(1),ut(n)),e)}}},XM={kernelName:ka,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Ue(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=ie(s,Ee(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=ie(s,Ee(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=ie(s,Ee(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=ie(s,Ee(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},KM={kernelName:Ys,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=qf(a);return{x:()=>rt(e,s)}}},ZM={kernelName:Yo,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Rn(e,a)}}},JM={kernelName:Pu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>YM(e,n)}}};function YM(e,t){let n=yr(t,Ue(t)),r=ci(e,n),a=sa(t,ke(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Hn(a,o+1);a=sr(a,$r(r.shape,"bool"));let i=Ue(r);return yn(a,r,i)}var QM={kernelName:Jo,gradFunc:e=>({x:()=>Ue(e)})},eO=[Ix,eF,tF,nF,rF,aF,sF,iF,oF,lF,uF,cF,pF,AF,yF,gF,xF,wF,_F,bF,vF,kF,NF,IF,EF,CF,RF,FF,MF,OF,_M,DF,$F,zF,PF,LF,BF,WF,VF,UF,jF,HF,GF,qF,XF,KF,ZF,YF,JF,tM,Ex,Ex,nM,sM,lM,uM,cM,hM,dM,pM,fM,mM,AM,yM,gM,Cx,Cx,xM,wM,bM,vM,kM,IM,NM,SM,TM,EM,CM,RM,FM,MM,OM,DM,$M,zM,PM,LM,Rx,Rx,Fx,Fx,WM,VM,BM,UM,jM,HM,GM,qM,XM,KM,ZM,JM,QM];for(let e of eO)wg(e);j.prototype.abs=function(){return this.throwIfDisposed(),Dt(this)};j.prototype.acos=function(){return this.throwIfDisposed(),If(this)};j.prototype.acosh=function(){return this.throwIfDisposed(),Nf(this)};j.prototype.addStrict=function(e){return this.throwIfDisposed(),Z5(this,e)};j.prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};j.prototype.all=function(e,t){return this.throwIfDisposed(),wd(this,e,t)};j.prototype.any=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};j.prototype.argMax=function(e){return this.throwIfDisposed(),Ku(this,e)};j.prototype.argMin=function(e){return this.throwIfDisposed(),Sf(this,e)};j.prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),X(this,[])};j.prototype.asType=function(e){return this.throwIfDisposed(),Ae(this,e)};j.prototype.as1D=function(){return this.throwIfDisposed(),X(this,[this.size])};j.prototype.as2D=function(e,t){return this.throwIfDisposed(),X(this,[e,t])};j.prototype.as3D=function(e,t,n){return this.throwIfDisposed(),X(this,[e,t,n])};j.prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),X(this,[e,t,n,r])};j.prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),X(this,[e,t,n,r,a])};j.prototype.asin=function(){return this.throwIfDisposed(),Tf(this)};j.prototype.asinh=function(){return this.throwIfDisposed(),Ef(this)};j.prototype.atan=function(){return this.throwIfDisposed(),Cf(this)};j.prototype.atan2=function(e){return this.throwIfDisposed(),Rf(this,e)};j.prototype.atanh=function(){return this.throwIfDisposed(),Ff(this)};j.prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Yu(this,e,t,n,r)};j.prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Ju(this,e,t)};j.prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),oi(this,e,t,n,r,a)};j.prototype.broadcastTo=function(e){return this.throwIfDisposed(),Qu(this,e)};j.prototype.cast=function(e){return this.throwIfDisposed(),Ae(this,e)};j.prototype.ceil=function(){return this.throwIfDisposed(),$f(this)};j.prototype.clipByValue=function(e,t){return this.throwIfDisposed(),An(this,e,t)};j.prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof j&&(e=[e]),at([this,...e],t)};j.prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),bd(this,e,t,n,r,a,s)};j.prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),vd(this,e,t,n,r,a)};j.prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ra(this,e,t,n,r,a,s)};j.prototype.cos=function(){return this.throwIfDisposed(),ec(this)};j.prototype.cosh=function(){return this.throwIfDisposed(),kd(this)};j.prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Id(this,e,t,n)};j.prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Lf(this,e,t)};j.prototype.depthwiseConv2D=function(e,t,n,r,a,s){return Ct("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),ui(this,e,t,n,r,a,s)};j.prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ui(this,e,t,n,r,a,s)};j.prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Wf(this,e,t,n,r,a)};j.prototype.divNoNan=function(e){return this.throwIfDisposed(),Bf(this,e)};j.prototype.divStrict=function(e){return this.throwIfDisposed(),Y5(this,e)};j.prototype.div=function(e){return this.throwIfDisposed(),be(this,e)};j.prototype.dot=function(e){return this.throwIfDisposed(),N5(this,e)};j.prototype.elu=function(){return this.throwIfDisposed(),pl(this)};j.prototype.equalStrict=function(e){return this.throwIfDisposed(),j5(this,e)};j.prototype.equal=function(e){return this.throwIfDisposed(),aa(this,e)};j.prototype.erf=function(){return this.throwIfDisposed(),Vf(this)};j.prototype.exp=function(){return this.throwIfDisposed(),jn(this)};j.prototype.expandDims=function(e){return this.throwIfDisposed(),Hn(this,e)};j.prototype.expm1=function(){return this.throwIfDisposed(),Uf(this)};j.prototype.fft=function(){return this.throwIfDisposed(),hc(this)};j.prototype.flatten=function(){return this.throwIfDisposed(),X(this,[this.size])};j.prototype.floor=function(){return this.throwIfDisposed(),fl(this)};j.prototype.floorDiv=function(e){return this.throwIfDisposed(),xd(this,e)};j.prototype.gather=function(e,t){return this.throwIfDisposed(),ci(this,e,t)};j.prototype.greaterEqualStrict=function(e){return this.throwIfDisposed(),H5(this,e)};j.prototype.greaterEqual=function(e){return this.throwIfDisposed(),sa(this,e)};j.prototype.greaterStrict=function(e){return this.throwIfDisposed(),G5(this,e)};j.prototype.greater=function(e){return this.throwIfDisposed(),Gn(this,e)};j.prototype.ifft=function(){return this.throwIfDisposed(),gl(this)};j.prototype.irfft=function(){return this.throwIfDisposed(),Vd(this)};j.prototype.isFinite=function(){return this.throwIfDisposed(),S5(this)};j.prototype.isInf=function(){return this.throwIfDisposed(),T5(this)};j.prototype.isNaN=function(){return this.throwIfDisposed(),E5(this)};j.prototype.leakyRelu=function(e){return this.throwIfDisposed(),nc(this,e)};j.prototype.lessEqualStrict=function(e){return this.throwIfDisposed(),q5(this,e)};j.prototype.lessEqual=function(e){return this.throwIfDisposed(),Fa(this,e)};j.prototype.lessStrict=function(e){return this.throwIfDisposed(),X5(this,e)};j.prototype.less=function(e){return this.throwIfDisposed(),rc(this,e)};j.prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Hf(this,e,t,n,r)};j.prototype.logSigmoid=function(){return this.throwIfDisposed(),F5(this)};j.prototype.logSoftmax=function(e){return this.throwIfDisposed(),Ed(this,e)};j.prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Xf(this,e,t)};j.prototype.log=function(){return this.throwIfDisposed(),Tn(this)};j.prototype.log1p=function(){return this.throwIfDisposed(),Sd(this)};j.prototype.logicalAnd=function(e){return this.throwIfDisposed(),sr(this,e)};j.prototype.logicalNot=function(){return this.throwIfDisposed(),ac(this)};j.prototype.logicalOr=function(e){return this.throwIfDisposed(),Cd(this,e)};j.prototype.logicalXor=function(e){return this.throwIfDisposed(),$5(this,e)};j.prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ge(this,e,t,n)};j.prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),sc(this,e,t,n,r)};j.prototype.max=function(e,t){return this.throwIfDisposed(),qn(this,e,t)};j.prototype.maximumStrict=function(e){return this.throwIfDisposed(),J5(this,e)};j.prototype.maximum=function(e){return this.throwIfDisposed(),yr(this,e)};j.prototype.mean=function(e,t){return this.throwIfDisposed(),vt(this,e,t)};j.prototype.min=function(e,t){return this.throwIfDisposed(),Al(this,e,t)};j.prototype.minimumStrict=function(e){return this.throwIfDisposed(),Q5(this,e)};j.prototype.minimum=function(e){return this.throwIfDisposed(),di(this,e)};j.prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Zf(this,e,t)};j.prototype.modStrict=function(e){return this.throwIfDisposed(),ex(this,e)};j.prototype.mod=function(e){return this.throwIfDisposed(),Rd(this,e)};j.prototype.mulStrict=function(e){return this.throwIfDisposed(),tx(this,e)};j.prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};j.prototype.neg=function(){return this.throwIfDisposed(),bt(this)};j.prototype.norm=function(e,t,n){return this.throwIfDisposed(),Hd(this,e,t,n)};j.prototype.notEqualStrict=function(e){return this.throwIfDisposed(),K5(this,e)};j.prototype.notEqual=function(e){return this.throwIfDisposed(),Ma(this,e)};j.prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),il(this,e,t,n)};j.prototype.onesLike=function(){return this.throwIfDisposed(),En(this)};j.prototype.pad=function(e,t){return this.throwIfDisposed(),ia(this,e,t)};j.prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),L5(this,e,t,n,r,a)};j.prototype.powStrict=function(e){return this.throwIfDisposed(),nx(this,e)};j.prototype.pow=function(e){return this.throwIfDisposed(),zr(this,e)};j.prototype.prelu=function(e){return this.throwIfDisposed(),oc(this,e)};j.prototype.prod=function(e,t){return this.throwIfDisposed(),Md(this,e,t)};j.prototype.reciprocal=function(){return this.throwIfDisposed(),Qf(this)};j.prototype.relu=function(){return this.throwIfDisposed(),Pr(this)};j.prototype.relu6=function(){return this.throwIfDisposed(),Dd(this)};j.prototype.reshapeAs=function(e){return this.throwIfDisposed(),X(this,e.shape)};j.prototype.reshape=function(e){return this.throwIfDisposed(),X(this,e)};j.prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),gx(this,e,t,n)};j.prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),xx(this,e,t,n)};j.prototype.reverse=function(e){return this.throwIfDisposed(),Cn(this,e)};j.prototype.rfft=function(){return this.throwIfDisposed(),dc(this)};j.prototype.round=function(){return this.throwIfDisposed(),em(this)};j.prototype.rsqrt=function(){return this.throwIfDisposed(),$d(this)};j.prototype.selu=function(){return this.throwIfDisposed(),zd(this)};j.prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),tm(this,e,t,n,r,a,s)};j.prototype.sigmoid=function(){return this.throwIfDisposed(),Sn(this)};j.prototype.sign=function(){return this.throwIfDisposed(),nm(this)};j.prototype.sin=function(){return this.throwIfDisposed(),Pd(this)};j.prototype.sinh=function(){return this.throwIfDisposed(),Ld(this)};j.prototype.slice=function(e,t){return this.throwIfDisposed(),Ee(this,e,t)};j.prototype.softmax=function(e){return this.throwIfDisposed(),cc(this,e)};j.prototype.softplus=function(){return this.throwIfDisposed(),ml(this)};j.prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),ic(this,e,t)};j.prototype.split=function(e,t){return this.throwIfDisposed(),Yt(this,e,t)};j.prototype.sqrt=function(){return this.throwIfDisposed(),Jt(this)};j.prototype.square=function(){return this.throwIfDisposed(),ut(this)};j.prototype.squaredDifference=function(e){return this.throwIfDisposed(),pc(this,e)};j.prototype.squaredDifferenceStrict=function(e){return this.throwIfDisposed(),rx(this,e)};j.prototype.squeeze=function(e){return this.throwIfDisposed(),Oa(this,e)};j.prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof j?[this,e]:[this,...e];return Rn(n,t)};j.prototype.step=function(e){return this.throwIfDisposed(),xl(this,e)};j.prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),am(this,e,t,n,r,a,s,i,o)};j.prototype.subStrict=function(e){return this.throwIfDisposed(),ax(this,e)};j.prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};j.prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};j.prototype.tan=function(){return this.throwIfDisposed(),sm(this)};j.prototype.tanh=function(){return this.throwIfDisposed(),dl(this)};j.prototype.tile=function(e){return this.throwIfDisposed(),Ra(this,e)};j.prototype.toBool=function(){return this.throwIfDisposed(),Ae(this,"bool")};j.prototype.toFloat=function(){return this.throwIfDisposed(),Ae(this,"float32")};j.prototype.toInt=function(){return this.throwIfDisposed(),Ae(this,"int32")};j.prototype.topk=function(e,t){return this.throwIfDisposed(),im(this,e,t)};j.prototype.transpose=function(e){return this.throwIfDisposed(),rt(this,e)};j.prototype.unique=function(e){return this.throwIfDisposed(),jd(this,e)};j.prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),om(this,e,t)};j.prototype.unstack=function(e){return this.throwIfDisposed(),ir(this,e)};j.prototype.where=function(e,t){return this.throwIfDisposed(),yn(e,this,t)};j.prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var tO=Lr.whereImpl,Mx=class extends xu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Sh(this,Un())}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&R.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r){this.data.set(e,{values:t,dtype:r,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Un().makeTensorFromDataId(r,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return tO(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},fm={};$e(fm,{addImpl:()=>Dx,bincountImpl:()=>mm,bincountReduceImpl:()=>$x,ceilImpl:()=>zx,concatImpl:()=>Am,expImpl:()=>Px,expm1Impl:()=>Lx,floorImpl:()=>Wx,gatherV2Impl:()=>Bx,greaterImpl:()=>Vx,lessImpl:()=>Ux,linSpaceImpl:()=>jx,logImpl:()=>Hx,maxImpl:()=>Gx,maximumImpl:()=>qx,minimumImpl:()=>Xx,multiplyImpl:()=>ym,negImpl:()=>Kx,notEqualImpl:()=>Zx,prodImpl:()=>Yx,rangeImpl:()=>xm,rsqrtImpl:()=>Jx,simpleAbsImpl:()=>Ox,sliceImpl:()=>rp,squaredDifferenceImpl:()=>Qx,stridedSliceImpl:()=>ew,subImpl:()=>tw,tileImpl:()=>nw,topKImpl:()=>rw,transposeImpl:()=>gm,uniqueImpl:()=>aw});function Ox(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var nO=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Ox(a),n.makeOutput(r,t.shape,"float32")},rO={kernelName:Ji,backendName:"cpu",kernelFunc:nO};function Rt(e){return(t,n,r,a,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),c=k.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=R.getBroadcastDims(t,i),A=R.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<c.length;++y)c[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<c.length;++y){let g=k.indexToLoc(y,o,l),_=g.slice(-h);m.forEach(N=>_[N]=0);let w=k.locToIndex(_,h,p),x=g.slice(-d);A.forEach(N=>x[N]=0);let b=k.locToIndex(x,d,f);c[y]=e(r[w],a[b])}return[c,i]}}function Fn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var aO={kernelName:$h,backendName:"cpu",kernelFunc:Fn};function ap(e,t,n="float32"){if(n==="complex64"){let a=ap(e,t,"float32"),s=ap(e,t,"float32");return Fn({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Wr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var sO={kernelName:_o,backendName:"cpu",kernelFunc:Wr};function mi(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var iO={kernelName:nd,backendName:"cpu",kernelFunc:mi};function $a(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Wr({inputs:{x:a},backend:n});let i=ap(n,a.shape,a.dtype),o=$a({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Fn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=mi({inputs:{input:a},backend:n}),o=$a({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Wr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,u]=Rt((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var oO={kernelName:ds,backendName:"cpu",kernelFunc:$a};function jt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=$a({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=$a({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,w=l.data.get(g.dataId).values,[x,b,N]=n(i.shape,o.shape,p,f,_,w),T=l.makeTensorInfo(N,"float32",x),E=l.makeTensorInfo(N,"float32",b),M=Fn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function wm(e){return(t,n,r,a,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,c=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,o),f=R.getBroadcastDims(n,o),m=R.mergeRealAndImagArrays(r,a),A=R.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),_=n.length,w=k.computeStrides(n);if(p.length+f.length===0)for(let x=0;x<h.length;x++){let b=x%m.length,N=x%A.length,T=e(m[b*2],m[b*2+1],A[N*2],A[N*2+1]);h[x]=T.real,d[x]=T.imag}else for(let x=0;x<h.length;x++){let b=k.indexToLoc(x,u,c),N=b.slice(-y);p.forEach(P=>N[P]=0);let T=k.locToIndex(N,y,g),E=b.slice(-_);f.forEach(P=>E[P]=0);let M=k.locToIndex(E,_,w),z=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[x]=z.real,d[x]=z.imag}return[h,d,o]}}var Dx=Rt((e,t)=>e+t),lO=wm((e,t,n,r)=>({real:e+n,imag:t+r})),mc=jt(ba,Dx,lO),uO={kernelName:ba,backendName:"cpu",kernelFunc:mc};function mm(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function $x(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=We([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function _l(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function it(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),c=n||i.dtype,h=k.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function bl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var zx=_l(e=>Math.ceil(e)),cO=bl(io,zx),hO={kernelName:io,backendName:"cpu",kernelFunc:cO};function Am(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var Px=_l(e=>Math.exp(e)),sw=bl(xs,Px),dO={kernelName:xs,backendName:"cpu",kernelFunc:sw},Lx=_l(e=>Math.expm1(e)),pO=bl(Ao,Lx),fO={kernelName:Ao,backendName:"cpu",kernelFunc:pO},Wx=_l(e=>Math.floor(e)),mO=bl(ws,Wx),AO={kernelName:ws,backendName:"cpu",kernelFunc:mO};function Bx(e,t,n){let r=We(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var Vx=Rt((e,t)=>e>t?1:0),yO=jt(wo,Vx,null,"bool"),gO={kernelName:wo,backendName:"cpu",kernelFunc:yO},Ux=Rt((e,t)=>e<t?1:0),xO=jt(Io,Ux,null,"bool"),wO={kernelName:Io,backendName:"cpu",kernelFunc:xO};function jx(e,t,n){let r=(t-e)/(n-1),a=k.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var Hx=_l(e=>Math.log(e)),_O=bl(Is,Hx),bO={kernelName:Is,backendName:"cpu",kernelFunc:_O};function Gx(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var qx=Rt((e,t)=>Math.max(e,t)),vO=jt(Ss,qx),kO={kernelName:Ss,backendName:"cpu",kernelFunc:vO},Xx=Rt((e,t)=>Math.min(e,t)),IO=jt(Rs,Xx),NO={kernelName:Rs,backendName:"cpu",kernelFunc:IO},ym=Rt((e,t)=>e*t),SO=wm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),_m=jt(Fs,ym,SO),TO={kernelName:Fs,backendName:"cpu",kernelFunc:_m};function Kx(e,t,n){let r=k.createScalarValue(-1,n);return ym([],t,r,e,n)}function EO(e){let{inputs:t,backend:n}=e,{x:r}=t;ve(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Kx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var CO={kernelName:Co,backendName:"cpu",kernelFunc:EO},Zx=Rt((e,t)=>e!==t?1:0),RO=jt(Ro,Zx,null,"bool"),FO={kernelName:Ro,backendName:"cpu",kernelFunc:RO};function gm(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),u=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let c=0;c<i;++c){let h=k.indexToLoc(c,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=k.locToIndex(d,s,l);u[p]=e[c]}return u}function or(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;ve(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=gm(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var MO={kernelName:Ys,backendName:"cpu",kernelFunc:or};function Yx(e,t,n,r){let[a,s]=R.computeOutAndReduceShapes(e,r),i=rr(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(a),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function OO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"prod");let o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=R.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=or({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=R.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=Yx(h.shape,h.dtype,p,c),y=m;return i&&(y=R.expandShapeToKeepDim(m,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var DO={kernelName:zo,backendName:"cpu",kernelFunc:OO};function xm(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Jx=_l(e=>1/Math.sqrt(e)),$O=bl(Vs,Jx),zO={kernelName:Vs,backendName:"cpu",kernelFunc:$O};function rp(e,t,n,r,a){let s=on.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=on.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?R.fromUint8ToStringArray(e):e,u=We(r,a,l),c=We(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((f,m)=>f+t[m]);c.set(u.get(...p),...d)}return a==="string"?R.fromStringArrayToUint8(c.values):c.values}function Ai(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ve(a,"slice");let[o,l]=on.parseSliceParams(a,s,i);on.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=rp(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var PO={kernelName:Uo,backendName:"cpu",kernelFunc:Ai},Qx=Rt((e,t)=>{let n=e-t;return n*n}),LO=jt(Xs,Qx),WO={kernelName:Xs,backendName:"cpu",kernelFunc:LO};function ew(e,t,n,r){let a=We(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var tw=Rt((e,t)=>e-t),BO=wm((e,t,n,r)=>({real:e-n,imag:t-r})),bm=jt(Ks,tw,BO),VO={kernelName:Ks,backendName:"cpu",kernelFunc:bm};function nw(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=We(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function rw(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*r),u=k.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let g=0;g<p.length;g++)f.push({value:p[g],index:g});f.sort((g,_)=>_.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=u.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let c=t.slice();return c[c.length-1]=r,[We(c,n,l),We(c,"int32",u)]}function aw(e,t,n,r){let a=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new Ot(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(c)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new Ot(h,r);u.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,f,y),A,m,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var iw="2.8.5";ul("cpu",()=>new Mx,1);var ow=it(ho,e=>e>=0?e:Math.exp(e)-1),UO={kernelName:ho,backendName:"cpu",kernelFunc:ow};function lw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ve([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var jO={kernelName:ks,backendName:"cpu",kernelFunc:lw},HO=Rt((e,t)=>e<0?t*e:e);function uw(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ve([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=HO(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var GO={kernelName:$s,backendName:"cpu",kernelFunc:uw},cw=it(zs,e=>Math.max(0,e)),qO={kernelName:zs,backendName:"cpu",kernelFunc:cw},hw=it(Ls,e=>Math.min(Math.max(0,e),6)),XO={kernelName:Ls,backendName:"cpu",kernelFunc:hw};function vm(e,t,n,r,a){if(n==="linear")return Wr({inputs:{x:t},backend:e});if(n==="relu")return cw({inputs:{x:t},backend:e});if(n==="elu")return ow({inputs:{x:t},backend:e});if(n==="relu6")return hw({inputs:{x:t},backend:e});if(n==="prelu")return uw({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return lw({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function gt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var KO={kernelName:Lo,backendName:"cpu",kernelFunc:gt};function dw(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ve([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,c,d]:[A,d,c],x=o?[y,p,h]:[y,h,p],b=gt({inputs:{x:a},backend:n,attrs:{shape:w}}),N=gt({inputs:{x:s},backend:n,attrs:{shape:x}}),T=i?b.shape[1]:b.shape[2],E=i?b.shape[2]:b.shape[1],M=o?N.shape[1]:N.shape[2],z=Math.max(A,y),P=n.data.get(b.dataId).values,V=n.data.get(N.dataId).values,q=k.computeStrides(b.shape),U=k.computeStrides(N.shape),[K,Z,te]=i?[q[0],1,q[1]]:[q[0],q[1],1],[J,ae,Q]=o?[1,U[1],U[0]]:[U[1],1,U[0]],le=E*M,se=We([z,E,M],b.dtype),ce=se.values,he=n.blockSize;for(let pe=0;pe<z;pe++)for(let ge=0;ge<E;ge+=he)for(let me=0;me<M;me+=he)for(let Ne=0;Ne<T;Ne+=he){let Ce=Math.min(ge+he,E),De=Math.min(me+he,M),Xe=Math.min(Ne+he,T);for(let Ve=ge;Ve<Ce;Ve++)for(let nt=me;nt<De;nt++){let ot=0;for(let je=Ne;je<Xe;je++){let ct=Math.min(pe,A-1)*K,ht=Math.min(pe,y-1)*Q,Ln=P[ct+Ve*Z+je*te],Ye=V[je*J+nt*ae+ht];ot+=Ln*Ye}ce[pe*le+(Ve*M+nt)]+=ot}}return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(_,se.dtype,se.values)}var ZO={kernelName:hs,backendName:"cpu",kernelFunc:dw};function YO(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,f,m=[];d=dw({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=mc({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),c&&(f=vm(n,d,c,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var JO={kernelName:Js,backendName:"cpu",kernelFunc:YO},QO=it(Qi,e=>Math.acos(e)),eD={kernelName:Qi,backendName:"cpu",kernelFunc:QO},tD=it(eo,e=>Math.acosh(e)),nD={kernelName:eo,backendName:"cpu",kernelFunc:tD};function rD(e){let{inputs:t,backend:n}=e,r=t;ve(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=We(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var aD={kernelName:ls,backendName:"cpu",kernelFunc:rD};function sD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"all");let o=k.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=or({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,_=m[g];for(let w=0;w<p;++w){let x=m[g+w];_=_&&x}f[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=gt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var iD={kernelName:Rh,backendName:"cpu",kernelFunc:sD};function oD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"any");let o=k.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=or({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,_=m[g];for(let w=0;w<p;++w){let x=m[g+w];_=_||x}f[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=gt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var lD={kernelName:Fh,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMax");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=or({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(c),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],_=0;for(let w=0;w<f;++w){let x=m[y+w];x>g&&(g=x,_=w)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var cD={kernelName:us,backendName:"cpu",kernelFunc:uD};function hD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=or({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(c),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],_=0;for(let w=0;w<f;++w){let x=m[y+w];x<g&&(g=x,_=w)}p[A]=_}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var dD={kernelName:bu,backendName:"cpu",kernelFunc:hD},pD=it(to,e=>Math.asin(e)),fD={kernelName:to,backendName:"cpu",kernelFunc:pD},mD=it(no,e=>Math.asinh(e)),AD={kernelName:no,backendName:"cpu",kernelFunc:mD},yD=it(ro,e=>Math.atan(e)),gD={kernelName:ro,backendName:"cpu",kernelFunc:yD},xD=Rt((e,t)=>Math.atan2(e,t)),wD=jt(so,xD),_D={kernelName:so,backendName:"cpu",kernelFunc:wD},bD=it(ao,e=>Math.atanh(e)),vD={kernelName:ao,backendName:"cpu",kernelFunc:bD};function km(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let w=0;w<a.batchSize;++w){let x=w*y,b=w*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),z=Math.min(a.inHeight,c+E),P=x+T*g;for(let V=0;V<a.outWidth;++V){let q=V*o-p,U=Math.max(0,q),K=Math.min(a.inWidth,h+q),Z=f,te=0,J=0;for(let Q=M;Q<z;Q+=l){let le=b+Q*r[1];for(let se=U;se<K;se+=u){let ce=le+se*r[2],he=e[ce+N];s==="max"&&he>Z?Z=he:s==="avg"&&(te+=he,J++)}if(isNaN(Z))break}let ae=P+V*_+N;A[ae]=s==="avg"?te/J:Z}}}return m}function pw(e,t,n,r,a=!1,s=!1){let i=We(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=We(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let _=g*o-p,w=_;for(;w<0;)w+=u;let x=Math.min(r.inHeight,h+_);for(let b=0;b<r.outWidth;++b){let N=b*l-f,T=N;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,z=-1;for(let P=w;P<x;P+=u){let V=P-_;for(let q=T;q<E;q+=c){let U=q-N,K=m.get(A,P,q,y);K>M&&(M=K,a?z=s?((A*r.inHeight+P)*r.inWidth+q)*r.inChannels+y:(P*r.inWidth+q)*r.inChannels+y:z=V*d+U)}}i.set(z,A,g,b,y)}}return i}function fw(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=We(a.outShape,n),w=_.values,x=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*x,z=E*r[0];for(let P=0;P<a.inChannels;++P)for(let V=0;V<a.outDepth;++V){let q=V*i-m,U=q;for(;U<0;)U+=u;let K=Math.min(a.inDepth,d+q),Z=M+V*b;for(let te=0;te<a.outHeight;++te){let J=te*o-A,ae=J;for(;ae<0;)ae+=c;let Q=Math.min(a.inHeight,p+J),le=Z+te*N;for(let se=0;se<a.outWidth;++se){let ce=se*l-y,he=ce;for(;he<0;)he+=h;let pe=Math.min(a.inWidth,f+ce),ge=le+se*T,me=g,Ne=0,Ce=0;for(let Xe=U;Xe<K;Xe+=u){let Ve=z+Xe*r[1];for(let nt=ae;nt<Q;nt+=c){let ot=Ve+nt*r[2];for(let je=he;je<pe;je+=h){let ct=ot+je*r[3],ht=e[ct+P];if(s==="max"&&ht>me?me=ht:s==="avg"&&(Ne+=ht,Ce++),isNaN(me))break}if(isNaN(me))break}if(isNaN(me))break}let De=ge+P;w[De]=s==="avg"?Ne/Ce:me}}}}return _}function kD(e,t){let n=We(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,_=g;for(;_<0;)_+=i;let w=Math.min(t.inDepth,u+g);for(let x=0;x<t.outHeight;++x){let b=x*a-p,N=b;for(;N<0;)N+=o;let T=Math.min(t.inHeight,c+b);for(let E=0;E<t.outWidth;++E){let M=E*s-f,z=M;for(;z<0;)z+=l;let P=Math.min(t.inWidth,h+M),V=Number.NEGATIVE_INFINITY,q=-1;for(let U=_;U<w;U+=i){let K=U-g;for(let Z=N;Z<T;Z+=o){let te=Z-b;for(let J=z;J<P;J+=l){let ae=J-M,Q=e.get(m,U,Z,J,A);Q>=V&&(V=Q,q=K*c*h+te*c+ae)}}}n.set(q,m,y,x,E,A)}}}return n}function ID(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))h=Wr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=km(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var ND={kernelName:cs,backendName:"cpu",kernelFunc:ID};function SD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u,dilations:c}=r;ve(a,"avgPool3d");let h=c;h==null&&(h=[1,1,1]);let d=R.computePool3DInfo(a.shape,s,i,h,o,l,u),p=n.data.get(a.dataId).values,f=fw(p,a.shape,a.dtype,k.computeStrides(a.shape),d,"avg");return n.makeTensorInfo(f.shape,"float32",f.values)}var TD={kernelName:vu,backendName:"cpu",kernelFunc:SD};function ED(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dilations:u,dimRoundingMode:c}=r;ve([a,s],"avgPool3DGrad");let h=R.computePool3DInfo(s.shape,i,o,u,l,c),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=h.dilationDepth,_=h.dilationHeight,w=h.dilationWidth,x=h.effectiveFilterDepth,b=h.effectiveFilterHeight,N=h.effectiveFilterWidth,T=x-1-h.padInfo.front,E=N-1-h.padInfo.left,M=b-1-h.padInfo.top,z=We(s.shape,"float32"),P=1/(m*A*y),V=n.bufferSync(a);for(let q=0;q<h.batchSize;++q)for(let U=0;U<h.inChannels;++U)for(let K=0;K<h.inDepth;++K)for(let Z=0;Z<h.inHeight;++Z)for(let te=0;te<h.inWidth;++te){let J=K-T,ae=Z-M,Q=te-E,le=0;for(let se=0;se<x;se+=g){let ce=(J+se)/d;if(!(ce<0||ce>=h.outDepth||Math.floor(ce)!==ce))for(let he=0;he<b;he+=_){let pe=(ae+he)/p;if(!(pe<0||pe>=h.outHeight||Math.floor(pe)!==pe))for(let ge=0;ge<N;ge+=w){let me=(Q+ge)/f;me<0||me>=h.outWidth||Math.floor(me)!==me||(le+=V.get(q,ce,pe,me,U))}}}z.set(le*P,q,K,Z,te,U)}return n.makeTensorInfo(z.shape,z.dtype,z.values)}var CD={kernelName:Oh,backendName:"cpu",kernelFunc:ED};function RD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ve([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,_=g-1-c.padInfo.left,w=y-1-c.padInfo.top,x=We(i.shape,"float32"),b=1/(p*f),N=n.data.get(a.dataId).values,T=We(a.shape,"float32",N);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let z=0;z<c.inHeight;++z)for(let P=0;P<c.inWidth;++P){let V=z-w,q=P-_,U=0;for(let K=0;K<y;K+=m){let Z=(V+K)/h;if(!(Z<0||Z>=c.outHeight||Math.floor(Z)!==Z))for(let te=0;te<g;te+=A){let J=(q+te)/d;J<0||J>=c.outWidth||Math.floor(J)!==J||(U+=T.get(E,Z,J,M))}}x.set(U*b,E,z,P,M)}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var FD={kernelName:Mh,backendName:"cpu",kernelFunc:RD};function MD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,y=p.length,g=d.length,_=h.length,w=0,x=0,b=0,N=0;for(let T=0;T<c.length;++T)m[T]=f[w++]+(c[T]-h[x++])*p[b++]/Math.sqrt(d[N++]+u),w>=A&&(w=0),x>=_&&(x=0),b>=y&&(b=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var OD={kernelName:bs,backendName:"cpu",kernelFunc:MD};function DD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ve([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=gt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=or({inputs:{x:p},backend:n,attrs:{perm:u}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Ai({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var $D={kernelName:ku,backendName:"cpu",kernelFunc:DD};function zD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=mm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var PD={kernelName:Dh,backendName:"cpu",kernelFunc:zD},LD=it(va,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),WD={kernelName:va,backendName:"cpu",kernelFunc:LD},BD=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},VD={kernelName:Iu,backendName:"cpu",kernelFunc:BD};function vl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var UD={kernelName:Kh,backendName:"cpu",kernelFunc:vl};function kl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(m=>m.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Wr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(w=>mi({inputs:{input:w},backend:n})),A=o.map(w=>vl({inputs:{input:w},backend:n})),y=kl({inputs:m,backend:n,attrs:{axis:s}}),g=kl({inputs:A,backend:n,attrs:{axis:s}}),_=Fn({inputs:{real:y,imag:g},backend:n});return m.forEach(w=>n.disposeIntermediateTensorInfo(w)),A.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let u=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return gt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=R.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,d=Am(c,i,t[0].dtype,h),p=R.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var jD={kernelName:oo,backendName:"cpu",kernelFunc:kl};function mw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;ve([a,s],"conv2d");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,_=d.dataFormat==="channelsLast",w=new Ot(d.outShape,a.dtype),x=k.computeStrides(a.shape),b=k.computeStrides(s.shape),N=x[0],T=_?x[1]:x[2],E=_?x[2]:1,M=_?1:x[1],z=w.strides[0],P=_?w.strides[1]:w.strides[2],V=_?w.strides[2]:1,q=_?1:w.strides[1],U=n.data.get(a.dataId).values,K=n.data.get(s.dataId).values,Z=w.values;for(let te=0;te<d.batchSize;++te){let J=te*N,ae=te*z;for(let Q=0;Q<d.outHeight;++Q){let le=ae+Q*P,se=Q*d.strideHeight-g;for(let ce=0;ce<p;++ce){let he=se+ce*m;if(he<0||he>=d.inHeight)continue;let pe=ce*b[0],ge=J+he*T;for(let me=0;me<d.outWidth;++me){let Ne=le+me*V,Ce=me*d.strideWidth-y;for(let De=0;De<f;++De){let Xe=Ce+De*A;if(Xe<0||Xe>=d.inWidth)continue;let Ve=pe+De*b[1],nt=ge+Xe*E,ot=Ve;for(let je=0;je<d.inChannels;++je){let ct=U[nt+je*M];for(let ht=0;ht<d.outChannels;++ht)Z[Ne+ht*q]+=ct*K[ot+ht];ot+=d.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,Z)}var HD={kernelName:ps,backendName:"cpu",kernelFunc:mw};function GD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;ve([a,s],"conv2dBackpropFilter");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new Ot(d.filterShape,"float32"),_=d.padInfo.left,w=d.padInfo.top,x=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,N=new Ot(a.shape,a.dtype,x),T=new Ot(s.shape,s.dtype,b);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((w-E)/p)),z=Math.min(d.outHeight,(d.inHeight+w-E)/p);for(let P=0;P<A;++P){let V=Math.max(0,Math.ceil((_-P)/f)),q=Math.min(d.outWidth,(d.inWidth+_-P)/f);for(let U=0;U<d.inChannels;++U)for(let K=0;K<d.outChannels;++K){let Z=0;for(let te=0;te<d.batchSize;++te)for(let J=M;J<z;++J){let ae=E+J*p-w;for(let Q=V;Q<q;++Q){let le=P+Q*f-_;y?Z+=N.get(te,ae,le,U)*T.get(te,J,Q,K):Z+=N.get(te,U,ae,le)*T.get(te,K,J,Q)}}g.set(Z,E,P,U,K)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var qD={kernelName:zh,backendName:"cpu",kernelFunc:GD};function XD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;ve([a,s],"conv2dBackpropInput");let h=k.computeStrides(s.shape),d=k.computeStrides(a.shape),p=R.convertConv2DDataFormat(u),f=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),m=new Ot(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[_,w,x]=h,{batchSize:b,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:z,outChannels:P,outHeight:V,outWidth:q,strideHeight:U,strideWidth:K}=f;p=f.dataFormat;let Z=N-1-f.padInfo.top,te=T-1-f.padInfo.left,J=p==="channelsLast",ae=m.strides[0],Q=J?m.strides[1]:m.strides[2],le=J?m.strides[2]:1,se=J?1:m.strides[1],ce=d[0],he=J?d[1]:d[2],pe=J?d[2]:1,ge=J?1:d[1];for(let me=0;me<b;++me)for(let Ne=0;Ne<E;++Ne)for(let Ce=0;Ce<M;++Ce){let De=Ce-Z,Xe=Math.max(0,Math.ceil(De/U)),Ve=Math.min(V,(N+De)/U);for(let nt=0;nt<z;++nt){let ot=nt-te,je=Math.max(0,Math.ceil(ot/K)),ct=Math.min(q,(T+ot)/K),ht=0;for(let Ye=Xe;Ye<Ve;++Ye){let vn=Ye*U-De;for(let Zt=je;Zt<ct;++Zt){let kn=Zt*K-ot,Yn=ce*me+he*Ye+pe*Zt,fn=_*(N-1-vn)+w*(T-1-kn)+x*Ne;for(let an=0;an<P;++an){let Jn=y[Yn+ge*an],Cr=g[fn+an];ht+=Jn*Cr}}}let Ln=ae*me+Q*Ce+le*nt+se*Ne;A[Ln]=ht}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var KD={kernelName:fs,backendName:"cpu",kernelFunc:XD};function ZD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;ve([a,s],"conv3d");let u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=u,y=A.front,g=A.left,_=A.top,w=new Ot(u.outShape,a.dtype),x=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,N=w.values,T=k.computeStrides(a.shape),E=k.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let z=M*T[0],P=M*w.strides[0];for(let V=0;V<u.outDepth;++V){let q=P+V*w.strides[1],U=V*u.strideDepth-y;for(let K=0;K<c;++K){let Z=U+K*p;if(Z<0||Z>=u.inDepth)continue;let te=K*E[0],J=z+Z*T[1];for(let ae=0;ae<u.outHeight;++ae){let Q=q+ae*w.strides[2],le=ae*u.strideHeight-_;for(let se=0;se<h;++se){let ce=le+se*f;if(ce<0||ce>=u.inHeight)continue;let he=te+se*E[1],pe=J+ce*T[2];for(let ge=0;ge<u.outWidth;++ge){let me=Q+ge*u.outChannels,Ne=ge*u.strideWidth-g;for(let Ce=0;Ce<d;++Ce){let De=Ne+Ce*m;if(De<0||De>=u.inWidth)continue;let Xe=he+Ce*E[2],Ve=pe+De*u.inChannels,nt=Xe;for(let ot=0;ot<u.inChannels;++ot){let je=x[Ve+ot];for(let ct=0;ct<u.outChannels;++ct)N[me+ct]+=je*b[nt+ct];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var YD={kernelName:Nu,backendName:"cpu",kernelFunc:ZD};function JD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;ve([a,s],"conv3dBackpropFilterV2");let u=k.computeStrides(a.shape),c=k.computeStrides(s.shape),h=R.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new Ot(h.filterShape,"float32"),_=g.values,[w,x,b,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,z,P]=c,V=n.data.get(a.dataId).values,[q,U,K,Z]=u,te=h.padInfo.front,J=h.padInfo.left,ae=h.padInfo.top;for(let Q=0;Q<m;++Q){let le=Math.max(0,Math.ceil((te-Q)/d)),se=Math.min(h.outDepth,(h.inDepth+te-Q)/d),ce=Q*w;for(let he=0;he<A;++he){let pe=Math.max(0,Math.ceil((ae-he)/p)),ge=Math.min(h.outHeight,(h.inHeight+ae-he)/p),me=he*x+ce;for(let Ne=0;Ne<y;++Ne){let Ce=Math.max(0,Math.ceil((J-Ne)/f)),De=Math.min(h.outWidth,(h.inWidth+J-Ne)/f),Xe=Ne*b+me;for(let Ve=0;Ve<h.inChannels;++Ve){let nt=Ve*N+Xe;for(let ot=0;ot<h.outChannels;++ot){let je=0;for(let ct=0;ct<h.batchSize;++ct){let ht=ct*q,Ln=ct*E;for(let Ye=le;Ye<se;++Ye){let vn=(Q+Ye*d-te)*U+ht,Zt=Ye*M+Ln;for(let kn=pe;kn<ge;++kn){let Yn=(he+kn*p-ae)*K+vn,fn=kn*z+Zt;for(let an=Ce;an<De;++an){let Jn=(Ne+an*f-J)*Z+Yn,Cr=an*P+fn;je+=V[Jn+Ve]*T[Cr+ot]}}}}_[nt+ot]=je}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var QD={kernelName:Ph,backendName:"cpu",kernelFunc:JD};function e$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;ve([a],"conv3dBackpropInputV2");let u=k.computeStrides(a.shape),c=k.computeStrides(s.shape),h=R.computeConv3DInfo(l,s.shape,o,1,i),d=new Ot(h.inShape,"float32"),p=d.values,[f,m,A,y]=d.strides,g=n.data.get(a.dataId).values,[_,w,x,b]=u,N=n.data.get(s.dataId).values,[T,E,M,z]=c,{batchSize:P,filterDepth:V,filterHeight:q,filterWidth:U,inChannels:K,inDepth:Z,inHeight:te,inWidth:J,outChannels:ae,outDepth:Q,outHeight:le,outWidth:se,strideDepth:ce,strideHeight:he,strideWidth:pe}=h,ge=V-1-h.padInfo.front,me=q-1-h.padInfo.top,Ne=U-1-h.padInfo.left;for(let Ce=0;Ce<P;++Ce)for(let De=0;De<K;++De)for(let Xe=0;Xe<Z;++Xe){let Ve=Xe-ge,nt=Math.max(0,Math.ceil(Ve/ce)),ot=Math.min(Q,(V+Ve)/ce);for(let je=0;je<te;++je){let ct=je-me,ht=Math.max(0,Math.ceil(ct/he)),Ln=Math.min(le,(q+ct)/he);for(let Ye=0;Ye<J;++Ye){let vn=Ye-Ne,Zt=Math.max(0,Math.ceil(vn/pe)),kn=Math.min(se,(U+vn)/pe),Yn=0;for(let fn=nt;fn<ot;++fn){let an=fn*ce-Ve;for(let Jn=ht;Jn<Ln;++Jn){let Cr=Jn*he-ct;for(let In=Zt;In<kn;++In){let $i=In*pe-vn,Ql=_*Ce+w*fn+x*Jn+b*In,pr=T*(V-1-an)+E*(q-1-Cr)+M*(U-1-$i)+z*De;for(let Qn=0;Qn<ae;++Qn){let fr=g[Ql+Qn],zi=N[pr+Qn];Yn+=fr*zi}}}}p[f*Ce+m*Xe+A*je+y*Ye+De]=Yn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var t$={kernelName:Lh,backendName:"cpu",kernelFunc:e$},n$=it(ms,e=>Math.cos(e)),r$={kernelName:ms,backendName:"cpu",kernelFunc:n$},a$=it(lo,e=>Math.cosh(e)),s$={kernelName:lo,backendName:"cpu",kernelFunc:a$};function i$(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=We([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,w=n.data.get(a.dataId).values,x=k.computeStrides(a.shape),b=k.computeStrides(y.shape);for(let N=0;N<f;N++){let T=N*4,E=g[T],M=g[T+1],z=g[T+2],P=g[T+3],V=_[N];if(V>=c)continue;let q=m>1?(z-E)*(h-1)/(m-1):0,U=A>1?(P-M)*(d-1)/(A-1):0;for(let K=0;K<m;K++){let Z=m>1?E*(h-1)+K*q:.5*(E+z)*(h-1);if(Z<0||Z>h-1){for(let te=0;te<A;te++)for(let J=0;J<p;J++){let ae=J+te*b[2]+K*b[1]+N*b[0];y.values[ae]=u}continue}if(l==="bilinear"){let te=Math.floor(Z),J=Math.ceil(Z),ae=Z-te;for(let Q=0;Q<A;Q++){let le=A>1?M*(d-1)+Q*U:.5*(M+P)*(d-1);if(le<0||le>d-1){for(let pe=0;pe<p;pe++){let ge=pe+Q*b[2]+K*b[1]+N*b[0];y.values[ge]=u}continue}let se=Math.floor(le),ce=Math.ceil(le),he=le-se;for(let pe=0;pe<p;pe++){let ge=pe+se*x[2]+te*x[1]+V*x[0],me=w[ge];ge=pe+ce*x[2]+te*x[1]+V*x[0];let Ne=w[ge];ge=pe+se*x[2]+J*x[1]+V*x[0];let Ce=w[ge];ge=pe+ce*x[2]+J*x[1]+V*x[0];let De=w[ge],Xe=me+(Ne-me)*he,Ve=Ce+(De-Ce)*he;ge=pe+Q*b[2]+K*b[1]+N*b[0],y.values[ge]=Xe+(Ve-Xe)*ae}}}else for(let te=0;te<A;++te){let J=A>1?M*(d-1)+te*U:.5*(M+P)*(d-1);if(J<0||J>d-1){for(let le=0;le<p;le++){let se=le+te*b[2]+K*b[1]+N*b[0];y.values[se]=u}continue}let ae=Math.round(J),Q=Math.round(Z);for(let le=0;le<p;le++){let se=le+ae*x[2]+Q*x[1]+V*x[0],ce=le+te*b[2]+K*b[1]+N*b[0];y.values[ce]=w[se]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var o$={kernelName:uo,backendName:"cpu",kernelFunc:i$};function l$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;ve(a,"cumsum");let l=R.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=or({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=R.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=rr(u.dtype,"int32"),d=k.makeZerosTypedArray(k.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=f)for(let g=0;g<f;g++){let _=m(y,g);if(g===0)d[_]=i?0:p[_];else{let w=m(y,g-1);d[_]=i?p[w]+d[w]:p[_]+d[w]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let y=R.getUndoAxesPermutation(l),g=or({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var u$={kernelName:As,backendName:"cpu",kernelFunc:l$};function c$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=mm(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=$x(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var h$={kernelName:Wh,backendName:"cpu",kernelFunc:c$};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let _=Math.floor(g/s),w=g%s;for(let x=0;x<d;++x){let b=Math.floor(x/s),N=x%s,T=(w*s+N)*p;for(let E=0;E<p;++E){let M=E+T+c*(b+u*(_+l*y));m[A++]=f[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var p$={kernelName:co,backendName:"cpu",kernelFunc:d$};function Aw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;ve([a,s],"depthwiseConv2DNative");let c=k.computeStrides(a.shape),h=k.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,_=g.left,w=g.top,x=p.outChannels/p.inChannels,b=new Ot(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=b.values;for(let M=0;M<p.batchSize;++M){let z=M*c[0],P=M*b.strides[0];for(let V=0;V<p.outHeight;++V){let q=P+V*b.strides[1],U=V*p.strideHeight-_;for(let K=0;K<f;++K){let Z=U+K*A;if(Z<0||Z>=p.inHeight)continue;let te=K*h[0],J=z+Z*c[1];for(let ae=0;ae<p.outWidth;++ae){let Q=q+ae*b.strides[2],le=ae*p.strideWidth-w;for(let se=0;se<m;++se){let ce=le+se*y;if(ce<0||ce>=p.inWidth)continue;let he=te+se*h[1],pe=J+ce*p.inChannels,ge=Q,me=he;for(let Ne=0;Ne<p.inChannels;++Ne){let Ce=N[pe+Ne];for(let De=0;De<x;++De)E[ge+De]+=Ce*T[me+De];ge+=x,me+=x}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var f$={kernelName:ys,backendName:"cpu",kernelFunc:Aw};function m$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;ve([a,s],"depthwiseConv2dNativeBackpropFilter");let h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new Ot(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,_=h.outChannels/h.inChannels,w=n.data.get(a.dataId).values,x=new Ot(a.shape,a.dtype,w),b=n.data.get(s.dataId).values,N=new Ot(s.shape,s.dtype,b);for(let T=0;T<f;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let z=0;z<m;++z){let P=Math.max(0,Math.ceil((y-z)/p)),V=Math.min(h.outWidth,(h.inWidth+y-z)/p);for(let q=0;q<h.outChannels;++q){let U=Math.trunc(q/_),K=q%_,Z=0;for(let te=0;te<h.batchSize;++te)for(let J=E;J<M;++J){let ae=T+J*d-g;for(let Q=P;Q<V;++Q){let le=z+Q*p-y;Z+=x.get(te,ae,le,U)*N.get(te,J,Q,q)}}A.set(Z,T,z,U,K)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var A$={kernelName:Bh,backendName:"cpu",kernelFunc:m$};function y$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;ve([a,s],"depthwiseConv2DNativeBackpropInput");let h=k.computeStrides(a.shape),d=k.computeStrides(s.shape),p=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),f=new Ot(p.inShape,"float32"),m=f.values,[A,y,g]=f.strides,_=n.data.get(a.dataId).values,[w,x,b]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:z,filterHeight:P,filterWidth:V,inChannels:q,inHeight:U,inWidth:K,outChannels:Z,outHeight:te,outWidth:J,strideHeight:ae,strideWidth:Q}=p,le=P-1-p.padInfo.top,se=V-1-p.padInfo.left,ce=Z/q;for(let he=0;he<z;++he)for(let pe=0;pe<q;++pe)for(let ge=0;ge<U;++ge){let me=ge-le,Ne=Math.max(0,Math.ceil(me/ae)),Ce=Math.min(te,(P+me)/ae);for(let De=0;De<K;++De){let Xe=De-se,Ve=Math.max(0,Math.ceil(Xe/Q)),nt=Math.min(J,(V+Xe)/Q),ot=0;for(let je=Ne;je<Ce;++je){let ct=je*ae-me;for(let ht=Ve;ht<nt;++ht){let Ln=ht*Q-Xe,Ye=w*he+x*je+b*ht,vn=T*(P-1-ct)+E*(V-1-Ln)+M*pe;for(let Zt=0;Zt<ce;++Zt){let kn=pe*ce+Zt,Yn=_[Ye+kn],fn=N[vn+Zt];ot+=Yn*fn}}}m[A*he+y*ge+g*De+pe]=ot}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var g$={kernelName:Vh,backendName:"cpu",kernelFunc:y$};function x$(e){let{inputs:t,backend:n}=e,{x:r}=t,a=k.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=We([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var w$={kernelName:Uh,backendName:"cpu",kernelFunc:x$},_$={kernelName:Su,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:w,strideWidth:x,filterHeight:b,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=R.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),z=k.sizeFromShape(M),P=M.length,V=k.getArrayFromDType(r.dtype,z);for(let q=0;q<p;++q)for(let U=0;U<y;++U){let K=U*w-_.top;for(let Z=0;Z<g;++Z){let te=Z*x-_.left;for(let J=0;J<A;++J){let ae=Number.MIN_SAFE_INTEGER;for(let le=0;le<b;++le){let se=K+le*T;if(se>=0&&se<f)for(let ce=0;ce<N;++ce){let he=te+ce*E;if(he>=0&&he<m){let pe=k.locToIndex([q,se,he,J],c,k.computeStrides(r.shape)),ge=k.locToIndex([le,ce,J],d,k.computeStrides(a.shape)),me=u[pe]+h[ge];me>ae&&(ae=me)}}}let Q=k.locToIndex([q,U,Z,J],P,k.computeStrides(M));V[Q]=ae}}}return{dataId:l.write(k.toTypedArray(V,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},b$={kernelName:Hh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),h=k.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:w,filterHeight:x,filterWidth:b,dilationHeight:N,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${Hh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,u.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<d;++P)for(let V=0;V<A;++V){let q=V*_-g.top;for(let U=0;U<y;++U){let K=U*w-g.left;for(let Z=0;Z<m;++Z){let te=Number.MIN_SAFE_INTEGER,J=0,ae=0;for(let Q=0;Q<x;++Q){let le=q+Q*N;if(le>=0&&le<p)for(let se=0;se<b;++se){let ce=K+se*T;if(ce>=0&&ce<f){let he=c[P][le][ce][Z]+h[Q][se][Z];he>te&&(te=he,J=Q,ae=se)}}}z[J][ae][Z]+=M[P][V][U][Z]}}}return{dataId:u.write(k.toTypedArray(z,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},v$={kernelName:jh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),h=k.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:w,filterHeight:x,filterWidth:b,dilationHeight:N,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${jh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,u.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<d;++P)for(let V=0;V<A;++V){let q=V*_-g.top;for(let U=0;U<y;++U){let K=U*w-g.left;for(let Z=0;Z<m;++Z){let te=Number.MIN_SAFE_INTEGER,J=q<0?0:q,ae=K<0?0:K;for(let Q=0;Q<x;++Q){let le=q+Q*N;if(le>=0&&le<p)for(let se=0;se<b;++se){let ce=K+se*T;if(ce>=0&&ce<f){let he=c[P][le][ce][Z]+h[Q][se][Z];he>te&&(te=he,J=le,ae=ce)}}}z[P][J][ae][Z]+=M[P][V][U][Z]}}}return{dataId:u.write(k.toTypedArray(z,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function k$(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ve([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var I$={kernelName:Gh,backendName:"cpu",kernelFunc:k$},N$=Rt((e,t)=>e===t?1:0),yw=jt(fo,N$,null,"bool"),S$={kernelName:fo,backendName:"cpu",kernelFunc:yw},T$=R.ERF_P,E$=R.ERF_A1,C$=R.ERF_A2,R$=R.ERF_A3,F$=R.ERF_A4,M$=R.ERF_A5,O$=it(po,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+T$*n);return t*(1-((((M$*r+F$)*r+R$)*r+C$)*r+E$)*r*Math.exp(-n*n))}),D$={kernelName:po,backendName:"cpu",kernelFunc:O$};function sp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),gt({inputs:{x:a},backend:n,attrs:{shape:o}})}var $$={kernelName:mo,backendName:"cpu",kernelFunc:sp},z$=Rt((e,t)=>e/t),Im=jt(gs,z$),Nm={kernelName:gs,backendName:"cpu",kernelFunc:Im};function gw(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=k.sizeFromShape(u),h=k.getTypedArrayFromDType("float32",c),d=k.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let y=Ai({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=Ai({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),_=Fn({inputs:{real:y,imag:g},backend:n}),{real:w,imag:x}=P$(_,t,n),b=R.mergeRealAndImagArrays(w,x);for(let N=0;N<s;N++){let T=R.getComplexWithIndex(b,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(_)}let p=n.makeTensorInfo(u,"float32",h),f=n.makeTensorInfo(u,"float32",d),m=Fn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function P$(e,t,n){let r=k.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(L$(r)){let o=Sm(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",k.createScalarValue(r,"float32")),d=Wr({inputs:{x:h},backend:n}),p=Nm.kernelFunc({inputs:{a:u,b:h},backend:n}),f=Nm.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=R.mergeRealAndImagArrays(s,i),l=W$(o,r,t);return R.splitRealAndImagArrays(l)}}function L$(e){return(e&e-1)==0}function Sm(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Fn({inputs:{real:h,imag:d},backend:a}),f=R.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),_=a.makeTensorInfo(y,"float32",A),w=Fn({inputs:{real:g,imag:_},backend:a}),x=Sm(l,u,i,r,a),b=x.real,N=x.imag,T=[b.length],E=a.makeTensorInfo(T,"float32",b),M=a.makeTensorInfo(T,"float32",N),z=Fn({inputs:{real:E,imag:M},backend:a}),P=Sm(m,A,i,r,a),V=P.real,q=P.imag,U=[V.length],K=a.makeTensorInfo(U,"float32",V),Z=a.makeTensorInfo(U,"float32",q),te=Fn({inputs:{real:K,imag:Z},backend:a}),J=R.exponents(n,r),ae=[J.real.length],Q=a.makeTensorInfo(ae,"float32",J.real),le=a.makeTensorInfo(ae,"float32",J.imag),se=Fn({inputs:{real:Q,imag:le},backend:a}),ce=_m({inputs:{a:se,b:te},backend:a}),he=mc({inputs:{a:z,b:ce},backend:a}),pe=bm({inputs:{a:z,b:ce},backend:a}),ge=mi({inputs:{input:he},backend:a}),me=mi({inputs:{input:pe},backend:a}),Ne=vl({inputs:{input:he},backend:a}),Ce=vl({inputs:{input:pe},backend:a}),De=kl({inputs:[ge,me],backend:a,attrs:{axis:0}}),Xe=kl({inputs:[Ne,Ce],backend:a,attrs:{axis:0}}),Ve=a.data.get(De.dataId).values,nt=a.data.get(Xe.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(w),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(z),a.disposeIntermediateTensorInfo(K),a.disposeIntermediateTensorInfo(Z),a.disposeIntermediateTensorInfo(te),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(le),a.disposeIntermediateTensorInfo(se),a.disposeIntermediateTensorInfo(ce),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(ge),a.disposeIntermediateTensorInfo(Ne),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(Ce),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(Xe),{real:Ve,imag:nt}}function W$(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=R.exponent(a*o,t,n),u=R.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),R.assignToTypedArray(r,s,i,a)}return r}function B$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=gt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=gw(o,!1,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var V$={kernelName:qh,backendName:"cpu",kernelFunc:B$};function Tm(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||k.inferDtype(a),o=k.getArrayFromDType(i,k.sizeFromShape(r));return U$(o,a,i),t.makeTensorInfo(r,i,o)}var j$={kernelName:Tu,backendName:"cpu",kernelFunc:Tm};function U$(e,t,n){e.fill(t)}var H$={kernelName:yo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let f=p*(l*u);for(let m=0;m<l;m++){let A=m*u;for(let y=0;y<u;y++){let g=[i,p,m,y][2],_=Math.round(l-g),w=d+f+A+y,x=c[w];if(_>=0&&_<l){let b=_*u,N=d+f+b+y;x=c[N]}s[w]=x}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},G$=Rt((e,t)=>Math.floor(e/t)),q$=jt(_s,G$,null,"int32"),X$={kernelName:_s,backendName:"cpu",kernelFunc:q$};function K$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=mw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=mc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=vm(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var Z$={kernelName:Qs,backendName:"cpu",kernelFunc:K$};function Y$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Aw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=mc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=vm(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var J$={kernelName:ei,backendName:"cpu",kernelFunc:Y$};function Q$(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=R.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=We([u,c],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<u;m++){let A=[],y=0;for(let g=0;g<o;g++){let _=p[m*o+g];y+=_*h[g],A.push(_)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<c;g++)d.values[m*c+g]=f[y*c+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var ez={kernelName:xo,backendName:"cpu",kernelFunc:Q$};function tz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;ve([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),c=k.parseAxisParam(i,a.shape)[0],h=R.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=gt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=gt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),f=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),y=Bx(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var nz={kernelName:go,backendName:"cpu",kernelFunc:tz},rz=Rt((e,t)=>e>=t?1:0),az=jt(vs,rz,null,"bool"),sz={kernelName:vs,backendName:"cpu",kernelFunc:az};function iz(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=gt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=gw(o,!0,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var oz={kernelName:Xh,backendName:"cpu",kernelFunc:iz},lz=it(bo,e=>Number.isFinite(e)?1:0,"bool"),uz={kernelName:bo,backendName:"cpu",kernelFunc:lz},cz=it(vo,e=>Math.abs(e)===Infinity?1:0,"bool"),hz={kernelName:vo,backendName:"cpu",kernelFunc:cz},dz=it(ko,e=>Number.isNaN(e)?1:0,"bool"),pz={kernelName:ko,backendName:"cpu",kernelFunc:dz},fz=Rt((e,t)=>e<=t?1:0),mz=jt(No,fz,null,"bool"),Az={kernelName:No,backendName:"cpu",kernelFunc:mz};function yz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=jx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var gz={kernelName:Zh,backendName:"cpu",kernelFunc:yz},xz=it(So,e=>Math.log1p(e)),wz={kernelName:So,backendName:"cpu",kernelFunc:xz},_z=Rt((e,t)=>e&&t),bz=jt(To,_z,null,"bool"),vz={kernelName:To,backendName:"cpu",kernelFunc:bz},kz=it(Eu,e=>e?0:1,"bool"),Iz={kernelName:Eu,backendName:"cpu",kernelFunc:kz},Nz=Rt((e,t)=>e||t),Sz=jt(Cu,Nz,null,"bool"),Tz={kernelName:Cu,backendName:"cpu",kernelFunc:Sz};function Ez(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ve(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=k.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%u,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,c),_=0;for(;y<=g;y++){let w=h[y];_+=w*w}return _}for(let m=0;m<d;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);p[m]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var Cz={kernelName:Ru,backendName:"cpu",kernelFunc:Ez};function Rz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;ve(i,"LRNGrad");let h=k.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let _=g%d,w=g-_+Math.max(0,_-o),x=g-_+Math.min(d,_+o+1),b=0;for(let N=w;N<x;N++)b+=Math.pow(f[N],2);b=u*b+l;for(let N=w;N<x;N++){let T=-2*u*c*f[N]*m[g]/b;g===N&&(T+=Math.pow(b,-c)),T*=p[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var Fz={kernelName:Yh,backendName:"cpu",kernelFunc:Rz};function xw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=k.parseAxisParam(s,l),h=c,d=R.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let w=new Array(u);for(let x=0;x<w.length;x++)w[x]=l[d[x]];p=gm(p,l,a.dtype,d,w),h=R.getInnerMostAxes(h.length,u),l=w}ve(a,"max"),R.assertAxesAreInnerMostDims("max",h,u);let[f,m]=R.computeOutAndReduceShapes(l,h),A=k.sizeFromShape(m),y=Gx(p,A,f,a.dtype),g=o.write(y,f,a.dtype),_=f;return i&&(_=R.expandShapeToKeepDim(f,c)),{dataId:g,shape:_,dtype:a.dtype}}var Mz={kernelName:Ns,backendName:"cpu",kernelFunc:xw};function Oz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))h=Wr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=km(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var Dz={kernelName:Ts,backendName:"cpu",kernelFunc:Oz};function $z(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u,dilations:c}=r;ve(a,"maxPool3d");let h=c;h==null&&(h=[1,1,1]);let d=R.computePool3DInfo(a.shape,s,i,h,o,l,u),p=n.data.get(a.dataId).values,f=fw(p,a.shape,a.dtype,k.computeStrides(a.shape),d,"max");return n.makeTensorInfo(f.shape,"float32",f.values)}var zz={kernelName:Fu,backendName:"cpu",kernelFunc:$z};function Pz(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dilations:u,dimRoundingMode:c}=r;ve([a,s],"maxPool3DGrad");let h=R.computePool3DInfo(s.shape,i,o,u,l,c),d=n.bufferSync(s),p=kD(d,h),f=h.strideDepth,m=h.strideHeight,A=h.strideWidth,y=h.dilationDepth,g=h.dilationHeight,_=h.dilationWidth,w=h.effectiveFilterDepth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,N=w-1-h.padInfo.front,T=b-1-h.padInfo.left,E=x-1-h.padInfo.top,M=We(s.shape,"float32"),z=n.bufferSync(a);for(let P=0;P<h.batchSize;++P)for(let V=0;V<h.inChannels;++V)for(let q=0;q<h.inDepth;++q)for(let U=0;U<h.inHeight;++U)for(let K=0;K<h.inWidth;++K){let Z=q-N,te=U-E,J=K-T,ae=0;for(let Q=0;Q<w;Q+=y){let le=(Z+Q)/f;if(!(le<0||le>=h.outDepth||Math.floor(le)!==le))for(let se=0;se<x;se+=g){let ce=(te+se)/m;if(!(ce<0||ce>=h.outHeight||Math.floor(ce)!==ce))for(let he=0;he<b;he+=_){let pe=(J+he)/A;if(pe<0||pe>=h.outWidth||Math.floor(pe)!==pe)continue;let ge=w*x*b-1-p.get(P,le,ce,pe,V),me=Q*x*b+se*b+he,Ne=ge===me?1:0;Ne!==0&&(ae+=z.get(P,le,ce,pe,V)*Ne)}}}M.set(ae,P,q,U,K,V)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var Lz={kernelName:Qh,backendName:"cpu",kernelFunc:Pz};function Wz(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,f=We(d.outShape,o.dtype,pw(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,_=d.effectiveFilterHeight,w=d.effectiveFilterWidth,x=w-1-d.padInfo.left,b=_-1-d.padInfo.top,N=We(o.shape,"float32"),T=n.data.get(a.dataId).values,E=We(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let z=0;z<d.inChannels;++z)for(let P=0;P<d.inHeight;++P)for(let V=0;V<d.inWidth;++V){let q=P-b,U=V-x,K=0;for(let Z=0;Z<_;Z+=y){let te=(q+Z)/m;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let J=0;J<w;J+=g){let ae=(U+J)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let Q=_*w-1-f.get(M,te,ae,z),le=Z*w+J,se=Q===le?1:0;se!==0&&(K+=E.get(M,te,ae,z)*se)}}N.set(K,M,P,V,z)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var Bz={kernelName:Jh,backendName:"cpu",kernelFunc:Wz};function Vz(e,t,n,r,a){let s=k.computeStrides(t),i=km(e,t,n,s,a,"max"),o=pw(e,t,n,a,!0,r);return[i.values,o.values]}var Uz={kernelName:ed,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=R.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=Vz(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),f=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function ip(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"sum");let o;a.dtype==="bool"?o=$a({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Wr({inputs:{x:a},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),c=R.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=or({inputs:{x:o},backend:n,attrs:{perm:c}}),h=R.getInnerMostAxes(h.length,l)),R.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=R.computeOutAndReduceShapes(d.shape,h),m=R.upcastType(d.dtype,"int32"),A=ap(n,p,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,_=n.data.get(d.dataId).values;for(let w=0;w<g.length;++w){let x=w*y,b=0;for(let N=0;N<y;++N)b+=_[x+N];g[w]=b}if(i){let w=R.expandShapeToKeepDim(A.shape,u),x=A;A=gt({inputs:{x:A},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(x)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var jz={kernelName:Gs,backendName:"cpu",kernelFunc:ip};function Hz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=k.parseAxisParam(s,a.shape),l=R.computeOutAndReduceShapes(a.shape,o)[1],u=k.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=$a({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=Im({inputs:{a:d,b:h},backend:n});c.push(p);let f=ip({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Gz={kernelName:Es,backendName:"cpu",kernelFunc:Hz};function qz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=or({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,_=m[g];for(let w=0;w<p;++w){let x=m[g+w];x<_&&(_=x)}f[y]=_}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=gt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var Xz={kernelName:Cs,backendName:"cpu",kernelFunc:qz};function Kz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;ve(a,"mirrorPad");let o=s.map((g,_)=>g[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),u=s.map((g,_)=>g[0]+a.shape[_]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let _=k.indexToLoc(g,m,A);for(let x=0;x<m;x++)_[x]<l[x]?_[x]=l[x]*2-_[x]-c:_[x]>=u[x]&&(_[x]=(u[x]-1)*2-_[x]+c);_=_.map((x,b)=>x-l[b]);let w=k.locToIndex(_,d,p);y[g]=h[w]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var Zz={kernelName:Mu,backendName:"cpu",kernelFunc:Kz},Yz=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Jz=jt(Eo,Yz),Qz={kernelName:Eo,backendName:"cpu",kernelFunc:Jz},eP=Ki(wk());function ww(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),u=xw({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=R.expandShapeToKeepDim(u.shape,l),h=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=bm({inputs:{a,b:h},backend:n}),p=sw({inputs:{x:d},backend:n}),f=ip({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Im({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var tP={kernelName:qs,backendName:"cpu",kernelFunc:ww};function nP(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ve(a,"multinomial");let l=o?a:ww({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,A=new Float32Array(c-1);A[0]=h[m];for(let _=1;_<A.length;++_)A[_]=A[_-1]+h[m+_];let y=eP.alea(i.toString()),g=f*s;for(let _=0;_<s;++_){let w=y();p[g+_]=A.length;for(let x=0;x<A.length;x++)if(w<A[x]){p[g+_]=x;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var rP={kernelName:td,backendName:"cpu",kernelFunc:nP},aP=Lr.nonMaxSuppressionV3Impl;function sP(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;ve(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=aP(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var iP={kernelName:Fo,backendName:"cpu",kernelFunc:sP},oP=Lr.nonMaxSuppressionV4Impl;function lP(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;ve(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=oP(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var uP={kernelName:Mo,backendName:"cpu",kernelFunc:lP},cP=Lr.nonMaxSuppressionV5Impl;function hP(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;ve(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:y}=cP(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var dP={kernelName:Oo,backendName:"cpu",kernelFunc:hP};function pP(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;ve(a,"oneHot");let l=k.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var fP={kernelName:Ms,backendName:"cpu",kernelFunc:pP};function op(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=mi({inputs:{input:r},backend:n}),s=op({inputs:{x:a},backend:n}),i=vl({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Fn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Tm({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var mP={kernelName:Jo,backendName:"cpu",kernelFunc:op};function _w(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=mi({inputs:{input:r},backend:n}),s=_w({inputs:{x:a},backend:n}),i=vl({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Fn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Tm({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var AP={kernelName:Do,backendName:"cpu",kernelFunc:_w};function bw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return sp({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=sp({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=kl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var yP={kernelName:$o,backendName:"cpu",kernelFunc:bw};function gP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ve(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=k.sizeFromShape(a.shape),h=a.shape.length,d=k.computeStrides(a.shape),p=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<c;y++){let g=k.indexToLoc(y,h,d).map((w,x)=>w+l[x]),_=k.locToIndex(g,f,m);A[_]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var vw={kernelName:Os,backendName:"cpu",kernelFunc:gP},xP=Rt((e,t)=>Math.pow(e,t)),wP=jt(Ds,xP),_P={kernelName:Ds,backendName:"cpu",kernelFunc:wP};function bP(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=xm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var vP={kernelName:Ou,backendName:"cpu",kernelFunc:bP},kP=it(Po,e=>1/e),IP={kernelName:Po,backendName:"cpu",kernelFunc:kP};function NP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeBilinear");let l=k.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,u,c,f])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,w=y[0]/g[0],x=y[1]/g[1];for(let b=0;b<h;b++)for(let N=0;N<u;N++){let T;i?T=w*(N+.5)-.5:T=w*N;let E=Math.max(0,Math.floor(T)),M=T-E,z=Math.min(d-1,Math.ceil(T)),P=b*l[0]+E*l[1],V=b*l[0]+z*l[1];for(let q=0;q<c;q++){let U;i?U=x*(q+.5)-.5:U=x*q;let K=Math.max(0,Math.floor(U)),Z=U-K,te=Math.min(p-1,Math.ceil(U)),J=P+K*l[2],ae=V+K*l[2],Q=P+te*l[2],le=V+te*l[2];for(let se=0;se<f;se++){let ce=m[J+se],he=m[ae+se],pe=m[Q+se],ge=m[le+se],me=ce+(pe-ce)*Z,Ne=he+(ge-he)*Z,Ce=me+(Ne-me)*M;A[_++]=Ce}}}return n.makeTensorInfo([h,u,c,f],"float32",A)}var SP={kernelName:Ps,backendName:"cpu",kernelFunc:NP};function TP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeBilinearGrad");let o=k.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*u*c*h),m=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],_=n.data.get(s.dataId).values,w=0;for(let x=0;x<l;x++){let b=x*o[0];for(let N=0;N<d;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),z=b+E*o[1],P=b+M*o[1],V=T-E,q=1-V;for(let U=0;U<p;U++){let K=U*g,Z=Math.floor(K),te=Math.min(Math.ceil(K),c-1),J=K-Z,ae=1-J,Q=z+Z*o[2],le=z+te*o[2],se=P+Z*o[2],ce=P+te*o[2],he=q*ae,pe=q*J,ge=V*ae,me=V*J;for(let Ne=0;Ne<h;Ne++){let Ce=_[w++];f[Q+Ne]+=Ce*he,f[le+Ne]+=Ce*pe,f[se+Ne]+=Ce*ge,f[ce+Ne]+=Ce*me}}}}return n.makeTensorInfo([l,c,u,h],"float32",f)}var EP={kernelName:ad,backendName:"cpu",kernelFunc:TP};function CP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeNearestNeighbor");let l=k.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*f),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=y[0]/g[0],w=y[1]/g[1],x=0;for(let b=0;b<h;b++){let N=b*l[0];for(let T=0;T<u;T++){let E=i?_*(T+.5):_*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let z=N+M*l[1];for(let P=0;P<c;P++){let V=i?w*(P+.5):w*P,q=Math.min(p-1,s?Math.round(V):Math.floor(V));i&&(q=Math.max(0,q));let U=z+q*l[2];for(let K=0;K<f;K++){let Z=m[U+K];A[x++]=Z}}}}return n.makeTensorInfo([h,u,c,f],a.dtype,A)}var RP={kernelName:Du,backendName:"cpu",kernelFunc:CP};function FP(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeNearestNeighborGrad");let o=k.computeStrides(a.shape),l=k.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?c-1:c,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],_=y[0]/g[0],w=y[1]/g[1],x=1/_,b=1/w,N=Math.ceil(x)*2+2,T=Math.ceil(b)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let z=0;z<c;z++){let P=M+z*o[1],V=Math.floor(z*x),q=Math.floor(V-N/2);for(let U=0;U<h;U++){let K=P+U*o[2],Z=Math.floor(U*b),te=Math.floor(Z-T/2);for(let J=0;J<d;J++){let ae=0;for(let Q=0;Q<N;Q++){let le=Q+q;if(le<0||le>=p)continue;let se=M+le*l[1],ce=le*_,he=Math.min(c-1,i?Math.round(ce):Math.floor(ce));if(z===he)for(let pe=0;pe<T;pe++){let ge=pe+te;if(ge<0||ge>=f)continue;let me=se+ge*l[2],Ne=ge*w,Ce=Math.min(h-1,i?Math.round(Ne):Math.floor(Ne));U===Ce&&(ae+=A[me+J])}}m[K+J]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var MP={kernelName:rd,backendName:"cpu",kernelFunc:FP};function OP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ve(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Wr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var DP={kernelName:Ws,backendName:"cpu",kernelFunc:OP},$P={kernelName:Qo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,f]=R.getImageCenter(i,c,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_<u;_++){let w=_*h*c*d;for(let x=0;x<c;x++){let b=x*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[u,x,N,E],z=M[2],P=M[1],V=(z-p)*y-(P-f)*A,q=(z-p)*A+(P-f)*y;V=Math.round(V+p),q=Math.round(q+f);let U=s;if(typeof s!="number"&&(E===3?U=m:U=s[E]),V>=0&&V<h&&q>=0&&q<c){let Z=q*(h*d),te=V*d,J=w+Z+te+E;U=g[J]}let K=w+b+T+E;l[K]=U}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},zP=it(Bs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),PP={kernelName:Bs,backendName:"cpu",kernelFunc:zP};function kw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return We(n,t.dtype);let p=We(c,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)u?p.values[A*a+y]+=d[f*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[f*a+y]}return p}function LP(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=kw(p,f,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var WP={kernelName:Wo,backendName:"cpu",kernelFunc:LP};function BP(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;ve([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=rr(a.dtype,s.dtype),h=k.makeZerosTypedArray(k.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=u[f];return n.makeTensorInfo(a.shape,c,h)}var VP={kernelName:Bo,backendName:"cpu",kernelFunc:BP},UP=R.SELU_SCALEALPHA,jP=R.SELU_SCALE,HP=it(Vo,e=>e>=0?jP*e:UP*(Math.exp(e)-1)),GP={kernelName:Vo,backendName:"cpu",kernelFunc:HP},qP=it(js,e=>1/(1+Math.exp(-e))),XP={kernelName:js,backendName:"cpu",kernelFunc:qP},KP=it(Ho,e=>e<0?-1:e>0?1:0),ZP={kernelName:Ho,backendName:"cpu",kernelFunc:KP},YP=it(Us,e=>Math.sin(e)),JP={kernelName:Us,backendName:"cpu",kernelFunc:YP},QP=it(jo,e=>Math.sinh(e)),eL={kernelName:jo,backendName:"cpu",kernelFunc:QP},tL=11920928955078125e-23,Iw=Math.log(tL)+2,nL=it(Go,e=>{let t=e>-Iw,n=e<Iw,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),rL={kernelName:Go,backendName:"cpu",kernelFunc:nL};function aL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;ve([a],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=vw.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=R.getReshaped(u.shape,s,o,!1),h=R.getPermuted(c.length,s.length,!1),d=R.getReshapedPermuted(u.shape,s,o,!1),p=gt({inputs:{x:u},backend:n,attrs:{shape:c}}),f=or({inputs:{x:p},backend:n,attrs:{perm:h}}),m=gt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var sL={kernelName:$u,backendName:"cpu",kernelFunc:aL};function iL(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=R.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=kw(f,m,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var oL={kernelName:sd,backendName:"cpu",kernelFunc:iL};function lL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=Ai({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var uL={kernelName:qo,backendName:"cpu",kernelFunc:lL},cL=it(Hs,e=>Math.sqrt(e)),hL={kernelName:Hs,backendName:"cpu",kernelFunc:cL},dL={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ve(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},pL=it(Ia,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),fL={kernelName:Ia,backendName:"cpu",kernelFunc:pL};function mL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;ve(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=on.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=gt({inputs:{x:a},backend:n,attrs:{shape:y}}),w;if(p){let b=Ai({inputs:{x:_},backend:n,attrs:{begin:f,size:A}});w=gt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))w=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(_),N=ew(g,b,m,f);w=n.makeTensorInfo(N.shape,N.dtype,N.values)}let x=gt({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(w),x}var AL={kernelName:Xo,backendName:"cpu",kernelFunc:mL},yL=it(Ko,e=>Math.tan(e)),gL={kernelName:Ko,backendName:"cpu",kernelFunc:yL},xL=it(Zs,e=>Math.tanh(e)),wL={kernelName:Zs,backendName:"cpu",kernelFunc:xL};function _L(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ve(a,"tile");let i=nw(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var bL={kernelName:ka,backendName:"cpu",kernelFunc:_L};function vL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ve(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=rw(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var kL={kernelName:Zo,backendName:"cpu",kernelFunc:vL};function IL(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ve(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=aw(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var NL={kernelName:id,backendName:"cpu",kernelFunc:IL};function SL(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let f=Ai({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=gt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var TL={kernelName:Yo,backendName:"cpu",kernelFunc:SL};function EL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;ve(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=sp({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=k.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=yw({inputs:{a:A,b:d},backend:n}),g=$a({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),_=_m({inputs:{a:g,b:a},backend:n}),w=ip({inputs:{x:_},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),c.push(A),c.push(y),c.push(g),c.push(_),c.push(w)}let p=bw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var CL={kernelName:Pu,backendName:"cpu",kernelFunc:EL},RL=[JO,rO,eD,nD,uO,aD,iD,lD,cD,dD,fD,AD,gD,_D,vD,ND,TD,CD,FD,ZO,OD,$D,PD,oO,hO,WD,aO,VD,jD,qD,KD,HD,QD,t$,YD,r$,s$,o$,u$,h$,p$,f$,A$,g$,w$,_$,v$,b$,Nm,UO,I$,S$,D$,dO,$$,fO,V$,j$,H$,AO,X$,Z$,J$,ez,nz,gO,sz,sO,oz,UD,uz,hz,pz,jO,wO,Az,gz,bO,wz,vz,Iz,Tz,Cz,Fz,kO,Dz,zz,Lz,Bz,Uz,Mz,Gz,Xz,NO,Zz,Qz,rP,TO,CO,iP,uP,dP,FO,fP,AP,yP,vw,_P,GO,DO,vP,iO,IP,qO,XO,KO,SP,EP,RP,MP,DP,$P,PP,zO,WP,VP,GP,XP,ZP,JP,eL,PO,tP,rL,sL,oL,uL,hL,dL,WO,fL,AL,VO,jz,gL,wL,bL,kL,MO,NL,TL,CL,mP];for(let e of RL)ti(e);var Nw={};$e(Nw,{assertNotComplex:()=>Il,bindCanvasToFramebuffer:()=>OL,bindColorTextureToFramebuffer:()=>up,bindTextureToProgramUniformSampler:()=>Bw,bindTextureUnit:()=>Pw,bindVertexBufferToProgramAttribute:()=>Em,callAndCheck:()=>we,canBeRepresented:()=>Sw,createFragmentShader:()=>Cw,createFramebuffer:()=>zw,createProgram:()=>Rw,createStaticIndexBuffer:()=>Ow,createStaticVertexBuffer:()=>Mw,createTexture:()=>Dw,createVertexShader:()=>Ew,getBatchDim:()=>yi,getExtensionOrThrow:()=>Ac,getFramebufferErrorMessage:()=>Vw,getMaxTexturesInShader:()=>Hw,getNumChannels:()=>FL,getProgramUniformLocation:()=>Ww,getProgramUniformLocationOrThrow:()=>Lw,getRowsCols:()=>gi,getShapeAs3D:()=>cp,getTextureShapeFromLogicalShape:()=>Uw,getWebGLDisjointQueryTimerVersion:()=>Gw,getWebGLErrorMessage:()=>Tw,getWebGLMaxTextureSize:()=>jw,hasExtension:()=>Xn,isCapableOfRenderingToFloatTexture:()=>qw,isDownloadFloatTextureEnabled:()=>Xw,isReshapeFree:()=>gc,isWebGLFenceEnabled:()=>Kw,isWebGLVersionEnabled:()=>Rm,linkProgram:()=>Fw,resetMaxTextureSize:()=>DL,resetMaxTexturesInShader:()=>$L,unbindColorTextureFromFramebuffer:()=>Cm,unbindTextureUnit:()=>ML,validateFramebuffer:()=>yc,validateProgram:()=>lp,validateTextureSize:()=>$w});var xi={},Fm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function hp(e,t){xi[e]=t}function Br(e){if(!(e in xi)){let n=zL(e);if(n!==null)xi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=xi[e];return t.isContextLost()?(delete xi[e],Br(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),xi[e])}function PL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function zL(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=PL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete xi[e]},!1),e===1?t.getContext("webgl",Fm)||t.getContext("experimental-webgl",Fm):t.getContext("webgl2",Fm)}var xc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(xc||(xc={}));var Kn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Kn||(Kn={}));var Qt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Qt||(Qt={}));function wc(e,t){return[t,e]}function LL(e,t){return e*t}function _c(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Nl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function WL(e,t){let[n,r]=Nl(e,t);return n*r*4}function Mm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return ee().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function we(e,t){let n=t();return ee().getBool("DEBUG")&&BL(e),n}function BL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Tw(e,t))}var VL=596e-10,UL=65504;function Sw(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||VL<Math.abs(e)&&Math.abs(e)<UL)}function Tw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Ac(e,t){return ua(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Ew(e,t){let n=ua(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Cw(e,t){let n=ua(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw jL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var HL=/ERROR: [0-9]+:([0-9]+):/g;function jL(e,t){let n=HL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,d)=>k.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function Rw(e){return ua(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Fw(e,t){if(we(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function lp(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Mw(e,t){let n=ua(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Ow(e,t){let n=ua(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function FL(){return ee().getNumber("WEBGL_VERSION")===2?1:4}function Dw(e){return ua(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function $w(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function zw(e){return ua(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Em(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function Pw(e,t,n){Zw(e,n),we(e,()=>e.activeTexture(e.TEXTURE0+n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function ML(e,t){Zw(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Lw(e,t,n){return ua(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Ww(e,t,n){return e.getUniformLocation(t,n)}function Bw(e,t,n,r){we(e,()=>Pw(e,t,r)),we(e,()=>e.uniform1i(n,r))}function OL(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function up(e,t,n){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Cm(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Vw(e,t))}function Vw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ua(e,t,n){let r=we(e,()=>t());if(r==null)throw new Error(n);return r}function Zw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function yi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function gi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function cp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yi(e),...gi(e)]),t}function Uw(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=yi(e),s=2,i=2;return e.length&&([s,i]=gi(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function dp(e){return e%2==0}function gc(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||dp(n)&&dp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&dp(e[0])&&dp(t[0])}var pp,fp;function jw(e){if(pp==null){let t=Br(e);pp=t.getParameter(t.MAX_TEXTURE_SIZE)}return pp}function DL(){pp=null}function $L(){fp=null}function Hw(e){if(fp==null){let t=Br(e);fp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,fp)}function Gw(e){if(e===0)return 0;let t,n=Br(e);return Xn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Xn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Xn(e,t){return e.getExtension(t)!=null}function Rm(e){try{if(Br(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function qw(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Xn(t,"OES_texture_float"))return!1}else if(!Xn(t,"EXT_color_buffer_float"))return!1;return Om(t)}function Xw(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Xn(t,"OES_texture_float")||!Xn(t,"WEBGL_color_buffer_float"))return!1}else{if(Xn(t,"EXT_color_buffer_float"))return Om(t);let n="EXT_color_buffer_half_float";if(Xn(t,n)){let r=t.getExtension(n);return GL(t,r)}return!1}return Om(t)}function Om(e){let t=Mm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function GL(e,t){let n=Mm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Kw(e){return e!==2?!1:Br(e).fenceSync!=null}function Il(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=ee();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>Rm(2)?2:Rm(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>jw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Hw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:Gw(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!dd.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>qw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Xw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Kw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function un(){let e,t,n,r,a,s,i,o,l,u;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function wi(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function Dm(e){let t=k.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var Yw=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,qL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=_c(e),n=un();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${wi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},XL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=_c(e),n=un();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${wi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},KL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Kn.DOWNLOAD;let t=un();this.outputShape=e,this.userCode=`
${Yw}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},ZL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Kn.DOWNLOAD;let t=un();this.outputShape=e,this.userCode=`
${Yw}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},YL=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=un(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${Dm(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${i}, 0., 0., 0.);
}
`}},JL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=un(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
localCoords = coords;
if(localCoords[2] + ${u} < ${e[2]}) {
localCoords[2] += ${u};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
values = ${r.texture2D}(A, uv);
if(offset == 0) {
result[${c}] = values[0];
} else if(offset == 1) {
result[${c}] = values[1];
} else if(offset == 2) {
result[${c}] = values[2];
} else {
result[${c}] = values[3];
}
}
}
`}this.userCode=`
${Dm(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${r.output} = ${o};
}
`}},Jw={};$e(Jw,{bindVertexProgramAttributeStreams:()=>o_,createBufferFromOutputTexture:()=>c_,createFloat16MatrixTexture:()=>r_,createFloat16PackedMatrixTexture:()=>i_,createFloat32MatrixTexture:()=>n_,createIndexBuffer:()=>t_,createPackedMatrixTexture:()=>s_,createUnsignedBytesMatrixTexture:()=>a_,createVertexBuffer:()=>e_,createVertexShader:()=>Qw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>d_,downloadFloat32MatrixFromBuffer:()=>h_,downloadMatrixFromPackedOutputTexture:()=>f_,downloadPackedMatrixFromBuffer:()=>p_,getInternalFormatForFloat16MatrixTexture:()=>zm,getInternalFormatForFloat16PackedMatrixTexture:()=>Wm,getInternalFormatForFloat32MatrixTexture:()=>$m,getInternalFormatForPackedMatrixTexture:()=>Lm,getInternalFormatForUnsignedBytesMatrixTexture:()=>Pm,uploadDenseMatrixToTexture:()=>l_,uploadPixelDataToTexture:()=>u_});function Qw(e){let t=un(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return Ew(e,n)}function e_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Mw(e,t)}function t_(e){let t=new Uint16Array([0,1,2,2,1,3]);return Ow(e,t)}function bc(e,t,n,r,a,s){$w(t,n);let i=Dw(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),we(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function $m(e){return e.internalFormatFloat}function n_(e,t,n,r){let[a,s]=wc(t,n);return bc(e,a,s,$m(r),r.textureFormatFloat,e.FLOAT)}function zm(e){return e.internalFormatHalfFloat}function r_(e,t,n,r){let[a,s]=wc(t,n);return bc(e,a,s,zm(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function Pm(e){return e.downloadTextureFormat}function a_(e,t,n,r){let[a,s]=wc(t,n);return bc(e,a,s,Pm(r),e.RGBA,e.UNSIGNED_BYTE)}function Lm(e){return e.internalFormatPackedFloat}function s_(e,t,n,r){let[a,s]=Nl(t,n);return bc(e,a,s,Lm(r),e.RGBA,e.FLOAT)}function Wm(e){return e.internalFormatPackedHalfFloat}function i_(e,t,n,r){let[a,s]=Nl(t,n);return bc(e,a,s,Wm(r),e.RGBA,r.textureTypeHalfFloat)}function o_(e,t,n){let r=0,a=3*4,s=3*4+2*4;return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Em(e,t,"clipSpacePos",n,3,s,r)&&Em(e,t,"uv",n,2,s,a)}function l_(e,t,n,r,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u_(e,t,n){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function c_(e,t,n,r){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function h_(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function d_(e,t,n,r){let[a,s]=wc(t,n),i=4,o=new Uint8Array(LL(t*n,i));return we(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function p_(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(WL(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function f_(e,t,n){let r=new Float32Array(t*n*4);return we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var mp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,hp(t,e)):this.gl=Br(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Ac(this.gl,a),Xn(this.gl,s))this.textureHalfFloatExtension=Ac(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Xn(this.gl,r))this.colorBufferHalfFloatExtension=Ac(this.gl,r);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Xn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Xn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=e_(this.gl),this.indexBuffer=t_(this.gl),this.framebuffer=zw(this.gl),this.textureConfig=Mm(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),n_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),r_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),a_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),u_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),l_(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),i_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),s_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Cm(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>d_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return p_(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return h_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=c_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>f_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Cw(t,e),r=Qw(t),a=Rw(t);return we(t,()=>t.attachShader(a,r)),we(t,()=>t.attachShader(a,n)),Fw(t,a),this.debug&&lp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=o_(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&lp(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Lw(this.gl,e,t):Ww(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Bw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Nl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&lp(this.gl,this.program),yc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ac(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=QL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),up(this.gl,e,this.framebuffer),this.debug&&yc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(up(this.gl,this.outputTexture,this.framebuffer),this.debug&&yc(this.gl)):Cm(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;up(r,e,this.framebuffer),this.debug&&yc(r),this.outputTexture=e,we(r,()=>r.viewport(0,0,t,n)),we(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function QL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:m_}=R;function lW(e,t,n,r){let a=[];e.forEach(p=>{let f=k.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
`),i=e.map(p=>eW(p,t,r)).join(`
`),o=t.texShape,l=un(),u=rW(l),c,h,d=iW(l);return t.isPacked?(c=tW(t.logicalShape,o),h=sW(l)):(c=nW(t.logicalShape,o),h=aW(l)),r&&(d+=oW),[d,u,h,s,c,i,n].join(`
`)}function Sl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return uW(e);case 1:return cW(e);case 2:return hW(e);case 3:return dW(e);case 4:return pW(e);case 5:return fW(e);case 6:return mW(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function A_(e){switch(e.shapeInfo.logicalShape.length){case 0:return AW(e);case 1:return yW(e);case 2:return gW(e);case 3:return xW(e);default:return wW(e)}}function eW(e,t,n=!1){let r="";n?r+=A_(e):r+=Sl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=_W(e,t):r+=bW(e,t)),r}function tW(e,t){switch(e.length){case 0:return y_();case 1:return vW(e,t);case 2:return NW(e,t);case 3:return kW(e,t);default:return IW(e,t)}}function nW(e,t){switch(e.length){case 0:return y_();case 1:return SW(e,t);case 2:return FW(e,t);case 3:return TW(e,t);case 4:return EW(e,t);case 5:return CW(e,t);case 6:return RW(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function rW(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function aW(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function sW(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function iW(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${MW}
${OW}
${DW}
`}var MW=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,OW=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,DW=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,oW=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function y_(){return`
int getOutputCoords() {
return 0;
}
`}function vW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function SW(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function kW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function TW(e,t){let n=wi(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function IW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${o});
}
`}function EW(e,t){let n=wi(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function CW(e,t){let n=wi(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function RW(e,t){let n=wi(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function NW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let r=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function FW(e,t){return k.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function _i(e){return`offset${e}`}function AW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=un();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function uW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=_i(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function yW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=un();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${a[0]}, ${a[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function cW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${Tl(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=_i(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${t}, uv);
}
`:a===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function gW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=un();if(a!=null&&k.arraysEqual(t,a))return`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function hW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&k.arraysEqual(t,a)){let h=a[0],d=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let h=El(e,o),d=["row","col"];return`
${Sl(h)}
float ${r}(int row, int col) {
return ${r}(${Cl(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${Tl(e)}
}
`;let l=a[0],u=a[1],c=_i(n);return u===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${n}, uv);
}
`}function xW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=El(e,h),f=["b","row","col"];return`
${A_(p)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${Cl(f,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=un();return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${n}, uv);
}
`}function dW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let f=El(e,l),m=["row","col","depth"];return`
${Sl(f)}
float ${r}(int row, int col, int depth) {
return ${r}(${Cl(m,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${s}, 1)));
${Tl(e)}
}
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let p=_i(n);return`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} + depth + ${p};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function wW(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,c*=t[n-f-1],d=`b${f} * ${c} + `+d;let p=un();return`
vec4 ${a}(${h}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${p.texture2D}(${r}, uv);
}
`}function pW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let f=El(e,o),m=["row","col","depth","depth2"];return`
${Sl(f)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${Cl(m,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${a}, 1)));
${Tl(e)}
}
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(d===a&&u==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let p=_i(n);return`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
return sampleTexture(${n}, uv);
}
`}function fW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let m=El(e,l),A=["row","col","depth","depth2","depth3"];return`
${Sl(m)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${Cl(A,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${Tl(e)}
}
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(p===a&&c==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=_i(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function mW(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=k.squeezeShape(t);if(a.length<t.length){let A=El(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${Sl(A)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${Cl(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Tl(e)}
}
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===c&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(f===i&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let m=_i(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
vec2 uv = uvFromFlat(${p}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function Tl(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function _W(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=m_(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+u]}`).join(", ");let p="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!m)i===1?p=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:p=`
return vec4(outputValue.x);
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${r}(${d});
${p}
}
`}function bW(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${n}, resultUV);
}
`;let u=dt(l),c=m_(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${p[m+h]} = 0;`).join(`
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
float ${a}() {
${u} coords = getOutputCoords();
${d}
return get${r}(${f});
}
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function El(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Cl(e,t){return t.map(n=>e[n]).join(", ")}function $W(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=lW(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(u,f,m),d[`offset${f}`]=e.getUniformLocation(u,`offset${f}`,m)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function g_(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function zW(e,t,n,r,a){g_(t.inShapeInfos,n),g_([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function PW(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:LW,bincountImpl:x_,bincountReduceImpl:WW,ceilImpl:BW,concatImpl:VW,expImpl:UW,expm1Impl:jW,floorImpl:HW,gatherV2Impl:GW,greaterImpl:qW,lessImpl:XW,linSpaceImpl:KW,logImpl:ZW,maxImpl:YW,maximumImpl:JW,minimumImpl:QW,multiplyImpl:eB,negImpl:tB,prodImpl:nB,rangeImpl:rB,rsqrtImpl:aB,simpleAbsImpl:w_,sliceImpl:sB,stridedSliceImpl:iB,subImpl:oB,tileImpl:lB,topKImpl:uB,transposeImpl:Bm,uniqueImpl:cB}=fm;function __(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function cn(e,t){return t===1?[e]:__(e,t)}function hB(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var mB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=cn("rc",t),r=dt(t),a=dB(t,e,n),s=pB(t,e[e.length-1],e[e.length-2],n),i=fB(e,n);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function AB(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function dB(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function pB(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
int r = ${a[0]};
int c = ${a[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function fB(e,t){let n=e.length,r=AB(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${r[0]}),
cEdge ? 0. : getA(${r[1]}),
rEdge ? 0. : getA(${r[2]}),
rEdge || cEdge ? 0. : getA(${r[3]})`}var b_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
${a}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${yB(t)}
${Dm(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function yB(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${wi(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var gB=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=k_(t,n),a=I_(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=v_(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Qt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Qt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Qt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Qt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Qt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=k_(n,r),s=I_(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=v_(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function xB(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function v_(e,t,n,r,a){let s=wB(t,r),i;if(a){let[l,u]=Nl(e[0],e[1]);i=l*u}else{let[l,u]=wc(e[0],e[1]);i=l*u}let o=xB(n,s);return i*o}function wB(e,t){switch(e){case Qt.PACKED_2X2_FLOAT32:return Lm(t);case Qt.PACKED_2X2_FLOAT16:return Wm(t);case Qt.UNPACKED_FLOAT32:return $m(t);case Qt.UNPACKED_FLOAT16:return zm(t);case Qt.PACKED_4X1_UNSIGNED_BYTE:return Pm(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function _B(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Qt.PACKED_2X2_FLOAT32:Qt.UNPACKED_FLOAT32:e?Qt.PACKED_2X2_FLOAT16:Qt.UNPACKED_FLOAT16}function k_(e,t){if(e===Kn.UPLOAD)return Qt.PACKED_2X2_FLOAT32;if(e===Kn.RENDER||e==null)return _B(t);if(e===Kn.DOWNLOAD||e===Kn.PIXELS)return Qt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function I_(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var za=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},gr="if (isnan(x)) return x;",bB="return x;",N_="return abs(x);",vB="return (x >= 0.0) ? x : (exp(x) - 1.0);",kB=gr+`
return (x < 0.0) ? 0.0 : x;
`,IB=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Ap="return x;",NB="return x;",SB=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,TB=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,EB=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Rl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},CB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=cn("rc",t),r=dt(t),a=hB(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},RB=Lr.whereImpl,FB=1e-7,MB=1e-4,Vm={};function OB(e){return e in Vm||(Vm[e]={}),Vm[e]}var DB=128,$B=600;function zB(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*$B/1024/1024}var yp=class extends xu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Br(ee().getNumber("WEBGL_VERSION"));this.binaryCache=OB(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new mp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new gB(this.gpgpu),this.numMBBeforeWarning=zB(),this.texData=new Sh(this,Un())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Kn.UPLOAD,refCount:1,complexParentRefCount:0}),r}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Kn.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Rl(i,Ap):h=new za(i,Ap);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=R.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Rl(r,Ap):p=new za(r,Ap);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,..._c(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];c=R.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Sw(n))throw ee().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=k.sizeFromShape(t);if(ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,..._c(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=ee().getBool("WEBGL_PACK")&&r===!0,i=s?cp(t):t,o=s?new ZL(i):new KL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return ee().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Un().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=DB){let n=this.getCPUBackend();return!ee().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return RB(e.shape,t)}packedUnaryOp(e,t,n){let r=new Rl(e.shape,t);return this.compileAndRun(r,[e],n)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=w_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(ee().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,N_,e.dtype);let t=new za(e.shape,N_);return this.compileAndRun(t,[e])}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Un().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new CB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new mB(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yi(e.shape),...gi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[yi(t),...gi(t)],s=new b_(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=cp(r),i;n?i=new XL(s):i=new qL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===xc.DENSE){let f=_c(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!gc(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=PW(e,l,u),h=this.getAndSaveBinary(c,()=>$W(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;if(d&&(p=this.startTimer()),zW(this.gpgpu,h,l,u,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)})),!ee().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,r,a);return Un().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?FB:MB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let c=t.texShape;if(c==null&&(c=Uw(n,o),t.texShape=c),a!=null){let h=cp(n),d,p=c[1],f=c[0],m=a instanceof Uint8Array;o?([p,f]=Nl(c[0],c[1]),d=new JL(h,[f,p],m)):d=new YL(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=Kn.PIXELS:this.texData.get(A.dataId).usage=Kn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),_=this.texData.get(g.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=PB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function PB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var S_="2.8.5";function T_(){ee().set("WEBGL_FORCE_F16_TEXTURES",!0)}dd.isBrowser()&&ul("webgl",()=>new yp,2);var LB={forceHalfFloat:T_},E_=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Fl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},gp=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,vc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${dt(a)} coords = getOutputCoords();
`,a===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=cn("coords",a);s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Mn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var WB={kernelName:_o,backendName:"webgl",kernelFunc:Mn};function Pa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Mn({inputs:{x:r},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let u=Mn({inputs:{x:a},backend:n}),c=n.texData.get(u.dataId);return c.complexParentRefCount++,i.complexTensorInfos={real:o,imag:u},s}var BB={kernelName:$h,backendName:"webgl",kernelFunc:Pa},C_="return (a < 0.) ? b * a : a;",R_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function VB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(R_,a.shape,i.shape):new Fl(C_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var UB={kernelName:ks,backendName:"webgl",kernelFunc:VB},F_="return (a < 0.) ? b * a : a;",M_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function jB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(M_,r.shape,a.shape):new Fl(F_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var HB={kernelName:$s,backendName:"webgl",kernelFunc:jB},O_="if (isnan(x)) return x;",GB=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,qB=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Rl(i.shape,t):c=new za(i.shape,e),o.runWebGLProgram(c,[i],l)}}function en({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(_=>{let[w,x]=_,b={dataId:w.dataId,dtype:w.dtype,shape:l.shape},N={dataId:x.dataId,dtype:x.dtype,shape:u.shape},T=new Fl(e,l.shape,u.shape);return c.runWebGLProgram(T,[b,N],rr(w.dtype,x.dtype))}),g=Pa({inputs:{real:A,imag:y},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(y),g}let h=s||rr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,y]=a(l.shape,u.shape,f.values,m.values,h),g=c.makeTensorInfo(y,h),_=c.texData.get(g.dataId);return _.values=A,g}let d=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new vc(t,l.shape,u.shape,n):p=new Fl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function xp(e,t=!1){if(e==="linear")return t?NB:bB;if(e==="relu")return t?TB:kB;if(e==="elu")return t?SB:vB;if(e==="relu6")return t?EB:IB;if(e==="prelu")return t?M_:F_;if(e==="leakyrelu")return t?R_:C_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var D_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:m=`vec4 activation(vec4 x) {
${i}
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",_="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${g};
int batchB = ${_};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${p[0]} * ${f[0]});
result += (${p[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${A}
setOutput(result);
}
`}},$_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},z_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},P_="return a * b;";function L_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=R.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new z_($_.REAL,r.shape,a.shape),c=new z_($_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=Pa({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=eB(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new vc(P_,r.shape,a.shape):i=new Fl(P_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var XB={kernelName:Fs,backendName:"webgl",kernelFunc:L_};function KB(e,t,n){let r=[yi(e.shape),...gi(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[yi(t),...gi(t)],i=new b_(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function xe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=k.sizeFromShape(a.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!gc(a.shape,l)&&!(c.texture!==null&&gc(c.shape,l))?KB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var ZB={kernelName:Lo,backendName:"webgl",kernelFunc:xe},W_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${k.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},YB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${c===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${c===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function JB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function bi(e,t,n,r){let a=JB(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new W_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new W_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new YB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var eV=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=dt(this.rank),a=QB(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function QB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var tV=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=dt(this.rank),a=__("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function wp(e,t,n){let r=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tV(e.shape,t):new eV(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function nV(e,t,n,r){let a=t,s=e.shape.length,i=k.parseAxisParam(a,e.shape),o=i,l=R.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=wp(e,l,r),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=R.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=R.expandShapeToKeepDim(h,i));let f=k.sizeFromShape(d),m=k.sizeFromShape(e.shape)/f,A=xe({inputs:{x:c},attrs:{shape:[m,f]},backend:r}),y=hd(e.dtype),g=bi(A,y,"sum",r),_=xe({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),u&&r.disposeIntermediateTensorInfo(c),_}function Um(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return nV(a,s,i,n)}var rV={kernelName:Gs,backendName:"webgl",kernelFunc:Um};function xn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=Bm(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=wp(a,s,i);return u}var aV={kernelName:Ys,backendName:"webgl",kernelFunc:xn},B_=1e3;function _p({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],f=r?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(m),g=k.sizeFromShape(A),_=y===g||y===1||g===1;k.assert(u>=2&&c>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let w=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let x=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],N=xe({inputs:{x:e},backend:a,attrs:{shape:x}}),T=xe({inputs:{x:t},backend:a,attrs:{shape:b}}),E=[N,T],M=Math.max(y,g),z=n?N.shape[1]:N.shape[2],P=s!=null,V=i!=null,q=l==="leakyrelu",U=l!=null?xp(l,!0):null,K=P||V||q||U!=null,Z;if((p===1||f===1)&&z>B_&&K===!1){let J=N,ae=T;n&&(J=xn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(J)),r&&(ae=xn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(ae));let Q=f!==1,le=f===1,se=J;Q&&(se=xe({inputs:{x:J},backend:a,attrs:{shape:[M,z,1]}}),E.push(se));let ce=f===1?2:1,he=ae;le&&(he=xe({inputs:{x:ae},backend:a,attrs:{shape:[M,1,z]}}),E.push(he));let pe=L_({inputs:{a:se,b:he},backend:a});Z=Um({inputs:{x:pe},backend:a,attrs:{axis:ce,keepDims:!0}}),E.push(pe)}else{let J=rr(e.dtype,t.dtype),ae=new D_(x,b,[M,p,f],n,r,P,U,V,q),Q=[N,T];if(s!=null&&Q.push(s),V&&Q.push(i),q){let le=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));Q.push(le),E.push(le)}Z=a.runWebGLProgram(ae,Q,J)}let te=xe({inputs:{x:Z},backend:a,attrs:{shape:w}});E.push(Z);for(let J of E)a.disposeIntermediateTensorInfo(J);return te}function sV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return _p({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var iV={kernelName:Js,backendName:"webgl",kernelFunc:sV},V_="return abs(x);";function oV(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=w_(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Rl(r.shape,V_):a=new za(r.shape,V_),n.runWebGLProgram(a,[r],r.dtype)}var lV={kernelName:Ji,backendName:"webgl",kernelFunc:oV},uV=gr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,cV=Ze({opSnippet:uV}),hV={kernelName:Qi,backendName:"webgl",kernelFunc:cV},dV=gr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,pV=Ze({opSnippet:dV}),fV={kernelName:eo,backendName:"webgl",kernelFunc:pV},U_="return a + b;",mV=en({opSnippet:U_,packedOpSnippet:U_,supportsComplex:!0,cpuKernelImpl:LW}),AV={kernelName:ba,backendName:"webgl",kernelFunc:mV},yV=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},gV=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function bp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Mn({inputs:{x:r[0]},backend:n});if(r.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=bp({inputs:r.slice(0,o),backend:n}),u=bp({inputs:r.slice(o),backend:n});return bp({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>rr(o,l)),s=r.map(o=>o.shape),i=ee().getBool("WEBGL_PACK")?new gV(r[0].shape,s):new yV(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var xV={kernelName:ls,backendName:"webgl",kernelFunc:bp};function wV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("all",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=k.sizeFromShape(p),m=xe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=bi(m,m.dtype,"all",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=xe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=xe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var _V={kernelName:Rh,backendName:"webgl",kernelFunc:wV};function bV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("any",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=k.sizeFromShape(p),m=xe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=bi(m,m.dtype,"any",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=xe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=xe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var vV={kernelName:Fh,backendName:"webgl",kernelFunc:bV},kV=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},IV=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),u=cn("coords",o),c,h;if(s===1){h=o+1;let N=dt(h);c=`
${N} sourceLocR = ${N}(${u.join()}, 0);
++${u[o-1]};
${N} sourceLocG = ${N}(${u.join()}, 0);
++${u[o-2]};
${N} sourceLocA = ${N}(${u.join()}, 0);
--${u[o-1]};
${N} sourceLocB = ${N}(${u.join()}, 0);
--${u[o-2]};`}else h=o,c=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(N=>"int "+N),m=cn("sourceLocR",h-1).concat("inIdx.r"),A=cn("sourceLocG",h-1).concat("inIdx.g"),y=cn("sourceLocB",h-1).concat("inIdx.b"),g=cn("sourceLocA",h-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",w=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${g.join()})));`,x=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${b}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
sourceLocB${p}, sourceLocA${p}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${x};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${x};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function j_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new kV(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=j_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function H_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=R.computeOptimalWindowSize(s),o=new IV(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=H_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function G_(e,t,n,r){let a=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),u=xe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=j_(e,u,r);s.push(c);let h=xe({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return H_(e,t,r)}function NV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=G_(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var SV={kernelName:us,backendName:"webgl",kernelFunc:NV};function TV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=xn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=G_(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var EV={kernelName:bu,backendName:"webgl",kernelFunc:TV},CV=gr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,RV=Ze({opSnippet:CV}),FV={kernelName:to,backendName:"webgl",kernelFunc:RV},MV=gr+"return log(x + sqrt(x * x + 1.0));",OV=Ze({opSnippet:MV}),DV={kernelName:no,backendName:"webgl",kernelFunc:OV},$V=gr+`
return atan(x);
`,zV=Ze({opSnippet:$V}),PV={kernelName:ro,backendName:"webgl",kernelFunc:zV},LV=GB+`
return atan(a, b);
`,WV=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+qB+`
return result;
`,BV=en({opSnippet:LV,packedOpSnippet:WV}),VV={kernelName:so,backendName:"webgl",kernelFunc:BV},UV=gr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jV=Ze({opSnippet:UV}),HV={kernelName:ao,backendName:"webgl",kernelFunc:jV},kc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let g="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let w=Math.floor(s/4)*4,x=s%4,b=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${g}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${b}
}
int xC = xCCorner + ${w};
if (${x===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${b}
} else if (${x===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${b}
} else if (${x===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${b}
}
}
setOutput(${_});
}
`}},jm=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",_="0.0";if(g||(_="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${E} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(s/4)*4,N=s%4,T=`
if (${g}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
const float initializationValue = ${_};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${_});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${T}
}
int xC = xCCorner + ${b};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${T}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${T}
}
}
setOutput(${x});
}
}
`}};function GV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Il(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return Mn({inputs:{x:a},backend:n});let h=new kc(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var qV={kernelName:cs,backendName:"webgl",kernelFunc:GV};function XV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new jm(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var KV={kernelName:vu,backendName:"webgl",kernelFunc:XV},ZV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${c});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},YV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${p}, ${f}, ${m});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function JV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new YV(d);return n.runWebGLProgram(p,[a],i.dtype)}var QV={kernelName:Oh,backendName:"webgl",kernelFunc:JV};function eU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Il([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=new ZV(c);return n.runWebGLProgram(h,[a],i.dtype)}var tU={kernelName:Mh,backendName:"webgl",kernelFunc:eU};function nU(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return _p({a,b:s,transposeA:i,transposeB:o,backend:n})}var rU={kernelName:hs,backendName:"webgl",kernelFunc:nU},aU=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},sU=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},iU=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=ee().getBool("WEBGL_PACK_NORMALIZATION")?new sU(r.shape,a.shape,s.shape,c,h,l):new aU(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},oU={kernelName:bs,backendName:"webgl",kernelFunc:iU},uU=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=`uniform int start[${this.rank}];`,r=lU(this.rank),a,s=e.map((i,o)=>`sourceLoc.${Hm[o]} = start[${o}] + coords.${Hm[o]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${a}
setOutput(getSource(${r}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Hm=["x","y","z","w","u","v"];function lU(e){if(e===1)return"sourceLoc";if(e<=6)return Hm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var cU=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=cn("coords",this.rank),r=cn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${s};
--${r[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function hU(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.complexParentRefCount=0,i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=on.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function Ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=on.parseSliceParams(a,s,i);if(on.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=sB(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=on.isSliceContinous(a.shape,o,l);if(u||!c){let h=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cU(l):new uU(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),hU(a,o,l,n)}var dU={kernelName:Uo,backendName:"webgl",kernelFunc:Ic},pU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,_)=>g*_),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=[],f=xe({inputs:{x:a},backend:n,attrs:{shape:l}}),m=xn({inputs:{x:f},backend:n,attrs:{perm:u}}),A=xe({inputs:{x:m},backend:n,attrs:{shape:c}}),y=Ic({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},fU={kernelName:ku,backendName:"webgl",kernelFunc:pU};function mU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=x_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var AU={kernelName:Dh,backendName:"webgl",kernelFunc:mU},yU="return float(a != b);",q_=en({opSnippet:yU,dtype:"bool"}),gU={kernelName:Ro,backendName:"webgl",kernelFunc:q_};function Nc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Mn({inputs:{x:a.complexTensorInfos.real},backend:n})}var xU={kernelName:nd,backendName:"webgl",kernelFunc:Nc},wU="return float(int(x));";function _U(e,t){let n=new za(e.shape,wU),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Gm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Mn({inputs:{x:a},backend:n});let i=St(a.shape),o=Gm({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Pa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Nc({inputs:{input:a},backend:n}),o=Gm({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Mn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return _U(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=q_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var bU={kernelName:ds,backendName:"webgl",kernelFunc:Gm},X_="return ceil(x);",vU=Ze({opSnippet:X_,packedOpSnippet:X_,cpuKernelImpl:BW}),kU={kernelName:io,backendName:"webgl",kernelFunc:vU},IU=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},NU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function SU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;ee().getBool("WEBGL_PACK_CLIP")?o=new NU(a.shape):o=new IU(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var TU={kernelName:va,backendName:"webgl",kernelFunc:SU},EU=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function K_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function CU(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new EU(r.shape),i=[K_(r,a.complexTensorInfos.real),K_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var RU={kernelName:Iu,backendName:"webgl",kernelFunc:CU},FU=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},MU=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=dt(r),s=cn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${c}), vec2(${u.join()}));
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
return getChannel(
getT${f}(${vp(i,l,m)}),
vec2(${vp(u,l,m)}));
}`}let d=o.length,p=o[o.length-1];h+=`
return getChannel(
getT${d}(${vp(i,l,p)}),
vec2(${vp(u,l,p)}));`,this.userCode=`
float getValue(${i.map(f=>"int "+f)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[r-1]} = ${s[r-1]} + 1;
if (${s[r-1]} < ${n[r-1]}) {
result.g = getValue(${s});
}
${s[r-2]} = ${s[r-2]} + 1;
if (${s[r-2]} < ${n[r-2]}) {
result.a = getValue(${s});
}
${s[r-1]} = ${s[r-1]} - 1;
if (${s[r-2]} < ${n[r-2]} &&
${s[r-1]} < ${n[r-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function vp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function kp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Mn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var OU={kernelName:Kh,backendName:"webgl",kernelFunc:kp};function Ml(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>Nc({inputs:{input:f},backend:n})),c=e.map(f=>kp({inputs:{input:f},backend:n})),h=Ml(u,t,n),d=Ml(c,t,n),p=Pa({inputs:{real:h,imag:d},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),c.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=Z_(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=VW(h,c,r,d),f=R.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=Ml(e.slice(0,u),t,n),h=Ml(e.slice(u),t,n),d=Ml([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new MU(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=Z_(e,t,n),i=new FU(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=xe({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function Z_(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>xe({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function Y_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Mn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return R.assertParamsConsistent(l,s),Ml(o,s,n)}var DU={kernelName:oo,backendName:"webgl",kernelFunc:Y_},J_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,_="",w="";n&&(r?_=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?_=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:_=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${_}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${g}];
ivec2 xRCCorner =
ivec2(coords[${A}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${p}) *
getW(wR, wC, ${p}, d2);
} else {
dotProd +=
getX(batch, ${p}, xR, xC) *
getW(wR, wC, ${p}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2),
getW(wR, wC, ${p} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1),
getX(batch, xR, xC, ${p} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC),
getX(batch, ${p} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${x}
${w}
setOutput(result);
}
`}},$U=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${p}) *
getW(wF, wR, wC, ${p}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1),
getX(batch, xF, xR, xC, ${p} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2),
getW(wF, wR, wC, ${p} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},zU=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=un(),A=h==="channelsLast",y=A?0:1,g=A?1:2,_="";for(let w=0;w<=1;w++)for(let x=0;x<=1;x++)_+=`
blockIndex = rc.y + ${x};
pos = rc.x + ${w};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
d0 = offsetY + ${c} * (pos / ${f});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${a}.));
if(d1 < ${t[g]} && d1 >= 0) {
ch = int(mod(float(pos), ${a}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${w*2+x}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${w*2+x}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${_}
${m.output} = result;
}
`}};function Q_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&c>B_,_=l[2]%2!=0&&!!u.isPacked;if(g||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let w=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=xe({inputs:{x:e},backend:r,attrs:{shape:[1,w,n.inChannels]}}),b=xe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=_p({a:x,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=xe({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(x),y.push(b),y.push(N)}else{let w=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),x={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(gc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let N=xe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=_p({a:x,b:N,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,E.shape=n.outShape,A=Mn({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let w of y)r.disposeIntermediateTensorInfo(w);return A}function eb({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=d*h,y=[m,A],g=!0,_=!1,w=[],x=xe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=xe({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});w.push(x),w.push(b);let N=new zU(y,x.shape,n),T=r.runWebGLProgram(N,[x],"float32"),E=xe({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});w.push(T),w.push(E);let M=a!=null,z=s!=null,P=o==="leakyrelu",V=o?xp(o,!0):null,q=new D_(E.shape,b.shape,[1,A,n.outChannels],g,_,M,V,z,P),U=[E,b];if(a&&U.push(a),z&&U.push(s),P){let J=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));U.push(J),w.push(J)}let K=r.runWebGLProgram(q,U,"float32"),Z=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],te=xe({inputs:{x:K},backend:r,attrs:{shape:Z}});w.push(K);for(let J of w)r.disposeIntermediateTensorInfo(J);return te}function PU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=Q_({x:a,filter:s,convInfo:d,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=eb({x:a,filter:s,convInfo:d,backend:n});else{let m=new J_(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=xe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var LU={kernelName:ps,backendName:"webgl",kernelFunc:PU},WU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},BU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},VU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},UU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function jU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new WU(d);return n.runWebGLProgram(p,[a,s],"float32")}var HU={kernelName:zh,backendName:"webgl",kernelFunc:jU};function GU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(u),d=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new BU(d);return n.runWebGLProgram(p,[a,s],"float32")}var qU={kernelName:fs,backendName:"webgl",kernelFunc:GU};function XU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new $U(u);return n.runWebGLProgram(c,[a,s],"float32")}var KU={kernelName:Nu,backendName:"webgl",kernelFunc:XU};function ZU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=R.computeConv3DInfo(a.shape,l,i,1,o),c=new VU(u);return n.runWebGLProgram(c,[a,s],"float32")}var YU={kernelName:Ph,backendName:"webgl",kernelFunc:ZU};function JU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=R.computeConv3DInfo(l,s.shape,o,1,i),c=new UU(u);return n.runWebGLProgram(c,[a,s],"float32")}var QU={kernelName:Lh,backendName:"webgl",kernelFunc:JU},ej=O_+`
return cos(x);
`,tj=Ze({opSnippet:ej}),nj={kernelName:ms,backendName:"webgl",kernelFunc:tj},rj=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,aj=Ze({opSnippet:rj}),sj={kernelName:lo,backendName:"webgl",kernelFunc:aj},ij=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,_,w]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${g});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${A};
float width_scale = ${_};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${p} ) {
setOutput(float(${a}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},oj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new ij(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},lj={kernelName:uo,backendName:"webgl",kernelFunc:oj},rb=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${tb(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${dt(r)} coords = getOutputCoords();
int end = ${nb(r,"coords")};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${nb(r,"coords")} = idx;
val += getX(${tb(r,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function tb(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function nb(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=R.getAxesPermutation([s],l),c=a;u!=null&&(c=xn({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=R.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=a.shape[h],p=Mn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new rb(c.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new rb(c.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=R.getUndoAxesPermutation(u),m=xn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var cj={kernelName:As,backendName:"webgl",kernelFunc:uj};function hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=x_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=WW(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var dj={kernelName:Wh,backendName:"webgl",kernelFunc:hj},pj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function fj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new pj(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var mj={kernelName:co,backendName:"webgl",kernelFunc:fj},ab=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${u}, ${c});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${m};
int q = d2 - d1 * ${m};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${g}
${y}
setOutput(result);
}
`}},sb=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let w=0;w<p;w++)for(let x=0;x<f;x++)A+=`
vec4 xTexelR${w}C${x*2} = vec4(0.);
vec4 wR${w}C${x} = vec4(0.);
vec4 xR${w}C${x} = vec4(0.);`;for(let w=0;w<p;w++)for(let x=0;x<m;x++){let b=x*2;if(A+=`
xR = xRCorner + ${w*h};
xC = xCCorner + ${b*d};
`,c===1){if(b<f&&(l%2==1?A+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${w}C${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${w}C${b}.zw = vec2(0.);
}
} else {
xTexelR${w}C${b} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${w}C${b} = vec4(previous.zw, xTexelR${w}C${b}.xy);
} else {
xR${w}C${b} = vec4(0, 0, xTexelR${w}C${b}.xy);
}
`:A+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${w}C${b} = getX(batch, xR, xC, d1);
} else {
xTexelR${w}C${b} = vec4(0.);
}
xR${w}C${b} = xTexelR${w}C${b};
`,b+1<f)){let N=l%2==0?k.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
xCOffset = xC + ${l%2} + ${N};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${w}C${b+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(A+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${w}C${b} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${w}C${b} = vec4(0.);
}
`),A+=`
xR${w}C${b+1} = vec4(
xTexelR${w}C${b}.zw, xTexelR${w}C${b+2}.xy);
`):A+=`
xCOffset = xC + ${N};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${w}C${b+2} = getX(batch, xR, xCOffset, d1);
}
xR${w}C${b+1} = xTexelR${w}C${b+2};
`}}else b<f&&(A+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(A+=`
xCOffset = xC + 1 - ${c};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${w}C${b} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${w}C${b} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${w}C${b+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${w}C${b+2} = vec4(0.);
}
xR${w}C${b} = vec4(
xTexelR${w}C${b}.zw, xTexelR${w}C${b+2}.zw);
`,b+1<f&&(A+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${c};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${w}C${b+1} = vec4(xTexelR${w}C${b+2}.xy, final.xy);
`)):(A+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${w}C${b} = getX(batch, xR, xC, d1);
} else {
xTexelR${w}C${b} = vec4(0.);
}
xCOffset = xC + ${c};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${w}C${b+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${w}C${b+2} = vec4(0.);
}
xR${w}C${b} = vec4(
xTexelR${w}C${b}.xy, xTexelR${w}C${b+2}.xy);
`,b+1<f&&(A+=`
xR${w}C${b+1} = vec4(
xTexelR${w}C${b}.zw, xTexelR${w}C${b+2}.zw);
`)),A+="}");b<f&&(A+=`
vec4 wTexelR${w}C${b} = getW(${w}, ${b}, d1, q);
wR${w}C${b} = vec4(wTexelR${w}C${b}.xz, wTexelR${w}C${b}.xz);
`,b+1<f&&(A+=`
vec4 wTexelR${w}C${b+1} = getW(${w}, ${b+1}, d1, q);
wR${w}C${b+1} =
vec4(wTexelR${w}C${b+1}.xz, wTexelR${w}C${b+1}.xz);`))}for(let w=0;w<p;w++)for(let x=0;x<f;x++)A+=`dotProd += xR${w}C${x} * wR${w}C${x};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,g="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${u}, ${c});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${A}
vec4 result = dotProd;
${_}
${g}
setOutput(result);
}
`}};function Aj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new sb(h):d=new ab(h),n.runWebGLProgram(d,[a,s],"float32")}var yj={kernelName:ys,backendName:"webgl",kernelFunc:Aj},gj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},xj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function wj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new gj(h);return n.runWebGLProgram(d,[a,s],"float32")}var _j={kernelName:Bh,backendName:"webgl",kernelFunc:wj};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new xj(h);return n.runWebGLProgram(d,[a,s],"float32")}var vj={kernelName:Vh,backendName:"webgl",kernelFunc:bj},kj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Ij(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=xe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new kj(s),l=n.runWebGLProgram(o,[i],i.dtype),u=xe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Nj={kernelName:Uh,backendName:"webgl",kernelFunc:Ij},Sj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${c}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new Sj(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=xe({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var Ej={kernelName:Su,backendName:"webgl",kernelFunc:Tj},Cj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Rj=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Fj=Ze({opSnippet:Cj,packedOpSnippet:Rj}),Mj={kernelName:ho,backendName:"webgl",kernelFunc:Fj},Oj="return (b >= 1.0) ? a : a * (b + 1.0);",Dj=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,$j=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(Dj,r.shape,a.shape):new Fl(Oj,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},zj={kernelName:Gh,backendName:"webgl",kernelFunc:$j},Pj=`
return vec4(equal(a, b));
`,Lj="return float(a == b);",Wj=en({opSnippet:Lj,packedOpSnippet:Pj,dtype:"bool"}),Bj={kernelName:fo,backendName:"webgl",kernelFunc:Wj},Vj=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${R.ERF_P};
float a1 = ${R.ERF_A1};
float a2 = ${R.ERF_A2};
float a3 = ${R.ERF_A3};
float a4 = ${R.ERF_A4};
float a5 = ${R.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Uj=Ze({opSnippet:Vj}),jj={kernelName:po,backendName:"webgl",kernelFunc:Uj},ib="return exp(x);",ob=Ze({opSnippet:ib,packedOpSnippet:ib,cpuKernelImpl:UW}),Hj={kernelName:xs,backendName:"webgl",kernelFunc:ob};function qm(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),xe({inputs:{x:s},backend:r,attrs:{shape:o}})}var Gj={kernelName:mo,backendName:"webgl",kernelFunc:qm},lb="return exp(x) - 1.0;",qj=Ze({opSnippet:lb,packedOpSnippet:lb,cpuKernelImpl:jW}),Xj={kernelName:Ao,backendName:"webgl",kernelFunc:qj},ub=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function cb(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=xe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new ub("real",l,t),c=new ub("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=Pa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=xe({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function Kj(e){let{inputs:t,backend:n}=e,{input:r}=t;return cb(r,!1,n)}var Zj={kernelName:qh,backendName:"webgl",kernelFunc:Kj},Yj=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Xm(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new Yj(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var Jj={kernelName:Tu,backendName:"webgl",kernelFunc:Xm},Qj=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},eH={kernelName:yo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new Qj(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},hb="return floor(x);",tH=Ze({opSnippet:hb,packedOpSnippet:hb,cpuKernelImpl:HW}),nH={kernelName:ws,backendName:"webgl",kernelFunc:tH},rH=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,aH=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,sH=en({opSnippet:rH,packedOpSnippet:aH,dtype:"int32"}),iH={kernelName:_s,backendName:"webgl",kernelFunc:sH},oH=class{constructor(e){this.variableNames=["A"];let t=un(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},lH=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=un(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},cH={kernelName:od,backendName:"webgl",kernelFunc:uH},Ol;function uH(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[u,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[c,u],d=[c,u,s];(o||i||l)&&(Ol==null&&(Ol=document.createElement("canvas").getContext("2d")),Ol.canvas.width=u,Ol.canvas.height=c,Ol.drawImage(a,0,0,u,c),a=Ol.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Kn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=ee().getBool("WEBGL_PACK")?new lH(d):new oH(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function hH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(c),A=R.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Q_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(ee().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=eb({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let w=i!=null,x=o!=null,b=p==="leakyrelu",N=p?xp(p,!1):null,T=new J_(A,w,N,x,b),E=[a,s];if(i&&E.push(i),o&&E.push(o),b){let M=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let _=xe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),_}var dH={kernelName:Qs,backendName:"webgl",kernelFunc:hH};function pH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=R.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),y=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?xp(d,y):null,_=[a,s],w=i!=null,x=o!=null,b=d==="leakyrelu";if(w&&_.push(i),x&&_.push(o),b){let E=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));_.push(E),f.push(E)}let N;y?N=new sb(A,w,g,x,b):N=new ab(A,w,g,x,b);let T=n.runWebGLProgram(N,_,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var fH={kernelName:ei,backendName:"webgl",kernelFunc:pH},mH=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=dt(t.length),a=dt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function AH(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=R.prepareAndValidate(r,a),h=xe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=xe({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/u,u]}}),p=new mH(i,c,[l,u]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=xe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var yH={kernelName:xo,backendName:"webgl",kernelFunc:AH},xH=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),r=gH(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function gH(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function wH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=k.sizeFromShape(s.shape),h=[],d=xe({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=xe({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),_=n.bufferSync(d),w=GW(_,g,f);return h.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let m=new xH(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=xe({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var _H={kernelName:go,backendName:"webgl",kernelFunc:wH},bH="return float(a > b);",vH=`
return vec4(greaterThan(a, b));
`,kH=en({opSnippet:bH,packedOpSnippet:vH,cpuKernelImpl:qW,dtype:"bool"}),IH={kernelName:wo,backendName:"webgl",kernelFunc:kH},NH="return float(a >= b);",SH=`
return vec4(greaterThanEqual(a, b));
`,TH=en({opSnippet:NH,packedOpSnippet:SH,dtype:"bool"}),EH={kernelName:vs,backendName:"webgl",kernelFunc:TH};function CH(e){let{inputs:t,backend:n}=e,{input:r}=t;return cb(r,!0,n)}var RH={kernelName:Xh,backendName:"webgl",kernelFunc:CH},FH="return float(!isnan(x) && !isinf(x));",MH=Ze({opSnippet:FH,dtype:"bool"}),OH={kernelName:bo,backendName:"webgl",kernelFunc:MH},DH="return float(isinf(x));",$H=Ze({opSnippet:DH,dtype:"bool"}),zH={kernelName:vo,backendName:"webgl",kernelFunc:$H},PH="return float(isnan(x));",LH=Ze({opSnippet:PH,dtype:"bool"}),WH={kernelName:ko,backendName:"webgl",kernelFunc:LH},BH="return float(a < b);",VH=`
return vec4(lessThan(a, b));
`,UH=en({opSnippet:BH,packedOpSnippet:VH,cpuKernelImpl:XW,dtype:"bool"}),jH={kernelName:Io,backendName:"webgl",kernelFunc:UH},HH="return float(a <= b);",GH=`
return vec4(lessThanEqual(a, b));
`,qH=en({opSnippet:HH,packedOpSnippet:GH,dtype:"bool"}),XH={kernelName:No,backendName:"webgl",kernelFunc:qH};function KH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=KW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var ZH={kernelName:Zh,backendName:"webgl",kernelFunc:KH},YH=`if (x < 0.0) return NAN;
return log(x);`,JH=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,QH=Ze({opSnippet:YH,packedOpSnippet:JH,cpuKernelImpl:ZW}),eG={kernelName:Is,backendName:"webgl",kernelFunc:QH},tG="return log(1.0 + x);",nG=Ze({opSnippet:tG}),rG={kernelName:So,backendName:"webgl",kernelFunc:nG},aG="return float(a >= 1.0 && b >= 1.0);",sG=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,iG=en({opSnippet:aG,packedOpSnippet:sG,dtype:"bool"}),oG={kernelName:To,backendName:"webgl",kernelFunc:iG},lG="return float(!(x >= 1.0));",uG=Ze({opSnippet:lG}),cG={kernelName:Eu,backendName:"webgl",kernelFunc:uG},hG="return float(a >= 1.0 || b >= 1.0);",dG=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,pG=en({opSnippet:hG,packedOpSnippet:dG,dtype:"bool"}),fG={kernelName:Cu,backendName:"webgl",kernelFunc:pG},mG=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},AG=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},yG=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=ee().getBool("WEBGL_PACK_NORMALIZATION")?new AG(a.shape,s,i,o,l):new mG(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},gG={kernelName:Ru,backendName:"webgl",kernelFunc:yG},xG=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},wG=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new xG(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},_G={kernelName:Yh,backendName:"webgl",kernelFunc:wG};function bG(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=xe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=bi(i,e.dtype,"max",r),l=xe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function db(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,_=new Array(o);for(let b=0;b<_.length;b++)_[b]=a.shape[c[b]];let w=Bm(g,a.shape,a.dtype,c,_);p=n.makeTensorInfo(_,a.dtype);let x=n.texData.get(p.dataId);x.values=w}else p=wp(a,c,n);u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("max",u,o);let[f,m]=R.computeOutAndReduceShapes(p.shape,u),A=f;i&&(A=R.expandShapeToKeepDim(f,l));let y;if(d){let g=n.texData.get(p.dataId).values,_=YW(g,k.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let w=n.texData.get(y.dataId);w.values=_}else y=bG(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var vG={kernelName:Ns,backendName:"webgl",kernelFunc:db},kG=E_+`
return max(a, b);
`,IG=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+gp+`
return result;
`,NG=en({opSnippet:kG,packedOpSnippet:IG,cpuKernelImpl:JW}),SG={kernelName:Ss,backendName:"webgl",kernelFunc:NG};function TG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Il(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return Mn({inputs:{x:a},backend:n});let h=new kc(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var EG={kernelName:Ts,backendName:"webgl",kernelFunc:TG};function CG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new jm(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var RG={kernelName:Fu,backendName:"webgl",kernelFunc:CG},FG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},MG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${h}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${p} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function OG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new jm(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new MG(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var DG={kernelName:Qh,backendName:"webgl",kernelFunc:OG};function $G(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Il([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,f=new kc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new FG(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var zG={kernelName:Jh,backendName:"webgl",kernelFunc:$G};function PG(e,t,n,r){let a=new kc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new kc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var LG={kernelName:ed,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=R.computePool2DInfo(r.shape,a,s,u,i),[h,d]=PG(r,o,c,l);return[h,d]}};function WG(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=xe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=bi(i,"float32","mean",r),l=xe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var BG={kernelName:Es,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let _=i.texData.get(f.dataId).values,w=new Array(o);for(let N=0;N<w.length;N++)w[N]=r.shape[c[N]];let x=Bm(_,r.shape,r.dtype,c,w);f=i.makeTensorInfo(w,r.dtype);let b=i.texData.get(f.dataId);b.values=x}else f=wp(r,c,i);p.push(f),u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("sum",u,o);let[m,A]=R.computeOutAndReduceShapes(f.shape,u),y=m;a&&(y=R.expandShapeToKeepDim(m,l));let g=WG(f,A,y,i);for(let _ of p)i.disposeIntermediateTensorInfo(_);return g}};function VG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=k.sizeFromShape(p),m=xe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=bi(m,m.dtype,"min",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=xe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=xe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var UG={kernelName:Cs,backendName:"webgl",kernelFunc:VG},jG=E_+`
return min(a, b);
`,HG=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+gp+`
return result;
`,GG=en({opSnippet:jG,packedOpSnippet:HG,cpuKernelImpl:QW}),qG={kernelName:Rs,backendName:"webgl",kernelFunc:GG},XG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=dt(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},KG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=dt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=cn("rc",r),l=cn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${c});
${o[r-1]} += 1;
if(${u}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${c});
}
`}else{let p=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${c});
${o[r-1]} += 1;
if(${u}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${c});
}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {
${p}
result[2] = getChannel(getX(${l.join()}), ${c});
${o[r-1]} += 1;
if(${u}) {
${p}
result[3] = getChannel(getX(${l.join()}), ${c});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},ZG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new KG(r.shape,a,s):new XG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},YG={kernelName:Mu,backendName:"webgl",kernelFunc:ZG},JG=`if (b == 0.0) return NAN;
return mod(a, b);`,QG=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+gp+`
return result;
`,eq=en({opSnippet:JG,packedOpSnippet:QG}),tq={kernelName:Eo,backendName:"webgl",kernelFunc:eq},nq=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},rq=`
if (a == b) {
return 1.0;
};
return a / b;`,aq=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,pb=en({opSnippet:rq,packedOpSnippet:aq,checkOutOfBounds:!0}),sq={kernelName:gs,backendName:"webgl",kernelFunc:pb},fb="return a - b;",mb=en({opSnippet:fb,packedOpSnippet:fb,supportsComplex:!0,cpuKernelImpl:oB}),iq={kernelName:Ks,backendName:"webgl",kernelFunc:mb};function Ab(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=db({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),u=xe({inputs:{x:o},backend:n,attrs:{shape:l}}),c=mb({inputs:{a,b:u},backend:n}),h=ob({inputs:{x:c},backend:n}),d=Um({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=xe({inputs:{x:d},backend:n,attrs:{shape:l}}),f=pb({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var oq={kernelName:qs,backendName:"webgl",kernelFunc:Ab};function lq(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:Ab({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new nq(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var uq={kernelName:td,backendName:"webgl",kernelFunc:lq},yb="return -x;";function cq(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=tB(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Rl(r.shape,yb):a=new za(r.shape,yb),n.runWebGLProgram(a,[r],r.dtype)}var hq={kernelName:Co,backendName:"webgl",kernelFunc:cq},dq=Lr.nonMaxSuppressionV3Impl;function pq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=dq(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var fq={kernelName:Fo,backendName:"webgl",kernelFunc:pq},mq=Lr.nonMaxSuppressionV4Impl;function Aq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=mq(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var yq={kernelName:Mo,backendName:"webgl",kernelFunc:Aq},gq=Lr.nonMaxSuppressionV5Impl;function xq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:y}=gq(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var wq={kernelName:Oo,backendName:"webgl",kernelFunc:xq},_q=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},bq=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),u=new _q(l,s,i,o),c=xe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=xe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},vq={kernelName:Ms,backendName:"webgl",kernelFunc:bq};function Ip(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=Nc({inputs:{input:r},backend:n}),s=Ip({inputs:{x:a},backend:n}),i=kp({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=Pa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Xm({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var kq={kernelName:Jo,backendName:"webgl",kernelFunc:Ip};function gb(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=Nc({inputs:{input:r},backend:n}),s=gb({inputs:{x:a},backend:n}),i=kp({inputs:{input:r},backend:n}),o=Ip({inputs:{x:i},backend:n}),l=Pa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Xm({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var Iq={kernelName:Do,backendName:"webgl",kernelFunc:gb};function Nq(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return qm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=qm({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=Y_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Sq={kernelName:$o,backendName:"webgl",kernelFunc:Nq},Tq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=dt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},Eq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=dt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=cn("rc",r),l=cn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
if(${u}) {
`,r===1?"":`}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
${h[f]}
if (${d}) {
result[${f}] = float(${n});
} else {
${a} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${c});
}
`;p+=r===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},xb=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Eq(a.shape,s,i):new Tq(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},Cq={kernelName:Os,backendName:"webgl",kernelFunc:xb},Rq=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Fq=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+gp+`
return result;
`,Mq=en({opSnippet:Rq,packedOpSnippet:Fq}),Oq={kernelName:Ds,backendName:"webgl",kernelFunc:Mq};function Dq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=k.parseAxisParam(s,a.shape),c=u,h=R.getAxesPermutation(c,o),d=a;h!=null&&(d=xn({inputs:{x:a},backend:n,attrs:{perm:h}}),c=R.getInnerMostAxes(c.length,o),l.push(d)),R.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=nB(d.shape,d.dtype,f,c);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=R.computeOutAndReduceShapes(d.shape,c),A=k.sizeFromShape(m),y=xe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=hd(a.dtype),_=bi(y,g,"prod",n);p=xe({inputs:{x:_},backend:n,attrs:{shape:f}}),l.push(y),l.push(_)}if(i){l.push(p);let f=R.expandShapeToKeepDim(p.shape,u);p=xe({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var $q={kernelName:zo,backendName:"webgl",kernelFunc:Dq},wb=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=rB(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},zq={kernelName:Ou,backendName:"webgl",kernelFunc:wb},Pq="return 1.0 / x;",Lq=Ze({opSnippet:Pq}),Wq={kernelName:Po,backendName:"webgl",kernelFunc:Lq},Bq=gr+`
return (x < 0.0) ? 0.0 : x;
`,Vq=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Uq=Ze({opSnippet:Bq,packedOpSnippet:Vq}),jq={kernelName:zs,backendName:"webgl",kernelFunc:Uq},Hq=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Gq=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,qq=Ze({opSnippet:Hq,packedOpSnippet:Gq}),Xq={kernelName:Ls,backendName:"webgl",kernelFunc:qq},Kq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Zq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Yq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Zq(a.shape,l,u,s,i):new Kq(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var Jq={kernelName:Ps,backendName:"webgl",kernelFunc:Yq},Qq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function eX(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Qq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var tX={kernelName:ad,backendName:"webgl",kernelFunc:eX},nX=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function rX(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new nX(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var aX={kernelName:Du,backendName:"webgl",kernelFunc:rX},sX=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function iX(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new sX(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var oX={kernelName:rd,backendName:"webgl",kernelFunc:iX},lX=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=dt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},uX=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=cn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(r.slice())};
if(${a}){
result.g = ${l(r.slice())};
}
if(${s}) {
result.b = ${u(r.slice())};
if(${a}) {
result.a = ${c(r.slice())};
}
}
setOutput(result);
}
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function cX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Mn({inputs:{x:a},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uX(a.shape,o):new lX(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var hX={kernelName:Ws,backendName:"webgl",kernelFunc:cX},dX=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,u]=R.getImageCenter(r,a,s),c=l.toFixed(3),h=u.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${c}) * ${o} - (float(y) - ${h}) * ${i};
float coordYFloat = (float(x) - ${c}) * ${i} + (float(y) - ${h}) * ${o};
int coordX = int(round(coordXFloat + ${c}));
int coordY = int(round(coordYFloat + ${h}));
${d}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},pX={kernelName:Qo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new dX(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},fX=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,mX=Ze({opSnippet:fX}),AX={kernelName:Bs,backendName:"webgl",kernelFunc:mX},yX="return inversesqrt(x);",gX=Ze({opSnippet:yX,cpuKernelImpl:aB}),xX={kernelName:Vs,backendName:"webgl",kernelFunc:gX},_b=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=dt(a.length),l=dt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${p};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function wX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=xe({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=xe({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new _b(l,o,p.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=xe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var _X={kernelName:Wo,backendName:"webgl",kernelFunc:wX},bX=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=dt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function vX(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new bX(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],rr(a.dtype,s.dtype))}var kX={kernelName:Bo,backendName:"webgl",kernelFunc:vX},IX=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${R.SELU_SCALEALPHA};
float scale = ${R.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,NX=Ze({opSnippet:IX}),SX={kernelName:Vo,backendName:"webgl",kernelFunc:NX},TX="return 1.0 / (1.0 + exp(-1.0 * x));",EX=Ze({opSnippet:TX}),CX={kernelName:js,backendName:"webgl",kernelFunc:EX},RX=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,FX=Ze({opSnippet:RX}),MX={kernelName:Ho,backendName:"webgl",kernelFunc:FX},OX=O_+`
return sin(x);
`,DX=Ze({opSnippet:OX}),$X={kernelName:Us,backendName:"webgl",kernelFunc:DX},zX=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,PX=Ze({opSnippet:zX}),LX={kernelName:jo,backendName:"webgl",kernelFunc:PX},WX=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,BX=Ze({opSnippet:WX}),VX={kernelName:Go,backendName:"webgl",kernelFunc:BX},UX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],c=xb({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=R.getReshaped(c.shape,s,o,!1),d=R.getPermuted(h.length,s.length,!1),p=R.getReshapedPermuted(c.shape,s,o,!1),f=xe({inputs:{x:c},backend:n,attrs:{shape:h}}),m=xn({inputs:{x:f},backend:n,attrs:{perm:d}}),A=xe({inputs:{x:m},backend:n,attrs:{shape:p}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},jX={kernelName:$u,backendName:"webgl",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=R.calculateShapes(s,a,o),d=!1,p=new _b(u,l,a.shape.length,s.shape.length,c,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=xe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var GX={kernelName:sd,backendName:"webgl",kernelFunc:HX};function qX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=Ic({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,f})}var XX={kernelName:qo,backendName:"webgl",kernelFunc:qX},KX="return sqrt(x);",ZX=Ze({opSnippet:KX}),YX={kernelName:Hs,backendName:"webgl",kernelFunc:ZX},JX="return x * x;",QX=Ze({opSnippet:JX}),eK={kernelName:zu,backendName:"webgl",kernelFunc:QX},bb="return (a - b) * (a - b);",tK=en({opSnippet:bb,packedOpSnippet:bb}),nK={kernelName:Xs,backendName:"webgl",kernelFunc:tK};function rK({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=gr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new za(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var aK={kernelName:Ia,backendName:"webgl",kernelFunc:rK},sK=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=dt(n.length),s=dt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function iK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=on.sliceInfo(a.shape,s,i,o,l,u,c,h,d),_=xe({inputs:{x:a},backend:n,attrs:{shape:y}}),w;if(p){let b=Ic({inputs:{x:_},backend:n,attrs:{begin:f,size:A}});w=xe({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))w=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([_])){let b=n.texData.get(_.dataId).values,N=We(_.shape,_.dtype,b),T=iB(g,N,m,f);w=n.makeTensorInfo(g,_.dtype,T.values)}else{let b=new sK(f,m,g);w=n.runWebGLProgram(b,[_],_.dtype)}let x=xe({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(w),x}var oK={kernelName:Xo,backendName:"webgl",kernelFunc:iK},lK="return tan(x);",uK=Ze({opSnippet:lK}),cK={kernelName:Ko,backendName:"webgl",kernelFunc:uK},hK=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,dK=Ze({opSnippet:hK}),pK={kernelName:Zs,backendName:"webgl",kernelFunc:dK},mK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=dt(this.rank),a=fK(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function fK(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function vb(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>k.decodeString(c)),l=We(a.shape,a.dtype,o),u=lB(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new mK(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var AK={kernelName:ka,backendName:"webgl",kernelFunc:vb};function yK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=uB(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var gK={kernelName:Zo,backendName:"webgl",kernelFunc:yK};function xK(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Il(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=cB(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var wK={kernelName:id,backendName:"webgl",kernelFunc:xK};function _K(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==s&&(u[c++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=Ic({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=xe({inputs:{x:A},backend:n,attrs:{shape:u}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var bK={kernelName:Yo,backendName:"webgl",kernelFunc:_K},vK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
sumValue += dot(values, segFilter);
`,d="";a%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${p}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function kK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=R.getAxesPermutation([u],o),h=a;c!=null&&(h=xn({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=R.getInnerMostAxes(1,o)[0]);let d=R.segment_util.computeOutShape(h.shape,u,i),p=k.sizeFromShape([h.shape[u]]),f=xe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=hd(a.dtype),A=(w,x,b,N,T)=>{let E=w.shape[0],M=w.shape[1],z=R.segment_util.segOpComputeOptimalWindowSize(M,T),P={windowSize:z,inSize:M,batchSize:E,numSegments:T},V=new vK(P,x),q=n.compileAndRun(V,[w,b],N);if(l.push(q),q.shape[1]===T)return q;let U=wb({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),K=vb({inputs:{x:U},backend:n,attrs:{reps:[M/z]}});return l.push(U),l.push(K),A(q,x,K,N,T)},y=A(f,"unsortedSegmentSum",s,m,i),g=xe({inputs:{x:y},backend:n,attrs:{shape:d}}),_=g;if(c!=null){l.push(g);let w=R.getUndoAxesPermutation(c);_=xn({inputs:{x:_},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),_}var IK={kernelName:Pu,backendName:"webgl",kernelFunc:kK},NK=[gG,_G,iV,lV,hV,fV,AV,xV,_V,vV,SV,EV,FV,DV,VV,PV,HV,KV,qV,QV,tU,rU,oU,fU,AU,bU,kU,TU,RU,BB,DU,HU,qU,LU,YU,QU,KU,nj,sj,lj,cj,dj,mj,_j,vj,yj,Nj,Ej,Mj,zj,Bj,jj,Hj,Gj,Xj,Zj,Jj,eH,nH,iH,cH,dH,fH,yH,_H,IH,EH,WB,RH,OU,OH,zH,WH,UB,jH,XH,ZH,rG,eG,oG,cG,fG,vG,RG,EG,DG,zG,LG,SG,BG,UG,qG,YG,tq,uq,XB,hq,fq,yq,wq,gU,vq,Iq,Sq,Cq,Oq,HB,$q,zq,xU,sq,Wq,Xq,jq,ZB,Jq,tX,aX,oX,hX,pX,AX,xX,_X,kX,SX,CX,MX,$X,LX,dU,oq,VX,jX,GX,XX,YX,eK,nK,aK,oK,iq,rV,cK,pK,AK,gK,aV,wK,bK,IK,kq];for(let e of NK)ti(e);var On;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(On||(On={}));var Sc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Sc||(Sc={}));var kb;function SK(e){kb=e.wasm.cwrap(Js,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function TK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=Sc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=u?s.shape[1]:s.shape[2],_=a.shape[0],w=n.makeOutput([_,y,g],a.dtype),x=n.dataIdMap.get(w.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return kb(d,b,a.shape.length,p,N,s.shape.length,l,u,A,f,m,h||0,x),w}var EK={kernelName:Js,backendName:"wasm",setupFunc:SK,kernelFunc:TK};function Dn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var CK=Dn(Ji);function hn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=R.assertAndGetBroadcastShape(u.shape,c.shape),m=o.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),g=o.dataIdMap.get(m.dataId).id,_=()=>r(h,A,u.shape.length,d,y,c.shape.length,On[u.dtype],g);if(t&&u.dtype==="float32")return _(),m;let w=R.getBroadcastDims(u.shape,f),x=R.getBroadcastDims(c.shape,f),b=w.every((T,E)=>T===E),N=x.every((T,E)=>T===E);if(b&&N)return _(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var RK=!0,FK=hn(ba,RK),Ib;function MK(e){Ib=e.wasm.cwrap(ls,null,["array","number","number","number"])}function OK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return Ib(s,a.length,On[r.dtype],i),r}var DK={kernelName:ls,backendName:"wasm",setupFunc:MK,kernelFunc:OK};function Np(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var $K={kernelName:_o,backendName:"wasm",kernelFunc:Np},Nb;function zK(e){Nb=e.wasm.cwrap(Ys,null,["number","array","number","number","number","array","number"])}function Sp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=LK(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=PK(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=Np({inputs:t,backend:n});return f.shape=o,f}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return Nb(c,p,l.shape.length,On[l.dtype],h,d,s.length),u}function PK(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function LK(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var WK={kernelName:Ys,backendName:"wasm",kernelFunc:Sp,setupFunc:zK};function Dl(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=R.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=R.getInnerMostAxes(i.length,a),l=Sp({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var Sb;function BK(e){Sb=e.wasm.cwrap(us,null,["number","number","number","number","number"])}function VK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=Dl(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=k.sizeFromShape(p.shape),A=l.shape[c[0]];return Sb(o,On[l.dtype],m,A,f),h&&t.disposeData(u.dataId),p}var UK={kernelName:us,backendName:"wasm",kernelFunc:VK,setupFunc:BK},Tb;function jK(e){Tb=e.wasm.cwrap(cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function HK(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,y=c.strideHeight,g=c.strideWidth,_=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let w=r.makeOutput(c.outShape,"float32"),x=r.dataIdMap.get(w.dataId).id;return Tb(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,_,x),w}var GK={kernelName:cs,backendName:"wasm",setupFunc:jK,kernelFunc:HK};function xr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=k.sizeFromShape(r.shape),i=k.inferFromImplicitShape(a,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),{dataId:r.dataId,shape:i,dtype:r.dtype}}var qK={kernelName:Lo,backendName:"wasm",kernelFunc:xr},Eb;function XK(e){Eb=e.wasm.cwrap(hs,null,["number","array","number","number","array","number","number","number","number"])}function KK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,c,d]:[A,d,c],x=o?[y,p,h]:[y,h,p],b=xr({inputs:{x:a},backend:n,attrs:{shape:w}}),N=xr({inputs:{x:s},backend:n,attrs:{shape:x}}),T=n.dataIdMap.get(b.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?b.shape[2]:b.shape[1],z=o?N.shape[1]:N.shape[2],P=Math.max(A,y),V=n.makeOutput([P,M,z],b.dtype),q=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),K=new Uint8Array(new Int32Array(N.shape).buffer);return Eb(T,U,b.shape.length,E,K,N.shape.length,i,o,q),V.shape=_,V}var ZK={kernelName:hs,backendName:"wasm",setupFunc:XK,kernelFunc:KK};function Tp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var YK={kernelName:ds,backendName:"wasm",kernelFunc:Tp},Cb;function JK(e){Cb=e.wasm.cwrap(va,null,["number","number","number","number"])}function QK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return Cb(o,s,i,u),l}var eZ={kernelName:va,backendName:"wasm",setupFunc:JK,kernelFunc:QK};function Rb(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=R.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>k.sizeFromShape(p.shape)>0);if(s.length===1)return Np({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(R.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(_=>{let w=k.sizeFromShape(_.shape.slice(r));return xr({inputs:{x:_},backend:n,attrs:{shape:[-1,w]}})}),f=p.map(_=>({vals:n.readSync(_.dataId),shape:_.shape}));a=R.computeOutShape(p.map(_=>_.shape),1);let m=p[0].shape[0]===1,A=Am(f,a,t[0].dtype,m),y=R.computeOutShape(s.map(_=>_.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=R.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return u+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*u;for(let m=0;m<h.length;m++){let A=c[m],y=p*A,g=h[m].subarray(y,y+A);d.set(g,f),f+=A}}return i}var tZ={kernelName:oo,backendName:"wasm",kernelFunc:Rb},Fb;function nZ(e){Fb=e.wasm.cwrap(ps,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=R.convertConv2DDataFormat(d),f=R.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,_=f.padInfo.bottom,w=f.padInfo.left,x=f.dilationHeight,b=f.dilationWidth,N=f.strideHeight,T=f.strideWidth,E=f.inChannels,M=f.outChannels,z=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=r.makeOutput(f.outShape,"float32"),V=r.dataIdMap.get(P.dataId).id;return Fb(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,_,w,z,x,b,N,T,E,M,V),P}var aZ={kernelName:ps,backendName:"wasm",setupFunc:nZ,kernelFunc:rZ},Mb;function sZ(e){Mb=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function iZ(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:_,outChannels:w,outHeight:x,outWidth:b,strideHeight:N,strideWidth:T}=p,E=m-1-p.padInfo.top,M=A-1-p.padInfo.left,z=p.dataFormat==="channelsLast",P=k.computeStrides(p.inShape),V=k.computeStrides(a.shape),[q,U,K]=k.computeStrides(s.shape),Z=P[0],te=z?P[1]:P[2],J=z?P[2]:1,ae=z?1:P[1],Q=V[0],le=z?V[1]:V[2],se=z?V[2]:1,ce=z?1:V[1],he=t.makeOutput(p.inShape,"float32"),pe=t.dataIdMap.get(he.dataId).id,ge=t.dataIdMap.get(a.dataId).id,me=t.dataIdMap.get(s.dataId).id;return Mb(ge,me,f,m,A,g,_,y,x,b,w,N,T,E,M,q,U,K,Z,te,J,ae,Q,le,se,ce,pe),he}var oZ={kernelName:fs,backendName:"wasm",setupFunc:sZ,kernelFunc:iZ},lZ=Dn(ms),Km;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Km||(Km={}));var Ob;function uZ(e){Ob=e.wasm.cwrap(uo,null,["number","number","number","number","array","number","number","number","number","number"])}function cZ(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=Tp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,_=t.makeOutput(p,"float32"),w=t.dataIdMap.get(_.dataId).id,x=new Uint8Array(new Int32Array(o.shape).buffer);return Ob(A,y,g,c,x,h,d,Km[a],s,w),m!=null&&t.disposeData(m.dataId),_}var hZ={kernelName:uo,backendName:"wasm",setupFunc:uZ,kernelFunc:cZ},Db;function dZ(e){Db=e.wasm.cwrap(As,null,["number","number","number","number","number","number"])}function pZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;k.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([s],l),c=a;u!==null&&(c=Sp({inputs:{x:a},attrs:{perm:u},backend:n}));let h=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;Db(f,i?1:0,o?1:0,p,m,On[a.dtype]);let A=d;if(u!==null){let y=R.getUndoAxesPermutation(u);A=Sp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var fZ={kernelName:As,backendName:"wasm",setupFunc:dZ,kernelFunc:pZ},$b;function mZ(e){$b=e.wasm.cwrap(co,null,["number","number","number","array","number","array","array","number","number"])}function AZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),_=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return $b(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,_,f.length,w),m}var yZ={kernelName:co,backendName:"wasm",setupFunc:mZ,kernelFunc:AZ},zb;function gZ(e){zb=e.wasm.cwrap(ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=R.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,_=p.padInfo.left,w=p.dilationHeight,x=p.dilationWidth,b=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let z=r.makeOutput(p.outShape,"float32"),P=r.dataIdMap.get(z.dataId).id;return zb(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,_,M,w,x,b,N,T,E,P),z}var wZ={kernelName:ys,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ},_Z=!1,bZ=hn(fo,_Z,"bool"),vZ=Dn(xs);function Zm(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xr({inputs:{x:a},backend:r,attrs:{shape:o}})}var kZ={kernelName:mo,backendName:"wasm",kernelFunc:Zm};function IZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var NZ={kernelName:Tu,backendName:"wasm",kernelFunc:IZ},Pb;function SZ(e){Pb=e.wasm.cwrap(yo,null,["number","number","number","number","number","number"])}function TZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return Pb(s,o,l,u,c,i),a}var EZ={kernelName:yo,backendName:"wasm",kernelFunc:TZ,setupFunc:SZ},CZ=Dn(ws),RZ=!1,FZ=hn(_s,RZ),Lb;function MZ(e){Lb=e.wasm.cwrap(bs,null,["number","number","number","number","number","number","number"])}function OZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return Lb(c,h,d,p,f,a,A),m}var DZ={kernelName:bs,backendName:"wasm",setupFunc:MZ,kernelFunc:OZ},Wb;function $Z(e){Wb=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=Sc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=m.outChannels,w=0;if(i!=null){let se=r.dataIdMap.get(i.dataId);if(se.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${se.shape}) does not match the number of output channels (${_})`);w=se.id}let x=m.filterHeight,b=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,P=m.dilationWidth,V=m.strideHeight,q=m.strideWidth,U=m.inChannels,K=m.padInfo.type==="SAME"?1:0,Z=m.batchSize,te=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),Q=r.dataIdMap.get(ae.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return Wb(y,Z,te,J,g,x,b,w,N,T,E,M,K,z,P,V,q,U,_,A,le,f||0,Q),ae}var PZ={kernelName:Qs,backendName:"wasm",setupFunc:$Z,kernelFunc:zZ},Bb;function LZ(e){Bb=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function WZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=Sc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=m.outChannels,w=0;if(i!=null){let se=r.dataIdMap.get(i.dataId);if(se.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${se.shape}) does not match the number of output channels (${_})`);w=se.id}let x=m.filterHeight,b=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,P=m.dilationWidth,V=m.strideHeight,q=m.strideWidth,U=m.inChannels,K=m.padInfo.type==="SAME"?1:0,Z=m.batchSize,te=m.inHeight,J=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),Q=r.dataIdMap.get(ae.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return Bb(y,Z,te,J,g,x,b,w,N,T,E,M,K,z,P,V,q,U,_,A,le,f||0,Q),ae}var BZ={kernelName:ei,backendName:"wasm",setupFunc:LZ,kernelFunc:WZ},Vb;function VZ(e){Vb=e.wasm.cwrap(xo,null,["number","number","number","number","number","number","array","number"])}function UZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Af.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return Vb(d,On[r.dtype],p,i,h,o,f,m),u}var jZ={kernelName:xo,backendName:"wasm",setupFunc:VZ,kernelFunc:UZ},Ub;function HZ(e){Ub=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function GZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=xr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),d=xr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],f=t.makeOutput(p,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,_=new Uint8Array(new Int32Array(k.computeStrides(c.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return Ub(A,On[a.dtype],_,m,y,u.batchSize,w,g),f.shape=u.outputShape,f}var qZ={kernelName:go,backendName:"wasm",setupFunc:HZ,kernelFunc:GZ},XZ=!1,KZ=hn(wo,XZ,"bool"),ZZ=!1,YZ=hn(vs,ZZ,"bool"),jb;function JZ(e){jb=e.wasm.cwrap(ks,null,["number","number","number"])}function QZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;jb(a,n,i)}return s}var eY={kernelName:ks,backendName:"wasm",setupFunc:JZ,kernelFunc:QZ},tY=!1,nY=hn(Io,tY,"bool"),rY=!1,aY=hn(No,rY,"bool"),sY=Dn(Is),iY=!1,oY=hn(To,iY,"bool"),Hb;function lY(e){Hb=e.wasm.cwrap(Ns,null,["number, number, number"])}function uY(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=Dl(i,a,t);if(d){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let p=l.shape.length;R.assertAxesAreInnerMostDims("max",c,p);let[f,m]=R.computeOutAndReduceShapes(l.shape,c),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Hb(o,A,g)}if(d&&t.disposeData(u.dataId),s){let g=R.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var cY={kernelName:Ns,backendName:"wasm",setupFunc:lY,kernelFunc:uY},hY=!1,dY=hn(Ss,hY),Gb;function pY(e){Gb=e.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fY(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,y=c.dilationHeight,g=c.dilationWidth,_=c.strideHeight,w=c.strideWidth,x=c.inChannels,b=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return Gb(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,_,w,x,b,T),N}var mY={kernelName:Ts,backendName:"wasm",setupFunc:pY,kernelFunc:fY},qb;function AY(e){qb=e.wasm.cwrap(Es,null,["number, number, number"])}function yY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Dl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=Tp({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let _=t.makeOutput(m,"float32");if(k.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(_.dataId).id;qb(l,y,w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(_.shape,d);_.shape=w}return u.dtype!=="float32"&&t.disposeData(g.dataId),_}var gY={kernelName:Es,backendName:"wasm",setupFunc:AY,kernelFunc:yY},Xb;function xY(e){Xb=e.wasm.cwrap(Cs,null,["number, number, number"])}function wY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Dl(i,a,t);if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_)}let f=u.shape.length;R.assertAxesAreInnerMostDims("min",h,f);let[m,A]=R.computeOutAndReduceShapes(u.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Xb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=R.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var _Y={kernelName:Cs,backendName:"wasm",setupFunc:xY,kernelFunc:wY},bY=!1,vY=hn(Rs,bY),kY=!0,IY=hn(Fs,kY),NY=Dn(Co);function Ym(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var Kb;function SY(e){Kb=e.wasm.cwrap(Fo,"number",["number","number","number","number","number"])}function TY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=Kb(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=Ym(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var EY={kernelName:Fo,backendName:"wasm",setupFunc:SY,kernelFunc:TY},Zb;function CY(e){Zb=e.wasm.cwrap(Mo,"number",["number","number","number","number","number","bool"])}function RY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Zb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=Ym(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var FY={kernelName:Mo,backendName:"wasm",setupFunc:CY,kernelFunc:RY},Yb;function MY(e){Yb=e.wasm.cwrap(Oo,"number",["number","number","number","number","number","number"])}function OY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Yb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=Ym(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var DY={kernelName:Oo,backendName:"wasm",setupFunc:MY,kernelFunc:OY},$Y=!1,zY=hn(Ro,$Y,"bool"),Jb;function PY(e){Jb=e.wasm.cwrap(Ms,null,["number","number","number","number","number"])}function LY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return Jb(c,s,i,o,u),l}var WY={kernelName:Ms,backendName:"wasm",setupFunc:PY,kernelFunc:LY};function BY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var VY={kernelName:Do,backendName:"wasm",kernelFunc:BY};function UY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Zm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>Zm({inputs:{input:l},backend:n,attrs:{dim:a}}));return Rb({inputs:o,backend:n,attrs:{axis:a}})}var jY={kernelName:$o,backendName:"wasm",kernelFunc:UY},Qb;function HY(e){Qb=e.wasm.cwrap(Os,null,["number","array","number","number","array","array","number","number"])}function GY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return Qb(i,u,t.shape.length,On[t.dtype],d,p,a,l),o}var qY={kernelName:Os,backendName:"wasm",kernelFunc:GY,setupFunc:HY},XY=!1,KY=hn(Ds,XY),e3;function ZY(e){e3=e.wasm.cwrap($s,null,["number","number","number"])}function YY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return e3(s,i,l),o}var JY={kernelName:$s,backendName:"wasm",setupFunc:ZY,kernelFunc:YY},t3;function QY(e){t3=e.wasm.cwrap(zo,null,["number","number","number","number"])}function eJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Dl(i,a,t),f=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;t3(l,y,On[g.dtype],_)}if(p&&t.disposeData(c.dataId),s){let _=R.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var tJ={kernelName:zo,backendName:"wasm",setupFunc:QY,kernelFunc:eJ},nJ=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=xm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},rJ={kernelName:Ou,backendName:"wasm",kernelFunc:nJ},aJ=!0,sJ=hn(gs,aJ),iJ=Dn(zs),oJ=Dn(Ls),n3;function lJ(e){n3=e.wasm.cwrap(Ps,null,["number","number","number","number","number","number","number","number","number","number"])}function uJ(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,f=[c,l,u,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=Tp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let _=t.dataIdMap.get(g.dataId).id;return n3(y,c,h,d,p,l,u,s?1:0,i?1:0,_),A!=null&&t.disposeData(A.dataId),g}var cJ={kernelName:Ps,backendName:"wasm",setupFunc:lJ,kernelFunc:uJ},r3;function hJ(e){r3=e.wasm.cwrap(Ws,null,["number","array","number","array","number","number"])}function dJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return Np({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);return r3(l,c,i.length,h,a.shape.length,u),xr({inputs:{x:o},attrs:{shape:a.shape},backend:n})}var pJ={kernelName:Ws,backendName:"wasm",kernelFunc:dJ,setupFunc:hJ},a3;function fJ(e){a3=e.wasm.cwrap(Qo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function mJ(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=R.getImageCenter(o,d,p),y=i===0,g=255,_=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],w=new Uint8Array(new Int32Array(_).buffer);return a3(u,h,d,p,f,s,m,A,w,_.length,c),l}var AJ={kernelName:Qo,backendName:"wasm",kernelFunc:mJ,setupFunc:fJ},yJ=Dn(Bs),gJ=Dn(Vs),s3;function xJ(e){s3=e.wasm.cwrap(Wo,null,["number","number","number","number","number","number","array","number","number"])}function wJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=yf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return s3(p,f,On[s.dtype],l,u,c,m,d,A),o}var _J={kernelName:Wo,backendName:"wasm",setupFunc:xJ,kernelFunc:wJ},i3;function bJ(e){i3=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function vJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:k.sizeFromShape(a.shape.slice(1));return i3(i,o,l,p,c),u}var kJ={kernelName:Bo,backendName:"wasm",kernelFunc:vJ,setupFunc:bJ},o3;function IJ(e){o3=e.wasm.cwrap(js,null,["number","number"])}function NJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||o3(r,s),a}var SJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:IJ,kernelFunc:NJ},TJ=Dn(Us);function Ep(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=on.parseSliceParams(t,n,r),o=on.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=k.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=on.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+k.sizeFromShape(i))),u}if(t.dtype==="string"){let f=rp(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)EJ(l,c[0],d,s,i);else if(p===3)CJ(l,c[0],c[1],d,s,i);else if(p===4)RJ(l,c[0],c[1],c[2],d,s,i);else{let f=rp(l,s,i,t.shape,t.dtype);d.set(f)}return u}function EJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function CJ(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let f=d*t+p*n+u;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function RJ(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=u;A<d;A++)for(let y=c;y<p;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var FJ={kernelName:Uo,backendName:"wasm",kernelFunc:Ep},l3;function MJ(e){l3=e.wasm.cwrap(qs,null,["number","number","number","number"])}function OJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||l3(a,i,o,l),s}var DJ={kernelName:qs,backendName:"wasm",setupFunc:MJ,kernelFunc:OJ};function $J(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=Ep({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var zJ={kernelName:qo,backendName:"wasm",kernelFunc:$J},PJ=Dn(Hs),LJ=Dn(zu),WJ=!0,BJ=hn(Xs,WJ),u3;function VJ(e){u3=e.wasm.cwrap(Ia,null,["number","number","number"])}function UJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return u3(i,a,l),o}var jJ={kernelName:Ia,backendName:"wasm",setupFunc:VJ,kernelFunc:UJ},c3;function HJ(e){c3=e.wasm.cwrap(Xo,null,["number","array","number","array","array","array","array","array","number","number"])}function GJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=R.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=R.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(E=>{s[E]=0,i[E]=1,A.splice(E,0,1)});let y=xr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:_,strides:w}=R.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,u,c);s=g,i=_,o=w;let x=R.slice_util.maskToAxes(d);x.forEach(E=>{i[E]=s[E]+1,o[E]=1});let b=R.slice_util.computeOutShape(s,i,o),N=b.filter((E,M)=>x.indexOf(M)===-1);if(o.every(E=>E===1)){let E=Ep({inputs:{x:a},attrs:{begin:s,size:b},backend:t});return xr({inputs:{x:E},attrs:{shape:N},backend:t})}let T=t.makeOutput(N,"float32");if(!N.some(E=>E===0)){let E=t.dataIdMap.get(y.dataId).id,M=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),P=new Uint8Array(new Int32Array(i).buffer),V=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(N).buffer),U=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),K=t.dataIdMap.get(T.dataId).id;c3(E,M,y.shape.length,z,P,V,q,U,N.length,K)}return xr({inputs:{x:T},attrs:{shape:N},backend:t})}var qJ={kernelName:Xo,backendName:"wasm",setupFunc:HJ,kernelFunc:GJ},XJ=!0,KJ=hn(Ks,XJ),h3;function ZJ(e){h3=e.wasm.cwrap(Gs,null,["number, number, number"])}function YJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Dl(i,a,t),f=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;h3(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=R.expandShapeToKeepDim(g.shape,d);g.shape=_}return g}var JJ={kernelName:Gs,backendName:"wasm",setupFunc:ZJ,kernelFunc:YJ},QJ=Dn(Zs),d3;function eQ(e){d3=e.wasm.cwrap(ka,null,["number","array","number","array","number","number"])}function tQ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return d3(s,l,a.shape.length,u,o.length,On[c.dtype],h),c}var nQ={kernelName:ka,backendName:"wasm",setupFunc:eQ,kernelFunc:tQ},p3;function rQ(e){p3=e.wasm.cwrap(Zo,null,["number","array","number","number","number","bool","number","number"])}var aQ=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return p3(i,o,r.shape.length,On[r.dtype],a,s,c,d),[u,h]},sQ={kernelName:Zo,backendName:"wasm",setupFunc:rQ,kernelFunc:aQ};function iQ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=Ep({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var oQ={kernelName:Yo,backendName:"wasm",kernelFunc:iQ};function lQ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var uQ={kernelName:Jo,backendName:"wasm",kernelFunc:lQ},cQ=[CK,FK,DK,UK,GK,ZK,YK,eZ,tZ,aZ,oZ,lZ,hZ,fZ,yZ,wZ,bZ,vZ,kZ,NZ,EZ,CZ,FZ,EK,DZ,PZ,BZ,jZ,qZ,KZ,YZ,$K,eY,nY,aY,sY,oY,cY,dY,mY,gY,_Y,vY,IY,NY,EY,FY,DY,zY,WY,VY,jY,qY,KY,JY,tJ,rJ,sJ,iJ,oJ,qK,cJ,pJ,AJ,gJ,yJ,_J,kJ,SJ,TJ,FJ,DJ,zJ,PJ,LJ,BJ,jJ,qJ,KJ,JJ,QJ,nQ,sQ,WK,oQ,uQ];for(let e of cQ)ti(e);var Jm=ee();Jm.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Jm.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Jm.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var f3=Ki(vk()),hQ='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',dQ=Ki(kk()),m3=class extends xu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Sh(this,Un())}write(e,t,n){let r={};return this.move(r,e,t,n),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(r),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:o,shape:n,dtype:r}),this.wasm.tfjs.registerTensor(a,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return pQ(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{r={};let a=this.dataIdNextNumber++;this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function fQ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function A3(e,t,n){if(Cp!=null)return Cp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Tc!=null&&Tc[r]!=null?Tc[r]:n+r}async function mQ(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,u)=>{if(l.endsWith(".worker.js")){let c=hQ,h=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?A3(e,t,Ec!=null?Ec:u):u+l},Qm&&(a.instantiateWasm=fQ(A3(e,t,Ec!=null?Ec:"")));let s;t&&e&&Cp==null?(s=f3.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+f3.default.toString()],{type:"text/javascript"})):s=dQ.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,Cc=!1,n({wasm:s})},s.onAbort=()=>{o||Cc||(Cc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function pQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var AQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Cp=null,Ec=null,Tc={},Cc=!1,Qm=!1;function yQ(e,t=!1){if(Ct("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Cp=e,Qm=t}function y3(e,t=!1){if(Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ec=e;else{Tc=e;let n=AQ.filter(r=>Tc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Qm=t}var g3="2.8.5",gQ=2;ul("wasm",async()=>{let{wasm:e}=await mQ();return new m3(e)},gQ);var x3={};$e(x3,{maxNorm:()=>xQ,minMaxNorm:()=>bQ,nonNeg:()=>_Q,unitNorm:()=>wQ});var eA;function zt(){return eA==null&&(eA=kf().epsilon()),eA}function wr(){return"channelsLast"}var ca=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ca.prototype)}},_r=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,_r.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},w3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,w3.prototype)}},vQ=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,vQ.prototype)}};function vi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Vr(e,t){if(!e)throw new w3(t)}function _3(e,t){let n=0;for(let r of e)r===t&&n++;return n}function wn(e){return e.length===1?e[0]:e}function At(e){return Array.isArray(e)?e:[e]}function ha(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function ki(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var lr={};function tA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function nA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>nA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:nA(r))}}}function Rc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in lr)i=lr[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in lr?[o,l]=lr.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(lr))u[p]=lr[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},lr);for(let p of Object.keys(n))lr[p]=n[p];nA(s.config);let d=l(o,s.config,n,a);return lr=Object.assign({},h),d}else{let u=Object.assign({},lr);for(let h of Object.keys(n))lr[h]=n[h];let c=new o(s.config);return lr=Object.assign({},u),c}}}function kQ(e,t){return e<t?-1:e>t?1:0}function Rp(e,t){return-1*kQ(e,t)}function La(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function IQ(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ii(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function rA(e,t,n=0,r=Infinity){return Vr(n>=0),Vr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Ht(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Ht(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${b3(e)}.`)}function b3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>b3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function NQ(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-n<t||(n=s,r=e(...a)),r}}function v3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function aA(e,t){return W(()=>Jt(Se(L(e,e),t,!0)))}var Fc=class extends re.Serializable{getConfig(){return{}}},sA=class extends Fc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=aA(e,this.axis),n=An(t,0,this.maxValue);return L(e,be(n,ie(zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};sA.className="MaxNorm";re.registerClass(sA);var iA=class extends Fc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>be(e,ie(zt(),aA(e,this.axis))))}getConfig(){return{axis:this.axis}}};iA.className="UnitNorm";re.registerClass(iA);var oA=class extends Fc{apply(e){return Pr(e)}};oA.className="NonNeg";re.registerClass(oA);var lA=class extends Fc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=aA(e,this.axis),n=ie(L(this.rate,An(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,be(n,ie(zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};lA.className="MinMaxNorm";re.registerClass(lA);var k3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return tA(e)}function I3(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in k3?k3[e]:e,config:{}};return I3(t)}else return e instanceof Fc?e:I3(e)}function xQ(e){return new sA(e)}function wQ(e){return new iA(e)}function _Q(){return new oA}function bQ(e){return new lA(e)}var N3={};$e(N3,{constant:()=>EQ,glorotNormal:()=>$Q,glorotUniform:()=>DQ,heNormal:()=>zQ,heUniform:()=>PQ,identity:()=>MQ,leCunNormal:()=>LQ,leCunUniform:()=>WQ,ones:()=>TQ,orthogonal:()=>BQ,randomNormal:()=>RQ,randomUniform:()=>CQ,truncatedNormal:()=>FQ,varianceScaling:()=>OQ,zeros:()=>SQ});var VQ=["channelsFirst","channelsLast"],UQ=["nearest","bilinear"],jQ=["valid","same","causal"],HQ=["max","avg"],GQ=["sum","mul","concat","ave"],$l=new Map;function Tt(e){Ii(VQ,"DataFormat",e)}function qQ(e){Ii(UQ,"InterpolationFormat",e)}function Zn(e){Ii(jQ,"PaddingMode",e)}function S3(e){Ii(HQ,"PoolMode",e)}var Mc=[],T3="/";function Ni(e,t){Mc.push(e);try{let n=t();return Mc.pop(),n}catch(n){throw Mc.pop(),n}}function XQ(){return Mc.length===0?"":Mc.join(T3)+T3}function C3(e){if(!E3(e))throw new Error("Not a valid tensor name: '"+e+"'");return XQ()+e}function R3(e){if(!E3(e))throw new Error("Not a valid tensor name: '"+e+"'");$l.has(e)||$l.set(e,0);let t=$l.get(e);if($l.set(e,$l.get(e)+1),t>0){let n=`${e}_${t}`;return $l.set(n,1),n}else return e}var KQ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function E3(e){return!!e.match(KQ)}function ZQ(e){return e===parseInt(e.toString(),10)}function Wa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function F3(e){return e=Array.isArray(e)?new Float32Array(e):e,Ut(e)}function zl(e){return Al(F3(e)).dataSync()[0]}function Ba(e){return qn(F3(e)).dataSync()[0]}function br(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Oc(e,t){return e.asType(t)}function Dc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function YQ(e,t){return W(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Dc(e,1);return uA(n,[1,t,1])})}function JQ(e){let t=[Wa(e.shape)];return e.reshape(t)}function QQ(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Wa(e.shape,1)];return e.reshape(t)}function Si(e,t,n){return W(()=>{switch(e.rank){case 1:return Wd(e,t,n);case 2:return rm(e,[t,0],[n,e.shape[1]]);case 3:return Bd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return uc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ee(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ee(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function cA(e,t,n){return W(()=>{switch(e.rank){case 1:return Wd(e,t,n);case 2:return rm(e,[0,t],[e.shape[0],n]);case 3:return Bd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return uc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Fp(e,t,n,r){return W(()=>{switch(e.rank){case 1:return Wd(e,t,n);case 2:switch(r){case 1:return Si(e,t,n);case 2:return cA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Si(e,t,n);case 2:return Bd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return cA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Si(e,t,n);case 2:return uc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return uc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return cA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function hA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),at(e,t)}function M3(e,t){switch(e.rank){case 1:return _5([e,t]);case 2:return li([e,t],0);case 3:return b5([e,t],0);case 4:return v5([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function uA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ra(e,t)}function Mp(e,t=0,n=1,r,a){return W5(e,t,n,r,a)}function Ur(e,t,n,r){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Da.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?dA(e.rank,r,wr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Da.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?dA(e.rank,r,wr()):null,activation:n}).reshape(h)}}function O3(e,t,n){return W(()=>(Array.isArray(t)?t=Ut(t,"int32"):t=t.toInt(),ci(e,t,n)))}function $c(e){return L(e,e)}function dA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function jr(e,t,n){return W(()=>(n==null&&(n=wr()),Tt(n),e.add(dA(e.rank,t,n))))}function eee(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return pl(e)}function tee(e){return W(()=>be(e,Dt(e).add(1)))}function D3(e,t,n,r){return W(()=>lx(e,t,n,r))}function nee(e){return W(()=>{let t=ie(.5,L(.2,e));return An(t,0,1)})}function zc(e,t,n=!1){return n?e():t()}var ree=["fanIn","fanOut","fanAvg"],aee=["normal","uniform","truncatedNormal"];function see(e){Ii(ree,"FanMode",e)}function iee(e){Ii(aee,"Distribution",e)}var ur=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},pA=class extends ur{apply(e,t){return St(e,t)}};pA.className="Zeros";re.registerClass(pA);var Op=class extends ur{apply(e,t){return $r(e,t)}};Op.className="Ones";re.registerClass(Op);var fA=class extends ur{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return W(()=>L(ke(this.value),$r(e,t)))}getConfig(){return{value:this.value}}};fA.className="Constant";re.registerClass(fA);var mA=class extends ur{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return yl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};mA.className="RandomUniform";re.registerClass(mA);var AA=class extends ur{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};AA.className="RandomNormal";re.registerClass(AA);var yA=class extends ur{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Ud(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};yA.className="TruncatedNormal";re.registerClass(yA);var gA=class extends ur{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return W(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,jf(e[0]))})}getConfig(){return{gain:this.gain}}};gA.className="Identity";re.registerClass(gA);function oee(e,t="channelsLast"){let n,r;if(Tt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Wa(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Wa(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Wa(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var _n=class extends ur{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,see(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,iee(this.distribution),this.seed=e.seed}apply(e,t){let n=oee(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Ud(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return yl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};_n.className="VarianceScaling";re.registerClass(_n);var Dp=class extends _n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Dp.className="GlorotUniform";re.registerClass(Dp);var $p=class extends _n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};$p.className="GlorotNormal";re.registerClass($p);var zp=class extends _n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};zp.className="HeNormal";re.registerClass(zp);var Pp=class extends _n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Pp.className="HeUniform";re.registerClass(Pp);var Lp=class extends _n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Lp.className="LeCunNormal";re.registerClass(Lp);var Wp=class extends _n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Wp.className="LeCunNormal";re.registerClass(Wp);var xA=class extends ur{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return W(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Mp(n,0,1,"float32"),a=_x.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};xA.className="Orthogonal";re.registerClass(xA);var $3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function z3(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return tA(e)}function xt(e){if(typeof e=="string"){let t=e in $3?$3[e]:e;if(t==="GlorotNormal")return new $p;if(t==="GlorotUniform")return new Dp;if(t==="HeNormal")return new zp;if(t==="HeUniform")return new Pp;if(t==="LeCunNormal")return new Lp;if(t==="LeCunUniform")return new Wp;{let n={};return n.className=t,n.config={},z3(n)}}else return e instanceof ur?e:z3(e)}function SQ(){return new pA}function TQ(){return new Op}function EQ(e){return new fA(e)}function CQ(e){return new mA(e)}function RQ(e){return new AA(e)}function FQ(e){return new yA(e)}function MQ(e){return new gA(e)}function OQ(e){return new _n(e)}function DQ(e){return new Dp(e)}function $Q(e){return new $p(e)}function zQ(e){return new zp(e)}function PQ(e){return new Pp(e)}function LQ(e){return new Lp(e)}function WQ(e){return new Wp(e)}function BQ(e){return new xA(e)}var P3={};$e(P3,{Layer:()=>qe,RNN:()=>Hr,RNNCell:()=>Pc,activation:()=>vee,add:()=>Fee,alphaDropout:()=>mte,average:()=>Mee,averagePooling1d:()=>wA,averagePooling2d:()=>_A,averagePooling3d:()=>bA,avgPool1d:()=>Vee,avgPool2d:()=>jee,avgPool3d:()=>Gee,avgPooling1d:()=>Uee,avgPooling2d:()=>Hee,avgPooling3d:()=>qee,batchNormalization:()=>Lee,bidirectional:()=>ote,concatenate:()=>Oee,conv1d:()=>mee,conv2d:()=>Aee,conv2dTranspose:()=>yee,conv3d:()=>gee,convLstm2d:()=>rte,convLstm2dCell:()=>ate,cropping2D:()=>wee,dense:()=>kee,depthwiseConv2d:()=>bee,dot:()=>Pee,dropout:()=>Iee,elu:()=>uee,embedding:()=>Ree,flatten:()=>See,gaussianDropout:()=>fte,gaussianNoise:()=>pte,globalAveragePooling1d:()=>Xee,globalAveragePooling2d:()=>Kee,globalMaxPool1d:()=>ute,globalMaxPool2d:()=>cte,globalMaxPooling1d:()=>W3,globalMaxPooling2d:()=>B3,gru:()=>Yee,gruCell:()=>Jee,input:()=>L3,inputLayer:()=>lee,layerNormalization:()=>Wee,leakyReLU:()=>hee,lstm:()=>Qee,lstmCell:()=>ete,masking:()=>Ate,maxPool1d:()=>hte,maxPool2d:()=>dte,maxPooling1d:()=>V3,maxPooling2d:()=>U3,maxPooling3d:()=>Zee,maximum:()=>Dee,minimum:()=>$ee,multiply:()=>zee,permute:()=>Cee,prelu:()=>dee,reLU:()=>cee,repeatVector:()=>Tee,reshape:()=>Eee,rnn:()=>ste,separableConv2d:()=>xee,simpleRNN:()=>tte,simpleRNNCell:()=>nte,softmax:()=>pee,spatialDropout1d:()=>Nee,stackedRNNCells:()=>ite,thresholdedReLU:()=>fee,timeDistributed:()=>lte,upSampling2d:()=>_ee,zeroPadding2d:()=>Bee});var yte=0;function j3(){return yte++}var Bp={};function Vp(e=""){return e in Bp||(Bp[e]=0),Bp[e]+=1,e+Bp[e].toString()}function vA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Up(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function pt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function jp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var H3="Variable",G3=class{constructor(e,t="float32",n=H3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=j3(),n=n==null?H3:n,this.originalName=C3(n),this.name=R3(this.originalName),this.trainable_=r,this.constraint=a,this.val=V5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),gte(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function gte(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function kA(e){return e.map(t=>t.read())}function IA(e){e.forEach(t=>{t[0].write(t[1])})}var Gt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},vr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=j3(),s!=null&&(this.originalName=C3(s),this.name=R3(this.originalName)),this.rank=t.length}},xte=0,Hp=class{constructor(e,t){this.callArgs=t,this.id=xte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},wte=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=wte++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ha(n)+"_"+Vp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new _r(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return wn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return wn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ca(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ca(`Layer ${this.name} is not connected, no input to return.`);return wn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ca(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ca(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return wn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=At(e),r=!0;for(let s of n)if(!(s instanceof vr)){r=!1;break}let a=!0;for(let s of n)if(s instanceof vr){a=!1;break}if(r===a)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ni(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(wn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=wn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=_te(e),i=this.computeOutputShape(s),o,l=bte(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new vr(l,u,this,At(e),t,this.name,c)):o=new vr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ca(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ca(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new _r(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return jp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return kA(e?this.trainableWeights:this.weights)}setWeights(e){W(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=kA(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!k.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}IA(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=xt("zeros"));let o=r.apply(t,n),l=new G3(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Up(a),s=Up(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new Hp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function _te(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return wn(t)}function bte(e){return"float32"}function q3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=q3(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var Pl=class extends qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Vp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new vr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Pl.className="InputLayer";re.registerClass(Pl);function X3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Pl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Va(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Te(r)}}function K3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Z3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Z3||(Z3={}));var vte=125,Ll=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Y3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},kte=class extends Ll{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=W(()=>ie(this.totals[r],L(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:W(()=>{let r=L(be(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},J3=class extends Ll{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},Q3=class extends Ll{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=vte),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=NQ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Va(n),r.push(this.yield(e,t,n))),r.push(np()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Va(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Va(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(np()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Va(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Va(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(np()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Va(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Va(e),await this.trainEnd(e))}};function e7(e,t){return e==null&&(e={}),e instanceof Ll?[e]:Array.isArray(e)&&e[0]instanceof Ll?e:At(e).map(n=>new Q3(n,t))}var cr=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),cr.checkForDuplicate(t),cr.constructors[e]==null&&(cr.constructors[e]=[]),cr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in cr.constructors)cr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){cr.constructors={}}static createCallbacks(e){let t=[];for(let n in cr.constructors){let r=+n;e>=r&&t.push(...cr.constructors[r])}return t.map(n=>new n)}};cr.constructors={};function t7(e,t,n,r,a,s,i,o,l){let u=new J3,c=[new kte,...cr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new Y3(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function kr(e,t={},n=!1){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gp(e,t){return W(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se($c(e),t,!0),r=tc(n.shape,zt()),a=Jt(yr(n,r));return be(e,a)})}function Ti(e,t){return W(()=>vt($c(ye(t,e)),-1))}function qp(e,t){return W(()=>vt(Dt(ye(t,e)),-1))}function Wl(e,t){return W(()=>{let n=ye(e,t),r=An(Dt(e),zt(),Number.MAX_VALUE),a=Dt(be(n,r));return L(100,vt(a,-1))})}function Ite(e,t){return W(()=>{let n=An(t,zt(),Number.MAX_VALUE),r=Tn(ie(1,n)),a=An(e,zt(),Number.MAX_VALUE),s=Tn(ie(1,a));return vt($c(ye(r,s)),-1)})}function Nte(e,t){return W(()=>{let n=yr(0,ye(1,L(e,t)));return vt($c(n),-1)})}function Ste(e,t){return W(()=>{let n=yr(0,ye(1,L(e,t)));return vt(n,-1)})}function Tte(e,t){return W(()=>{let n=Se(L(e,t),-1),r=qn(L(ye(1,e),t),-1);return yr(0,ie(1,ye(r,n)))})}function Ete(e,t){return W(()=>{let n=Math.log(2),r=ye(t,e),a=ye(ie(r,ml(L(-2,r))),n);return vt(a,-1)})}function Lc(e,t,n=!1){return W(()=>{if(n)t=cc(t);else{let r=Se(t,t.shape.length-1,!0);t=be(t,r)}return t=An(t,zt(),1-zt()),bt(Se(L(e.toFloat(),Tn(t)),t.shape.length-1))})}function Xp(e,t,n=!1){return W(()=>{let r=fl(JQ(e)).toInt();t=An(t,zt(),1-zt());let a=t.shape,s=il(r,a[a.length-1]).reshape(a);return Lc(s,t,n)})}function Cte(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Kp(e,t){return W(()=>{let n;return n=An(t,zt(),1-zt()),n=Tn(be(n,ye(1,n))),vt(Cte(e,n),-1)})}function Rte(e,t){return W(()=>{let n=An(e,zt(),1),r=An(t,zt(),1);return Se(L(e,Tn(be(n,r))),-1)})}function Fte(e,t){return W(()=>{let n=Tn(ie(zt(),t));return vt(ye(t,L(e,n)),-1)})}function NA(e,t){return W(()=>{let n=Gp(e,-1),r=Gp(t,-1),a=L(n,r);return bt(Se(a,-1))})}var Zp={meanSquaredError:Ti,meanAbsoluteError:qp,meanAbsolutePercentageError:Wl,meanSquaredLogarithmicError:Ite,squaredHinge:Nte,hinge:Ste,categoricalHinge:Tte,logcosh:Ete,categoricalCrossentropy:Lc,sparseCategoricalCrossentropy:Xp,binaryCrossentropy:Kp,kullbackLeiblerDivergence:Rte,poisson:Fte,cosineProximity:NA};function SA(e){if(typeof e=="string"){if(e in Zp)return Zp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function TA(e,t){return W(()=>{let n=L(.5,En(t)),r=Oc(Gn(t,n),e.dtype);return vt(aa(e,r),-1)})}function EA(e,t){return W(()=>Oc(aa(Ku(e,-1),Ku(t,-1)),"float32"))}function n7(e,t){return W(()=>sr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Mte(e,t){return W(()=>sr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Ote(e,t){return W(()=>sr(e.equal(0),t.equal(1)).sum().cast("float32"))}function r7(e,t){return W(()=>{let n=n7(e,t),r=Ote(e,t),a=n.add(r);return yn(Gn(a,0),n.div(a),0).cast("float32")})}function Dte(e,t){return W(()=>{let n=n7(e,t),r=Mte(e,t),a=n.add(r);return yn(Gn(a,0),n.div(a),0).cast("float32")})}function a7(e,t){return Kp(e,t)}function s7(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),aa(e,t).asType("float32")}var $te=Ti,zte=Ti,Pte=qp,Lte=qp,Wte=Wl,Bte=Wl,CA=Lc,Vte=NA,i7=Xp,Yp={binaryAccuracy:TA,categoricalAccuracy:EA,precision:r7,categoricalCrossentropy:CA,sparseCategoricalCrossentropy:i7,mse:$te,MSE:zte,mae:Pte,MAE:Lte,mape:Wte,MAPE:Bte,cosine:Vte};function Ute(e){if(typeof e=="string"&&e in Yp)return Yp[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function Jp(e){if(Vr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Zp))if(Zp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Yp))if(Yp[n]===e){t=n;break}return t!==void 0?t:e.name}}function jte(e){let t={Adagrad:()=>fi.adagrad(.01),Adadelta:()=>fi.adadelta(1,.95,zt()),Adam:()=>fi.adam(.001,.9,.999,zt()),Adamax:()=>fi.adamax(.002,.9,.999,zt(),0),RMSProp:()=>fi.rmsprop(.001,.9,0,zt()),SGD:()=>fi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var o7=1*1024*1024;function l7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!RA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>o7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${o7}.`)}}function RA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!RA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!RA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Kte(e,t,n,r=console.log){let a=Gte(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),Qp(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?qte(o[c],n,r):Xte(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Hte(e),u=jp(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function Hte(e){let t;return e.collectedTrainableWeights!=null?t=jp(e.collectedTrainableWeights):t=jp(e.trainableWeights),t}function Gte(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Qp(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function qte(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Qp(i,t,n)}function Xte(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],f=c.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];Qp(u,t,r);for(let c=1;c<s.length;++c)Qp(["","","",s[c]],t,r)}function u7(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Wc(e,t){if(e===null)return null;if(typeof e=="string")return ki(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];u7(t,a,s)?n.push(s):n.push(Wc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=ki(r);n[s]=Wc(a,s)}}return n}}function FA(e,t){if(e==null)return null;if(typeof e=="string")return ha(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];u7(t,a,s)?n.push(s):n.push(FA(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=ha(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=FA(a,r)}return n}}var MA="2.8.5";function Zte(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return Ae(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ei=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ei)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Zte(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof vr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof vr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Te(this.id2Mask)}},OA={},c7={};function Bc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(OA[c]==null){let f=Yte(i,t);h=f.sorted,d=f.recipientCounts,OA[c]=h,c7[c]=d}h=OA[c],d={},a||Object.assign(d,c7[c]);let p=new Ei(t);for(let f=0;f<h.length;++f){if(r!=null){let E=yd().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let m=h[f],A=m.sourceLayer;if(A instanceof Pl)continue;let y=[],g=[],_=[],w=!1;for(let E of m.inputs){let M=p.getValue(E),z=p.getMask(E);y.push(M),g.push(z),z!=null&&(w=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&_.push(M))}w&&(n=n||{},n.mask=g[0]);let x=At(A.apply(y,n)),b=null;A.supportsMasking&&(b=A.computeMask(y,g));let N=Jte(m),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],x[E],Array.isArray(b)?b[0]:b);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=x[E])}a||Te(_)}return p.disposeMasks(),s?l:l[0]}function Yte(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=h7(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=h7(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Qte(r)}}function Qte(e){let t={};for(let n in e)t[n]=e[n].size;return t}function h7(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function Jte(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Gr=class extends qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Vp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],La(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);La(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,_=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let g=y.sourceLayer,_=y.nodeIndex,w=y.tensorIndex;Vr(_===0,"input layer has >1 nodes"),Vr(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Pl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,_,w,x,b)=>{(w==null||x==null||b==null)&&(w=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex);let N=w.inboundNodes[x];if(_.indexOf(N)!==-1)throw new _r(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Gr.nodeKey(w,x)),w.id in s||(s[w.id]=Object.keys(s).length),_.indexOf(N)===-1&&_.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],z=N.inboundLayers[E],P=N.nodeIndices[E],V=N.tensorIndices[E];o(M,g,_,z,P,V)}for(g.push(N);_.indexOf(N)>=0;)_.splice(_.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],_=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,_),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let w=0;w<y.inboundLayers.length;w++){let x=y.inboundLayers[w],b=y.nodeIndices[w],N=x.inboundNodes[b],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(Rp);this.layers=[];for(let y of p){let g=d[y];g.sort((_,w)=>{let x=s[_.id],b=s[w.id];return x<b?-1:x>b?1:0});for(let _ of g)_ instanceof Gr&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(Rp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let _=g.outboundLayer;if(_!=null){for(let w of g.inputTensors)if(f.indexOf(w)===-1)throw new _r(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${_.name}". The following previous layers were accessed without issue: ${m}`);for(let w of g.outputTensors)f.push(w);m.push(_.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(_=>_===y).length;if(g!==1)throw new _r(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}IA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${MA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=FA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return W(()=>{e=At(e);let n=new Ei;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Bc(this.outputs,n,t)})}computeMask(e,t){return W(()=>{e=At(e);let n;return t==null?n=vi(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Up(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Rp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,_=n[g];c.push(_)}let h=u.computeOutputShape(wn(c)),d=Up(h),p=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Vr(o in n),a.push(n[o])}return wn(a)}runInternalGraph(e,t){t==null&&(t=vi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Rp);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[_,w]=p[0];f.mask==null&&(f.mask=w),y=At(c.call(_,f)),g=At(c.computeMask(_,w)),m=[_],A=[w]}else m=p.map(_=>_[0]),A=p.map(_=>_[1]),f.mask==null&&(f.mask=A),y=At(c.call(m,f)),g=At(c.computeMask(m,A));if(c.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<d.length;++_){let w=d[_],x=y[_],b=g[_];n[w.id]=[x,b]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Vr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Gr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Gr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return W(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Gr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=Gr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],_=Gr.nodeKey(A,y),w=t[_];w==null&&(w=0),f.push([A.name,w,g,p])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Gr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Gr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let _ of A){let w=_[0],x=_[1],b=_[2];if(g=_[3]==null?{}:_[3],!(w in a)){i(m,A);return}let N=a[w];if(N.inboundNodes.length<=x){i(m,A);return}let T=N.inboundNodes[x];y.push(T.outputTensors[b])}y.length>0&&m.apply(wn(y),g)}function l(m){let A=m.name,y=kr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!IQ(s);)for(let m of c){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Vr(A in a);let _=a[A].inboundNodes[y].outputTensors;h.push(_[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Vr(A in a);let _=a[A].inboundNodes[y].outputTensors;d.push(_[g])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function ene(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function d7(e,t){return ene(e,t,"classWeight")}async function p7(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=W(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Te(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ut(i,"float32")}else return null}function tne(e,t){return L(e,t)}var nne=32;function m7(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=f7("input",e.inputNames,n),i=f7("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function f7(e,t,n){if(n instanceof j)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function rne(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function sne(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(A7(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=rne(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=e7(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=t7(c,h,n.epochs,null,null,ane(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let _=await m.next();if(r&&_.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(_.value!=null){let{xs:w,ys:x}=m7(e,_.value),b={};b.batch=g,b.size=w[0].shape[0],await d.onBatchBegin(g,b);let N=[];if(n.classWeight!=null){let M=d7(n.classWeight,e.outputNames);for(let z=0;z<M.length;++z)N.push(await p7(x[z],null,M[z]))}let T=w.concat(x).concat(N),E=o(T);Te(T);for(let M=0;M<l.length;++M){let z=l[M],P=E[M];b[z]=P,Vt(P)}await d.onBatchEnd(g,b),K3(b),g++,y++}if(r?y>=n.batchesPerEpoch:_.done){if(a){let w;A7(n.validationData)?w=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?nne:n.validationBatchSize,verbose:0}));for(let x=0;x<e.metricsNames.length;++x)A[`val_${e.metricsNames[x]}`]=w[x]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function ane(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function A7(e){return typeof e.iterator=="function"}function ine(e){return typeof e.next=="function"}async function one(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=ine(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=W(()=>{if(u.value){let{xs:c,ys:h}=m7(e,u.value),d=c.concat(h),p=W(()=>a(d));if(Te(d),l===0)for(let m=0;m<p.length;++m)s.push(ke(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],y=s[m];s[m]=W(()=>ie(s[m],L(f,A))),l>0&&Te(y)}Te(p),o+=f,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=be(s[u],o),Te(c)}return wn(s)}function DA(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Si(r,t,n-t)):Si(e,t,n-t)}function $A(e,t){return W(()=>e==null?null:Array.isArray(e)?e.map(n=>$A(n,t)):O3(e,t.dtype==="int32"?t:t.toInt()))}function zA(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function lne(e,t,n,r,a,s,i,o,l,u,c,h,d,p,f){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=br(0,A)),i==null&&(i=1);let{callbackList:g,history:_}=t7(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=_,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=d;w<s;++w){await g.onEpochBegin(w);let x={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Oe("batch shuffling is not implemneted yet");c&&k.shuffle(y);let b=Ut(y),N=zA(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),W(()=>{let M=N[T][0],z=N[T][1],P=Si(b,M,z-M);E.batch=T,E.size=z-M;let V=$A(n,P),q=t(V);for(let U=0;U<r.length;++U){let K=r[U],Z=q[U];E[K]=Z,Vt(Z)}if(T===N.length-1&&m){let U=e.testLoop(l,u,a);for(let K=0;K<r.length;++K){let Z=r[K],te=U[K];Vt(te),x["val_"+Z]=te}}}),await g.onBatchEnd(T,E),K3(E),e.stopTraining_)break}b.dispose()}if(await g.onEpochEnd(w,x),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function une(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;DA(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,N=await e.standardizeUserData(i,o,null,null,b,h);l=N[0],u=N[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=Vc(a,b,N),a=Vc(a,0,b),u=Vc(s,b,N),s=Vc(s,0,b),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),_,w;f?(e.makeTestFunction(),_=e.testFunction,w=g.slice().concat(g.map(b=>"val_"+b))):(_=null,m=[],w=g.slice());let x=e7(r.callbacks,r.yieldEvery);return await lne(e,y,A,g,h,r.epochs,r.verbose,x,_,m,r.shuffle,w,r.initialEpoch,null,null)}finally{e.isTraining=!1,Ci(a,t),Ci(s,n),Ci(l,i),Ci(u,o),c!=null&&Te(c)}}function y7(e){let t=[];e instanceof j&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Dc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Ci(e,t){if(e==null)return;let n=[];if(t instanceof j)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof j)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function cne(e){return e instanceof j}function PA(e){return Array.isArray(e)}function g7(e){return!cne(e)&&!PA(e)}function x7(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(PA(e)&&e.length>0)i=!0;else if(g7(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(g7(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(PA(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=y7(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function hne(e,t,n){let r=La(e.map(s=>s.shape[0]));r.sort();let a=La(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function dne(e,t,n){let r=[Ti,Kp,Lc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===Lc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function w7(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function pne(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var fne="layers-model",da=class extends Gr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Kte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=jte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof la))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(SA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>SA(s))}else{let s=SA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ni("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=pne(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ni("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Kp?["accuracy","acc"].indexOf(d)!==-1?c=TA:["crossentropy","ce"].indexOf(d)!==-1&&(c=a7):this.lossFunctions[s]===Xp?["accuracy","acc"].indexOf(d)!==-1?c=s7:["crossentropy","ce"].indexOf(d)!==-1&&(c=i7):["accuracy","acc"].indexOf(d)!==-1?c=EA:["crossentropy","ce"].indexOf(d)!==-1&&(c=CA);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=c,u=l+m}else h=Ute(d),u=l+Jp(d);let p;Ni(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;DA(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return wn(l)}finally{Ci(s[0],e),Ci(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),one(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Ei;if(e instanceof j&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Bc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=vi(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return W(()=>{let r=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let a=zA(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)W(()=>{let o=a[i][0],l=a[i][1],u=Vc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new Ei(c);return Bc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return wn(s.map(i=>at(i,0)))})}predict(e,t={}){let n=y7(e);w7(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return DA(r),this.predictLoop(n,r)}finally{Ci(n,e)}}predictOnBatch(e){w7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new _r("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Xp?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=x7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=x7(t,this.feedOutputNames,a,!1,"target"),hne(e,t,null),dne(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=d7(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await p7(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return W(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Oe("Verbose mode is not implemented yet.");if(a!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=zA(s,n),l=Ut(br(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=Si(l,c,h-c),p=$A(t,d),f=e(p);if(u===0)for(let m=0;m<f.length;++m)i.push(ke(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=ie(i[m],L(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=be(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;_3(e,r)>1&&(a+=`_${_3(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new Ei(u),h=Bc(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=tne(f,a[p]));let m=vt(f);t.push(m),p===0?d=f:d=ie(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=vt(m(r[A],h[A]))}Vt(f),s.push(f)}return d=vt(d),this.calculateLosses().forEach(p=>{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>W(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new Ei(s),o=Bc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=vt(u(a[l],o[l]));l===0?n=c:n=ie(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=vt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return une(this,e,t,n)}async fitDataset(e,t){return sne(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Te(s),wn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=yd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-yd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ha(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ha(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ha(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ha(Jp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ha(Jp(e)));{let e={};for(let t in this.metrics)e[t]=ha(Jp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wc(e.optimizer_config),n=kr(t),r;if(typeof e.loss=="string")r=ki(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>ki(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=ki(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>ki(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=ki(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=mn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await mn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:fne,generatedBy:`TensorFlow.js tfjs-layers v${MA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await mn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=mn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;l7(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){l7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};da.className="Model";re.registerClass(da);var _7=class extends da{};_7.className="Functional";re.registerClass(_7);async function mne(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Wc(n),a=kr(r,t);if(e.weightsManifest!=null){let s=await mn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Te(s)}return a}async function yne(e,t){if(t==null&&(t={}),typeof e=="string"){let n=mn.getLoadHandlers(e,t);if(n.length===0)n.push(mn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Ane(e,void 0,t)}async function Ane(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=kr(Wc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=gne(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Te(u),Te(c.map(h=>h.tensor))}return o}function gne(e,t){let n=mn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Bl=class extends da{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Vp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Bl||e instanceof da,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=X3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=q3(this.outputs[0])}this.inboundNodes=[],new Hp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:vi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(pt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new da({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new _r("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Bl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=kr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Bl.className="Sequential";re.registerClass(Bl);function xne(e){return new da(e)}function wne(e){return new Bl(e)}function _ne(e,t){return t==null&&(t={}),yne(e,t)}function L3(e){return X3(e)}function bne(e,t){cr.registerCallbackConstructor(e,t)}var $n=class extends re.Serializable{getConfig(){return{}}},b7=class extends $n{apply(e,t=1){return eee(e,t)}};b7.className="elu";re.registerClass(b7);var v7=class extends $n{apply(e){return zd(e)}};v7.className="selu";re.registerClass(v7);var k7=class extends $n{apply(e){return Pr(e)}};k7.className="relu";re.registerClass(k7);var I7=class extends $n{apply(e){return W(()=>di(6,Pr(e)))}};I7.className="relu6";re.registerClass(I7);var N7=class extends $n{apply(e){return e}};N7.className="linear";re.registerClass(N7);var S7=class extends $n{apply(e){return Sn(e)}};S7.className="sigmoid";re.registerClass(S7);var T7=class extends $n{apply(e){return nee(e)}};T7.className="hardSigmoid";re.registerClass(T7);var E7=class extends $n{apply(e){return ml(e)}};E7.className="softplus";re.registerClass(E7);var C7=class extends $n{apply(e){return tee(e)}};C7.className="softsign";re.registerClass(C7);var R7=class extends $n{apply(e){return dl(e)}};R7.className="tanh";re.registerClass(R7);var LA=class extends $n{apply(e,t=-1){return cc(e,t)}};LA.className="softmax";re.registerClass(LA);var F7=class extends $n{apply(e,t=-1){return Ed(e,t)}};F7.className="logSoftmax";re.registerClass(F7);var M7=class extends $n{apply(e,t=1){return W(()=>Sn(e.mul(t)).mul(e))}};M7.className="swish";re.registerClass(M7);function Ua(e){return e.getClassName()}function WA(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ja(e){if(e==null){let t={};return t.className="linear",t.config={},WA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},WA(t)}else return e instanceof $n?e:WA(e)}function BA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var O7=class extends re.Serializable{},Uc=class extends O7{constructor(e){super();BA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return W(()=>{let t=St([1]);return this.hasL1&&(t=ie(t,Se(L(this.l1,Dt(e))))),this.hasL2&&(t=ie(t,Se(L(this.l2,$c(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Uc.className="L1L2";re.registerClass(Uc);function vne(e){return BA(e),new Uc({l1:e!=null?e.l1:null,l2:0})}function kne(e){return BA(e),new Uc({l2:e!=null?e.l2:null,l1:0})}var D7={l1l2:"L1L2"};function ft(e){return tA(e)}function $7(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in D7?D7[e]:e,config:{}};return $7(t)}else return e instanceof O7?e:$7(e)}var VA=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Pr(e);return this.maxValue!=null&&(n=An(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};VA.className="ReLU";re.registerClass(VA);var UA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};UA.className="LeakyReLU";re.registerClass(UA);var jA=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=xt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=pt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Gt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),oc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:ft(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};jA.className="PReLU";re.registerClass(jA);var HA=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return pl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};HA.className="ELU";re.registerClass(HA);var GA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return n.mul(Oc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};GA.className="ThresholdedReLU";re.registerClass(GA);var qA=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new LA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Softmax";re.registerClass(qA);function Vl(e,t,n){if(typeof e=="number")return vi(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!ZQ(a))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function Ir(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function e0(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Ba([n-t,0]);else if(r==="same")e=e*t;else throw new B(`Unsupport padding mode: ${r}.`);return e}function XA(e,t){return W(()=>(Tt(t),t==="channelsFirst"?rt(e,[0,2,3,1]):e))}function z7(e,t){return W(()=>(Tt(t),t==="channelsFirst"?rt(e,[0,2,3,4,1]):e))}function Ine(e,t,n,r=1,a="valid",s,i=1){return W(()=>{if(s==null&&(s=wr()),Tt(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=rt(e,[0,2,1])),a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=bd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=jr(o,n)),o})}function P7(e,t,n,r=[1,1],a="valid",s,i,o=null){return W(()=>{if(s==null&&(s=wr()),Tt(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=XA(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Da.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=rt(l,[0,3,1,2])),l})}function Nne(e,t,n,r=[1,1,1],a="valid",s,i){return W(()=>{if(s==null&&(s=wr()),Tt(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=z7(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Pf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=jr(o,n)),s==="channelsFirst"&&(o=rt(o,[0,4,1,2,3])),o})}var KA=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",KA.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Vl(t.kernelSize,e,"kernelSize"),this.strides=Vl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Zn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Tt(this.dataFormat),this.activation=ja(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=xt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=Vl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Vr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!rA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ua(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},jc=class extends KA{constructor(e,t){super(e,t);this.kernel=null,jc.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=xt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return W(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=v3(this.activation.getClassName());if(a!=null&&this.rank===2)n=P7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=Ine(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=P7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Nne(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=pt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=Ir(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:ft(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Hc=class extends jc{constructor(e){super(2,e);Hc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!rA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Hc.className="Conv2D";re.registerClass(Hc);var t0=class extends jc{constructor(e){super(3,e);t0.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};t0.className="Conv3D";re.registerClass(t0);var ZA=class extends Hc{constructor(e){super(e);if(this.inputSpec=[new Gt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Gt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=e0(o,h,u,this.padding),f=e0(l,d,c,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=rt(n,[0,2,3,1]));let A=vd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=rt(A,[0,3,1,2])),this.bias!=null&&(A=jr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=e0(t[r],o,s,this.padding),t[a]=e0(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ZA.className="Conv2DTranspose";re.registerClass(ZA);var L7=class extends jc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=xt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=xt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=pt(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Gt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=rt(e,[0,2,3,1])),n=tm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=jr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=rt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=ft(this.depthwiseRegularizer),e.pointwiseRegularizer=ft(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};L7.className="SeparableConv";var YA=class extends L7{constructor(e){super(2,e)}};YA.className="SeparableConv2D";re.registerClass(YA);var n0=class extends jc{constructor(e){super(1,e);n0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!rA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};n0.className="Conv1D";re.registerClass(n0);var JA=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return W(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Fp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Fp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Fp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Fp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Cropping2D";re.registerClass(JA);var QA=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,qQ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return W(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=rt(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return rt(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};QA.className="UpSampling2D";re.registerClass(QA);function Sne(e,t,n=[1,1],r="valid",a,s){return W(()=>{a==null&&(a=wr()),Tt(a);let i=XA(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ui(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=rt(i,[0,3,1,2])),i})}var ey=class extends KA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=xt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=pt(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{e=ze(e);let n=Sne(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=jr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Ir(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ir(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=ft(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};ey.className="DepthwiseConv2D";re.registerClass(ey);function W7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function B7(e,t,n,r=!1,a,s,i=!1,o=!1){return W(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(br(2,l));if(t=rt(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Hn(a,-1)),a=rt(a,u)),r&&(t=Cn(t,0),a!=null&&(a=Cn(a,0)));let c=[],h,d=n,p=t.shape[0],f=ir(t),m;a!=null&&(m=ir(a));for(let y=0;y<p;++y){let g=f[y],_=W(()=>e(g,d));if(a==null)h=_[0],d=_[1];else{let w=W(()=>{let x=m[y],b=En(x).sub(x),N=_[0].mul(x).add(d[0].mul(b)),T=d.map((E,M)=>_[1][M].mul(x).add(E.mul(b)));return{output:N,newStates:T}});h=w.output,d=w.newStates}o&&c.push(h)}let A;return o&&(A=Rn(c,1)),[h,A,d]})}var Hr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new r0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Gt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return br(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){vA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return W(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");vA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Gt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Gt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new ca("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>St([n,r])):this.states_=[St([n,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>St([n,r])):this.states_[0]=St([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(a.shape,i))throw new B(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Vt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=W7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Gt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof vr){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=B7((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return W(()=>{let t=St(e.shape);return t=Se(t,[1,2]),t=Dc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?uA(t,[1,n]):t):this.cell.stateSize>1?[uA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Hr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=kr(r,n);return new e(Object.assign(t,{cell:a}))}};Hr.className="RNN";re.registerClass(Hr);var Pc=class extends qe{},a0=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=ja(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=zl([1,Ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=zl([1,Ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Ur(L(e,s),this.kernel.read()):a=Ur(e,this.kernel.read()),this.bias!=null&&(a=jr(a,this.bias.read())),i!=null&&(n=L(n,i));let o=ie(a,Ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ua(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};a0.className="SimpleRNNCell";re.registerClass(a0);var ty=class extends Hr{constructor(e){e.cell=new a0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};ty.className="SimpleRNN";re.registerClass(ty);var s0=class extends Pc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=ja(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ja(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=zl([1,Ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=zl([1,Ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=Ur(e,this.kernel.read());this.useBias&&(u=jr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=Yt(c,[2*this.units,this.units],c.rank-1),p=Ur(r,h),[f,m,A]=Yt(u,3,u.rank-1),[y,g]=Yt(p,2,p.rank-1);i=this.recurrentActivation.apply(ie(f,y)),o=this.recurrentActivation.apply(ie(m,g));let _=Ur(L(o,r),d);l=this.activation.apply(ie(A,_));let w=ie(L(i,r),L(ie(1,bt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ua(this.activation),recurrentActivation:Ua(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};s0.className="GRUCell";re.registerClass(s0);var ny=class extends Hr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new s0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ny.className="GRU";re.registerClass(ny);var Gc=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=ja(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ja(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=zl([1,Ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=zl([1,Ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=pt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends ur{apply(i,o){let l=a.apply([s]),u=new Op().apply([s]),c=a.apply([s*2]);return M3(M3(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,i[0])),h=ie(h,Ur(r,this.recurrentKernel.read())),this.useBias&&(h=jr(h,this.bias.read()));let[d,p,f,m]=Yt(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=ie(L(l,a),L(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let A=L(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ua(this.activation),recurrentActivation:Ua(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Gc.className="LSTMCell";re.registerClass(Gc);var ry=class extends Hr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Gc(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ry.className="LSTM";re.registerClass(ry);var r0=class extends Pc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return W(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){vA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{Ni(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(kr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return kA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}IA(t)}};r0.className="StackedRNNCells";re.registerClass(r0);function Ha(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>D3(t(),n),i=()=>zc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var Tne=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},V7=class extends Hr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Gt({ndim:5})]}call(e,t){return W(()=>{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return W(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=St(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new ca("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>St(a)):this.states_=[St(a)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>St(a)):this.states_[0]=St(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!k.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Vt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=Ir(l,r[0],a,s[0],i[0]),h=Ir(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};V7.className="ConvRNN2D";var i0=class extends Gc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=Vl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ht(o,"kernelSize")),this.strides=Vl(r||1,2,"strides"),this.strides.forEach(o=>Ht(o,"strides")),this.padding=a||"valid",Zn(this.padding),this.dataFormat=s||"channelsLast",Tt(this.dataFormat),this.dilationRate=Vl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ht(o,"dilationRate"))}build(e){var t;e=pt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends ur{apply(c,h){let d=l.apply([u]),p=$r([u]),f=l.apply([u*2]);return hA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return W(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ha({ones:()=>En(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,ae,Q)=>!ae||!ae[Q]?J:L(ae[Q],J),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ha({ones:()=>En(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[_,w,x,b]=Yt(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?Yt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,_,N,this.padding),c=this.inputConv(c,w,T,this.padding),h=this.inputConv(h,x,E,this.padding),d=this.inputConv(d,b,M,this.padding);let[z,P,V,q]=Yt(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,z),m=this.recurrentConv(m,P),A=this.recurrentConv(A,V),y=this.recurrentConv(y,q);let U=this.recurrentActivation.apply(ie(u,f)),K=this.recurrentActivation.apply(ie(c,m)),Z=ie(L(K,s),L(U,this.activation.apply(ie(h,A)))),te=L(this.recurrentActivation.apply(ie(d,y)),this.activation.apply(Z));return[te,te,Z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Tne(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ra(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?jr(a,n,this.dataFormat):a}recurrentConv(e,t){return ra(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};i0.className="ConvLSTM2DCell";re.registerClass(i0);var ay=class extends V7{constructor(e){let t=new i0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};ay.className="ConvLSTM2D";re.registerClass(ay);var o0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return zc(()=>D3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};o0.className="Dropout";re.registerClass(o0);var sy=class extends o0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};sy.className="SpatialDropout1D";re.registerClass(sy);var iy=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=ja(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=pt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=pt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e),r=v3(this.activation.getClassName()),a;return r!=null?a=Ur(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Ur(n,this.kernel.read()),this.bias!=null&&(a=jr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Ua(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};iy.className="Dense";re.registerClass(iy);var oy=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=pt(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Wa(e,1)]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return QQ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};oy.className="Flatten";re.registerClass(oy);var ly=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=ja(e.activation)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ua(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};ly.className="Activation";re.registerClass(ly);var uy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return W(()=>(e=ze(e),YQ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};uy.className="RepeatVector";re.registerClass(uy);var cy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else a*=l}let i=Wa(e);if(s!==null){if(a===0||i%a!=0)throw new B(n);r[s]=i/a}else if(i!==a)throw new B(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};cy.className="Reshape";re.registerClass(cy);var hy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=br(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Gt({ndim:this.dims.length+1})]}computeOutputShape(e){e=pt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return rt(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};hy.className="Permute";re.registerClass(hy);var dy=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Xu(Ma(n,this.maskValue),r)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Xu(Ma(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};dy.className="Masking";re.registerClass(dy);var py=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=xt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return W(()=>this.maskZero?(e=ze(e),Ma(e,Ue(e))):null)}computeOutputShape(e){if(e=pt(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=Oc(n,"int32")),O3(this.embeddings.read(),n.as1D()).reshape(pt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:ft(this.embeddingsRegularizer),activityRegularizer:ft(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};py.className="Embedding";re.registerClass(py);var Ri=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[pt(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=La(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&La(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return W(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ba(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Dc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Wa(u.slice(1))));d=rt(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=br(1,l).concat([0]);n.push(rt(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=rt(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(br(0,i-1));s=rt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=La(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return W(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Hn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=sr(n,t[r]);return n})}},fy=class extends Ri{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};fy.className="Add";re.registerClass(fy);var my=class extends Ri{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};my.className="Multiply";re.registerClass(my);var Ay=class extends Ri{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return L(1/e.length,t)})}};Ay.className="Average";re.registerClass(Ay);var yy=class extends Ri{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=yr(t,e[n]);return t})}};yy.className="Maximum";re.registerClass(yy);var gy=class extends Ri{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=di(t,e[n]);return t})}};gy.className="Minimum";re.registerClass(gy);var xy=class extends Ri{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return W(()=>hA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return W(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(En(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Hn(t[s],-1)):r.push(t[s]);let a=at(r,this.axis);return wd(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};xy.className="Concatenate";re.registerClass(xy);function qc(e,t){for(;e<0;)e+=t;return e}function Ene(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return W(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var wy=class extends Ri{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>qc(a,e[s].shape.length)):r=[qc(this.axes,t.shape.length),qc(this.axes,n.shape.length)],this.normalize&&(t=Gp(t,r[0]),n=Gp(n,r[1])),Ene(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[qc(this.axes,e.length),qc(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};wy.className="Dot";re.registerClass(wy);var _y=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return zc(()=>Mp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};_y.className="GaussianNoise";re.registerClass(_y);var by=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?zc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Mp(n.shape,1,r))},()=>n,t.training||!1):n})}};by.className="GaussianDropout";re.registerClass(by);var vy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return zc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=sa(yl(n),this.rate);o=Oc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>ze(e),t.training||!1)}return e})}};vy.className="AlphaDropout";re.registerClass(vy);function Xc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=y5(e,t,n,r,a,s);else if(e.rank===3)i=g5(e,t,n,r,a,s);else if(e.rank===4)i=x5(e,t,n,r,a,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Cne(e,t,n,r,a=.001){return W(()=>{let s=Fd(e,r),i=s.mean,o=s.variance;return[Xc(e,i,o,n,t,a),i,o]})}function Rne(e,t,n,r,a=.001){return W(()=>{let s=Fd(e,r),i=s.mean,o=s.variance,l=[];for(let p of br(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Xc(e,u,c,d,h,a),i,o]})}function Fne(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),br(0,e.rank-1))?Cne(e,t,n,r,a):Rne(e,t,n,r,a)}var ky=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=xt(e.betaInitializer||"zeros"),this.gammaInitializer=xt(e.gammaInitializer||"ones"),this.movingMeanInitializer=xt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=xt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=pt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Gt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=br(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=vi(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!k.arraysEqual(u,br(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,_=this.scale?this.gamma.read().reshape(l):null;return Xc(r,A,y,g,_,this.epsilon)}else return Xc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Fne(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{W(()=>{let _=1-g,w=A.read(),x=w.sub(y).mul(_);A.write(w.sub(x))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:ft(this.betaRegularizer),gammaRegularizer:ft(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ky.className="BatchNormalization";re.registerClass(ky);var Iy=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=xt(e.betaInitializer||"zeros"),this.gammaInitializer=xt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=pt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==La(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return W(()=>{let s=!0,{mean:i,variance:o}=Fd(n,this.axis,s),l=vi(1,a);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),Xc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:ft(this.betaRegularizer),gammaRegularizer:ft(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Iy.className="LayerNormalization";re.registerClass(Iy);function Mne(e,t,n){return W(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=wr()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ia(e,r)})}var Ny=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?wr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=pt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return W(()=>Mne(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ny.className="ZeroPadding2D";re.registerClass(Ny);function l0(e,t,n,r,a,s){return W(()=>{Tt(a),S3(s),Zn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=wr()),s==null&&(s="max"),e=XA(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=sc(e,t,n,o):i=Yu(e,t,n,o),a==="channelsFirst"&&(i=rt(i,[0,3,1,2])),i})}function U7(e,t,n,r,a,s){return W(()=>{Tt(a),S3(s),Zn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=wr()),s==null&&(s="max"),e=z7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Kf(e,t,n,o):i=Df(e,t,n,o),a==="channelsFirst"&&(i=rt(i,[0,4,1,2,3])),i})}var j7=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Zn(this.padding),this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){e=pt(e);let t=Ir(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return W(()=>{this.invokeCallHook(e,t),e=Dc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Oa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Sy=class extends j7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Zn(r),l0(e,t,n,r,a,"max")}};Sy.className="MaxPooling1D";re.registerClass(Sy);var Ty=class extends j7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Zn(r),l0(e,t,n,r,a,"avg")}};Ty.className="AveragePooling1D";re.registerClass(Ty);var H7=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),Zn(this.padding),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ir(t,this.poolSize[0],this.padding,this.strides[0]),n=Ir(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ey=class extends H7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Zn(r),l0(e,t,n,r,a,"max")}};Ey.className="MaxPooling2D";re.registerClass(Ey);var Cy=class extends H7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Zn(r),l0(e,t,n,r,a,"avg")}};Cy.className="AveragePooling2D";re.registerClass(Cy);var G7=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),Zn(this.padding),this.inputSpec=[new Gt({ndim:5})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ir(t,this.poolSize[0],this.padding,this.strides[0]),n=Ir(n,this.poolSize[1],this.padding,this.strides[1]),r=Ir(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ry=class extends G7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Zn(r),U7(e,t,n,r,a,"max")}};Ry.className="MaxPooling3D";re.registerClass(Ry);var Fy=class extends G7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Tt(a),Zn(r),U7(e,t,n,r,a,"avg")}};Fy.className="AveragePooling3D";re.registerClass(Fy);var q7=class extends qe{constructor(e){super(e);this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},My=class extends q7{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=ze(e);return vt(n,1)})}};My.className="GlobalAveragePooling1D";re.registerClass(My);var Oy=class extends q7{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=ze(e);return qn(n,1)})}};Oy.className="GlobalMaxPooling1D";re.registerClass(Oy);var X7=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Tt(this.dataFormat),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Dy=class extends X7{call(e,t){return W(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?vt(n,[1,2]):vt(n,[2,3])})}};Dy.className="GlobalAveragePooling2D";re.registerClass(Dy);var $y=class extends X7{call(e,t){return W(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?qn(n,[1,2]):qn(n,[2,3])})}};$y.className="GlobalMaxPooling2D";re.registerClass($y);var K7=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=kr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},zy=class extends K7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=pt(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=pt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return W(()=>(e=ze(e),B7((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};zy.className="TimeDistributed";re.registerClass(zy);function One(e){Ii(GQ,"BidirectionalMergeMode",e)}var Dne="concat",Py=class extends K7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=kr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=kr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Dne:e.mergeMode,One(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):wn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=W7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new Gt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof vr;for(let l of s)if(l instanceof vr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Cn(a,1));let i;return this.mergeMode==="concat"?i=hA([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=L(.5,ie(r,a)):this.mergeMode==="mul"?i=L(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ni(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ni(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=kr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Py.className="Bidirectional";re.registerClass(Py);function lee(e){return new Pl(e)}function uee(e){return new HA(e)}function cee(e){return new VA(e)}function hee(e){return new UA(e)}function dee(e){return new jA(e)}function pee(e){return new qA(e)}function fee(e){return new GA(e)}function mee(e){return new n0(e)}function Aee(e){return new Hc(e)}function yee(e){return new ZA(e)}function gee(e){return new t0(e)}function xee(e){return new YA(e)}function wee(e){return new JA(e)}function _ee(e){return new QA(e)}function bee(e){return new ey(e)}function vee(e){return new ly(e)}function kee(e){return new iy(e)}function Iee(e){return new o0(e)}function Nee(e){return new sy(e)}function See(e){return new oy(e)}function Tee(e){return new uy(e)}function Eee(e){return new cy(e)}function Cee(e){return new hy(e)}function Ree(e){return new py(e)}function Fee(e){return new fy(e)}function Mee(e){return new Ay(e)}function Oee(e){return new xy(e)}function Dee(e){return new yy(e)}function $ee(e){return new gy(e)}function zee(e){return new my(e)}function Pee(e){return new wy(e)}function Lee(e){return new ky(e)}function Wee(e){return new Iy(e)}function Bee(e){return new Ny(e)}function wA(e){return new Ty(e)}function Vee(e){return wA(e)}function Uee(e){return wA(e)}function _A(e){return new Cy(e)}function jee(e){return _A(e)}function Hee(e){return _A(e)}function bA(e){return new Fy(e)}function Gee(e){return bA(e)}function qee(e){return bA(e)}function Xee(e){return new My(e)}function Kee(e){return new Dy(e)}function W3(e){return new Oy(e)}function B3(e){return new $y(e)}function V3(e){return new Sy(e)}function U3(e){return new Ey(e)}function Zee(e){return new Ry(e)}function Yee(e){return new ny(e)}function Jee(e){return new s0(e)}function Qee(e){return new ry(e)}function ete(e){return new Gc(e)}function tte(e){return new ty(e)}function nte(e){return new a0(e)}function rte(e){return new ay(e)}function ate(e){return new i0(e)}function ste(e){return new Hr(e)}function ite(e){return new r0(e)}function ote(e){return new Py(e)}function lte(e){return new zy(e)}var ute=W3,cte=B3,hte=V3,dte=U3;function pte(e){return new _y(e)}function fte(e){return new by(e)}function mte(e){return new vy(e)}function Ate(e){return new dy(e)}var Z7={};$e(Z7,{MAPE:()=>Gne,MSE:()=>Kne,binaryAccuracy:()=>$ne,binaryCrossentropy:()=>zne,categoricalAccuracy:()=>Lne,categoricalCrossentropy:()=>Wne,cosineProximity:()=>Une,mape:()=>qne,meanAbsoluteError:()=>jne,meanAbsolutePercentageError:()=>Hne,meanSquaredError:()=>Xne,mse:()=>Zne,precision:()=>Bne,recall:()=>Vne,sparseCategoricalAccuracy:()=>Pne});function $ne(e,t){return TA(e,t)}function zne(e,t){return a7(e,t)}function Pne(e,t){return s7(e,t)}function Lne(e,t){return EA(e,t)}function Wne(e,t){return CA(e,t)}function Bne(e,t){return r7(e,t)}function Vne(e,t){return Dte(e,t)}function Une(e,t){return NA(e,t)}function jne(e,t){return qp(e,t)}function Hne(e,t){return Wl(e,t)}function Gne(e,t){return Wl(e,t)}function qne(e,t){return Wl(e,t)}function Xne(e,t){return Ti(e,t)}function Kne(e,t){return Ti(e,t)}function Zne(e,t){return Ti(e,t)}var Y7={};$e(Y7,{modelFromJSON:()=>mne});var J7={};$e(J7,{l1:()=>Jne,l1l2:()=>Yne,l2:()=>Qne});function Yne(e){return new Uc(e)}function Jne(e){return vne(e)}function Qne(e){return kne(e)}var Q7=class extends Ll{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof da))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function u0(e,t){return e<t}function ev(e,t){return e>t}var tv=class extends Q7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=u0:this.mode==="max"?this.monitorFunc=ev:this.monitor.indexOf("acc")!==-1?this.monitorFunc=ev:this.monitorFunc=u0,this.monitorFunc===u0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===u0?Infinity:-Infinity}async onEpochEnd(e,t){await Va(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function ere(e){return new tv(e)}var tre={earlyStopping:ere},Nr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Nr||(Nr={}));var nv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(nv||(nv={}));var Ly={};function nre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ly[e]=n}function rv(e){return Ly[e]}function rre(e){delete Ly[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return bn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>bn(h,n,r,a));let u=bn(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:k.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function bn(e,t,n,r){let[a,s]=zn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[c0(a,o)]);return i!==void 0?t[c0(a,i)][s]:void 0}function are(e,t,n){return t[c0(e,n.currentContextId)]}function pa(e,t){let[n,r]=zn(e);return[c0(n,t&&t.currentContextId),r]}function c0(e,t){return t?`${e}-${t}`:e}function zn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function h0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function fa(e){return e.kept?e:ar(e)}var av={};$e(av,{json:()=>sre});var sre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],sv={};$e(sv,{json:()=>ire});var ire=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],iv={};$e(iv,{json:()=>ore});var ore=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],ov={};$e(ov,{json:()=>lre});var lre=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],lv={};$e(lv,{json:()=>ure});var ure=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],uv={};$e(uv,{json:()=>cre});var cre=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],cv={};$e(cv,{json:()=>hre});var hre=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],hv={};$e(hv,{json:()=>dre});var dre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],dv={};$e(dv,{json:()=>pre});var pre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],pv={};$e(pv,{json:()=>fre});var fre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],fv={};$e(fv,{json:()=>mre});var mre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],mv={};$e(mv,{json:()=>Are});var Are=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Av={};$e(Av,{json:()=>yre});var yre=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],yv={};$e(yv,{json:()=>gre});var gre=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],gv={};$e(gv,{json:()=>xre});var xre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],xv={};$e(xv,{json:()=>wre});var wre=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],wv={};$e(wv,{json:()=>_re});var _re=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],bv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[av,sv,iv,ov,lv,uv,cv,fv,pv,hv,mv,Av,yv,gv,xv,wv,dv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=pa(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(c).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=pa(f),A=i[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=pa(f),A=i[m];A&&(A.signatureKey=u[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=rv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Wy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Wy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Xy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Xy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Vy(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Vy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=qy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=qy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=By(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=By(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Zy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Zy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Gy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Gy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Ky(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ky(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=jy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=jy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Hy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Hy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=_v(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_v(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=pa(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Uy(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=pa(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=pa(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function bre(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function vv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):bre(e);return t?n:n.toLowerCase()}function Wy(e,t,n,r=!1){let a=e[t];return a!=null?vv(a.s,r):n}function By(e,t,n){let r=e[t];return r?r.b:n}function Vy(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Uy(e){switch(typeof e=="string"&&(e=Nr[e]),e){case Nr.DT_FLOAT:return"float32";case Nr.DT_INT32:case Nr.DT_INT64:case Nr.DT_INT8:case Nr.DT_UINT8:return"int32";case Nr.DT_BOOL:return"bool";case Nr.DT_DOUBLE:return"float32";case Nr.DT_STRING:return"string";default:return null}}function _v(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function jy(e,t,n){let r=e[t];return r&&r.type?Uy(r.type):n}function Hy(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Uy(a)):n}function kv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Gy(e,t,n){let r=e[t];return r&&r.shape?kv(r.shape):n}function qy(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Xy(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>vv(s,r)):n}function Ky(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>kv(a)):n}function Zy(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var vre=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return bn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return bn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Vy(this.node.rawAttrs,e,t);if(n.s!=null)return Wy(this.node.rawAttrs,e,t);if(n.b!=null)return By(this.node.rawAttrs,e,t);if(n.shape!=null)return Gy(this.node.rawAttrs,e,t);if(n.type!=null)return jy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return qy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Xy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Ky(this.node.rawAttrs,e,t);if(n.list.b!=null)return Zy(this.node.rawAttrs,e,t);if(n.list.type!=null)return Hy(this.node.rawAttrs,e,t)}return t}},kre=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[cl(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Rd(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[be(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Bf(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[xd(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[di(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[yr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[zr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[pc(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ire=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Dt(I("x",e,t,n))];case"Acos":return[If(I("x",e,t,n))];case"Acosh":return[Nf(I("x",e,t,n))];case"Asin":return[Tf(I("x",e,t,n))];case"Asinh":return[Ef(I("x",e,t,n))];case"Atan":return[Cf(I("x",e,t,n))];case"Atan2":return[Rf(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Ff(I("x",e,t,n))];case"Ceil":return[$f(I("x",e,t,n))];case"Complex":return[Na(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[ec(I("x",e,t,n))];case"Cosh":return[kd(I("x",e,t,n))];case"Elu":return[pl(I("x",e,t,n))];case"Erf":return[Vf(I("x",e,t,n))];case"Exp":return[jn(I("x",e,t,n))];case"Expm1":return[Uf(I("x",e,t,n))];case"Floor":return[fl(I("x",e,t,n))];case"Log":return[Tn(I("x",e,t,n))];case"Log1p":return[Sd(I("x",e,t,n))];case"Imag":return[Nd(I("x",e,t,n))];case"Neg":return[bt(I("x",e,t,n))];case"Reciprocal":return[Qf(I("x",e,t,n))];case"Real":return[lc(I("x",e,t,n))];case"Relu":return[Pr(I("x",e,t,n))];case"Round":return[em(I("x",e,t,n))];case"Selu":return[zd(I("x",e,t,n))];case"Sigmoid":return[Sn(I("x",e,t,n))];case"Sin":return[Pd(I("x",e,t,n))];case"Sign":return[nm(I("x",e,t,n))];case"Sinh":return[Ld(I("x",e,t,n))];case"Softplus":return[ml(I("x",e,t,n))];case"Sqrt":return[Jt(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[dl(I("x",e,t,n))];case"Tan":return[sm(I("x",e,t,n))];case"ClipByValue":return[An(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Dd(I("x",e,t,n))];case"Rsqrt":return[$d(bn(e.inputNames[0],t,n))];case"Prod":return[Md(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[nc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[oc(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function hr(e,t,n=""){k.assert(Nre(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Nre(e,t){if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==-1&&t[n]!==-1&&e[n]!==t[n])return!1;return!0}var Sre=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),hr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return Ar([],[0].concat(this.elementShape));let n=this.readMany(e);return hr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Rn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Ar([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return hr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),at(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ir(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];W(()=>{t=X(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=X(Ee(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Kc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);hr(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=ke(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Kc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return hr(e,this.elementShape,"TensorList shape mismatch: "),W(()=>{let r=this.tensors.map(a=>X(a,e));return Rn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return hr(n.shape,e,"TensorList shape mismatch: "),X(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(hr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return hr(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);hr(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return hr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?Ar([],[0].concat(this.elementShape)):W(()=>{let r=e.map(a=>X(this.tensors[a],n));return Rn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return hr(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?Ar([],[0].concat(this.elementShape)):W(()=>{let n=this.tensors.map(r=>X(r,t));return at(n,0)})}};function Tre(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);hr(a,t,"TensorList shape mismatch: ");let s=ir(e);return new Kc(s,t,r)}function Ere(e,t,n){return new Kc([],e,t,n)}function Cre(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Kc([],n,e.dtype,r),i=ir(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Rre(e,t,n){let r=0,a=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let s=r===0?0:e.size/r,i=W(()=>{let l=[];e=X(e,[1,r,s]);for(let u=0;u<t.length;++u){let c=u===0?0:a[u-1],h=[0,c,0],d=[1,t[u],s];l[u]=X(Ee(e,h,d),n)}return e.dispose(),l}),o=new Kc([],n,e.dtype,t.length);for(let l=0;l<i.length;l++)o.setItem(l,i[l]);return o}var Fre=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=I("pred",e,t,n);return[fa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=fa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>bn(a,t,n)!==void 0);if(r){let a=bn(r,t,n);return[fa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[fa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[fa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[fa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new Sre(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ke(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=Cre(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=Ere(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=Tre(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=Rre(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Iv(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=I("strides",e,t,n),c=h0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var Mre=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[bd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=h0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ra(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Iv(e,t,n);return[Da.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Iv(e,t,n);return[Da.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=h0(e,t,n);return[vd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=h0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[ui(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Pf(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Yu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[sc(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=z5(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Df(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Kf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[Wf(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ore=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[tc(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[C5(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[P5(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[il(r,a,s,i)]}case"Ones":return[$r(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[En(I("x",e,t,n))];case"RandomUniform":return[yl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[Od(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Ud(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[St(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Yy(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Dre=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Yy(e,t,n),u=await st.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Yy(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await st.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Yy(e,t,n);return[await st.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=Ae(I("condition",e,t,n),"bool"),a=[await lm(r)];return r.dispose(),a}case"ListDiff":return B5(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},$re=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=im(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=jd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=jd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zre=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[bn(e.name,t,n)||r];case"Placeholder":return[bn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[fa(u)]}case"IdentityN":return I("x",e,t,n).map(u=>fa(u));case"Snapshot":let a=I("x",e,t,n);return[fa(a)];case"Shape":return[Ut(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Ut(u.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pre=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Vt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),W(()=>{let r=ir(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Vt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return W(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Rn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Lre=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Pre(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wre=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[st.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[st.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[st.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bre=(e,t,n)=>{switch(e.op){case"Equal":return[aa(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ma(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Gn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[sa(I("a",e,t,n),I("b",e,t,n))];case"Less":return[rc(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Fa(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[sr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[ac(I("a",e,t,n))];case"LogicalOr":return[Cd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[yn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vre=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ge(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[rt(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=I("args",e,t,n);return[Da.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ure=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[oi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[oi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Hf(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[cc(I("x",e,t,n))];case"LogSoftmax":return[Ed(I("x",e,t,n))];case"SparseToDense":return[um(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jre=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[qn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Al(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Se(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ku(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Sf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Md(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Id(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[w5(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[I5(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hre=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[at(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[ci(r,Ae(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[ci(s,Ae(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=I("x",e,t,n);return[Cn(s,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[Cn(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[Ee(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),h=I("x",e,t,n);return[am(h,r,a,s,i,o,l,u,c)]}case"Pack":return W(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=Oa(a[0]).shape,o=a.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(Oa(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:X(l,s)});return[Rn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return ir(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Ra(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Yt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[ix(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[ox(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[um(r,s,a,s.dtype===i.dtype?i:Ae(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gre=(e,t,n)=>{switch(e.op){case"FFT":return[hc(I("x",e,t,n))];case"IFFT":return[gl(I("x",e,t,n))];case"RFFT":return[dc(I("x",e,t,n))];case"IRFFT":return[Vd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qre=(e,t,n)=>{switch(e.op){case"Cast":return[Ae(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Hn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Oa(I("x",e,t,n),r)]}case"Reshape":return[X(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Zf(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ia(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[ic(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Ju(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[Lf(I("x",e,t,n),r,a)]}case"BroadcastTo":return[Qu(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Nv(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return W(()=>kre(s,i,o));case"basic_math":return W(()=>Ire(s,i,o));case"control":return Fre(s,i,o);case"convolution":return W(()=>Mre(s,i,o));case"creation":return W(()=>Ore(s,i,o));case"dynamic":return Dre(s,i,o);case"evaluation":return W(()=>$re(s,i,o));case"image":return W(()=>Wre(s,i,o));case"graph":return W(()=>zre(s,i,o));case"logical":return W(()=>Bre(s,i,o));case"matrices":return W(()=>Vre(s,i,o));case"normalization":return W(()=>Ure(s,i,o));case"reduction":return W(()=>jre(s,i,o));case"slice_join":return W(()=>Hre(s,i,o));case"spectral":return W(()=>Gre(s,i,o));case"transformation":return W(()=>qre(s,i,o));case"hash_table":return Lre(s,i,o,r);case"custom":let l=rv(s.op);if(l&&l.customExecutor)return l.customExecutor(new vre(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Sv=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Ev(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>zn(d)[0]),c=[];r!=null&&(c=r.map(d=>zn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((Tv(d)||Xre(d)||Kre(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Zre(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>zn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Yre=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Jre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Qre=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function Tv(e){return Yre.indexOf(e.op)>=0}function Xre(e){return Jre.indexOf(e.op)>=0}function Kre(e){return Qre.indexOf(e.op)>=0}var Jy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Jy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=Ev(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Zre(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[zn(c)[0]]),a=t.map(c=>zn(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return W(()=>{let c=new Sv(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=zn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=Nv(m,h,c,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(f=>bn(f,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=are(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Sv(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>bn(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[zn(g)[0]]),i=n.map(g=>zn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=Ev(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[_,w]=zn(g),x=[];x[w]=e[g],p[_]=x});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!Tv(g)&&!bn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw c!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&I("isConstant",c.node,r,n)&&([h]=pa(c.node.name,n)),r[c.node.name]==null){let d=Nv(c.node,r,n,this._resourceManager);h||([h]=pa(c.node.name,n));let p=n.currentContext;k.isPromise(d)?u.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=pa(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!bn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!bn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=zn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=zn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},eae=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},tae="?tfjs-format=file",nae="model.json",Cv=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new eae}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=mn.browserHTTPRequest(e,this.loadOptions);else{let t=mn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(mn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=mn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Jy(bv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=bv.Instance.transformGraph(e.modelInitializer);this.initializer=new Jy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=mn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof j)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function qt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${nae}${tae}`);let n=new Cv(e,t);return await n.load(),n}var rae="2.8.5",Rv={};$e(Rv,{CSVDataset:()=>Mv,Dataset:()=>Ul,FileDataSource:()=>Ov,TextLineDataset:()=>Fv,URLDataSource:()=>Dv,array:()=>aae,csv:()=>iae,func:()=>oae,generator:()=>lae,microphone:()=>cae,version_data:()=>hae,webcam:()=>uae,zip:()=>sae});var dae=Ki(tg()),pae=Ki(tg());function fae(e,t){return d0(e,t)}function d0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(jl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=d0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function mae(e,t=zv){return $v(e,t)}function $v(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(jl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=$v(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function zv(e){return e===null?null:jl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Pv(e,t){let n=new Map;d0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return d0(e,t,n)}function jl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof j))}function yae(e){return e==null||Aae(e)||Array.isArray(e)||typeof e=="object"&&e instanceof j||k.isTypedArray(e)}function Aae(e){return e===null||typeof e!="object"&&typeof e!="function"}function xae(e){return fae(e,gae)}function gae(e){return e instanceof j?{value:e.clone(),recurse:!1}:jl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Lv=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Qy=class extends Lv{constructor(){super(Qy.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Qy.INITIAL_CAPACITY=32;function Wv(e){return new wae(e)}function e2(e){return new _ae(e)}function bae(e,t){return new Bv(e,t)}function kae(e,t=Ga.FAIL){return new vae(e,t)}var Xt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Rae(this,e)}filter(e){return new Eae(this,e)}map(e){return new Cae(this,e)}mapAsync(e){return new Vv(this,e)}serialMapAsync(e){return new Vv(this,e).serial()}flatmap(e){return new Fae(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Tae(this,e,t)}columnMajorBatch(e,t=!0,n=zv){return this.rowMajorBatch(e,t).map(r=>mae(r,n))}concatenate(e,t){return new Bv(Wv([this,e]),t)}take(e){return e<0||e==null?this:new Sae(this,e)}skip(e){return e<0||e==null?this:new Nae(this,e)}prefetch(e){return new Uv(this,e)}shuffle(e,t){return new Mae(this,e,t)}serial(){return new Iae(this)}},wae=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:xae(e),done:!1}}},_ae=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Iae=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Nae=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Te(e.value)}return this.upstream.next()}},Sae=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Tae=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Eae=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},Cae=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=mr.getTensorsInContainer(e.value),n=this.transform(e.value),r=mr.getTensorsInContainer(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Rae=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Vv=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=mr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=mr.getTensorsInContainer(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},t2=class extends Xt{constructor(){super();this.outputQueue=new Qy,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Fae=class extends t2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=mr.getTensorsInContainer(e.value),n=this.transform(e.value),r=mr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)mr.isTensorInList(a,r)||a.dispose();return!0}},Bv=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ga;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ga||(Ga={}));var vae=class extends Xt{constructor(e,t=Ga.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await Pv(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ga.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ga.SHORTEST:return{value:null,done:!0};case Ga.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Uv=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Lv(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Mae=class extends Uv{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=pae.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Ul=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Pn(async()=>(await n.iterator()).columnMajorBatch(e,t,Oae),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Pn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Pn(async()=>(await t.iterator()).filter(r=>W(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Pn(async()=>(await t.iterator()).map(n=>W(()=>e(n))),this.size)}mapAsync(e){let t=this;return Pn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Pn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Pn(async()=>{let r=e2(async()=>({value:await t.iterator(),done:!1}));return bae(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Pn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=dae.alea(t||k.now().toString());return Pn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Pn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ul.MAX_BUFFER_SIZE=1e4;function Pn(e,t=null){return new class extends Ul{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function aae(e){return Pn(async()=>Wv(e),e.length)}function sae(e){if(!jl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Pn(async()=>{let n=await Pv(e,r=>{if(r instanceof Ul)return{value:r.iterator(),recurse:!1};if(jl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return kae(n,Ga.SHORTEST)},t)}function Oae(e){if(e===null)return null;let t=e[0];return yae(t)?{value:Dae(e),recurse:!1}:{value:null,recurse:!0}}function Dae(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof j?Rn(e):Ar(e)}var Fv=class extends Ul{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},p0='"',Zc=Symbol("out"),jv=Symbol("field"),f0=Symbol("quote"),n2=Symbol("quoteafterquote"),Hv=Symbol("quoteinquote"),Mv=class extends Ul{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Fv(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Zc;for(let i=0;i<a;i++)switch(s){case Zc:switch(e.charAt(i)){case p0:r=i+1,s=f0;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Zc;break;default:s=jv,r=i;break}break;case jv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Zc,r=i+1;break;default:}break;case f0:switch(e.charAt(i)){case p0:s=n2;break;default:}break;case n2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Zc,r=i+1;break;case p0:s=f0;break;default:s=Hv;break}break;case Hv:switch(e.charAt(i)){case p0:s=f0;break;default:}break;default:}if(s===n2?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Gv=class extends Xt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Gv(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Ar(n,t)}},qv=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ut([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=gn([s,a,o,i],[1,4])}else this.cropBox=gn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new qv(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ol.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return W(()=>{let t=e.toFloat().expandDims(0),n;n=st.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return n.reshape(r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Xv=class{},Kv=class extends Xt{split(e){return new $ae(this,e)}},$ae=class extends Kv{constructor(e,t){super();this.upstream=e,this.impl=new zae(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zae=class extends t2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Lae=class extends Xt{decodeUTF8(){return new Pae(this)}},Pae=class extends Kv{constructor(e){super();this.upstream=e,this.impl=new Wae(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Wae=class extends t2{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Fk();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Zv=class extends Lae{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Vae(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Bae(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new Zv(s,t)}else throw new Error(a.statusText)}var Bae=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Yv(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var Ov=class extends Xv{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Yv(this.input)&&ee().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Zv(this.input,this.options)}},Dv=class extends Xv{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Yv(this.url)?new Ov(this.url,this.fileOptions).iterator():Vae(this.url,this.fileOptions)}};function iae(e,t={}){return new Mv(new Dv(e),t)}function oae(e){let t=e2(e);return Pn(async()=>t)}function lae(e){return Pn(async()=>{let t=await e();return e2(()=>t.next())})}async function uae(e,t){return qv.create(e,t)}async function cae(e){return Gv.create(e)}var hae="2.8.5",Uae={tfjs:Mk,"tfjs-core":Ok,"tfjs-data":Dk,"tfjs-layers":$k,"tfjs-converter":zk,"tfjs-backend-cpu":iw,"tfjs-backend-webgl":S_,"tfjs-backend-wasm":g3};var dn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Jv(){if(!vf(dn.name)){Me("backend registration:",dn.name);try{dn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(dn.width,dn.height):document.createElement("canvas")}catch(e){Me("error: cannot create canvas:",e);return}try{dn.gl=dn.canvas.getContext("webgl2",dn.webGLattr)}catch(e){Me("error: cannot get WebGL2 context:",e);return}try{hp(2,dn.gl)}catch(e){Me("error: cannot set WebGL2 context:",e);return}try{let e=new mp(dn.gl);ul(dn.name,()=>new yp(e),dn.priority)}catch(e){Me("error: cannot register WebGL backend:",e);return}try{tl("webgl").forEach(t=>{let n={...t,backendName:dn.name};ti(n)})}catch(e){Me("error: cannot update WebGL backend registration:",e);return}try{sn.set("WEBGL_VERSION",2),sn.set("WEBGL_MAX_TEXTURE_SIZE",dn.gl.getParameter(dn.gl.MAX_TEXTURE_SIZE)),sn.set("WEBGL_FORCE_F16_TEXTURES",!0),sn.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){Me("error: cannot set WebGL backend flags:",e);return}Me("backend registered:",dn.name)}}var P2=Le(m6()),th=Le(g6()),nh=Le(w6()),rh=Le(v6()),Ya=Le(I6()),L2=Le(n4());function S0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Qc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function r4(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return st.cropAndResize(t,s,[0],n)}function a4(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function T0(e,t=1.5){let n=Qc(e),r=S0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function E0(e){let t=Qc(e),n=S0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function die(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function l4(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return die(n)}var u4=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Za(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function pie(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function c4(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Za(e[a],pie(t,s)))}return n}function R2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=u4(t[0],t[1]),i=c4(s,a),o=u4(-t[0],-t[1]);return c4(i,o)}function h4(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Za(t[0],n),-Za(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function F2(e,t){return[Za(e,t[0]),Za(e,t[1])]}var W2=Le(b4()),Ja=Le(v4()),B2=Le(T4()),R4=Le(Gl());var C0={};W1(C0,{default:()=>E4});var E4={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var $2=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,z2=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;var C4="0.10.1";var mt=()=>typeof performance!="undefined"?performance.now():parseInt(Number(process.hrtime.bigint())/1e3/1e3);function Jl(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Jl(s,i):n[a]=i}),n),{})}var V2=class{constructor(t={}){this.tf=B1,this.version=C4,this.config=Jl(E4,t),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=P2,this.age=th,this.gender=nh,this.emotion=rh,this.body=L2,this.hand=W2}profile(){return this.config.profile?R4.data:{}}analyze(...t){if(!this.analyzeMemoryLeaks)return;let n=Un().state.numTensors,r=this.numTensors;this.numTensors=n;let a=n-r;a!==0&&Me(...t,a)}sanity(t){if(!this.checkSanity)return null;if(!t)return"input is not defined";if(sn.flags.IS_NODE&&!(t instanceof j))return"input must be a tensor";try{gd()}catch(n){return"backend not loaded"}return null}simmilarity(t,n){return this.config.face.embedding.enabled?Ya.simmilarity(t,n):0}async load(t){this.state="load";let n=mt();t&&(this.config=Jl(this.config,t)),this.firstRun&&(Me(`version: ${this.version} TensorFlow/JS version: ${c5}`),await this.checkBackend(!0),sn.flags.IS_BROWSER&&(Me("configuration:",this.config),Me("tf flags:",sn.flags))),this.config.async?[this.models.facemesh,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.facemesh||(this.config.face.enabled?P2.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?th.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?nh.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?rh.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?Ya.load(this.config):null),this.models.posenet||(this.config.body.enabled?L2.load(this.config):null),this.models.handpose||(this.config.hand.enabled?W2.load(this.config):null)]):(this.config.face.enabled&&!this.models.facemesh&&(this.models.facemesh=await P2.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await th.load(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await nh.load(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await rh.load(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await Ya.load(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await L2.load(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await W2.load(this.config))),this.firstRun&&(Me("tf engine state:",Un().state.numBytes,"bytes",Un().state.numTensors,"tensors"),this.firstRun=!1);let r=Math.trunc(mt()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async checkBackend(t){if(this.config.backend&&this.config.backend!==""&&t||gd()!==this.config.backend){let n=mt();this.state="backend",Me("setting backend:",this.config.backend),this.config.backend==="wasm"&&(Me("settings wasm path:",this.config.wasmPath),y3(this.config.wasmPath),await ee().getAsync("WASM_HAS_SIMD_SUPPORT")||Me("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Jv();try{await d5(this.config.backend)}catch(r){Me("error: cannot set backend:",this.config.backend,r)}if(h5(),gd()==="webgl"){this.config.deallocate&&(Me("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),sn.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),sn.set("WEBGL_FORCE_F16_TEXTURES",!0),sn.set("WEBGL_PACK_DEPTHWISECONV",!0);let r=await kf().getGPGPUContext().gl;Me(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await p5(),this.perf.backend=Math.trunc(mt()-n)}}async detectFace(t){var u;let n,r,a,s,i,o=[];this.state="run:face",n=mt();let l=await((u=this.models.facemesh)==null?void 0:u.estimateFaces(t,this.config));this.perf.face=Math.trunc(mt()-n);for(let c of l){if(this.analyze("Get Face"),!c.image||c.image.isDisposedInternal){Me("Face object is disposed:",c.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?th.predict(c.image,this.config):{}:(this.state="run:age",n=mt(),r=this.config.face.age.enabled?await th.predict(c.image,this.config):{},this.perf.age=Math.trunc(mt()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?nh.predict(c.image,this.config):{}:(this.state="run:gender",n=mt(),a=this.config.face.gender.enabled?await nh.predict(c.image,this.config):{},this.perf.gender=Math.trunc(mt()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?rh.predict(c.image,this.config):{}:(this.state="run:emotion",n=mt(),s=this.config.face.emotion.enabled?await rh.predict(c.image,this.config):{},this.perf.emotion=Math.trunc(mt()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?Ya.predict(c.image,this.config):{}:(this.state="run:embedding",n=mt(),i=this.config.face.embedding.enabled?await Ya.predict(c.image,this.config):{},this.perf.embedding=Math.trunc(mt()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),c.image.dispose(),this.config.face.iris.enabled||(delete c.annotations.leftEyeIris,delete c.annotations.rightEyeIris);let h=c.annotations.leftEyeIris&&c.annotations.rightEyeIris?11.7*Math.max(Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0]),Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])):0;o.push({confidence:c.confidence,box:c.box,mesh:c.mesh,boxRaw:c.boxRaw,meshRaw:c.meshRaw,annotations:c.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:h!==0?Math.trunc(h)/100:0}),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async image(t,n={}){this.state="image",this.config=Jl(this.config,n);let r=B2.process(t,this.config);return r.tensor.dispose(),r.canvas}async detect(t,n={}){return new Promise(async r=>{var d,p,f,m;this.state="config";let a;this.config=Jl(this.config,n),this.state="check";let s=this.sanity(t);s&&(Me(s,t),r({error:s}));let i,o,l,u=mt();await this.checkBackend(),await this.load(),this.config.scoped&&Un().startScope(),this.analyze("Start Scope:"),a=mt();let c=B2.process(t,this.config);if(!c||!c.tensor){Me("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(mt()-a),this.analyze("Get Image:"),this.config.async?(l=this.config.face.enabled?this.detectFace(c.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=mt(),l=this.config.face.enabled?await this.detectFace(c.tensor):[],this.perf.face=Math.trunc(mt()-a)),this.analyze("Start Body:"),this.config.async?(i=this.config.body.enabled?(d=this.models.posenet)==null?void 0:d.estimatePoses(c.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",a=mt(),i=this.config.body.enabled?await((p=this.models.posenet)==null?void 0:p.estimatePoses(c.tensor,this.config)):[],this.perf.body=Math.trunc(mt()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(o=this.config.hand.enabled?(f=this.models.handpose)==null?void 0:f.estimateHands(c.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=mt(),o=this.config.hand.enabled?await((m=this.models.handpose)==null?void 0:m.estimateHands(c.tensor,this.config)):[],this.perf.hand=Math.trunc(mt()-a)),this.analyze("End Hand:"),this.config.async&&([l,i,o]=await Promise.all([l,i,o])),c.tensor.dispose(),this.config.scoped&&Un().endScope(),this.analyze("End Scope:");let h=[];this.config.gesture.enabled&&(a=mt(),h=[...Ja.face(l),...Ja.body(i),...Ja.hand(o),...Ja.iris(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(mt()-a)),this.perf.total=Math.trunc(mt()-u),this.state="idle",r({face:l,body:i,hand:o,gesture:h,performance:this.perf,canvas:c.canvas})})}async warmupBitmap(){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t($2);break;case"full":n=await t(z2);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,C0),a.close()}return r}async warmupCanvas(){return new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+$2;break;case"full":r=1200,n="data:image/jpeg;base64,"+z2;break;default:n=null}let a=new Image(r,r);a.onload=()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=r,s.height=r;let i=s.getContext("2d");i.drawImage(a,0,0);let o=i.getImageData(0,0,r,r);this.detect(o,C0).then(l=>t(l))},n?a.src=n:t(null)})}async warmup(t){let n=mt();t&&(this.config=Jl(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await this.warmupBitmap():a=await this.warmupCanvas(),this.config.videoOptimized=r;let s=mt();return Me("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};return _ie;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=human.js.map