mirror of https://github.com/vladmandic/human
5091 lines
1.3 MiB
5091 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var D9=Object.defineProperty;var Fa=(e,t)=>{for(var n in t)D9(e,n,{get:t[n],enumerable:!0})};var Dg=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var aa=(e,t,n)=>(Dg(e,t,"read from private field"),n?n.call(e):t.get(e)),as=(e,t,n,a)=>(Dg(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);function Yt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function he(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var it=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Hn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=Hn(s,i):n[r]=i}),n),{})}function Og(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var lu={};Fa(lu,{Abs:()=>eo,Acos:()=>to,Acosh:()=>no,AdadeltaOptimizer:()=>qc,AdagradOptimizer:()=>Xc,AdamOptimizer:()=>Kc,AdamaxOptimizer:()=>Zc,Add:()=>kr,AddN:()=>is,All:()=>ao,Any:()=>ro,ArgMax:()=>os,ArgMin:()=>hu,Asin:()=>so,Asinh:()=>io,Atan:()=>oo,Atan2:()=>uo,Atanh:()=>lo,AvgPool:()=>ls,AvgPool3D:()=>fu,AvgPool3DGrad:()=>Tp,AvgPoolGrad:()=>Np,BackendWasm:()=>iw,BatchMatMul:()=>us,BatchToSpaceND:()=>mu,Bincount:()=>Ep,BroadcastTo:()=>Tx,Callback:()=>J4,CallbackList:()=>Kw,Cast:()=>ds,Ceil:()=>ps,ClipByValue:()=>Ir,Complex:()=>Cp,ComplexAbs:()=>Au,Concat:()=>po,Conv2D:()=>cs,Conv2DBackpropFilter:()=>Rp,Conv2DBackpropInput:()=>hs,Conv3D:()=>yu,Conv3DBackpropFilterV2:()=>Mp,Conv3DBackpropInputV2:()=>Fp,Cos:()=>fs,Cosh:()=>co,CropAndResize:()=>ho,Cumsum:()=>ms,CustomCallback:()=>Yw,DataStorage:()=>wp,DenseBincount:()=>$p,DepthToSpace:()=>fo,DepthwiseConv2dNative:()=>As,DepthwiseConv2dNativeBackpropFilter:()=>Dp,DepthwiseConv2dNativeBackpropInput:()=>Op,Diag:()=>zp,Dilation2D:()=>gu,Dilation2DBackpropFilter:()=>Pp,Dilation2DBackpropInput:()=>_p,ENV:()=>ma,EarlyStopping:()=>e8,Einsum:()=>Lp,Elu:()=>mo,EluGrad:()=>Wp,Environment:()=>Sx,Equal:()=>yo,Erf:()=>Ao,Exp:()=>gs,ExpandDims:()=>go,Expm1:()=>xo,FFT:()=>Bp,Fill:()=>xu,FlipLeftRight:()=>bo,Floor:()=>xs,FloorDiv:()=>bs,FromPixels:()=>ac,FusedBatchNorm:()=>vs,FusedConv2D:()=>ti,FusedDepthwiseConv2D:()=>ni,GPGPUContext:()=>hh,GatherNd:()=>wo,GatherV2:()=>vo,GraphModel:()=>R8,Greater:()=>ko,GreaterEqual:()=>ws,History:()=>Zw,IFFT:()=>Vp,Identity:()=>ks,Imag:()=>jp,InputSpec:()=>Mt,IsFinite:()=>Io,IsInf:()=>So,IsNan:()=>No,KernelBackend:()=>du,LRN:()=>wu,LRNGrad:()=>Hp,LayerVariable:()=>Uw,LayersModel:()=>pr,LeakyRelu:()=>Is,Less:()=>To,LessEqual:()=>Eo,LinSpace:()=>Up,Log:()=>Ss,Log1p:()=>Co,LogSoftmax:()=>Ex,LogicalAnd:()=>Ro,LogicalNot:()=>bu,LogicalOr:()=>vu,MathBackendCPU:()=>eh,MathBackendWebGL:()=>$l,Max:()=>Ns,MaxPool:()=>Es,MaxPool3D:()=>ku,MaxPool3DGrad:()=>qp,MaxPoolGrad:()=>Gp,MaxPoolWithArgmax:()=>Xp,Maximum:()=>Ts,Mean:()=>Cs,Min:()=>Rs,Minimum:()=>Ms,MirrorPad:()=>Fs,Mod:()=>Mo,MomentumOptimizer:()=>Yc,Multinomial:()=>Kp,Multiply:()=>$s,Neg:()=>Fo,NonMaxSuppressionV3:()=>Do,NonMaxSuppressionV4:()=>Oo,NonMaxSuppressionV5:()=>zo,NotEqual:()=>$o,OP_SCOPE_SUFFIX:()=>Lx,OneHot:()=>Ds,OnesLike:()=>_o,Optimizer:()=>or,Pack:()=>Po,PadV2:()=>Os,Pool:()=>OI,Pow:()=>zs,Prelu:()=>_s,Prod:()=>Lo,RMSPropOptimizer:()=>Jc,RNN:()=>Ha,Range:()=>Iu,Rank:()=>wm,Real:()=>Zp,RealDiv:()=>ys,Reciprocal:()=>Wo,Reduction:()=>un,Relu:()=>Ps,Relu6:()=>Ws,Reshape:()=>Bo,ResizeBilinear:()=>Ls,ResizeBilinearGrad:()=>Jp,ResizeNearestNeighbor:()=>Su,ResizeNearestNeighborGrad:()=>Yp,Reverse:()=>Bs,RotateWithOffset:()=>el,Round:()=>Vs,Rsqrt:()=>js,SGDOptimizer:()=>ad,ScatterNd:()=>Vo,Select:()=>jo,Selu:()=>Uo,Sequential:()=>Vl,Sigmoid:()=>Hs,Sign:()=>qo,Sin:()=>Us,Sinh:()=>Go,Slice:()=>Ho,Softmax:()=>Xs,Softplus:()=>Xo,SpaceToBatchND:()=>Nu,SparseReshape:()=>Qp,SparseToDense:()=>ec,SplitV:()=>Ko,Sqrt:()=>Gs,Square:()=>Tu,SquaredDifference:()=>Ks,Step:()=>Nr,StridedSlice:()=>Zo,Sub:()=>Zs,Sum:()=>qs,SymbolicTensor:()=>Sa,Tan:()=>Ys,Tanh:()=>Js,Tensor:()=>Le,TensorBuffer:()=>Dt,Tile:()=>Sr,TopK:()=>Yo,Transform:()=>tc,Transpose:()=>Qs,Unique:()=>nc,Unpack:()=>Jo,UnsortedSegmentSum:()=>Eu,Variable:()=>Ou,ZerosLike:()=>Qo,_FusedMatMul:()=>ei,abs:()=>Ot,acos:()=>Xm,acosh:()=>Km,add:()=>se,addN:()=>mc,all:()=>Ac,any:()=>Wu,argMax:()=>Bu,argMin:()=>Zm,asin:()=>Ym,asinh:()=>Jm,atan:()=>Qm,atan2:()=>eA,atanh:()=>tA,avgPool:()=>ju,avgPool3d:()=>rA,backend:()=>bb,backend_util:()=>C,basicLSTMCell:()=>fT,batchNorm:()=>pi,batchNorm2d:()=>Ib,batchNorm3d:()=>Sb,batchNorm4d:()=>Nb,batchToSpaceND:()=>Uu,bincount:()=>Tb,booleanMaskAsync:()=>bR,broadcastTo:()=>pl,browser:()=>oi,buffer:()=>We,callbacks:()=>yre,cast:()=>Ae,ceil:()=>sA,clipByValue:()=>kn,clone:()=>Oa,complex:()=>Tr,concat:()=>ot,concat1d:()=>Eb,concat2d:()=>cl,concat3d:()=>Cb,concat4d:()=>Rb,constraints:()=>yw,conv1d:()=>gc,conv2d:()=>ar,conv2dTranspose:()=>xc,conv3d:()=>oA,conv3dTranspose:()=>Fb,copyRegisteredKernels:()=>PI,cos:()=>Hu,cosh:()=>bc,cosineWindow:()=>OA,cumsum:()=>vc,customGrad:()=>_a,data:()=>M8,denseBincount:()=>$b,deprecationWarn:()=>Gm,depthToSpace:()=>lA,depthwiseConv2d:()=>hl,deregisterOp:()=>xre,device_util:()=>_u,diag:()=>jT,dilation2d:()=>uA,disableDeprecationWarnings:()=>TN,dispose:()=>Ee,disposeVariables:()=>EN,div:()=>ge,divNoNan:()=>dA,dot:()=>Db,dropout:()=>t3,einsum:()=>Ob,elu:()=>fl,enableDebugMode:()=>NN,enableProdMode:()=>SN,enclosingPowerOfTwo:()=>n3,engine:()=>nr,env:()=>J,equal:()=>Fr,erf:()=>pA,exp:()=>qn,expandDims:()=>on,expm1:()=>cA,eye:()=>hA,fft:()=>td,fill:()=>Gu,findBackend:()=>qm,findBackendFactory:()=>ON,floor:()=>ml,floorDiv:()=>fc,forceHalfFloat:()=>gv,fused:()=>zr,gather:()=>ci,gatherND:()=>e3,gather_util:()=>Lm,getBackend:()=>$N,getGradient:()=>xm,getKernel:()=>rc,getKernelsForBackend:()=>nl,gpgpu_util:()=>V7,grad:()=>xE,grads:()=>bE,greater:()=>oa,greaterEqual:()=>Dr,ifft:()=>xl,imag:()=>wc,image:()=>Ye,inTopKAsync:()=>MR,initializers:()=>Iw,input:()=>_w,io:()=>vn,irfft:()=>Pc,isFinite:()=>zb,isInf:()=>_b,isNaN:()=>fA,keep:()=>jt,kernel_impls:()=>Wa,layers:()=>zw,leakyRelu:()=>qu,less:()=>kc,lessEqual:()=>hi,linalg:()=>f3,linspace:()=>Pb,loadGraphModel:()=>Gt,loadLayersModel:()=>_ae,localResponseNormalization:()=>mA,log:()=>Fn,log1p:()=>Ic,logSigmoid:()=>Wb,logSoftmax:()=>Nc,logSumExp:()=>gA,logicalAnd:()=>la,logicalNot:()=>Xu,logicalOr:()=>Tc,logicalXor:()=>Ub,losses:()=>ZM,matMul:()=>Be,math:()=>tb,max:()=>Xn,maxPool:()=>Ku,maxPool3d:()=>xA,maxPoolWithArgmax:()=>Hb,maximum:()=>Pa,mean:()=>kt,memory:()=>hc,meshgrid:()=>VE,metrics:()=>K4,min:()=>Al,minimum:()=>yl,mirrorPad:()=>bA,mod:()=>vA,model:()=>Oae,models:()=>Z4,moments:()=>Ec,movingAverage:()=>kR,mul:()=>B,multiRNNCell:()=>ZE,multinomial:()=>Gb,neg:()=>wt,nextFrame:()=>Qc,norm:()=>Vc,notEqual:()=>Ai,oneHot:()=>ol,ones:()=>$n,onesLike:()=>Dn,op:()=>O,outerProduct:()=>tC,pad:()=>rr,pad1d:()=>rC,pad2d:()=>iC,pad3d:()=>lC,pad4d:()=>dC,pool:()=>qb,pow:()=>sr,prelu:()=>Yu,print:()=>Kx,prod:()=>Cc,profile:()=>CN,rand:()=>xC,randomGamma:()=>kC,randomNormal:()=>Xb,randomUniform:()=>gl,range:()=>Rc,ready:()=>FN,real:()=>Ju,reciprocal:()=>IA,registerBackend:()=>ul,registerCallbackConstructor:()=>Pae,registerGradient:()=>Cx,registerKernel:()=>ai,registerOp:()=>gre,regularizers:()=>Y4,relu:()=>La,relu6:()=>Mc,removeBackend:()=>DN,reshape:()=>H,reverse:()=>On,reverse1d:()=>FC,reverse2d:()=>DC,reverse3d:()=>zC,reverse4d:()=>PC,rfft:()=>nd,round:()=>SA,rsqrt:()=>Fc,scalar:()=>Ie,scatterND:()=>Qb,scatter_util:()=>Wm,selu:()=>$c,separableConv2d:()=>NA,sequential:()=>zae,serialization:()=>ae,setBackend:()=>MN,setPlatform:()=>zN,setWasmPath:()=>MJ,setWasmPaths:()=>FJ,setWebGLContext:()=>uh,setdiff1dAsync:()=>Kb,shared:()=>WA,sigmoid:()=>wn,sign:()=>TA,signal:()=>KM,sin:()=>Dc,sinh:()=>Oc,slice:()=>Me,slice1d:()=>zc,slice2d:()=>EA,slice3d:()=>_c,slice4d:()=>Qu,slice_util:()=>sn,softmax:()=>ed,softplus:()=>fi,spaceToBatchND:()=>Zu,sparse:()=>m3,sparseToDense:()=>DA,spectral:()=>XM,split:()=>ln,sqrt:()=>Jt,square:()=>st,squaredDifference:()=>Lc,squeeze:()=>Or,stack:()=>zn,step:()=>bl,stridedSlice:()=>CA,sub:()=>ye,sum:()=>Te,sumOutType:()=>lc,tan:()=>RA,tanh:()=>di,tensor:()=>ga,tensor1d:()=>nn,tensor2d:()=>Kn,tensor3d:()=>pc,tensor4d:()=>dR,tensor5d:()=>pR,tensor6d:()=>cR,tensor_util:()=>Aa,test_util:()=>yb,tidy:()=>L,tile:()=>$r,time:()=>RN,topk:()=>MA,train:()=>gi,transpose:()=>Ze,truncatedNormal:()=>Wc,unique:()=>Bc,unregisterGradient:()=>_I,unregisterKernel:()=>zI,unsortedSegmentSum:()=>FA,unstack:()=>ua,upcastType:()=>ia,util:()=>w,valueAndGrad:()=>vE,valueAndGrads:()=>wE,variable:()=>Zb,variableGrads:()=>Lb,version:()=>sie,version_converter:()=>xse,version_core:()=>IN,version_cpu:()=>X3,version_layers:()=>sy,version_wasm:()=>lw,version_webgl:()=>yv,webgl:()=>DW,webgl_util:()=>A7,where:()=>In,whereAsync:()=>$A,zeros:()=>Ct,zerosLike:()=>Ue});var O9=Object.create,vp=Object.defineProperty,z9=Object.getPrototypeOf,_9=Object.prototype.hasOwnProperty,P9=Object.getOwnPropertyNames,L9=Object.getOwnPropertyDescriptor,W9=e=>vp(e,"__esModule",{value:!0}),bt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)vp(e,n,{get:t[n],enumerable:!0})},B9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of P9(t))!_9.call(e,a)&&a!=="default"&&vp(e,a,{get:()=>t[a],enumerable:!(n=L9(t,a))||n.enumerable});return e},Yi=e=>B9(W9(vp(e!=null?O9(z9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),V9=bt(()=>{}),j9=bt((e,t)=>{(function(n,a,r){function s(d){var u=this,p=l();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(d),u.s0<0&&(u.s0+=1),u.s1-=p(d),u.s1<0&&(u.s1+=1),u.s2-=p(d),u.s2<0&&(u.s2+=1),p=null}function i(d,u){return u.c=d.c,u.s0=d.s0,u.s1=d.s1,u.s2=d.s2,u}function o(d,u){var p=new s(d),c=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var d=4022871197,u=function(p){p=p.toString();for(var c=0;c<p.length;c++){d+=p.charCodeAt(c);var h=.02519603282416938*d;d=h>>>0,h-=d,h*=d,d=h>>>0,h-=d,d+=h*4294967296}return(d>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),U9=bt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.x=0,d.y=0,d.z=0,d.w=0,d.next=function(){var c=d.x^d.x<<11;return d.x=d.y,d.y=d.z,d.z=d.w,d.w^=d.w>>>19^c^c>>>8},l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),H9=bt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.x^d.x>>>2;return d.x=d.y,d.y=d.z,d.z=d.w,d.w=d.v,(d.d=d.d+362437|0)+(d.v=d.v^d.v<<4^(c^c<<1))|0},d.x=0,d.y=0,d.z=0,d.w=0,d.v=0,l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,p==u.length&&(d.d=d.x<<10^d.x>>>4),d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d.v=l.v,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),G9=bt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.x,c=d.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,d.i=c+1&7,m};function u(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(d,l)}function i(l,d){return d.x=l.x.slice(),d.i=l.i,d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.x&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),q9=bt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.w,c=d.X,h=d.i,m,f;return d.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,d.i=h,f+(p^p>>>16)|0};function u(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}u(d,l)}function i(l,d){return d.i=l.i,d.w=l.w,d.X=l.X.slice(),d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.X&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),X9=bt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.b,h=d.c,m=d.d,f=d.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,d.b=c=c<<20^c>>>12^h,d.c=h=h-m|0,d.d=m<<16^h>>>16^f,d.a=f-c|0},d.a=0,d.b=0,d.c=2654435769|0,d.d=1367130551,l===Math.floor(l)?(d.a=l/4294967296|0,d.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)d.b^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.a=l.a,d.b=l.b,d.c=l.c,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zg=bt(()=>{}),K9=bt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",d=a.pow(s,i),u=a.pow(2,o),p=u*2,c=s-1,h;function m(b,v,I){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,k(n)]:b==null?x():b,3),T),$=new f(T),z=function(){for(var _=$.g(i),V=d,j=0;_<u;)_=(_+j)*s,V*=s,j=$.g(1);for(;_>=p;)_/=2,V/=2,j>>>=1;return(_+j)/V};return z.int32=function(){return $.g(4)|0},z.quick=function(){return $.g(4)/4294967296},z.double=z,g(k($.S),n),(v.pass||I||function(_,V,j,U){return U&&(U.S&&A(U,$),_.state=function(){return A($,{})}),j?(a[l]=_,V):_})(z,R,"global"in v?v.global:this==a,v.state)}a["seed"+l]=m;function f(b){var v,I=b.length,T=this,R=0,$=T.i=T.j=0,z=T.S=[];for(I||(b=[I++]);R<s;)z[R]=R++;for(R=0;R<s;R++)z[R]=z[$=c&$+b[R%I]+(v=z[R])],z[$]=v;(T.g=function(_){for(var V,j=0,U=T.i,X=T.j,G=T.S;_--;)V=G[U=c&U+1],j=j*s+G[c&(G[U]=G[X=c&X+V])+(G[X]=V)];return T.i=U,T.j=X,j})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var I=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{I.push(y(b[R],v-1))}catch($){}return I.length?I:T=="string"?b:b+"\0"}function g(b,v){for(var I=b+"",T,R=0;R<I.length;)v[c&R]=c&(T^=v[c&R]*19)+I.charCodeAt(R++);return k(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),k(b)}catch(T){var v=r.navigator,I=v&&v.plugins;return[+new Date,r,I,r.screen,k(n)]}}function k(b){return String.fromCharCode.apply(0,b)}if(g(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=zg()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),_g=bt((e,t)=>{var n=j9(),a=U9(),r=H9(),s=G9(),i=q9(),o=X9(),l=K9();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),uu=bt(()=>{}),Z9=bt(()=>{}),Y9=bt(()=>{}),J9=bt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Ve&&Kt(Q.buffer),An}function i(){return Q.buffer!=Ve&&Kt(Q.buffer),xt}function o(){return Q.buffer!=Ve&&Kt(Q.buffer),yn}function l(){return Q.buffer!=Ve&&Kt(Q.buffer),jn}function d(){return Q.buffer!=Ve&&Kt(Q.buffer),an}var u=typeof r!="undefined"?r:{},p,c;u.ready=new Promise(function(N,E){p=N,c=E});var h={},m;for(m in u)u.hasOwnProperty(m)&&(h[m]=u[m]);var f=[],A="./this.program",y=function(N,E){throw E},g=!1,x=!1,k=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",k=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!k&&!x;var v=u.ENVIRONMENT_IS_PTHREAD||!1;v&&(Ve=u.buffer);var I="";function T(N){return u.locateFile?u.locateFile(N,I):I+N}var R,$,z,_,V,j;if(k){x?I=uu().dirname(I)+"/":I=__dirname+"/",R=function(N,E){return V||(V=require("fs")),j||(j=uu()),N=j.normalize(N),V.readFileSync(N,E?null:"utf8")},z=function(N){var E=R(N,!0);return E.buffer||(E=new Uint8Array(E)),ce(E.buffer),E},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof ou))throw N}),process.on("unhandledRejection",Ya),y=function(N){process.exit(N)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=Z9()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(R=function(N){return read(N)}),z=function(N){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(N)):(E=read(N,"binary"),ce(typeof E=="object"),E)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?I=self.location.href:typeof document!="undefined"&&document.currentScript&&(I=document.currentScript.src),typeof a!="undefined"&&a&&(I=a),I.indexOf("blob:")!==0?I=I.substr(0,I.lastIndexOf("/")+1):I="",k?(R=function(N,E){return V||(V=require("fs")),j||(j=uu()),N=j.normalize(N),V.readFileSync(N,E?null:"utf8")},z=function(N){var E=R(N,!0);return E.buffer||(E=new Uint8Array(E)),ce(E.buffer),E}):(R=function(N){var E=new XMLHttpRequest;return E.open("GET",N,!1),E.send(null),E.responseText},x&&(z=function(N){var E=new XMLHttpRequest;return E.open("GET",N,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),$=function(N,E,P){var q=new XMLHttpRequest;q.open("GET",N,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){E(q.response);return}P()},q.onerror=P,q.send(null)}),_=function(N){document.title=N});k&&typeof performance=="undefined"&&(global.performance=Y9().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(u[m]=h[m]);h=null,u.arguments&&(f=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,re=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Ya("no native wasm support detected");var Q,de,oe=!1,me;function ce(N,E){N||Ya("Assertion failed: "+E)}function ke(N){var E=u["_"+N];return ce(E,"Cannot call unknown function "+N+", make sure it is exported"),E}function Se(N,E,P,q,pe){var le={string:function(bn){var Zi=0;if(bn!=null&&bn!==0){var $g=(bn.length<<2)+1;Zi=qi($g),et(bn,Zi,$g)}return Zi},array:function(bn){var Zi=qi(bn.length);return Xe(bn,Zi),Zi}};function ue(bn){return E==="string"?De(bn):E==="boolean"?Boolean(bn):bn}var be=ke(N),tt=[],Bt=0;if(q)for(var $t=0;$t<q.length;$t++){var br=le[P[$t]];br?(Bt===0&&(Bt=iu()),tt[$t]=br(q[$t])):tt[$t]=q[$t]}var Ki=be.apply(null,tt);return Ki=ue(Ki),Bt!==0&&Gi(Bt),Ki}function $e(N,E,P,q){P=P||[];var pe=P.every(function(ue){return ue==="number"}),le=E!=="string";return le&&pe&&!q?ke(N):function(){return Se(N,E,P,arguments,q)}}function ze(N,E,P){for(var q=E+P,pe="";!(E>=q);){var le=N[E++];if(!le)return pe;if(!(le&128)){pe+=String.fromCharCode(le);continue}var ue=N[E++]&63;if((le&224)==192){pe+=String.fromCharCode((le&31)<<6|ue);continue}var be=N[E++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|be:le=(le&7)<<18|ue<<12|be<<6|N[E++]&63,le<65536)pe+=String.fromCharCode(le);else{var tt=le-65536;pe+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return pe}function De(N,E){return N?ze(i(),N,E):""}function Qe(N,E,P,q){if(!(q>0))return 0;for(var pe=P,le=P+q-1,ue=0;ue<N.length;++ue){var be=N.charCodeAt(ue);if(be>=55296&&be<=57343){var tt=N.charCodeAt(++ue);be=65536+((be&1023)<<10)|tt&1023}if(be<=127){if(P>=le)break;E[P++]=be}else if(be<=2047){if(P+1>=le)break;E[P++]=192|be>>6,E[P++]=128|be&63}else if(be<=65535){if(P+2>=le)break;E[P++]=224|be>>12,E[P++]=128|be>>6&63,E[P++]=128|be&63}else{if(P+3>=le)break;E[P++]=240|be>>18,E[P++]=128|be>>12&63,E[P++]=128|be>>6&63,E[P++]=128|be&63}}return E[P]=0,P-pe}function et(N,E,P){return Qe(N,i(),E,P)}function rt(N){for(var E=0,P=0;P<N.length;++P){var q=N.charCodeAt(P);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|N.charCodeAt(++P)&1023),q<=127?++E:q<=2047?E+=2:q<=65535?E+=3:E+=4}return E}function Xe(N,E){s().set(N,E)}function pt(N,E){return N%E>0&&(N+=E-N%E),N}var Ve,An,xt,Vn,Xt,yn,jn,Mn,an;function Kt(N){Ve=N,u.HEAP8=An=new Int8Array(N),u.HEAP16=Vn=new Int16Array(N),u.HEAP32=yn=new Int32Array(N),u.HEAPU8=xt=new Uint8Array(N),u.HEAPU16=Xt=new Uint16Array(N),u.HEAPU32=jn=new Uint32Array(N),u.HEAPF32=Mn=new Float32Array(N),u.HEAPF64=an=new Float64Array(N)}var Ra=u.INITIAL_MEMORY||16777216;if(v)Q=u.wasmMemory,Ve=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Ra/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),k&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ve=Q.buffer),Ra=Ve.byteLength,Kt(Ve);var ta,na=[],fr=[],Ka=[],mr=[],Wi=[],Ma=!1,Qd=!1;v||fr.push({func:function(){fp()}});function _0(){if(!v){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)tp(u.preRun.shift());Vi(na)}}function Yl(){Ma=!0,!v&&Vi(fr)}function P0(){v||Vi(Ka)}function ep(){v||(Qd=!0)}function gn(){if(!v){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)L0(u.postRun.shift());Vi(Wi)}}function tp(N){na.unshift(N)}function L0(N){Wi.unshift(N)}var Za=0,Ar=null,es=null;function W0(N){ce(!v,"addRunDependency cannot be used in a pthread worker"),Za++,u.monitorRunDependencies&&u.monitorRunDependencies(Za)}function B0(N){if(Za--,u.monitorRunDependencies&&u.monitorRunDependencies(Za),Za==0&&(Ar!==null&&(clearInterval(Ar),Ar=null),es)){var E=es;es=null,E()}}u.preloadedImages={},u.preloadedAudios={};function Ya(N){u.onAbort&&u.onAbort(N),v&&console.error("Pthread aborting at "+new Error().stack),N+="",G(N),oe=!0,me=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var E=new WebAssembly.RuntimeError(N);throw c(E),E}function np(N,E){return String.prototype.startsWith?N.startsWith(E):N.indexOf(E)===0}var Bi="data:application/octet-stream;base64,";function ap(N){return np(N,Bi)}var V0="file://";function rp(N){return np(N,V0)}var xn="tfjs-backend-wasm-threaded-simd.wasm";ap(xn)||(xn=T(xn));function sp(N){try{if(N==xn&&te)return new Uint8Array(te);if(z)return z(N);throw"both async and sync fetching of the wasm failed"}catch(E){Ya(E)}}function j0(){if(!te&&(g||x)){if(typeof fetch=="function"&&!rp(xn))return fetch(xn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+xn+"'";return N.arrayBuffer()}).catch(function(){return sp(xn)});if($)return new Promise(function(N,E){$(xn,function(P){N(new Uint8Array(P))},E)})}return Promise.resolve().then(function(){return sp(xn)})}function U0(){var N={a:Of};function E(ue,be){var tt=ue.exports;if(u.asm=tt,ta=u.asm.F,de=be,!v){var Bt=we.unusedWorkers.length;we.unusedWorkers.forEach(function($t){we.loadWasmModuleToWorker($t,function(){--Bt||B0("wasm-instantiate")})})}}v||W0("wasm-instantiate");function P(ue){E(ue.instance,ue.module)}function q(ue){return j0().then(function(be){return WebAssembly.instantiate(be,N)}).then(ue,function(be){G("failed to asynchronously prepare wasm: "+be),Ya(be)})}function pe(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!ap(xn)&&!rp(xn)&&typeof fetch=="function"?fetch(xn,{credentials:"same-origin"}).then(function(ue){var be=WebAssembly.instantiateStreaming(ue,N);return be.then(P,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(P)})}):q(P)}if(u.instantiateWasm)try{var le=u.instantiateWasm(N,E);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return pe().catch(c),{}}var H0={9816:function(){throw"Canceled!"},9834:function(N,E){setTimeout(function(){Tg(N,E)},0)}};function ip(){we.initRuntime()}function Vi(N){for(;N.length>0;){var E=N.shift();if(typeof E=="function"){E(u);continue}var P=E.func;typeof P=="number"?E.arg===void 0?ta.get(P)():ta.get(P)(E.arg):P(E.arg===void 0?null:E.arg)}}function Jl(N,E){if(N<=0||N>s().length||N&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var P=Atomics.load(o(),Xi>>2),q=0;if(P==N){var pe=Atomics.compareExchange(o(),Xi>>2,P,0);if(pe==P&&(--E,q=1,E<=0))return 1}var le=Atomics.notify(o(),N>>2,E);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=Jl;function G0(N){if(v)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var E=we.pthreads[N];E.worker.terminate(),we.freeThreadData(E),we.runningWorkers.splice(we.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function q0(N){if(v)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var E=we.pthreads[N];E.worker.postMessage({cmd:"cancel"})}function X0(N){if(v)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var E=we.pthreads[N];if(E){o()[N+12>>2]=0;var P=E.worker;we.returnWorkerToPool(P)}}var we={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),E=0;E<N;++E)we.allocateUnusedWorker()},initRuntime:function(){for(var N=ns(228),E=0;E<228/4;++E)l()[N/4+E]=0;o()[N+12>>2]=N;var P=N+152;o()[P>>2]=P;for(var q=ns(512),E=0;E<128;++E)l()[q/4+E]=0;Atomics.store(l(),N+100>>2,q),Atomics.store(l(),N+40>>2,N),sm(N,!x,1),Ng(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;we.threadExitHandlers.length>0;)we.threadExitHandlers.pop()();v&&Hi()&&Sg()},runExitHandlersAndDeinitThread:function(N,E){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),we.runExitHandlers(),Atomics.store(l(),N+4>>2,E),Atomics.store(l(),N+0>>2,1),Jl(N+0,2147483647),sm(0,0,0)},threadExit:function(N){var E=Hi();E&&(we.runExitHandlersAndDeinitThread(E,N),v&&postMessage({cmd:"exit"}))},threadCancel:function(){we.runExitHandlersAndDeinitThread(Hi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in we.pthreads){var E=we.pthreads[N];E&&E.worker&&we.returnWorkerToPool(E.worker)}we.pthreads={};for(var P=0;P<we.unusedWorkers.length;++P){var q=we.unusedWorkers[P];q.terminate()}we.unusedWorkers=[];for(var P=0;P<we.runningWorkers.length;++P){var q=we.runningWorkers[P],E=q.pthread;we.freeThreadData(E),q.terminate()}we.runningWorkers=[]},freeThreadData:function(N){if(N){if(N.threadInfoStruct){var E=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,su(E),su(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&su(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){we.runWithoutMainThreadQueuedCalls(function(){delete we.pthreads[N.pthread.threadInfoStruct],we.unusedWorkers.push(N),we.runningWorkers.splice(we.runningWorkers.indexOf(N),1),we.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[Fg>>2]=0;try{N()}finally{o()[Fg>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,E){N.onmessage=function(P){var q=P.data,pe=q.cmd;if(N.pthread&&(we.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Hi()){var le=we.pthreads[q.targetThread];le?le.worker.postMessage(P.data,q.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),we.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")am();else if(pe==="spawnThread")cp(P.data);else if(pe==="cleanupThread")X0(q.thread);else if(pe==="killThread")G0(q.thread);else if(pe==="cancelThread")q0(q.thread);else if(pe==="loaded")N.loaded=!0,E&&E(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(pe==="print")X("Thread "+q.threadId+": "+q.text);else if(pe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(pe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(pe==="exit"){var ue=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);ue&&we.returnWorkerToPool(N)}else if(pe==="exitProcess")try{$9(q.returnCode)}catch(be){if(be instanceof ou)return;throw be}else pe==="cancelDone"?we.returnWorkerToPool(N):pe==="objectTransfer"?we.receiveObjectTransfer(P.data):P.data.target==="setimmediate"?N.postMessage(P.data):G("worker sent an unknown command "+pe);we.currentProxiedOperationCallerThread=void 0},N.onerror=function(P){G("pthread sent an error! "+P.filename+":"+P.lineno+": "+P.message)},k&&(N.on("message",function(P){N.onmessage({data:P})}),N.on("error",function(P){N.onerror(P)}),N.on("exit",function(P){})),N.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:de})},allocateUnusedWorker:function(){var N=T("tfjs-backend-wasm-threaded-simd.worker.js");we.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return we.unusedWorkers.length==0&&(we.allocateUnusedWorker(),we.loadWasmModuleToWorker(we.unusedWorkers[0])),we.unusedWorkers.length>0?we.unusedWorkers.pop():null},busySpinWait:function(N){for(var E=performance.now()+N;performance.now()<E;);}};function K0(N,E){Rg(N,E),Gi(N)}u.establishStackSpace=K0;function Z0(){return ie}u.getNoExitRuntime=Z0;function Y0(N,E){return ta.get(N)(E)}u.invokeEntryPoint=Y0;function J0(N,E,P,q){Ya("Assertion failed: "+De(N)+", at: "+[E?De(E):"unknown filename",P,q?De(q):"unknown function"])}function Q0(N,E){var P=_main(N,E)}var ts;k?ts=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:v?ts=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?ts=dateNow:ts=function(){return performance.now()};function ef(N){return o()[kg()>>2]=N,N}function tf(N,E){if(v)return yr(1,1,N,E)}function nf(N,E){if(N==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var P=we.pthreads[N],q=P&&P.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function af(){Ya()}function rf(N,E,P){var q=df(E,P);return H0[N].apply(null,q)}function sf(N,E){}function of(N,E,P){if(N<=0||N>s().length||N&!0)return-28;if(g){if(Atomics.load(o(),N>>2)!=E)return-6;for(var q=performance.now(),pe=q+P,le=Atomics.exchange(o(),Xi>>2,N);;){if(q=performance.now(),q>pe)return le=Atomics.exchange(o(),Xi>>2,0),-73;if(le=Atomics.exchange(o(),Xi>>2,0),le==0)break;if(am(),Atomics.load(o(),N>>2)!=E)return-6;le=Atomics.exchange(o(),Xi>>2,N)}return 0}else{var ue=Atomics.wait(o(),N>>2,E,P);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function lf(N,E,P){i().copyWithin(N,E,E+P)}function uf(){return k?require("os").cpus().length:navigator.hardwareConcurrency}function yr(N,E){for(var P=arguments.length-2,q=iu(),pe=P,le=qi(pe*8),ue=le>>3,be=0;be<P;be++){var tt=arguments[2+be];d()[ue+be]=tt}var Bt=Cg(N,pe,le,E);return Gi(q),Bt}var Ql=[],eu=[];function df(N,E){eu.length=0;var P;for(E>>=2;P=i()[N++];){var q=P<105;q&&E&1&&E++,eu.push(q?d()[E++>>1]:o()[E]),++E}return eu}function pf(N,E,P){Ql.length=E;for(var q=P>>3,pe=0;pe<E;pe++)Ql[pe]=d()[q+pe];var le=N<0,ue=le?H0[-N-1]:Df[N];return ue.apply(null,Ql)}function cf(){return i().length}function hf(N){try{return Q.grow(N-Ve.byteLength+65535>>>16),Kt(Q.buffer),1}catch(E){}}function ff(N){var E=cf();if(N<=E)return!1;var P=2147483648;if(N>P)return!1;for(var q=1;q<=4;q*=2){var pe=E*(1+.2/q);pe=Math.min(pe,N+100663296);var le=Math.min(P,pt(Math.max(N,pe),65536)),ue=hf(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Pe.eventHandlers.length-1;N>=0;--N)Pe._removeHandler(N);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(mr.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,E,P){function q(ue,be){if(ue.length!=be.length)return!1;for(var tt in ue)if(ue[tt]!=be[tt])return!1;return!0}for(var pe in Pe.deferredCalls){var le=Pe.deferredCalls[pe];if(le.targetFunction==N&&q(le.argsList,P))return}Pe.deferredCalls.push({targetFunction:N,precedence:E,argsList:P}),Pe.deferredCalls.sort(function(ue,be){return ue.precedence<be.precedence})},removeDeferredCalls:function(N){for(var E=0;E<Pe.deferredCalls.length;++E)Pe.deferredCalls[E].targetFunction==N&&(Pe.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var N=0;N<Pe.deferredCalls.length;++N){var E=Pe.deferredCalls[N];Pe.deferredCalls.splice(N,1),--N,E.targetFunction.apply(null,E.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,E){for(var P=0;P<Pe.eventHandlers.length;++P)Pe.eventHandlers[P].target==N&&(!E||E==Pe.eventHandlers[P].eventTypeString)&&Pe._removeHandler(P--)},_removeHandler:function(N){var E=Pe.eventHandlers[N];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Pe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var E=function(q){++Pe.inEventHandler,Pe.currentEventHandler=N,Pe.runDeferredCalls(),N.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=E,N.target.addEventListener(N.eventTypeString,E,N.useCapture),Pe.eventHandlers.push(N),Pe.registerRemoveEventListeners();else for(var P=0;P<Pe.eventHandlers.length;++P)Pe.eventHandlers[P].target==N.target&&Pe.eventHandlers[P].eventTypeString==N.eventTypeString&&Pe._removeHandler(P--)},queueEventHandlerOnThread_iiii:function(N,E,P,q,pe){var le=iu(),ue=qi(12);o()[ue>>2]=P,o()[ue+4>>2]=q,o()[ue+8>>2]=pe,rm(0,N,637534208,E,q,ue),Gi(le)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return we.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function mf(N){var E=rt(N)+1,P=ns(E);return et(N,P,E),P}function Af(N,E,P,q){var pe=iu(),le=qi(12),ue=0;E&&(ue=mf(E)),o()[le>>2]=ue,o()[le+4>>2]=P,o()[le+8>>2]=q,rm(0,N,657457152,0,ue,le),Gi(pe)}function yf(N,E,P,q){E=E?De(E):"",Af(N,E,P,q)}function gf(N){return N>2?De(N):N}var xf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function bf(N){N=gf(N);var E=xf[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return E}function tu(N){return bf(N)}function op(N,E,P){var q=tu(N);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=E,o()[q.canvasSharedPtr+4>>2]=P),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var pe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);pe=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=E,q.height=P,pe&&q.GLctxObject.GLctx.viewport(0,0,E,P)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return yf(ue,N,E,P),1}else return-4;return 0}function lp(N,E,P){return v?yr(2,1,N,E,P):op(N,E,P)}function vf(N,E,P){var q=tu(N);return q?op(N,E,P):lp(N,E,P)}function wf(N){}function kf(N,E){}function If(N){var E=N.getExtension("ANGLE_instanced_arrays");if(E)return N.vertexAttribDivisor=function(P,q){E.vertexAttribDivisorANGLE(P,q)},N.drawArraysInstanced=function(P,q,pe,le){E.drawArraysInstancedANGLE(P,q,pe,le)},N.drawElementsInstanced=function(P,q,pe,le,ue){E.drawElementsInstancedANGLE(P,q,pe,le,ue)},1}function Sf(N){var E=N.getExtension("OES_vertex_array_object");if(E)return N.createVertexArray=function(){return E.createVertexArrayOES()},N.deleteVertexArray=function(P){E.deleteVertexArrayOES(P)},N.bindVertexArray=function(P){E.bindVertexArrayOES(P)},N.isVertexArray=function(P){return E.isVertexArrayOES(P)},1}function Nf(N){var E=N.getExtension("WEBGL_draw_buffers");if(E)return N.drawBuffers=function(P,q){E.drawBuffersWEBGL(P,q)},1}function Tf(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Je={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(N){Je.lastError||(Je.lastError=N)},getNewId:function(N){for(var E=Je.counter++,P=N.length;P<E;P++)N[P]=null;return E},getSource:function(N,E,P,q){for(var pe="",le=0;le<E;++le){var ue=q?o()[q+le*4>>2]:-1;pe+=De(o()[P+le*4>>2],ue<0?void 0:ue)}return pe},createContext:function(N,E){var P=N.getContext("webgl",E);if(!P)return 0;var q=Je.registerContext(P,E);return q},registerContext:function(N,E){var P=ns(8);o()[P+4>>2]=Hi();var q={handle:P,attributes:E,version:E.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=q),Je.contexts[P]=q,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&Je.initExtensions(q),P},makeContextCurrent:function(N){return Je.currentContext=Je.contexts[N],u.ctx=gr=Je.currentContext&&Je.currentContext.GLctx,!(N&&!gr)},getContext:function(N){return Je.contexts[N]},deleteContext:function(N){Je.currentContext===Je.contexts[N]&&(Je.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Je.contexts[N].GLctx.canvas),Je.contexts[N]&&Je.contexts[N].GLctx.canvas&&(Je.contexts[N].GLctx.canvas.GLctxObject=void 0),su(Je.contexts[N].handle),Je.contexts[N]=null},initExtensions:function(N){if(N||(N=Je.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var E=N.GLctx;If(E),Sf(E),Nf(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query"),Tf(E);var P=E.getSupportedExtensions()||[];P.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&E.getExtension(q)})}},populateUniformTable:function(N){for(var E=Je.programs[N],P=Je.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=P.uniforms,pe=gr.getProgramParameter(E,35718),le=0;le<pe;++le){var ue=gr.getActiveUniform(E,le),be=ue.name;P.maxUniformLength=Math.max(P.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var tt=gr.getUniformLocation(E,be);if(tt){var Bt=Je.getNewId(Je.uniforms);q[be]=[ue.size,Bt],Je.uniforms[Bt]=tt;for(var $t=1;$t<ue.size;++$t){var br=be+"["+$t+"]";tt=gr.getUniformLocation(E,br),Bt=Je.getNewId(Je.uniforms),Je.uniforms[Bt]=tt}}}}},Ef=["default","low-power","high-performance"];function Cf(N,E){var P=E>>2,q=o()[P+(24>>2)],pe={alpha:!!o()[P+(0>>2)],depth:!!o()[P+(4>>2)],stencil:!!o()[P+(8>>2)],antialias:!!o()[P+(12>>2)],premultipliedAlpha:!!o()[P+(16>>2)],preserveDrawingBuffer:!!o()[P+(20>>2)],powerPreference:Ef[q],failIfMajorPerformanceCaveat:!!o()[P+(28>>2)],majorVersion:o()[P+(32>>2)],minorVersion:o()[P+(36>>2)],enableExtensionsByDefault:o()[P+(40>>2)],explicitSwapControl:o()[P+(44>>2)],proxyContextToMainThread:o()[P+(48>>2)],renderViaOffscreenBackBuffer:o()[P+(52>>2)]},le=tu(N);if(!le||pe.explicitSwapControl)return 0;var ue=Je.createContext(le,pe);return ue}function Rf(N,E){return Cf(N,E)}var ji={mappings:{},buffers:[null,[],[]],printChar:function(N,E){var P=ji.buffers[N];E===0||E===10?((N===1?X:G)(ze(P,0)),P.length=0):P.push(E)},varargs:void 0,get:function(){ji.varargs+=4;var N=o()[ji.varargs-4>>2];return N},getStr:function(N){var E=De(N);return E},get64:function(N,E){return N}};function up(N){return v?yr(3,1,N):0}function dp(N,E,P,q,pe){if(v)return yr(4,1,N,E,P,q,pe)}function pp(N,E,P,q){if(v)return yr(5,1,N,E,P,q);for(var pe=0,le=0;le<P;le++){for(var ue=o()[E+le*8>>2],be=o()[E+(le*8+4)>>2],tt=0;tt<be;tt++)ji.printChar(N,i()[ue+tt]);pe+=be}return o()[q>>2]=pe,0}function Mf(N){var E=we.threadExitHandlers.pop();N&&E()}function Ff(N,E){we.threadExitHandlers.push(function(){ta.get(N)(E)})}function cp(N){if(v)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var E=we.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";we.runningWorkers.push(E);for(var P=ns(128*4),q=0;q<128;++q)o()[P+q*4>>2]=0;var pe=N.stackBase+N.stackSize,le=we.pthreads[N.pthread_ptr]={worker:E,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),N.detached),Atomics.store(l(),ue+(100>>2),P),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),N.stackSize),Atomics.store(l(),ue+(76>>2),pe),Atomics.store(l(),ue+(104>>2),N.stackSize),Atomics.store(l(),ue+(104+8>>2),pe),Atomics.store(l(),ue+(104+12>>2),N.detached);var be=Ig(),tt=be+40;Atomics.store(l(),ue+(172>>2),tt),E.pthread=le;var Bt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};E.runPthread=function(){Bt.time=performance.now(),E.postMessage(Bt,N.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function $f(N,E,P,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return G("pthread_create called with a null thread pointer!"),28;var pe=[],le=0;if(v&&(pe.length===0||le))return Eg(687865856,N,E,P,q);if(le)return le;var ue=0,be=0,tt=0;E&&E!=-1?(ue=o()[E>>2],ue+=81920,be=o()[E+8>>2],tt=o()[E+12>>2]!==0):ue=2097152;var Bt=be==0;Bt?be=Mg(16,ue):(be-=ue,ce(be>0));for(var $t=ns(228),br=0;br<228>>2;++br)l()[($t>>2)+br]=0;o()[N>>2]=$t,o()[$t+12>>2]=$t;var Ki=$t+152;o()[Ki>>2]=Ki;var bn={stackBase:be,stackSize:ue,allocatedOwnStack:Bt,detached:tt,startRoutine:P,pthread_ptr:$t,arg:q,transferList:pe};return v?(bn.cmd="spawnThread",postMessage(bn,pe)):cp(bn),0}function hp(N){if(v)return yr(6,1,N);switch(N){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return ef(28),-1}v||we.initMainThreadBlock();var gr,Df=[null,tf,lp,up,dp,pp,hp],Of={e:J0,r:Q0,x:nf,b:af,y:rf,j:sf,c:of,d:Jl,f:ts,p:lf,z:uf,u:pf,q:ff,v:vf,i:wf,t:kf,w:Rf,m:up,n:dp,g:pp,o:ip,a:Q||u.wasmMemory,k:Mf,l:Ff,h:$f,s:hp},wg=U0(),fp=u.___wasm_call_ctors=function(){return(fp=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},zf=u._init=function(){return(zf=u._init=u.asm.B).apply(null,arguments)},_f=u._register_tensor=function(){return(_f=u._register_tensor=u.asm.C).apply(null,arguments)},Pf=u._dispose_data=function(){return(Pf=u._dispose_data=u.asm.D).apply(null,arguments)},Lf=u._dispose=function(){return(Lf=u._dispose=u.asm.E).apply(null,arguments)},Wf=u._Abs=function(){return(Wf=u._Abs=u.asm.G).apply(null,arguments)},Bf=u._Add=function(){return(Bf=u._Add=u.asm.H).apply(null,arguments)},Vf=u._AddN=function(){return(Vf=u._AddN=u.asm.I).apply(null,arguments)},jf=u._All=function(){return(jf=u._All=u.asm.J).apply(null,arguments)},Uf=u._Any=function(){return(Uf=u._Any=u.asm.K).apply(null,arguments)},Hf=u._ArgMax=function(){return(Hf=u._ArgMax=u.asm.L).apply(null,arguments)},Gf=u._AvgPool=function(){return(Gf=u._AvgPool=u.asm.M).apply(null,arguments)},qf=u._BatchMatMul=function(){return(qf=u._BatchMatMul=u.asm.N).apply(null,arguments)},Xf=u._Ceil=function(){return(Xf=u._Ceil=u.asm.O).apply(null,arguments)},Kf=u._ClipByValue=function(){return(Kf=u._ClipByValue=u.asm.P).apply(null,arguments)},Zf=u._Conv2D=function(){return(Zf=u._Conv2D=u.asm.Q).apply(null,arguments)},Yf=u._Conv2DBackpropInput=function(){return(Yf=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},Jf=u._Cos=function(){return(Jf=u._Cos=u.asm.S).apply(null,arguments)},Qf=u._CropAndResize=function(){return(Qf=u._CropAndResize=u.asm.T).apply(null,arguments)},em=u._Cumsum=function(){return(em=u._Cumsum=u.asm.U).apply(null,arguments)},tm=u._DepthToSpace=function(){return(tm=u._DepthToSpace=u.asm.V).apply(null,arguments)},mp=u._DepthwiseConv2dNative=function(){return(mp=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},Ap=u._Equal=function(){return(Ap=u._Equal=u.asm.X).apply(null,arguments)},yp=u._Exp=function(){return(yp=u._Exp=u.asm.Y).apply(null,arguments)},nu=u._FlipLeftRight=function(){return(nu=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},Ui=u._Floor=function(){return(Ui=u._Floor=u.asm._).apply(null,arguments)},nm=u._FloorDiv=function(){return(nm=u._FloorDiv=u.asm.$).apply(null,arguments)},au=u._FusedBatchNorm=function(){return(au=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},K=u._FusedConv2D=function(){return(K=u._FusedConv2D=u.asm.ba).apply(null,arguments)},ne=u._FusedDepthwiseConv2D=function(){return(ne=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},Ne=u._Gather=function(){return(Ne=u._Gather=u.asm.da).apply(null,arguments)},Ke=u._GatherNd=function(){return(Ke=u._GatherNd=u.asm.ea).apply(null,arguments)},St=u._Greater=function(){return(St=u._Greater=u.asm.fa).apply(null,arguments)},mt=u._GreaterEqual=function(){return(mt=u._GreaterEqual=u.asm.ga).apply(null,arguments)},je=u._LeakyRelu=function(){return(je=u._LeakyRelu=u.asm.ha).apply(null,arguments)},He=u._Less=function(){return(He=u._Less=u.asm.ia).apply(null,arguments)},Zt=u._LessEqual=function(){return(Zt=u._LessEqual=u.asm.ja).apply(null,arguments)},Ja=u._Log=function(){return(Ja=u._Log=u.asm.ka).apply(null,arguments)},Qa=u._LogicalAnd=function(){return(Qa=u._LogicalAnd=u.asm.la).apply(null,arguments)},gp=u._Max=function(){return(gp=u._Max=u.asm.ma).apply(null,arguments)},ru=u._MaxPool=function(){return(ru=u._MaxPool=u.asm.na).apply(null,arguments)},Un=u._Maximum=function(){return(Un=u._Maximum=u.asm.oa).apply(null,arguments)},xr=u._Mean=function(){return(xr=u._Mean=u.asm.pa).apply(null,arguments)},xp=u._Min=function(){return(xp=u._Min=u.asm.qa).apply(null,arguments)},Gk=u._Minimum=function(){return(Gk=u._Minimum=u.asm.ra).apply(null,arguments)},qk=u._MirrorPad=function(){return(qk=u._MirrorPad=u.asm.sa).apply(null,arguments)},Xk=u._Multiply=function(){return(Xk=u._Multiply=u.asm.ta).apply(null,arguments)},Kk=u._Neg=function(){return(Kk=u._Neg=u.asm.ua).apply(null,arguments)},Zk=u._NonMaxSuppressionV3=function(){return(Zk=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},Yk=u._NonMaxSuppressionV4=function(){return(Yk=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},Jk=u._NonMaxSuppressionV5=function(){return(Jk=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},Qk=u._NotEqual=function(){return(Qk=u._NotEqual=u.asm.ya).apply(null,arguments)},e9=u._OneHot=function(){return(e9=u._OneHot=u.asm.za).apply(null,arguments)},t9=u._PadV2=function(){return(t9=u._PadV2=u.asm.Aa).apply(null,arguments)},n9=u._Pow=function(){return(n9=u._Pow=u.asm.Ba).apply(null,arguments)},a9=u._Prelu=function(){return(a9=u._Prelu=u.asm.Ca).apply(null,arguments)},r9=u._Prod=function(){return(r9=u._Prod=u.asm.Da).apply(null,arguments)},s9=u._RealDiv=function(){return(s9=u._RealDiv=u.asm.Ea).apply(null,arguments)},i9=u._Relu=function(){return(i9=u._Relu=u.asm.Fa).apply(null,arguments)},o9=u._Relu6=function(){return(o9=u._Relu6=u.asm.Ga).apply(null,arguments)},l9=u._ResizeBilinear=function(){return(l9=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},u9=u._Reverse=function(){return(u9=u._Reverse=u.asm.Ia).apply(null,arguments)},d9=u._RotateWithOffset=function(){return(d9=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},p9=u._Round=function(){return(p9=u._Round=u.asm.Ka).apply(null,arguments)},c9=u._Rsqrt=function(){return(c9=u._Rsqrt=u.asm.La).apply(null,arguments)},h9=u._ScatterNd=function(){return(h9=u._ScatterNd=u.asm.Ma).apply(null,arguments)},f9=u._SelectV2=function(){return(f9=u._SelectV2=u.asm.Na).apply(null,arguments)},m9=u._Sigmoid=function(){return(m9=u._Sigmoid=u.asm.Oa).apply(null,arguments)},A9=u._Sin=function(){return(A9=u._Sin=u.asm.Pa).apply(null,arguments)},y9=u._Softmax=function(){return(y9=u._Softmax=u.asm.Qa).apply(null,arguments)},g9=u._Sqrt=function(){return(g9=u._Sqrt=u.asm.Ra).apply(null,arguments)},x9=u._Square=function(){return(x9=u._Square=u.asm.Sa).apply(null,arguments)},b9=u._SquaredDifference=function(){return(b9=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},v9=u._Step=function(){return(v9=u._Step=u.asm.Ua).apply(null,arguments)},w9=u._StridedSlice=function(){return(w9=u._StridedSlice=u.asm.Va).apply(null,arguments)},k9=u._Sub=function(){return(k9=u._Sub=u.asm.Wa).apply(null,arguments)},I9=u._Sum=function(){return(I9=u._Sum=u.asm.Xa).apply(null,arguments)},S9=u._Tan=function(){return(S9=u._Tan=u.asm.Ya).apply(null,arguments)},N9=u._Tanh=function(){return(N9=u._Tanh=u.asm.Za).apply(null,arguments)},T9=u._Tile=function(){return(T9=u._Tile=u.asm._a).apply(null,arguments)},E9=u._TopK=function(){return(E9=u._TopK=u.asm.$a).apply(null,arguments)},C9=u._Transpose=function(){return(C9=u._Transpose=u.asm.ab).apply(null,arguments)},R9=u.__FusedMatMul=function(){return(R9=u.__FusedMatMul=u.asm.bb).apply(null,arguments)},ns=u._malloc=function(){return(ns=u._malloc=u.asm.cb).apply(null,arguments)},su=u._free=function(){return(su=u._free=u.asm.db).apply(null,arguments)},kg=u.___errno_location=function(){return(kg=u.___errno_location=u.asm.eb).apply(null,arguments)},Ig=u._emscripten_get_global_libc=function(){return(Ig=u._emscripten_get_global_libc=u.asm.fb).apply(null,arguments)},Hi=u._pthread_self=function(){return(Hi=u._pthread_self=u.asm.gb).apply(null,arguments)},Sg=u.___pthread_tsd_run_dtors=function(){return(Sg=u.___pthread_tsd_run_dtors=u.asm.hb).apply(null,arguments)},am=u._emscripten_main_thread_process_queued_calls=function(){return(am=u._emscripten_main_thread_process_queued_calls=u.asm.ib).apply(null,arguments)},M9=u._emscripten_current_thread_process_queued_calls=function(){return(M9=u._emscripten_current_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},Ng=u._emscripten_register_main_browser_thread_id=function(){return(Ng=u._emscripten_register_main_browser_thread_id=u.asm.kb).apply(null,arguments)},Tg=u.__emscripten_do_dispatch_to_thread=function(){return(Tg=u.__emscripten_do_dispatch_to_thread=u.asm.lb).apply(null,arguments)},Eg=u._emscripten_sync_run_in_main_thread_4=function(){return(Eg=u._emscripten_sync_run_in_main_thread_4=u.asm.mb).apply(null,arguments)},Cg=u._emscripten_run_in_main_runtime_thread_js=function(){return(Cg=u._emscripten_run_in_main_runtime_thread_js=u.asm.nb).apply(null,arguments)},rm=u.__emscripten_call_on_thread=function(){return(rm=u.__emscripten_call_on_thread=u.asm.ob).apply(null,arguments)},F9=u._emscripten_tls_init=function(){return(F9=u._emscripten_tls_init=u.asm.pb).apply(null,arguments)},sm=u.__emscripten_thread_init=function(){return(sm=u.__emscripten_thread_init=u.asm.qb).apply(null,arguments)},iu=u.stackSave=function(){return(iu=u.stackSave=u.asm.rb).apply(null,arguments)},Gi=u.stackRestore=function(){return(Gi=u.stackRestore=u.asm.sb).apply(null,arguments)},qi=u.stackAlloc=function(){return(qi=u.stackAlloc=u.asm.tb).apply(null,arguments)},Rg=u._emscripten_stack_set_limits=function(){return(Rg=u._emscripten_stack_set_limits=u.asm.ub).apply(null,arguments)},Mg=u._memalign=function(){return(Mg=u._memalign=u.asm.vb).apply(null,arguments)},Fg=u.__emscripten_allow_main_runtime_queued_calls=9808,Xi=u.__emscripten_main_thread_futex=11432;u.cwrap=$e,u.PThread=we,u.PThread=we,u.wasmMemory=Q,u.ExitStatus=ou;var bp;function ou(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}es=function N(){bp||im(),bp||(es=N)};function im(N){if(N=N||f,Za>0)return;if(v){p(u),Yl(),postMessage({cmd:"loaded"});return}if(_0(),Za>0)return;function E(){bp||(bp=!0,u.calledRun=!0,!oe&&(Yl(),P0(),p(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),gn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),E()},1)):E()}u.run=im;function $9(N,E){if(!(E&&ie&&N===0)){if(!E&&v)throw postMessage({cmd:"exitProcess",returnCode:N}),new ou(N);ie||(we.terminateAllThreads(),me=N,ep(),u.onExit&&u.onExit(N),oe=!0),y(N,new ou(N))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return v&&(ie=!1,we.initWorker()),im(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),Q9=bt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},d;for(d in s)s.hasOwnProperty(d)&&(l[d]=s[d]);var u=[],p="./this.program",c=function(K,ne){throw ne},h=!1,m=!1,f=!1,A=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!h&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,k,b,v,I,T;f?(m?y=uu().dirname(y)+"/":y=__dirname+"/",x=function(K,ne){return I||(I=require("fs")),T||(T=uu()),K=T.normalize(K),I.readFileSync(K,ne?null:"utf8")},b=function(K){var ne=x(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof nm))throw K}),process.on("unhandledRejection",Ma),c=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(c=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(b=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),k=function(K,ne,Ne){var Ke=new XMLHttpRequest;Ke.open("GET",K,!0),Ke.responseType="arraybuffer",Ke.onload=function(){if(Ke.status==200||Ke.status==0&&Ke.response){ne(Ke.response);return}Ne()},Ke.onerror=Ne,Ke.send(null)},v=function(K){document.title=K});var R=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(d in l)l.hasOwnProperty(d)&&(s[d]=l[d]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var z;s.wasmBinary&&(z=s.wasmBinary);var _=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ma("no native wasm support detected");var V,j=!1,U;function X(K,ne){K||Ma("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ke,St){var mt={string:function(Un){var xr=0;if(Un!=null&&Un!==0){var xp=(Un.length<<2)+1;xr=nu(xp),de(Un,xr,xp)}return xr},array:function(Un){var xr=nu(Un.length);return oe(Un,xr),xr}};function je(Un){return ne==="string"?ie(Un):ne==="boolean"?Boolean(Un):Un}var He=G(K),Zt=[],Ja=0;if(Ke)for(var Qa=0;Qa<Ke.length;Qa++){var gp=mt[Ne[Qa]];gp?(Ja===0&&(Ja=Ap()),Zt[Qa]=gp(Ke[Qa])):Zt[Qa]=Ke[Qa]}var ru=He.apply(null,Zt);return ru=je(ru),Ja!==0&&yp(Ja),ru}function Y(K,ne,Ne,Ke){Ne=Ne||[];var St=Ne.every(function(je){return je==="number"}),mt=ne!=="string";return mt&&St&&!Ke?G(K):function(){return ee(K,ne,Ne,arguments,Ke)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(K,ne,Ne){for(var Ke=ne+Ne,St=ne;K[St]&&!(St>=Ke);)++St;if(St-ne>16&&K.subarray&&re)return re.decode(K.subarray(ne,St));for(var mt="";ne<St;){var je=K[ne++];if(!(je&128)){mt+=String.fromCharCode(je);continue}var He=K[ne++]&63;if((je&224)==192){mt+=String.fromCharCode((je&31)<<6|He);continue}var Zt=K[ne++]&63;if((je&240)==224?je=(je&15)<<12|He<<6|Zt:je=(je&7)<<18|He<<12|Zt<<6|K[ne++]&63,je<65536)mt+=String.fromCharCode(je);else{var Ja=je-65536;mt+=String.fromCharCode(55296|Ja>>10,56320|Ja&1023)}}return mt}function ie(K,ne){return K?te(Se,K,ne):""}function Q(K,ne,Ne,Ke){if(!(Ke>0))return 0;for(var St=Ne,mt=Ne+Ke-1,je=0;je<K.length;++je){var He=K.charCodeAt(je);if(He>=55296&&He<=57343){var Zt=K.charCodeAt(++je);He=65536+((He&1023)<<10)|Zt&1023}if(He<=127){if(Ne>=mt)break;ne[Ne++]=He}else if(He<=2047){if(Ne+1>=mt)break;ne[Ne++]=192|He>>6,ne[Ne++]=128|He&63}else if(He<=65535){if(Ne+2>=mt)break;ne[Ne++]=224|He>>12,ne[Ne++]=128|He>>6&63,ne[Ne++]=128|He&63}else{if(Ne+3>=mt)break;ne[Ne++]=240|He>>18,ne[Ne++]=128|He>>12&63,ne[Ne++]=128|He>>6&63,ne[Ne++]=128|He&63}}return ne[Ne]=0,Ne-St}function de(K,ne,Ne){return Q(K,Se,ne,Ne)}function oe(K,ne){ke.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var ce,ke,Se,$e,ze,De,Qe,et,rt;function Xe(K){ce=K,s.HEAP8=ke=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=De=new Int32Array(K),s.HEAPU8=Se=new Uint8Array(K),s.HEAPU16=ze=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=rt=new Float64Array(K)}var pt=s.INITIAL_MEMORY||16777216,Ve,An=[],xt=[],Vn=[],Xt=[],yn=!1;xt.push({func:function(){ip()}});function jn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ra(s.preRun.shift());Ar(An)}function Mn(){yn=!0,Ar(xt)}function an(){Ar(Vn)}function Kt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ta(s.postRun.shift());Ar(Xt)}function Ra(K){An.unshift(K)}function ta(K){Xt.unshift(K)}var na=0,fr=null,Ka=null;function mr(K){na++,s.monitorRunDependencies&&s.monitorRunDependencies(na)}function Wi(K){if(na--,s.monitorRunDependencies&&s.monitorRunDependencies(na),na==0&&(fr!==null&&(clearInterval(fr),fr=null),Ka)){var ne=Ka;Ka=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function Ma(K){s.onAbort&&s.onAbort(K),K+="",$(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function Qd(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var _0="data:application/octet-stream;base64,";function Yl(K){return Qd(K,_0)}var P0="file://";function ep(K){return Qd(K,P0)}var gn="tfjs-backend-wasm.wasm";Yl(gn)||(gn=g(gn));function tp(K){try{if(K==gn&&z)return new Uint8Array(z);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(ne){Ma(ne)}}function L0(){if(!z&&(h||m)){if(typeof fetch=="function"&&!ep(gn))return fetch(gn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+gn+"'";return K.arrayBuffer()}).catch(function(){return tp(gn)});if(k)return new Promise(function(K,ne){k(gn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return tp(gn)})}function Za(){var K={a:U0};function ne(je,He){var Zt=je.exports;s.asm=Zt,V=s.asm.i,Xe(V.buffer),Ve=s.asm.o,Wi("wasm-instantiate")}mr("wasm-instantiate");function Ne(je){ne(je.instance)}function Ke(je){return L0().then(function(He){return WebAssembly.instantiate(He,K)}).then(je,function(He){$("failed to asynchronously prepare wasm: "+He),Ma(He)})}function St(){return!z&&typeof WebAssembly.instantiateStreaming=="function"&&!Yl(gn)&&!ep(gn)&&typeof fetch=="function"?fetch(gn,{credentials:"same-origin"}).then(function(je){var He=WebAssembly.instantiateStreaming(je,K);return He.then(Ne,function(Zt){return $("wasm streaming compile failed: "+Zt),$("falling back to ArrayBuffer instantiation"),Ke(Ne)})}):Ke(Ne)}if(s.instantiateWasm)try{var mt=s.instantiateWasm(K,ne);return mt}catch(je){return $("Module.instantiateWasm callback failed with error: "+je),!1}return St().catch(o),{}}function Ar(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?Ve.get(Ne)():Ve.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function es(){Ma()}function W0(K,ne,Ne){Se.copyWithin(K,ne,ne+Ne)}function B0(){return Se.length}function Ya(K){try{return V.grow(K-ce.byteLength+65535>>>16),Xe(V.buffer),1}catch(ne){}}function np(K){var ne=B0(),Ne=2147483648;if(K>Ne)return!1;for(var Ke=1;Ke<=4;Ke*=2){var St=ne*(1+.2/Ke);St=Math.min(St,K+100663296);var mt=Math.min(Ne,me(Math.max(K,St),65536)),je=Ya(mt);if(je)return!0}return!1}var Bi={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Bi.buffers[K];ne===0||ne===10?((K===1?R:$)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Bi.varargs+=4;var K=De[Bi.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function ap(K){return 0}function V0(K,ne,Ne,Ke,St){}function rp(K,ne,Ne,Ke){for(var St=0,mt=0;mt<Ne;mt++){for(var je=De[ne+mt*8>>2],He=De[ne+(mt*8+4)>>2],Zt=0;Zt<He;Zt++)Bi.printChar(K,Se[je+Zt]);St+=He}return De[Ke>>2]=St,0}function xn(){return 6}function sp(K){return De[mp()>>2]=K,K}function j0(K){switch(K){case 30:return 16384;case 85:var ne=2147483648;return ne/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return sp(28),-1}var U0={a:es,d:W0,e:np,f:ap,c:V0,b:rp,g:xn,h:j0},H0=Za(),ip=s.___wasm_call_ctors=function(){return(ip=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Vi=s._init=function(){return(Vi=s._init=s.asm.k).apply(null,arguments)},Jl=s._register_tensor=function(){return(Jl=s._register_tensor=s.asm.l).apply(null,arguments)},G0=s._dispose_data=function(){return(G0=s._dispose_data=s.asm.m).apply(null,arguments)},q0=s._dispose=function(){return(q0=s._dispose=s.asm.n).apply(null,arguments)},X0=s._Abs=function(){return(X0=s._Abs=s.asm.p).apply(null,arguments)},we=s._Add=function(){return(we=s._Add=s.asm.q).apply(null,arguments)},K0=s._AddN=function(){return(K0=s._AddN=s.asm.r).apply(null,arguments)},Z0=s._All=function(){return(Z0=s._All=s.asm.s).apply(null,arguments)},Y0=s._Any=function(){return(Y0=s._Any=s.asm.t).apply(null,arguments)},J0=s._ArgMax=function(){return(J0=s._ArgMax=s.asm.u).apply(null,arguments)},Q0=s._AvgPool=function(){return(Q0=s._AvgPool=s.asm.v).apply(null,arguments)},ts=s._BatchMatMul=function(){return(ts=s._BatchMatMul=s.asm.w).apply(null,arguments)},ef=s._Ceil=function(){return(ef=s._Ceil=s.asm.x).apply(null,arguments)},tf=s._ClipByValue=function(){return(tf=s._ClipByValue=s.asm.y).apply(null,arguments)},nf=s._Conv2D=function(){return(nf=s._Conv2D=s.asm.z).apply(null,arguments)},af=s._Conv2DBackpropInput=function(){return(af=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},rf=s._Cos=function(){return(rf=s._Cos=s.asm.B).apply(null,arguments)},sf=s._CropAndResize=function(){return(sf=s._CropAndResize=s.asm.C).apply(null,arguments)},of=s._Cumsum=function(){return(of=s._Cumsum=s.asm.D).apply(null,arguments)},lf=s._DepthToSpace=function(){return(lf=s._DepthToSpace=s.asm.E).apply(null,arguments)},uf=s._DepthwiseConv2dNative=function(){return(uf=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},yr=s._Equal=function(){return(yr=s._Equal=s.asm.G).apply(null,arguments)},Ql=s._Exp=function(){return(Ql=s._Exp=s.asm.H).apply(null,arguments)},eu=s._FlipLeftRight=function(){return(eu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},df=s._Floor=function(){return(df=s._Floor=s.asm.J).apply(null,arguments)},pf=s._FloorDiv=function(){return(pf=s._FloorDiv=s.asm.K).apply(null,arguments)},cf=s._FusedBatchNorm=function(){return(cf=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},hf=s._FusedConv2D=function(){return(hf=s._FusedConv2D=s.asm.M).apply(null,arguments)},ff=s._FusedDepthwiseConv2D=function(){return(ff=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Pe=s._Gather=function(){return(Pe=s._Gather=s.asm.O).apply(null,arguments)},mf=s._GatherNd=function(){return(mf=s._GatherNd=s.asm.P).apply(null,arguments)},Af=s._Greater=function(){return(Af=s._Greater=s.asm.Q).apply(null,arguments)},yf=s._GreaterEqual=function(){return(yf=s._GreaterEqual=s.asm.R).apply(null,arguments)},gf=s._LeakyRelu=function(){return(gf=s._LeakyRelu=s.asm.S).apply(null,arguments)},xf=s._Less=function(){return(xf=s._Less=s.asm.T).apply(null,arguments)},bf=s._LessEqual=function(){return(bf=s._LessEqual=s.asm.U).apply(null,arguments)},tu=s._Log=function(){return(tu=s._Log=s.asm.V).apply(null,arguments)},op=s._LogicalAnd=function(){return(op=s._LogicalAnd=s.asm.W).apply(null,arguments)},lp=s._Max=function(){return(lp=s._Max=s.asm.X).apply(null,arguments)},vf=s._MaxPool=function(){return(vf=s._MaxPool=s.asm.Y).apply(null,arguments)},wf=s._Maximum=function(){return(wf=s._Maximum=s.asm.Z).apply(null,arguments)},kf=s._Mean=function(){return(kf=s._Mean=s.asm._).apply(null,arguments)},If=s._Min=function(){return(If=s._Min=s.asm.$).apply(null,arguments)},Sf=s._Minimum=function(){return(Sf=s._Minimum=s.asm.aa).apply(null,arguments)},Nf=s._MirrorPad=function(){return(Nf=s._MirrorPad=s.asm.ba).apply(null,arguments)},Tf=s._Multiply=function(){return(Tf=s._Multiply=s.asm.ca).apply(null,arguments)},Je=s._Neg=function(){return(Je=s._Neg=s.asm.da).apply(null,arguments)},Ef=s._NonMaxSuppressionV3=function(){return(Ef=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},Cf=s._NonMaxSuppressionV4=function(){return(Cf=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},Rf=s._NonMaxSuppressionV5=function(){return(Rf=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},ji=s._NotEqual=function(){return(ji=s._NotEqual=s.asm.ha).apply(null,arguments)},up=s._OneHot=function(){return(up=s._OneHot=s.asm.ia).apply(null,arguments)},dp=s._PadV2=function(){return(dp=s._PadV2=s.asm.ja).apply(null,arguments)},pp=s._Pow=function(){return(pp=s._Pow=s.asm.ka).apply(null,arguments)},Mf=s._Prelu=function(){return(Mf=s._Prelu=s.asm.la).apply(null,arguments)},Ff=s._Prod=function(){return(Ff=s._Prod=s.asm.ma).apply(null,arguments)},cp=s._RealDiv=function(){return(cp=s._RealDiv=s.asm.na).apply(null,arguments)},$f=s._Relu=function(){return($f=s._Relu=s.asm.oa).apply(null,arguments)},hp=s._Relu6=function(){return(hp=s._Relu6=s.asm.pa).apply(null,arguments)},gr=s._ResizeBilinear=function(){return(gr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},Df=s._Reverse=function(){return(Df=s._Reverse=s.asm.ra).apply(null,arguments)},Of=s._RotateWithOffset=function(){return(Of=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},wg=s._Round=function(){return(wg=s._Round=s.asm.ta).apply(null,arguments)},fp=s._Rsqrt=function(){return(fp=s._Rsqrt=s.asm.ua).apply(null,arguments)},zf=s._ScatterNd=function(){return(zf=s._ScatterNd=s.asm.va).apply(null,arguments)},_f=s._SelectV2=function(){return(_f=s._SelectV2=s.asm.wa).apply(null,arguments)},Pf=s._Sigmoid=function(){return(Pf=s._Sigmoid=s.asm.xa).apply(null,arguments)},Lf=s._Sin=function(){return(Lf=s._Sin=s.asm.ya).apply(null,arguments)},Wf=s._Softmax=function(){return(Wf=s._Softmax=s.asm.za).apply(null,arguments)},Bf=s._Sqrt=function(){return(Bf=s._Sqrt=s.asm.Aa).apply(null,arguments)},Vf=s._Square=function(){return(Vf=s._Square=s.asm.Ba).apply(null,arguments)},jf=s._SquaredDifference=function(){return(jf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},Uf=s._Step=function(){return(Uf=s._Step=s.asm.Da).apply(null,arguments)},Hf=s._StridedSlice=function(){return(Hf=s._StridedSlice=s.asm.Ea).apply(null,arguments)},Gf=s._Sub=function(){return(Gf=s._Sub=s.asm.Fa).apply(null,arguments)},qf=s._Sum=function(){return(qf=s._Sum=s.asm.Ga).apply(null,arguments)},Xf=s._Tan=function(){return(Xf=s._Tan=s.asm.Ha).apply(null,arguments)},Kf=s._Tanh=function(){return(Kf=s._Tanh=s.asm.Ia).apply(null,arguments)},Zf=s._Tile=function(){return(Zf=s._Tile=s.asm.Ja).apply(null,arguments)},Yf=s._TopK=function(){return(Yf=s._TopK=s.asm.Ka).apply(null,arguments)},Jf=s._Transpose=function(){return(Jf=s._Transpose=s.asm.La).apply(null,arguments)},Qf=s.__FusedMatMul=function(){return(Qf=s.__FusedMatMul=s.asm.Ma).apply(null,arguments)},em=s._malloc=function(){return(em=s._malloc=s.asm.Na).apply(null,arguments)},tm=s._free=function(){return(tm=s._free=s.asm.Oa).apply(null,arguments)},mp=s.___errno_location=function(){return(mp=s.___errno_location=s.asm.Pa).apply(null,arguments)},Ap=s.stackSave=function(){return(Ap=s.stackSave=s.asm.Qa).apply(null,arguments)},yp=s.stackRestore=function(){return(yp=s.stackRestore=s.asm.Ra).apply(null,arguments)},nu=s.stackAlloc=function(){return(nu=s.stackAlloc=s.asm.Sa).apply(null,arguments)};s.cwrap=Y;var Ui;function nm(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Ka=function K(){Ui||au(),Ui||(Ka=K)};function au(K){if(K=K||u,na>0||(jn(),na>0))return;function ne(){Ui||(Ui=!0,s.calledRun=!0,!j&&(Mn(),an(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Kt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=au,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return au(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),eI=bt((e,t)=>{(function(n,a,r){function s(d){var u=this,p=l();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(d),u.s0<0&&(u.s0+=1),u.s1-=p(d),u.s1<0&&(u.s1+=1),u.s2-=p(d),u.s2<0&&(u.s2+=1),p=null}function i(d,u){return u.c=d.c,u.s0=d.s0,u.s1=d.s1,u.s2=d.s2,u}function o(d,u){var p=new s(d),c=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var d=4022871197,u=function(p){p=String(p);for(var c=0;c<p.length;c++){d+=p.charCodeAt(c);var h=.02519603282416938*d;d=h>>>0,h-=d,h*=d,d=h>>>0,h-=d,d+=h*4294967296}return(d>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tI=bt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.x=0,d.y=0,d.z=0,d.w=0,d.next=function(){var c=d.x^d.x<<11;return d.x=d.y,d.y=d.z,d.z=d.w,d.w^=d.w>>>19^c^c>>>8},l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nI=bt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.x^d.x>>>2;return d.x=d.y,d.y=d.z,d.z=d.w,d.w=d.v,(d.d=d.d+362437|0)+(d.v=d.v^d.v<<4^(c^c<<1))|0},d.x=0,d.y=0,d.z=0,d.w=0,d.v=0,l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,p==u.length&&(d.d=d.x<<10^d.x>>>4),d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d.v=l.v,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aI=bt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.x,c=d.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,d.i=c+1&7,m};function u(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(d,l)}function i(l,d){return d.x=l.x.slice(),d.i=l.i,d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.x&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rI=bt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.w,c=d.X,h=d.i,m,f;return d.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,d.i=h,f+(p^p>>>16)|0};function u(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}u(d,l)}function i(l,d){return d.i=l.i,d.w=l.w,d.X=l.X.slice(),d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.X&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sI=bt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.b,h=d.c,m=d.d,f=d.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,d.b=c=c<<20^c>>>12^h,d.c=h=h-m|0,d.d=m<<16^h>>>16^f,d.a=f-c|0},d.a=0,d.b=0,d.c=2654435769|0,d.d=1367130551,l===Math.floor(l)?(d.a=l/4294967296|0,d.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)d.b^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.a=l.a,d.b=l.b,d.c=l.c,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),iI=bt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",d=r.pow(s,i),u=r.pow(2,o),p=u*2,c=s-1,h;function m(b,v,I){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,k(a)]:b==null?x():b,3),T),$=new f(T),z=function(){for(var _=$.g(i),V=d,j=0;_<u;)_=(_+j)*s,V*=s,j=$.g(1);for(;_>=p;)_/=2,V/=2,j>>>=1;return(_+j)/V};return z.int32=function(){return $.g(4)|0},z.quick=function(){return $.g(4)/4294967296},z.double=z,g(k($.S),a),(v.pass||I||function(_,V,j,U){return U&&(U.S&&A(U,$),_.state=function(){return A($,{})}),j?(r[l]=_,V):_})(z,R,"global"in v?v.global:this==r,v.state)}function f(b){var v,I=b.length,T=this,R=0,$=T.i=T.j=0,z=T.S=[];for(I||(b=[I++]);R<s;)z[R]=R++;for(R=0;R<s;R++)z[R]=z[$=c&$+b[R%I]+(v=z[R])],z[$]=v;(T.g=function(_){for(var V,j=0,U=T.i,X=T.j,G=T.S;_--;)V=G[U=c&U+1],j=j*s+G[c&(G[U]=G[X=c&X+V])+(G[X]=V)];return T.i=U,T.j=X,j})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var I=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{I.push(y(b[R],v-1))}catch($){}return I.length?I:T=="string"?b:b+"\0"}function g(b,v){for(var I=b+"",T,R=0;R<I.length;)v[c&R]=c&(T^=v[c&R]*19)+I.charCodeAt(R++);return k(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),k(b)}catch(T){var v=n.navigator,I=v&&v.plugins;return[+new Date,n,I,n.screen,k(a)]}}function k(b){return String.fromCharCode.apply(0,b)}if(g(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=zg()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Pg=bt((e,t)=>{var n=eI(),a=tI(),r=nI(),s=aI(),i=rI(),o=sI(),l=iI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),oI=bt(()=>{}),om={};Fe(om,{bin:()=>Kg,browser:()=>t5,default:()=>lI,dependencies:()=>e5,description:()=>Bg,devDependencies:()=>Jg,jsdelivr:()=>Hg,license:()=>Yg,main:()=>jg,miniprogram:()=>Xg,module:()=>Ug,name:()=>Lg,private:()=>Vg,repository:()=>Zg,scripts:()=>Qg,types:()=>qg,unpkg:()=>Gg,version:()=>Wg});var Lg="@tensorflow/tfjs",Wg="3.5.0",Bg="An open-source machine learning framework.",Vg=!1,jg="dist/tf.node.js",Ug="dist/index.js",Hg="dist/tf.min.js",Gg="dist/tf.min.js",qg="dist/index.d.ts",Xg="dist/miniprogram",Kg={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},Zg={type:"git",url:"https://github.com/tensorflow/tfjs.git"},Yg="Apache-2.0",Jg={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},Qg={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},e5={"@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-converter":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-data":"3.5.0","@tensorflow/tfjs-layers":"3.5.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},t5={"node-fetch":!1,util:!1,crypto:!1},lI={name:Lg,version:Wg,description:Bg,private:Vg,main:jg,module:Ug,jsdelivr:Hg,unpkg:Gg,types:qg,miniprogram:Xg,bin:Kg,repository:Zg,license:Yg,devDependencies:Jg,scripts:Qg,dependencies:e5,browser:t5},lm={};Fe(lm,{browser:()=>x5,default:()=>uI,dependencies:()=>g5,description:()=>r5,devDependencies:()=>A5,engines:()=>h5,jsdelivr:()=>o5,"jsnext:main":()=>d5,license:()=>m5,main:()=>i5,miniprogram:()=>c5,module:()=>p5,name:()=>n5,private:()=>s5,repository:()=>f5,scripts:()=>y5,sideEffects:()=>b5,types:()=>u5,unpkg:()=>l5,version:()=>a5});var n5="@tensorflow/tfjs-core",a5="3.5.0",r5="Hardware-accelerated JavaScript library for machine intelligence",s5=!1,i5="dist/tf-core.node.js",o5="dist/tf-core.min.js",l5="dist/tf-core.min.js",u5="dist/index.d.ts",d5="dist/index.js",p5="dist/index.js",c5="dist/miniprogram",h5={yarn:">= 1.3.2"},f5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},m5="Apache-2.0",A5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},y5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},g5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},x5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},b5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],uI={name:n5,version:a5,description:r5,private:s5,main:i5,jsdelivr:o5,unpkg:l5,types:u5,"jsnext:main":d5,module:p5,miniprogram:c5,engines:h5,repository:f5,license:m5,devDependencies:A5,scripts:y5,dependencies:g5,browser:x5,sideEffects:b5},um={};Fe(um,{browser:()=>_5,default:()=>dI,dependencies:()=>z5,description:()=>k5,devDependencies:()=>$5,jsdelivr:()=>N5,"jsnext:main":()=>C5,license:()=>F5,main:()=>S5,miniprogram:()=>M5,module:()=>R5,name:()=>v5,peerDependencies:()=>O5,private:()=>I5,scripts:()=>D5,types:()=>E5,unpkg:()=>T5,version:()=>w5});var v5="@tensorflow/tfjs-data",w5="3.5.0",k5="TensorFlow Data API in JavaScript",I5=!1,S5="dist/tf-data.node.js",N5="dist/tf-data.min.js",T5="dist/tf-data.min.js",E5="dist/index.d.ts",C5="dist/index.js",R5="dist/index.js",M5="dist/miniprogram",F5="Apache-2.0",$5={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-layers":"3.5.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},D5={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},O5={"@tensorflow/tfjs-core":"3.5.0",seedrandom:"~2.4.3"},z5={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},_5={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},dI={name:v5,version:w5,description:k5,private:I5,main:S5,jsdelivr:N5,unpkg:T5,types:E5,"jsnext:main":C5,module:R5,miniprogram:M5,license:F5,devDependencies:$5,scripts:D5,peerDependencies:O5,dependencies:z5,browser:_5},dm={};Fe(dm,{default:()=>pI,description:()=>W5,devDependencies:()=>Z5,jsdelivr:()=>q5,"jsnext:main":()=>H5,license:()=>B5,main:()=>j5,miniprogram:()=>K5,module:()=>G5,name:()=>P5,peerDependencies:()=>J5,private:()=>V5,scripts:()=>Y5,types:()=>U5,unpkg:()=>X5,version:()=>L5});var P5="@tensorflow/tfjs-layers",L5="3.5.0",W5="TensorFlow layers API in JavaScript",B5="Apache-2.0 AND MIT",V5=!1,j5="dist/tf-layers.node.js",U5="dist/index.d.ts",H5="dist/index.js",G5="dist/index.js",q5="dist/tf-layers.min.js",X5="dist/tf-layers.min.js",K5="dist/miniprogram",Z5={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Y5={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},J5={"@tensorflow/tfjs-core":"3.5.0"},pI={name:P5,version:L5,description:W5,license:B5,private:V5,main:j5,types:U5,"jsnext:main":H5,module:G5,jsdelivr:q5,unpkg:X5,miniprogram:K5,devDependencies:Z5,scripts:Y5,peerDependencies:J5},pm={};Fe(pm,{default:()=>cI,description:()=>tx,devDependencies:()=>cx,jsdelivr:()=>ox,"jsnext:main":()=>ax,license:()=>dx,main:()=>nx,miniprogram:()=>lx,module:()=>rx,name:()=>Q5,peerDependencies:()=>px,repository:()=>ux,scripts:()=>hx,types:()=>sx,unpkg:()=>ix,version:()=>ex});var Q5="@tensorflow/tfjs-converter",ex="3.5.0",tx="Tensorflow model converter for javascript",nx="dist/tf-converter.node.js",ax="dist/index.js",rx="dist/index.js",sx="dist/index.d.ts",ix="dist/tf-converter.min.js",ox="dist/tf-converter.min.js",lx="dist/miniprogram",ux={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},dx="Apache-2.0",px={"@tensorflow/tfjs-core":"3.5.0"},cx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},hx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},cI={name:Q5,version:ex,description:tx,main:nx,"jsnext:main":ax,module:rx,types:sx,unpkg:ix,jsdelivr:ox,miniprogram:lx,repository:ux,license:dx,peerDependencies:px,devDependencies:cx,scripts:hx},hI=1e-7,fI=1e-4,wp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},du=class{refCount(e){return ra("refCount")}incRef(e){return ra("incRef")}timerAvailable(){return!0}time(e){return ra("time")}read(e){return ra("read")}readSync(e){return ra("readSync")}numDataIds(){return ra("numDataIds")}disposeData(e,t){return ra("disposeData")}write(e,t,n){return ra("write")}move(e,t,n,a,r){return ra("move")}memory(){return ra("memory")}floatPrecision(){return ra("floatPrecision")}epsilon(){return this.floatPrecision()===32?hI:fI}dispose(){return ra("dispose")}};function ra(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function fx(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function mI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function pu(e,t,n){return Math.max(e,Math.min(t,n))}function AI(e){return e%2==0?e:e+1}function yI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function gI(e,t){let n=Math.random();return t*n+(1-n)*e}function xI(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function rn(e,t,n=""){F(er(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function rs(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ss(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||tn(e)&&!n)for(let a=0;a<e.length;++a)ss(e[a],t,n);else t.push(e);return t}function Tt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function bI(e){return e.length===0}function er(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Vt(e){return e%1==0}function vI(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function wI(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function kI(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return fx(t),t}function cu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function II(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function SI(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function sa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Vt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function mx(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:sa(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Ax(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function yx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function gx(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function xx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function NI(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function tn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function cm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function bx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function vr(e){return typeof e=="string"||e instanceof String}function vx(e){return typeof e=="boolean"}function wx(e){return typeof e=="number"}function kp(e){return Array.isArray(e)?kp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":wx(e)?"float32":vr(e)?"string":vx(e)?"bool":"float32"}function wr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Ip(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Ji(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function kx(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,d)=>l*d)*(a?2:1);for(let l=0;l<s;l++)r[l]=kx(e+l*o,i,n,a)}return r}function Qi(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return kx(0,e,t,n)}function hm(e,t){let n=Sp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Sp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function TI(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Qi(e,new Float32Array(n));if(t==="int32")return Qi(e,new Int32Array(n));if(t==="bool")return Qi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function fm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function EI(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function CI(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function mm(e){return e&&e.then&&typeof e.then=="function"}var Ix="tfjsflags",Sx=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=RI,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(mm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Ix in e&&e[Ix].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=MI(n,a)})}};function RI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(FI(t,a[0],a[1]),a.join("="))),t}function FI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function MI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return ma}var ma=null;function $I(e){ma=e}var Am;function Nx(){if(Am==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Am=e}return Am}function DI(){let e=Nx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ym(e,t){let n=DI();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var eo="Abs",to="Acos",no="Acosh",kr="Add",is="AddN",ao="All",ro="Any",os="ArgMax",hu="ArgMin",so="Asin",io="Asinh",oo="Atan",lo="Atanh",uo="Atan2",ls="AvgPool",Np="AvgPoolGrad",fu="AvgPool3D",Tp="AvgPool3DGrad",us="BatchMatMul",mu="BatchToSpaceND",Ep="Bincount",Tx="BroadcastTo",ds="Cast",ps="Ceil",Ir="ClipByValue",Cp="Complex",Au="ComplexAbs",po="Concat",cs="Conv2D",Rp="Conv2DBackpropFilter",hs="Conv2DBackpropInput",yu="Conv3D",Mp="Conv3DBackpropFilterV2",Fp="Conv3DBackpropInputV2",fs="Cos",co="Cosh",ms="Cumsum",ho="CropAndResize",$p="DenseBincount",fo="DepthToSpace",As="DepthwiseConv2dNative",Dp="DepthwiseConv2dNativeBackpropFilter",Op="DepthwiseConv2dNativeBackpropInput",zp="Diag",gu="Dilation2D",_p="Dilation2DBackpropInput",Pp="Dilation2DBackpropFilter",ys="RealDiv",Lp="Einsum",mo="Elu",Wp="EluGrad",Ao="Erf",yo="Equal",gs="Exp",go="ExpandDims",xo="Expm1",Bp="FFT",xu="Fill",bo="FlipLeftRight",xs="Floor",bs="FloorDiv",vs="FusedBatchNorm",vo="GatherV2",wo="GatherNd",ko="Greater",ws="GreaterEqual",ks="Identity",Vp="IFFT",jp="Imag",Io="IsFinite",So="IsInf",No="IsNan",Is="LeakyRelu",To="Less",Eo="LessEqual",Up="LinSpace",Ss="Log",Co="Log1p",Ro="LogicalAnd",bu="LogicalNot",vu="LogicalOr",Ex="LogSoftmax",wu="LRN",Hp="LRNGrad",Ns="Max",Ts="Maximum",Es="MaxPool",Gp="MaxPoolGrad",ku="MaxPool3D",qp="MaxPool3DGrad",Xp="MaxPoolWithArgmax",Cs="Mean",Rs="Min",Ms="Minimum",Fs="MirrorPad",Mo="Mod",Kp="Multinomial",$s="Multiply",Fo="Neg",$o="NotEqual",Do="NonMaxSuppressionV3",Oo="NonMaxSuppressionV4",zo="NonMaxSuppressionV5",_o="OnesLike",Ds="OneHot",Po="Pack",Os="PadV2",OI="Pool",zs="Pow",_s="Prelu",Lo="Prod",Iu="Range",Zp="Real",Wo="Reciprocal",Ps="Relu",Bo="Reshape",Su="ResizeNearestNeighbor",Yp="ResizeNearestNeighborGrad",Ls="ResizeBilinear",Jp="ResizeBilinearGrad",Ws="Relu6",Bs="Reverse",Vs="Round",js="Rsqrt",Vo="ScatterNd",jo="Select",Uo="Selu",Ho="Slice",Us="Sin",Go="Sinh",qo="Sign",Hs="Sigmoid",Xo="Softplus",Gs="Sqrt",qs="Sum",Nu="SpaceToBatchND",Ko="SplitV",Xs="Softmax",Qp="SparseReshape",ec="SparseToDense",Ks="SquaredDifference",Tu="Square",Zo="StridedSlice",Zs="Sub",Ys="Tan",Js="Tanh",Sr="Tile",Yo="TopK",tc="Transform",Qs="Transpose",nc="Unique",Jo="Unpack",Eu="UnsortedSegmentSum",Qo="ZerosLike",Nr="Step",ac="FromPixels",el="RotateWithOffset",ei="_FusedMatMul",ti="FusedConv2D",ni="FusedDepthwiseConv2D",tl=ym("kernelRegistry",()=>new Map),Cu=ym("gradRegistry",()=>new Map);function rc(e,t){let n=gm(e,t);return tl.get(n)}function xm(e){return Cu.get(e)}function nl(e){let t=tl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function ai(e){let{kernelName:t,backendName:n}=e,a=gm(t,n);tl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),tl.set(a,e)}function Cx(e){let{kernelName:t}=e;Cu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Cu.set(t,e)}function zI(e,t){let n=gm(e,t);if(!tl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);tl.delete(n)}function _I(e){if(!Cu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Cu.delete(e)}function PI(e,t){nl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});ai(a)})}function gm(e,t){return`${t}_${e}`}var w={};Fe(w,{arraysEqual:()=>er,assert:()=>F,assertNonNegativeIntegerDimensions:()=>fm,assertNonNull:()=>rs,assertShapesMatch:()=>rn,bytesFromStringArray:()=>bx,bytesPerElement:()=>cm,checkConversionForErrors:()=>gx,clamp:()=>pu,computeStrides:()=>Ji,createScalarValue:()=>LI,createShuffledIndices:()=>kI,decodeString:()=>ic,distSquared:()=>xI,encodeString:()=>Mu,fetch:()=>WI,flatten:()=>ss,getArrayFromDType:()=>yx,getTypedArrayFromDType:()=>Ax,hasEncodingLoss:()=>NI,indexToLoc:()=>CI,inferDtype:()=>kp,inferFromImplicitShape:()=>SI,isBoolean:()=>vx,isFunction:()=>wr,isInt:()=>Vt,isNumber:()=>wx,isPromise:()=>mm,isScalarShape:()=>bI,isString:()=>vr,isTypedArray:()=>tn,isValidDtype:()=>xx,locToIndex:()=>EI,makeOnesTypedArray:()=>hm,makeZerosNestedTypedArray:()=>TI,makeZerosTypedArray:()=>Sp,nearestDivisor:()=>Ip,nearestLargerEven:()=>AI,now:()=>Ru,parseAxisParam:()=>sa,randUniform:()=>gI,repeatedTry:()=>II,rightPad:()=>cu,shuffle:()=>fx,shuffleCombo:()=>mI,sizeFromShape:()=>Tt,sizeToSquarishShape:()=>wI,squeezeShape:()=>mx,sum:()=>yI,tanh:()=>vI,toNestedArray:()=>Qi,toTypedArray:()=>sc});function LI(e,t){return t==="string"?Mu(e):sc([e],t)}function BI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function sc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ss(e)),J().getBool("DEBUG")&&gx(e,t),BI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Ru(){return J().platform.now()}function WI(e,t){return J().platform.fetch(e,t)}function Mu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function ic(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var UI=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new jI)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Ru();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Ru()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(d=>{VI(d,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function VI(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var jI=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?cu(`${a}ms`,9):a.error,o=cu(e,25),l=t.rank,d=t.size,u=cu(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${d} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function HI(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let d=e[l],u=d.inputs;for(let p in u){let c=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){d.outputs.forEach(f=>a[f.id]=!0),h=!0,r[d.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let d=e[l],u=d.inputs;for(let p=0;p<d.outputs.length;p++)if(s[d.outputs[p].id]){for(let c in u)s[u[c].id]=!0,i[d.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let d=e[l];if(r[d.id]&&i[d.id]){let u={};for(let c in d.inputs){let h=d.inputs[c];a[h.id]&&(u[c]=h)}let p=Object.assign({},d);p.inputs=u,p.outputs=d.outputs,o.push(p)}}return o}function GI(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let d=e[l.id];d!=null?i.push(d):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let d=n(()=>o[l]());if(d.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${d.dtype}'`);let u=s.inputs[l];if(!er(d.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${d.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=d;else{let p=e[u.id];e[u.id]=a(p,d),p.dispose()}}}}var Rx=20,Fu=3,bm=7;function XI(e,t,n,a){let r=Ji(t),s=qI(e,t,n,r),i=t.length,o=oc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(d=>" "+d).join(`
|
|
`)),l.join(`
|
|
`)}function qI(e,t,n,a){let r=Tt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Du(e):e;if(o>1)for(let d=0;d<r/s;d++){let u=d*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],$u(l[u+p],0,n).length)}return i}function $u(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(bm))} + ${parseFloat(e[1].toFixed(bm))}j`:vr(e)?a=`'${e}'`:n==="bool"?a=Mx(e):a=parseFloat(e.toFixed(bm)).toString(),cu(a,t)}function Mx(e){return e===0?"false":"true"}function oc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Du(e);return[$u(f[0],0,n)]}return n==="bool"?[Mx(e[0])]:[e[0].toString()]}if(l===1){if(o>Rx){let A=Fu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Fu)*i,o*i));return n==="complex64"&&(y=Du(y),g=Du(g)),["["+y.map((x,k)=>$u(x,r[k],n)).join(", ")+", ..., "+g.map((x,k)=>$u(x,r[o-Fu+k],n)).join(", ")+"]"]}let f=n==="complex64"?Du(e):Array.from(e);return["["+f.map((A,y)=>$u(A,r[y],n)).join(", ")+"]"]}let d=t.slice(1),u=a.slice(1),p=a[0]*i,c=[];if(o>Rx){for(let f=0;f<Fu;f++){let A=f*p,y=A+p;c.push(...oc(e.slice(A,y),d,n,u,r,!1))}c.push("...");for(let f=o-Fu;f<o;f++){let A=f*p,y=A+p;c.push(...oc(e.slice(A,y),d,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let A=f*p,y=A+p;c.push(...oc(e.slice(A,y),d,n,u,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Du(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Dt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Tt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||yx(t,this.size),this.strides=Ji(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return $a().makeTensor(this.values,this.shape,this.dtype)}},$a=null,al=null,KI=null;function ZI(e){$a=e}function YI(e){al=e}function JI(e){KI=e}var Le=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Tt(e),this.strides=Ji(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return al.buffer(this.shape,this.dtype,e)}bufferSync(){return al.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Qi(this.shape,e,this.dtype==="complex64")}arraySync(){return Qi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=$a().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>ic(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$a().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ic(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $a().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($a().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return al.print(this,e)}clone(){return this.throwIfDisposed(),al.clone(this)}toString(e=!1){let t=this.dataSync();return XI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),al.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),$a().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return ym("Tensor",()=>Le)}Z();var Ou=class extends Le{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!er(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$a().disposeTensor(this),this.dataId=e.dataId,$a().incRef(this,null)}dispose(){$a().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ou,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var Aa={};Fe(Aa,{assertTypesMatch:()=>Fx,getTensorsInContainer:()=>vm,isTensorInList:()=>QI,makeTypesMatch:()=>vt});var wm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(wm||(wm={}));var km;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(km||(km={}));var Im;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Im||(Im={}));var Sm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Sm||(Sm={}));var Nm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Nm||(Nm={}));var eS={float32:Sm,int32:km,bool:Im,complex64:Nm};function ia(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return eS[e][t]}function lc(e){return ia(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ia(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Fx(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function QI(e,t){return t.some(n=>n.id===e.id)}function vm(e){let t=[],n=new Set;return $x(e,t,n),t}function $x(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!tS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),$x(s,t,n))}}function tS(e){return Array.isArray(e)||typeof e=="object"}function Tm(e){return e.kernelName!=null}var Dx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},zu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Dx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new UI(this.backendInstance),!0}setupRegisteredKernels(){nl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){nl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof du)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return zu.nextTensorId++}nextVariableId(){return zu.nextVariableId++}clone(e){let t=D.runKernel(ks,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return D.runKernel(ds,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(rc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Tm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Tm(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=rc(h,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,g);let x=g.map(k=>{if(k.rank!=null)return k;let{dataId:b,shape:v,dtype:I}=k;return this.makeTensorFromDataId(b,v,I)});if(a){let k=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(k)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:d,attrs:u}=e,p=Tm(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,d,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,d,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(d).map(h=>d[h]!=null?d[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=xm(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,d)=>s[d]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&vr(e[0])&&(r=e.map(o=>Mu(o)));let s=a.write(r,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=bx(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Le(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Ou(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*cm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Ou||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*cm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=xm(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((d,u)=>{if(d==null){let p=n[u],c=Sp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return d}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=vm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=HI(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?nS(r.shape):n,GI(i,s,l=>this.tidy(l),aS);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let d of l.saved)d.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(wr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(wr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),d=Array.isArray(l)?l:[l];F(d.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(d.every(p=>p instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return d.forEach((p,c)=>{u[c]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ru(),n=await this.backend.time(e);return n.wallMs=Ru()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Dx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};zu.nextTensorId=0;zu.nextVariableId=0;function nS(e){let t=hm(Tt(e),"float32");return D.makeTensor(t,e,"float32")}function Ox(){let e=Nx();if(e._tfengine==null){let t=new Sx(e);e._tfengine=new zu(t)}return $I(e._tfengine.ENV),ZI(()=>e._tfengine),e._tfengine}var D=Ox();function aS(e,t){let n={a:e,b:t};return D.runKernel(kr,n)}var _u={};Fe(_u,{isBrowser:()=>zx,isMobile:()=>rS});function sS(){return typeof navigator!="undefined"&&navigator!=null}function rS(e){if(e||sS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function zx(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ya=J();ya.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ya.registerFlag("IS_BROWSER",()=>zx());ya.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ya.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ya.registerFlag("PROD",()=>!1);ya.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ya.getBool("DEBUG"));ya.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ya.registerFlag("IS_TEST",()=>!1);ya.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ya.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Da(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&_x(e,a,[]),a}function _x(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)_x(e[r],a,n.concat(r))}function Px(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof Le)return Px(a,e.dtype,t,n),e;let r=kp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Px(a,r,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Da(e,r);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?sc(e,r):ss(e,[],!0);return D.makeTensor(i,s,r)}function Pu(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var Lx="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Lx;let r=(...s)=>{D.startScope(n);try{let i=a(...s);return mm(i)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(i),i}catch(i){throw D.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function iS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");rn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return D.runKernel(Cp,r)}var Tr=O({complex_:iS});function Er(e,t,n,a){if(a==null&&(a=kp(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){fm(t);let r=Tt(t),s=Tt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Tt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?sc(e,a):ss(e,[],!0),D.makeTensor(e,t,a)}function ga(e,t,n){let a=Da(e,n);return Er(e,t,a,n)}var Em={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},uc=4;async function lS(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let d={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((A,y)=>A+y.length,0)+uc*c.length,m=new Uint8Array(h),f=0;for(let A=0;A<c.length;A++){let y=c[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=uc,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(d.group=t),n.push(d)}let s=await Promise.all(a);return{data:oS(s),specs:n}}function Wx(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,d=Tt(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Em[p.dtype],h=e.slice(r,r+d*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];u[f]=A*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=uS()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];u[f]=Math.round(A*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=d*c}else if(o==="string"){let p=Tt(s.shape);u=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+uc))[0];r+=uc;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=Em[o],c=e.slice(r,r+d*p);if(o==="float32")u=new Float32Array(c);else if(o==="int32")u=new Int32Array(c);else if(o==="bool")u=new Uint8Array(c);else if(o==="complex64"){u=new Float32Array(c);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=ga(h,l,"float32"),A=ga(m,l,"float32");n[i]=Tr(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=d*p}o!=="complex64"&&(n[i]=ga(u,l,o))}return n}function oS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Cm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Bx(e){return Cm?Buffer.byteLength(e):new Blob([e]).size}function dS(e){if(Cm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function pS(e){if(Cm){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Rm(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Vx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Lu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Bx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Bx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function cS(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function hS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function fS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function uS(){let e=cS(),t=hS(),n=fS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Nt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Nt.instance==null&&(Nt.instance=new Nt),Nt.instance}static registerSaveRouter(e){Nt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Nt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Nt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Nt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Nt.getInstance().loadRouters:Nt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},mS=e=>Nt.registerSaveRouter(e),AS=e=>Nt.registerLoadRouter(e),yS=e=>Nt.getSaveHandlers(e),gS=(e,t)=>Nt.getLoadHandlers(e,t),Mm="tensorflowjs",Fm=1,ri="models_store",Cr="model_info_store";function jx(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function $m(e){let t=e.result;t.createObjectStore(ri,{keyPath:"modelPath"}),t.createObjectStore(Cr,{keyPath:"modelPath"})}var si=class{constructor(e){if(this.indexedDB=jx(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Mm,Fm);r.onupgradeneeded=()=>$m(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(ri,"readonly"),o=i.objectStore(ri).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Lu(t),o=s.transaction(Cr,"readwrite"),l=o.objectStore(Cr),d=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;d.onsuccess=()=>{u=s.transaction(ri,"readwrite");let p=u.objectStore(ri).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore(Cr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},d.onerror=p=>(s.close(),a(d.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};si.URL_SCHEME="indexeddb://";var Ux=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(si.URL_SCHEME)?xS(e.slice(si.URL_SCHEME.length)):null;Nt.registerSaveRouter(Ux);Nt.registerLoadRouter(Ux);function xS(e){return new si(e)}function bS(e){return e.startsWith(si.URL_SCHEME)?e.slice(si.URL_SCHEME.length):e}var vS=class{constructor(){this.indexedDB=jx()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Mm,Fm);n.onupgradeneeded=()=>$m(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Cr,"readonly"),s=r.objectStore(Cr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=bS(e),new Promise((t,n)=>{let a=this.indexedDB.open(Mm,Fm);a.onupgradeneeded=()=>$m(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Cr,"readwrite"),i=s.objectStore(Cr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let d=i.delete(e),u=()=>{l=r.transaction(ri,"readwrite");let p=l.objectStore(ri).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};d.onsuccess=u,d.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=d=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},tr="/",rl="tensorflowjs_models",Hx="info",wS="model_topology",kS="weight_specs",IS="weight_data",SS="model_metadata";function Gx(e){return{info:[rl,e,Hx].join(tr),topology:[rl,e,wS].join(tr),weightSpecs:[rl,e,kS].join(tr),weightData:[rl,e,IS].join(tr),modelMetadata:[rl,e,SS].join(tr)}}function NS(e){let t=e.split(tr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(tr)}function TS(e){return e.startsWith(ii.URL_SCHEME)?e.slice(ii.URL_SCHEME.length):e}var ii=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Gx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Lu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,dS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=pS(s),t}};ii.URL_SCHEME="localstorage://";var qx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ii.URL_SCHEME)?ES(e.slice(ii.URL_SCHEME.length)):null;Nt.registerSaveRouter(qx);Nt.registerLoadRouter(qx);function ES(e){return new ii(e)}var CS=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=rl+tr,n=tr+Hx;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=NS(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=TS(e);let t=Gx(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},sl="://",Gn=class{constructor(){this.managers={}}static getInstance(){return Gn.instance==null&&(Gn.instance=new Gn),Gn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(sl)&&(e=e.slice(0,e.indexOf(sl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Gn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function dc(e){if(e.indexOf(sl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Gn.getSchemes().join(",")}`);return{scheme:e.split(sl)[0],path:e.split(sl)[1]}}async function Xx(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Nt.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Nt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=dc(e).scheme,l=dc(e).path,d=o===dc(e).scheme,u=await r.load();n&&d&&await Gn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!d&&await Gn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function RS(){let e=Gn.getSchemes(),t={};for(let n of e){let a=await Gn.getManager(n).listModels();for(let r in a){let s=n+sl+r;t[s]=a[r]}}return t}async function MS(e){let t=dc(e);return Gn.getManager(t.scheme).removeModel(t.path)}async function FS(e,t){return Xx(e,t,!1)}async function $S(e,t){return Xx(e,t,!0)}var DS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new DS);try{Gn.registerManager(ii.URL_SCHEME,new CS)}catch(e){}try{Gn.registerManager(si.URL_SCHEME,new vS)}catch(e){}}var OS={importFetch:()=>V9()},Dm,zS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Dm==null&&(Dm=OS.importFetch()),Dm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new zS);function We(e,t="float32",n){return t=t||"float32",fm(e),new Dt(e,t,n)}function _S(e,t){let n=M(e,"x","cast");if(!xx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return D.runKernel(ds,a,r)}var Ae=O({cast_:_S});function PS(e){let t={x:M(e,"x","clone","string_or_numeric")};return D.runKernel(ks,t)}var Oa=O({clone_:PS});function Kx(e,t=!1){console.log(e.toString(t))}Ox();var LS={buffer:We,cast:Ae,clone:Oa,print:Kx};YI(LS);var vn={};Fe(vn,{browserFiles:()=>WS,browserHTTPRequest:()=>VS,concatenateArrayBuffers:()=>Rm,copyModel:()=>FS,decodeWeights:()=>Wx,encodeWeights:()=>lS,fromMemory:()=>jS,getLoadHandlers:()=>gS,getModelArtifactsInfoForJSON:()=>Lu,getSaveHandlers:()=>yS,http:()=>zm,isHTTPScheme:()=>Om,listModels:()=>RS,loadWeights:()=>BS,moveModel:()=>$S,registerLoadRouter:()=>AS,registerSaveRouter:()=>mS,removeModel:()=>MS,weightsLoaderFactory:()=>Zx,withSaveHandler:()=>US});var HS="model",GS=".json",qS=".weights.bin";function Yx(e){return new Promise(t=>setTimeout(t)).then(e)}var il=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(il.URL_SCHEME)&&(e=e.slice(il.URL_SCHEME.length)),(e==null||e.length===0)&&(e=HS),this.modelTopologyFileName=e+GS,this.weightDataFileName=e+qS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await Yx(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Yx(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Lu(e)}}}};il.URL_SCHEME="downloads://";var XS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let d;try{d=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],c=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=p.indexOf(m);if(c[g]=y,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Rm(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(d[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>Vx(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=Vx(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},ZS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(il.URL_SCHEME)?KS(e.slice(il.URL_SCHEME.length)):null;Nt.registerSaveRouter(ZS);function KS(e="model"){return new il(e)}function WS(e){return new XS(e)}function Jx(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(d=>{let u=n+ ++r/e.length*(a-n);return t(u),d}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,d){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(d>=0&&d<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${d}`),F(d>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${d}`)}return Promise.all(e.map(s))}async function Qx(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,a=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await Jx(a,t.onProgress,r,s)).map(d=>d.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Jx(i,t.onProgress,o,l)}async function BS(e,t="",n,a){return Zx(r=>Qx(r,{requestInit:a}))(e,t,n)}function Zx(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Em[y]*Tt(A.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};a!=null?a.forEach((k,b)=>{k===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),d=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;d.push(f)})});let u=await e(d),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=u[c+x].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let x=0;x<m;x++){let k=new Uint8Array(u[c+x]);y.set(k,g),g+=k.byteLength}s[h].forEach(x=>{let k=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=Wx(k,[x.manifestEntry]);for(let v in b)p[v]=b[v]}),c+=m}),p}}var YS="application/octet-stream",JS="application/json",_m=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:JS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:YS}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Lu(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let d,u;a!=null&&([d,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:d,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=QS(t),r=this.weightPathPrefix||n,s=[];for(let d of e)s.push(...d.weights);let i=[],o=[];for(let d of e)for(let u of d.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Qx(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Rm(l)]}};_m.URL_SCHEME_REGEX=/^https?:\/\//;function QS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Om(e){return e.match(_m.URL_SCHEME_REGEX)!=null}var eb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Om(a)):n=Om(e),n)return zm(e,t)}return null};Nt.registerSaveRouter(eb);Nt.registerLoadRouter(eb);function zm(e,t){return new _m(e,t)}function VS(e,t){return zm(e,t)}var Pm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},eN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function jS(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Pm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Pm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Pm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function US(e){return new eN(e)}var tb={};Fe(tb,{confusionMatrix:()=>tN});function nN(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=vt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return D.runKernel(us,i,o)}var Be=O({matMul_:nN});function aN(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return D.runKernel(Ds,r,s)}var ol=O({oneHot_:aN});function rN(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return D.runKernel(Qs,a,r)}var Ze=O({transpose_:rN});function sN(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ol(Ae(a,"int32"),n),i=ol(Ae(r,"int32"),n),o=Ze(s),l=Be(o,i);return Ae(l,"int32")}var tN=O({confusionMatrix_:sN}),oi={};Fe(oi,{fromPixels:()=>lN,fromPixelsAsync:()=>iN,toPixels:()=>oN});function pc(e,t,n){if(rs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Da(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Er(e,t,a,n)}var ll;function nb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(rc(ac,D.backendName)!=null){let c={pixels:e},h={numChannels:t};return D.runKernel(ac,c,h)}let[l,d]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,d).data:a||n?u=e.data:(s||r||o)&&(ll==null&&(ll=document.createElement("canvas").getContext("2d")),ll.canvas.width=l,ll.canvas.height=d,ll.drawImage(e,0,0,l,d),u=ll.getImageData(0,0,l,d).data);let p;if(t===4)p=new Int32Array(u);else{let c=l*d;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return pc(p,[d,l,t],"int32")}function uN(e){return e!=null&&e.data instanceof Uint8Array}function dN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function pN(e){return e!=null&&e.width!==0&&e.height!==0}function cN(e){return dN()&&!(e instanceof ImageBitmap)&&pN(e)&&!uN(e)}async function iN(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&cN(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return nb(n,t)}async function oN(e,t){let n=M(e,"img","toPixels");if(!(e instanceof Le)){let d=n;n=Ae(d,"int32"),d.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let d=0;d<a*r;++d){let u=[0,0,0,255];for(let c=0;c<s;c++){let h=i[d*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[c]=h*o}let p=d*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let d=t.getContext("2d"),u=new ImageData(l,r,a);d.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var lN=O({fromPixels_:nb}),Lm={};Fe(Lm,{prepareAndValidate:()=>ab});function ab(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Tt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let d=1;for(let p=s;p<n;++p)d*=o[p],l.push(o[p]);let u=[...Ji(e.shape).map(p=>p/d),1].slice(0,s);return[l,i,d,u]}var Wm={};Fe(Wm,{calculateShapes:()=>rb,validateInput:()=>Vm,validateUpdateShape:()=>Bm});function Bm(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Vm(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Bm(n,t,e)}function rb(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Tt(t.shape)/o,d=[...Ji(n.slice(0,r)),1],u=Tt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:d,outputSize:u}}var sn={};Fe(sn,{assertParamsValid:()=>hN,computeFlatOffset:()=>mN,computeOutShape:()=>sb,getNormalizedAxes:()=>ob,isSliceContinous:()=>fN,maskToAxes:()=>cc,parseSliceParams:()=>hb,sliceInfo:()=>AN,startForAxis:()=>pb,startIndicesWithElidedDims:()=>lb,stopForAxis:()=>cb,stopIndicesWithElidedDims:()=>ub,stridesForAxis:()=>db,stridesWithElidedDims:()=>ib});function hN(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function cc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function sb(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function ib(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function fb(e,t,n){return n<=e?n:n-(t-1)}function mb(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function ob(e,t,n,a,r,s,i,o,l){let d=e.length,u=new Array(d),p=new Array(d),c=new Array(d);if(t.length&&n>0){let h=t[0],m=n+1;u=lb(i,h,m,a,e),p=ub(o,h,m,r,e),c=ib(s,h,m,e)}else for(let h=0;h<d;h++)u[h]=pb(i,a,s,e,h,l),p[h]=cb(o,r,s,e,h,l),c[h]=db(s,h,l);return{begin:u,end:p,strides:c}}function lb(e,t,n,a,r){let s=[...r],i=mb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=fb(t,n,o),d=a[l];e&1<<l&&(d=0),s[o]=d}return s}function ub(e,t,n,a,r){let s=[...r],i=mb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=fb(t,n,o),d=a[l];e&1<<l&&(d=Number.MAX_SAFE_INTEGER),s[o]=d}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=pu(0,s[o],r[o])}return s}function db(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function pb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=pu(0,i,l-1),i}function cb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=pu(0,i,l):i=pu(-1,i,l-1),i}function fN(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function mN(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function hb(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function AN(e,t,n,a,r,s,i,o,l){let d=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(d.length));let c=cc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-d.length,m=cc(o),f=e.slice();m.forEach(v=>{d[v]=0,u[v]=1,f.splice(v,0,1)});let{begin:A,end:y,strides:g}=ob(f,c,h,d,u,p,r,s,i);d=A,u=y,p=g;let x=cc(l);x.forEach(v=>{u[v]=d[v]+1,p[v]=1});let k=sb(d,u,p),b=k.filter((v,I)=>x.indexOf(I)===-1);return{nonStrided:p.every(v=>v===1),$begin:d,$end:u,$strides:p,size:k,newShape:f,outShape:b}}var ae={};Fe(ae,{Serializable:()=>Ab,SerializationMap:()=>li,registerClass:()=>Rr});var Ab=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},li=class{constructor(){this.classNameMap={}}static getMap(){return li.instance==null&&(li.instance=new li),li.instance}static register(e){li.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Rr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),li.register(e)}var yb={};Fe(yb,{TEST_EPSILON_FLOAT16:()=>gb,encodeStrings:()=>xb,expectArrayBuffersEqual:()=>wN,expectArraysClose:()=>yN,expectArraysEqual:()=>xN,expectNumbersClose:()=>bN,expectPromiseToFail:()=>gN,expectValuesInRange:()=>vN,testEpsilon:()=>jm});var kN=.001,gb=.1;function yN(e,t,n){return n==null&&(n=jm()),Um(e,t,(a,r)=>Hm(a,r,n))}function jm(){return D.backend.floatPrecision()===32?kN:gb}function Um(e,t,n){let a=!0;if((tn(e)||tn(t))&&(a=!1),tn(e)&&tn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Da(e),o=Da(t);if(!er(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=tn(e)?e:ss(e),s=tn(t)?t:ss(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function gN(e,t){e().then(()=>t.fail(),()=>t())}function xN(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return vr(e)||vr(e[0])||vr(t)||vr(t[0])?Um(e,n,(a,r)=>a==r):Um(e,t,(a,r)=>Hm(a,r,0))}function bN(e,t,n){if(n==null&&(n=jm()),!Hm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Hm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function vN(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function wN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function xb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?xb(n):e[t]=Mu(n)}return e}var IN="3.5.0";function SN(){J().set("PROD",!0)}function NN(){J().set("DEBUG",!0)}function TN(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Gm(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}JI(Gm);function EN(){D.disposeVariables()}function nr(){return D}function hc(){return D.memory()}function CN(e){return D.profile(e)}function L(e,t){return D.tidy(e,t)}function Ee(e){vm(e).forEach(t=>t.dispose())}function jt(e){return D.keep(e)}function RN(e){return D.time(e)}function MN(e){return D.setBackend(e)}function FN(){return D.ready()}function $N(){return D.backendName}function DN(e){D.removeBackend(e)}function qm(e){return D.findBackend(e)}function ON(e){return D.findBackendFactory(e)}function ul(e,t,n=1){return D.registerBackend(e,t,n)}function bb(){return D.backend}function zN(e,t){J().setPlatform(e,t)}function _N(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel(kr,r)}var se=O({add_:_N});function PN(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel(bs,r)}var fc=O({floorDiv_:PN});function LN(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=vt(n,a),n.dtype==="int32"&&a.dtype==="int32")return fc(n,a);let r={a:n,b:a},s={};return D.runKernel(ys,r,s)}var ge=O({div_:LN});function WN(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel($s,r)}var B=O({mul_:WN});function BN(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return D.runKernel(Au,n)}else{let n={x:t};return D.runKernel(eo,n)}}var Ot=O({abs_:BN});function VN(e){let t={x:M(e,"x","acos")};return D.runKernel(to,t)}var Xm=O({acos_:VN});function jN(e){let t={x:M(e,"x","acosh")};return D.runKernel(no,t)}var Km=O({acosh_:jN});function UN(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!er(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return D.runKernel(is,a)}var mc=O({addN_:UN});function HN(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return D.runKernel(ao,a,r)}var Ac=O({all_:HN});function GN(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return D.runKernel(ro,a,r)}var Wu=O({any_:GN});function qN(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return D.runKernel(os,n,a)}var Bu=O({argMax_:qN});function XN(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return D.runKernel(hu,n,a)}var Zm=O({argMin_:XN});function KN(e){let t={x:M(e,"x","asin")};return D.runKernel(so,t)}var Ym=O({asin_:KN});function ZN(e){let t={x:M(e,"x","asinh")};return D.runKernel(io,t)}var Jm=O({asinh_:ZN});function YN(e){let t={x:M(e,"x","atan")};return D.runKernel(oo,t)}var Qm=O({atan_:YN});function JN(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel(uo,r)}var eA=O({atan2_:JN});function QN(e){let t={x:M(e,"x","atanh")};return D.runKernel(lo,t)}var tA=O({atanh_:QN});function eT(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=vb(r);return Vu(e,o,n,s,a,null,null,l)}function wb(e,t,n,a,r,s,i="channelsLast"){let[o,l]=yc(t),d;if(i==="channelsLast")d=[o,l,e[3],e[3]];else if(i==="channelsFirst")d=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Vu(e,d,n,a,r,s,!1,i)}function tT(e,t,n,a,r,s,i="NDHWC"){let[o,l,d]=nA(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,d,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,d,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return kb(e,u,n,a,r,!1,p,s)}function Vu(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,d,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,d,u,p]=e;else if(o==="channelsFirst")[l,p,d,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,A]=yc(n),[y,g]=yc(a),x=dl(c,y),k=dl(h,g),{padInfo:b,outHeight:v,outWidth:I}=nT(r,d,u,f,A,x,k,s,o),T=i?m*p:m,R;return o==="channelsFirst"?R=[l,T,v,I]:o==="channelsLast"&&(R=[l,v,I,T]),{batchSize:l,dataFormat:o,inHeight:d,inWidth:u,inChannels:p,outHeight:v,outWidth:I,outChannels:T,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:k,dilationHeight:y,dilationWidth:g,inShape:e,outShape:R,filterShape:t}}function kb(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,d,u,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,d,u,p,c]=e;else if(i==="channelsFirst")[l,c,d,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,A]=t,[y,g,x]=nA(n),[k,b,v]=nA(a),I=dl(h,k),T=dl(m,b),R=dl(f,v),{padInfo:$,outDepth:z,outHeight:_,outWidth:V}=aT(r,d,u,p,y,g,x,I,T,R,o),j=s?A*c:A,U;return i==="channelsFirst"?U=[l,j,z,_,V]:i==="channelsLast"&&(U=[l,z,_,V,j]),{batchSize:l,dataFormat:i,inDepth:d,inHeight:u,inWidth:p,inChannels:c,outDepth:z,outHeight:_,outWidth:V,outChannels:j,padInfo:$,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:I,effectiveFilterHeight:T,effectiveFilterWidth:R,dilationDepth:k,dilationHeight:b,dilationWidth:v,inShape:e,outShape:U,filterShape:t}}function rT(e,t,n,a,r){a==null&&(a=aA(e,t,n));let s=e[0],i=e[1],o=ui((s-t+2*a)/n+1,r),l=ui((i-t+2*a)/n+1,r);return[o,l]}function sT(e,t,n,a,r,s){r==null&&(r=aA(e,t,a));let i=e[0],o=e[1],l=e[2],d=ui((i-t+2*r)/a+1,s),u=ui((o-t+2*r)/a+1,s),p=ui((l-t+2*r)/a+1,s);return[d,u,p,n]}function aA(e,t,n,a=1){let r=dl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function yc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function nA(e){return typeof e=="number"?[e,e,e]:e}function dl(e,t){return t<=1?e:e+(e-1)*(t-1)}function nT(e,t,n,a,r,s,i,o,l){let d,u,p;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=rT([t,n],s,a,e,o);u=c[0],p=c[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,A=Math.floor(h/2),y=h-A;d={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];d={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=ui((t-s+c+h)/a+1,o),p=ui((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outHeight:u,outWidth:p}}function aT(e,t,n,a,r,s,i,o,l,d,u){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=sT([t,n,a,1],o,1,r,e,u);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,A=(h-1)*s+l-n,y=(m-1)*i+d-a,g=Math.floor(f/2),x=f-g,k=Math.floor(A/2),b=A-k,v=Math.floor(y/2),I=y-v;p={top:k,bottom:b,left:v,right:I,front:g,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-d+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function ui(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Mr(e){let[t,n,a]=yc(e);return t===1&&n===1&&a===1}function za(e,t){return Mr(e)||Mr(t)}function vb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function iT(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return D.runKernel(Bo,n,a)}var H=O({reshape_:iT});function oT(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;F(za(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Vt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(ls,d,u);return p=Ae(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ju=O({avgPool_:oT});function lT(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Vt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(fu,d,u);return p=Ae(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var rA=O({avgPool3d_:lT});function uT(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Pu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Oa(n[0]);let a=n,r={axis:t};return D.runKernel(po,a,r)}var ot=O({concat_:uT});function dT(e){let t={x:M(e,"x","sigmoid")};return D.runKernel(Hs,t)}var wn=O({sigmoid_:dT});function pT(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return D.runKernel(Ho,r,s)}var Me=O({slice_:pT});function cT(e){let t={x:M(e,"x","tanh")};return D.runKernel(Js,t)}var di=O({tanh_:cT});function hT(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),d=M(a,"data","basicLSTMCell"),u=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=ot([d,p],1),h=Be(c,o),m=se(h,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Me(m,[0,0],y),x=Me(m,[0,A],y),k=Me(m,[0,A*2],y),b=Me(m,[0,A*3],y),v=se(B(wn(g),di(x)),B(u,wn(se(i,k)))),I=B(di(v),wn(b));return[v,I]}var fT=O({basicLSTMCell_:hT});function mT(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return D.runKernel(mu,s,i)}var Uu=O({batchToSpaceND_:mT});function AT(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function yT(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;a!=null&&(u=M(a,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:AT(i),scale:d,offset:u,mean:o,variance:l},c={varianceEpsilon:s},h=D.runKernel(vs,p,c);return H(h,i.shape)}var pi=O({batchNorm_:yT});function gT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;return a!=null&&(u=M(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${d.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,d,s)}var Ib=O({batchNorm2d_:gT});function xT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;return a!=null&&(u=M(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${d.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,d,s)}var Sb=O({batchNorm3d_:xT});function bT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;return a!=null&&(u=M(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${d.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),pi(i,o,l,u,d,s)}var Nb=O({batchNorm4d_:bT});function vT(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return D.runKernel(Ep,s,i)}var Tb=O({bincount_:vT});function wT(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,d)=>l>1?d:-1).filter(l=>l>=0).length===0)return Oa(n);let i={x:n},o={reps:s};return D.runKernel(Sr,i,o)}var pl=O({broadcastTo_:wT});function kT(e){let t={x:M(e,"x","ceil")};return D.runKernel(ps,t)}var sA=O({ceil_:kT});function IT(e,t,n){let a=M(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return D.runKernel(Ir,r,s)}var kn=O({clipByValue_:IT});function ST(e){return ot(e,0)}var Eb=O({concat1d_:ST});function NT(e,t){return ot(e,t)}var cl=O({concat2d_:NT});function TT(e,t){return ot(e,t)}var Cb=O({concat3d_:TT});function ET(e,t){return ot(e,t)}var Rb=O({concat4d_:ET});function CT(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),d=o,u=!1;o.rank===3&&(u=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(d.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Vt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?d.shape[3]:d.shape[1];F(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),F(za(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:d,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=D.runKernel(cs,c,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ar=O({conv2d_:CT});function RT(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),d=o,u=!1;o.rank===2&&(u=!0,d=H(o,[1,o.shape[0],o.shape[1]])),F(d.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${d.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Vt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(d.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${d.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(za(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=H(d,[d.shape[0],1,d.shape[1],d.shape[2]]),h=ar(c,p,[1,n],a,"NHWC",[1,s],i);return u?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var gc=O({conv1d_:RT});function MT(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,d=!1;t.rank===3&&(d=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Vt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=D.runKernel(hs,c,h);return d?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var iA=O({conv2DBackpropInput_:MT});function FT(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return iA(n,i,o,a,r,"NHWC",s)}var xc=O({conv2dTranspose_:FT});function $T(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,d=!1;i.rank===4&&(d=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(za(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=D.runKernel(yu,u,p);return d?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var oA=O({conv3d_:$T});function DT(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],d=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(d===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=D.runKernel(Fp,u,p);return o?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Mb=O({conv3DBackpropInput_:DT});function OT(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return Mb(n,s,i,a,r)}var Fb=O({conv3dTranspose_:OT});function zT(e){let t={x:M(e,"x","cos")};return D.runKernel(fs,t)}var Hu=O({cos_:zT});function _T(e){let t={x:M(e,"x","cosh")};return D.runKernel(co,t)}var bc=O({cosh_:_T});function PT(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return D.runKernel(ms,r,s)}var vc=O({cumsum_:PT});function LT(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return D.runKernel($p,i,o)}var $b=O({denseBincount_:LT});function WT(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return D.runKernel(fo,o,l)}var lA=O({depthToSpace_:WT});function BT(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),d=o,u=!1;o.rank===3&&(u=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(d.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(d.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Vt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:d,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=D.runKernel(As,p,c);return u?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var hl=O({depthwiseConv2d_:BT});function VT(e){let t={x:M(e,"x","diag")};return D.runKernel(zp,t)}var jT=O({diag_:VT});function UT(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,d=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),d=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=D.runKernel(gu,u,p);return d?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var uA=O({dilation2d_:UT});function HT(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function zt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ct(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function GT(e,t){let n=M(e,"a","equal"),a=M(t,"b","equal");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(yo,r)}var Fr=O({equal_:GT});function qT(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=ct(ct(s.shape,a.shape),r.shape),o=pl(s,i),l=pl(a,i),d=pl(r,i),u={condition:o,t:l,e:d};return D.runKernel(jo,u)}var In=O({where_:qT});function XT(e){let t={x:M(e,"x","zerosLike")};return D.runKernel(Qo,t)}var Ue=O({zerosLike_:XT});function KT(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=vt(n,a);let r=ge(n,a),s=Ue(r),i=Fr(a,s);return In(i,s,r)}var dA=O({divNoNan_:KT});function ZT(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return Be(n,i)}}var Db=O({dot_:ZT});function YT(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return D.runKernel(Lp,n,a)}var Ob=O({einsum_:YT});function JT(e){let t={x:M(e,"x","elu")};return D.runKernel(mo,t)}var fl=O({elu_:JT});function QT(e){let t=M(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));let n={x:t};return D.runKernel(Ao,n)}var pA=O({erf_:QT});function eE(e){let t={x:M(e,"x","exp")};return D.runKernel(gs,t)}var qn=O({exp_:eE});function tE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return D.runKernel(go,a,r)}var on=O({expandDims_:tE});function nE(e){let t={x:M(e,"x","expm1")};return D.runKernel(xo,t)}var cA=O({expm1_:nE});function aE(e,t){let n=M(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return D.runKernel(Sr,a,r)}var $r=O({tile_:aE});function rE(e,t,n,a="float32"){t==null&&(t=e);let r=We([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return $r(on(i,0),[n[0],1,1]);if(n.length===2)return $r(on(on(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return $r(on(on(on(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var hA=O({eye_:rE});function Gu(e,t,n){let a={shape:e,value:t,dtype:n};return D.runKernel(xu,{},a)}function sE(e){let t={x:M(e,"x","floor")};return D.runKernel(xs,t)}var ml=O({floor_:sE});function iE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return D.runKernel(vo,i,o)}var ci=O({gather_:iE});function oE(e,t){let n=M(e,"a","greater"),a=M(t,"b","greater");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(ko,r)}var oa=O({greater_:oE});function lE(e,t){let n=M(e,"a","greaterEqual"),a=M(t,"b","greaterEqual");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(ws,r)}var Dr=O({greaterEqual_:lE});function uE(e){let t={input:M(e,"input","imag")};return D.runKernel(jp,t)}var wc=O({imag_:uE});function dE(e){let t={x:M(e,"x","isFinite")};return D.runKernel(Io,t)}var zb=O({isFinite_:dE});function pE(e){let t={x:M(e,"x","isInf")};return D.runKernel(So,t)}var _b=O({isInf_:pE});function cE(e){let t={x:M(e,"x","isNaN")};return D.runKernel(No,t)}var fA=O({isNaN_:cE});function hE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return D.runKernel(Is,n,a)}var qu=O({leakyRelu_:hE});function fE(e,t){let n=M(e,"a","less"),a=M(t,"b","less");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(To,r)}var kc=O({less_:fE});function mE(e,t){let n=M(e,"a","lessEqual"),a=M(t,"b","lessEqual");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Eo,r)}var hi=O({lessEqual_:mE});function Pb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return D.runKernel(Up,{},a)}function AE(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Vt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},d={depthRadius:t,bias:n,alpha:a,beta:r},u=D.runKernel(wu,l,d);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var mA=O({localResponseNormalization_:AE});function yE(e){let t={x:M(e,"x","log")};return D.runKernel(Ss,t)}var Fn=O({log_:yE});function gE(e){let t={x:M(e,"x","log1p")};return D.runKernel(Co,t)}var Ic=O({log1p_:gE});function xE(e){return F(wr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(a),[a],r);return r!=null&&rn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Sc(i),i[0]})}}function bE(e){return F(wr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Pu(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(...a),a,r);return r!=null&&rn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Sc(i),i})}}function vE(e){return F(wr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=D.gradients(()=>e(t),[t],n);return Sc(a),{grad:a[0],value:r}}}function wE(e){return F(wr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=D.gradients(()=>e(...t),t,n);return n!=null&&rn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Sc(a.grads),a}}function Lb(e,t){F(wr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(d=>d instanceof Ou),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let d in D.registeredVariables)t.push(D.registeredVariables[d])}let a=n?t.filter(d=>!d.trainable):null,r=t.length;t=t.filter(d=>d.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=D.gradients(e,t,null,s);F(o.some(d=>d!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((d,u)=>{o[u]!=null&&(l[d.name]=o[u])}),a!=null&&a.forEach(d=>l[d.name]=null),{value:i,grads:l}}function _a(e){return D.customGrad(e)}function Sc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function kE(e){let t={x:M(e,"x","neg")};return D.runKernel(Fo,t)}var wt=O({neg_:kE});function IE(e){let t={x:M(e,"x","softplus")};return D.runKernel(Xo,t)}var fi=O({softplus_:IE});function SE(e){let t=M(e,"x","logSigmoid");return _a(n=>({value:wt(fi(wt(n))),gradFunc:a=>B(a,wn(wt(n)))}))(t)}var Wb=O({logSigmoid_:SE});function NE(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return D.runKernel(Ns,a,r)}var Xn=O({max_:NE});function TE(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel(Zs,r)}var ye=O({sub_:TE});function EE(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=Ae(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(qs,r,s)}var Te=O({sum_:EE});function CE(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return _a((a,r)=>{let s=!0,i=Xn(a,t,!0),o=ye(a,i),l=ye(Ae(o,"float32"),Fn(Te(qn(o),t,s)));return r([l]),{value:l,gradFunc:(d,u)=>{let[p]=u,c=!0,h=qn(p);return ye(d,B(Te(d,t,c),h))}}})(n)}var Nc=O({logSoftmax_:CE});function AA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Bb(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function Vb(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function mi(e,t){let n=t.map(a=>1);return Bb(e,n,t)}function RE(e,t,n){F(AA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function jb(e,t){if(AA(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function yA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function ME(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function FE(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=sa(t,a.shape),s=Xn(a,r,!0),i=ye(a,s),o=qn(i),l=Te(o,r),d=Fn(l),u=se(H(s,d.shape),d);if(n){let p=mi(u.shape,r);return H(u,p)}return u}var gA=O({logSumExp_:FE});function $E(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Ro,r)}var la=O({logicalAnd_:$E});function DE(e){let t={x:M(e,"x","logicalNot","bool")};return D.runKernel(bu,t)}var Xu=O({logicalNot_:DE});function OE(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(vu,r)}var Tc=O({logicalOr_:OE});function zE(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return ct(n.shape,a.shape),la(Tc(e,t),Xu(la(e,t)))}var Ub=O({logicalXor_:zE});function _E(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(za(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Vt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(Es,d,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ku=O({maxPool_:_E});function PE(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Vt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(ku,d,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var xA=O({maxPool3d_:PE});function LE(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=D.runKernel(Xp,s,i);return{result:o[0],indexes:o[1]}}var Hb=O({maxPoolWithArgmax_:LE});function WE(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=vt(n,a),n.dtype==="bool"&&(n=Ae(n,"int32"),a=Ae(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Ts,r)}var Pa=O({maximum_:WE});function BE(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return D.runKernel(Cs,a,r)}var kt=O({mean_:BE});function Ct(e,t="float32"){if(t==="complex64"){let a=Ct(e,"float32"),r=Ct(e,"float32");return Tr(a,r)}let n=Sp(Tt(e),t);return D.makeTensor(n,e,t)}function $n(e,t="float32"){if(t==="complex64"){let a=$n(e,"float32"),r=Ct(e,"float32");return Tr(a,r)}let n=hm(Tt(e),t);return D.makeTensor(n,e,t)}function VE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Tt(a.shape),i=Tt(r.shape);return n==="xy"?(a=H(a,[1,-1]),r=H(r,[-1,1]),[Be($n([i,1],a.dtype),a),Be(r,$n([1,s],r.dtype))]):(a=H(a,[-1,1]),r=H(r,[1,-1]),[Be(a,$n([1,i],a.dtype)),Be($n([s,1],r.dtype),r)])}function jE(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return D.runKernel(Rs,a,r)}var Al=O({min_:jE});function UE(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=vt(n,a),n.dtype==="bool"&&(n=Ae(n,"int32"),a=Ae(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Ms,r)}var yl=O({minimum_:UE});function HE(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return D.runKernel(Fs,i,s)}var bA=O({mirrorPad_:HE});function GE(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel(Mo,r)}var vA=O({mod_:GE});function qE(e){let t=M(e,"x","square"),n={};return D.runKernel("Square",{x:t},n)}var st=O({square_:qE});function XE(e,t=null,n=!1){e=M(e,"x","moments");let a=sa(t,e.shape),r=kt(e,a,n),s=r.shape;n||(s=mi(r.shape,a));let i=st(ye(Ae(e,"float32"),H(r,s))),o=kt(i,a,n);return{mean:r,variance:o}}var Ec=O({moments_:XE});function KE(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=Pu(n,"c","multiRNNCell"),i=Pu(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let d=[],u=[];for(let p=0;p<l.length;p+=2)d.push(l[p]),u.push(l[p+1]);return[d,u]}var ZE=O({multiRNNCell_:KE});function YE(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},d=D.runKernel(Kp,o,l);return i===1?H(d,[d.size]):d}var Gb=O({multinomial_:YE});function JE(e,t){let n=M(e,"a","notEqual"),a=M(t,"b","notEqual");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return D.runKernel($o,r)}var Ai=O({notEqual_:JE});function QE(e){let t={x:M(e,"x","onesLike")};return D.runKernel(_o,t)}var Dn=O({onesLike_:QE});function eC(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return Be(r,s)}var tC=O({outerProduct_:eC});function nC(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return D.runKernel(Os,s,r)}var rr=O({pad_:nC});function aC(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),rr(e,[t],n)}var rC=O({pad1d_:aC});function sC(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var iC=O({pad2d_:sC});function oC(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var lC=O({pad3d_:oC});function uC(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var dC=O({pad4d_:uC});function pC(e,t,n){let a=M(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return D.runKernel(Nu,r,s)}var Zu=O({spaceToBatchND_:pC});function fC(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(za(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let d=wb(o.shape,t,s,r,a),u=[d.dilationHeight,d.dilationWidth],p;a==="same"?p=hC([d.filterHeight,d.filterWidth],u):p=[[0,0],[0,0]];let c=u[0]===1&&u[1]===1,[h,m]=cC([d.inHeight,d.inWidth],u,p),f=c?a:"valid",A=c?o:Zu(o,u,h),y=(n==="avg"?()=>ju(A,t,s,f):()=>Ku(A,t,s,f))(),g=c?y:Uu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function cC(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),d=t.map((u,p)=>[0,i[p]]);return[l,d]}function hC(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var qb=O({pool_:fC});function mC(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=vt(n,a);let r={a:n,b:a};return D.runKernel(zs,r)}var sr=O({pow_:mC});function AC(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return D.runKernel(_s,r)}var Yu=O({prelu_:AC});function yC(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=Ae(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Lo,r,s)}var Cc=O({prod_:yC});function gC(e,t,n){let a=Tt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return D.makeTensor(r,e,n)}var xC=O({rand_:gC}),wA=Yi(_g()),kA=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=wA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},bC=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=wA.alea(r.toString()),this.randn=new kA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},vC=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=wA.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function wC(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new bC(t,n,a,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var kC=O({randomGamma_:wC});function IC(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new kA(t,n,a,!1,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Xb=O({randomNormal_:IC});function SC(e,t=0,n=1,a="float32",r){let s=We(e,a),i=new vC(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var gl=O({randomUniform_:SC});function Rc(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return D.runKernel(Iu,{},r)}function NC(e){let t={input:M(e,"input","real")};return D.runKernel(Zp,t)}var Ju=O({real_:NC});function TC(e){let t={x:M(e,"x","reciprocal")};return D.runKernel(Wo,t)}var IA=O({reciprocal_:TC});function EC(e){let t={x:M(e,"x","relu")};return D.runKernel(Ps,t)}var La=O({relu_:EC});function CC(e){let t={x:M(e,"x","relu6")};return D.runKernel(Ws,t)}var Mc=O({relu6_:CC});function RC(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return D.runKernel(Bs,n,a)}var On=O({reverse_:RC});function MC(e){let t=M(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),On(t,0)}var FC=O({reverse1d_:MC});function $C(e,t){let n=M(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),On(n,t)}var DC=O({reverse2d_:$C});function OC(e,t){let n=M(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),On(n,t)}var zC=O({reverse3d_:OC});function _C(e,t){let n=M(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),On(n,t)}var PC=O({reverse4d_:_C});function LC(e){let t={x:M(e,"x","round")};return D.runKernel(Vs,t)}var SA=O({round_:LC});function WC(e){let t={x:M(e,"x","rsqrt")};return D.runKernel(js,t)}var Fc=O({rsqrt_:WC});function Ie(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Er(e,[],[],t)}function BC(e){let t={x:M(e,"x","selu")};return D.runKernel(Uo,t)}var $c=O({selu_:BC});function VC(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),d=M(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(d.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(d.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${d.shape[0]}.`),F(d.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${d.shape[1]}.`);let c=l.shape[2],h=l.shape[3];F(d.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${d.shape[2]}.`);let m=hl(u,l,a,r,i,s),f=ar(m,d,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var NA=O({separableConv2d_:VC});async function jC(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Dt([o],n.dtype),d=new Dt([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],d.values[p]=u,p++);return[l.toTensor(),d.toTensor()]}var Kb=jC;function UC(e){let t={x:M(e,"x","sign")};return D.runKernel(qo,t)}var TA=O({sign_:UC});function HC(e){let t={x:M(e,"x","sin")};return D.runKernel(Us,t)}var Dc=O({sin_:HC});function GC(e){let t={x:M(e,"x","sinh")};return D.runKernel(Go,t)}var Oc=O({sinh_:GC});function qC(e,t,n){let a=M(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Me(a,[t],[n])}var zc=O({slice1d_:qC});function XC(e,t,n){let a=M(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Me(a,t,n)}var EA=O({slice2d_:XC});function KC(e,t,n){let a=M(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Me(a,t,n)}var _c=O({slice3d_:KC});function ZC(e,t,n){let a=M(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Me(a,t,n)}var Qu=O({slice4d_:ZC});function YC(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return D.runKernel(Xs,a,r)}var ed=O({softmax_:YC});function JC(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Bp,t)}var td=O({fft_:JC});function QC(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Vp,t)}var xl=O({ifft_:QC});function eR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=xl(r)}else{let r=[n,2*(t-1)],s=H(Ju(e),[n,t]),i=H(wc(e),[n,t]),o=On(Me(s,[0,1],[n,t-2]),1),l=B(On(Me(i,[0,1],[n,t-2]),1),Ie(-1)),d=ot([s,o],1),u=ot([i,l],1),p=H(Tr(d,u),[r[0],r[1]]);a=xl(p)}if(a=Ju(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Pc=O({irfft_:eR});function tR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return D.runKernel(Ko,a,r)}var ln=O({split_:tR});function nR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,r=Me(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=ot([e,Ct(m)],e.shape.length-1),n=t}else r=e;let s=Ue(r),i=H(Tr(r,s),[a,n]),o=td(i),l=Math.floor(n/2)+1,d=Ju(o),u=wc(o),p=ln(d,[l,n-l],d.shape.length-1),c=ln(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(Tr(p[0],c[0]),h)}var nd=O({rfft_:nR});function aR(e){let t={x:M(e,"x","sqrt")};return D.runKernel(Gs,t)}var Jt=O({sqrt_:aR});function rR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=vt(n,a),ct(n.shape,a.shape);let r={a:n,b:a},s={};return D.runKernel(Ks,r,s)}var Lc=O({squaredDifference_:rR});function sR(e,t){let n=M(e,"x","squeeze");return H(n,mx(n.shape,t).newShape)}var Or=O({squeeze_:sR});function iR(e,t=0){let n=Pu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return D.runKernel(Po,a,r)}var zn=O({stack_:iR});function oR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return D.runKernel(Nr,n,a)}var bl=O({step_:oR});function lR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let d={x:M(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return D.runKernel(Zo,d,u)}var CA=O({stridedSlice_:lR});function uR(e){let t={x:M(e,"x","tan")};return D.runKernel(Ys,t)}var RA=O({tan_:uR});function nn(e,t){rs(e);let n=Da(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Er(e,null,n,t)}function Kn(e,t,n){if(rs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Da(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Er(e,t,a,n)}function dR(e,t,n){if(rs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Da(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Er(e,t,a,n)}function pR(e,t,n){if(rs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Da(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Er(e,t,a,n)}function cR(e,t,n){if(rs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Da(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Er(e,t,a,n)}function hR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=D.runKernel(Yo,s,i);return{values:o,indices:l}}var MA=O({topk_:hR});function fR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new kA(t,n,a,!0,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Wc=O({truncatedNormal_:fR});function mR(e,t=0){let n=M(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=D.runKernel(nc,a,r);return{values:s,indices:i}}var Bc=O({unique_:mR});function AR(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");F(Vt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return D.runKernel(Eu,s,i)}var FA=O({unsortedSegmentSum_:AR});function yR(e,t=0){let n=M(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return D.runKernel(Jo,a,r)}var ua=O({unstack_:yR});function Zb(e,t=!0,n,a){return D.makeVariable(e,t,n,a)}function Yb(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=We(e,"int32"),r=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function gR(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=Yb(t.shape,n);return e!==t&&t.dispose(),a}var $A=gR;async function xR(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),rn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let d=o.slice(0,s).concat([l],o.slice(s+i)),u=H(a,d),p=H(r,[-1]),c=await $A(p),h=Or(c,[1]),m=ci(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),c.dispose(),m}var bR=xR;function vR(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=Jb(e,t,n),s=r.shape;if(a){let i=sa(n,e.shape);s=mi(r.shape,i)}return H(r,s)}function Jb(e,t,n=null){if(e.rank===0)return Ot(e);if(e.rank!==1&&n===null)return Jb(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Te(Ot(e),n);if(t===Infinity)return Xn(Ot(e),n);if(t===-Infinity)return Al(Ot(e),n);if(t==="euclidean"||t===2)return Jt(Te(sr(Ot(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Xn(Te(Ot(e),n[0]),n[1]-1);if(t===Infinity)return Xn(Te(Ot(e),n[1]),n[0]);if(t===-Infinity)return Al(Te(Ot(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Jt(Te(st(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Vc=O({norm_:vR});function wR(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");Fx(s,i),F(er(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Ie(1),d=ye(l,o),u=B(ye(i,s),d);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");u=ge(u,ye(l,sr(o,p)))}return se(s,u)}var kR=O({movingAverage_:wR});function IR(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");Vm(r,a,n);let s={indices:a,updates:r},i={shape:n};return D.runKernel(Vo,s,i)}var Qb=O({scatterND_:IR});function SR(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function NR(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);SR(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return D.runKernel(ec,o,l)}var DA=O({sparseToDense_:NR});function TR(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND"),indices:n};return D.runKernel(wo,a)}var e3=O({gatherND_:TR});function ER(e,t){if(t==null)return e.shape.slice();if(er(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function CR(e,t,n,a){let r=M(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?r.clone():r;let s=ER(r,n),i=1-t,o=ge(ml(se(gl(s,0,1,"float32",a),i)),i);return B(r,o)}var t3=O({dropout_:CR});function n3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function OA(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return nn(r,"float32")}async function RR(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),rn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,d]=[i.length/s,s],u=Ax("bool",l);for(let p=0;p<l;p++){let c=p*d,h=i.subarray(c,c+d),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,A)=>A.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),ga(u,r.shape,"bool")}var MR=RR,zr={};Fe(zr,{conv2d:()=>FR,depthwiseConv2d:()=>$R,matMul:()=>DR});function OR(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let d=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];F(d===n[2],()=>`Error in conv2dDerFilter: depth of input ${d}) must match input depth in filter (${n[2]}.`),F(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&F(Vt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return D.runKernel(Rp,p,c)}var zA=O({conv2DBackpropFilter_:OR});function jc(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,bl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Uc(e,t){let n=t,a=zt(e.shape,t.shape);return a.length>0&&(n=Te(n,a)),H(n,e.shape)}function Hc(e,t,n,a){if(t==="linear")return e;if(t==="relu")return La(e);if(t==="elu")return fl(e);if(t==="relu6")return Mc(e);if(t==="prelu")return Yu(e,n);if(t==="leakyrelu")return qu(e,a);if(t==="sigmoid")return wn(e);throw new Error(`Unknown fused activation ${t}.`)}var Gc=(e,t)=>!(e>0)||t==="linear";function zR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:d,leakyreluAlpha:u}){if(l=l||"linear",Gc(D.state.gradientDepth,l)===!1){let b=ar(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Hc(b,l,d,u)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&F(Vt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),F(za(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Vu(h.shape,c.shape,n,s,a,i),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=vt(A,p),ct(f.outShape,A.shape));let y;d!=null&&(y=M(d,"prelu weights","fused conv2d"));let g=(b,v)=>{let[I,T,R,$]=v,z=jc(b,R,l);F(Mr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let _=iA(T.shape,z,I,n,a),V=zA(T,z,I.shape,n,a),j=[_,V];if($!=null){let U=Uc($,z);j.push(U)}return j},x={x:h,filter:c,bias:A,preluActivationWeights:y},k={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?_a((b,v,I)=>{let T=D.runKernel(ti,x,k);return I([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):_a((b,v,I,T)=>{let R=D.runKernel(ti,x,k);return T([v,b,R,I]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var FR=O({fusedConv2d_:zR});function _R(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let d={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return D.runKernel(Dp,d,u)}var a3=O({depthwiseConv2dNativeBackpropFilter_:_R});function PR(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let d={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=D.runKernel(Op,d,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var r3=O({depthwiseConv2dNativeBackpropInput_:PR});function LR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:d,leakyreluAlpha:u}){if(Gc(D.state.gradientDepth,l)===!1){let b=hl(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Hc(b,l,d,u)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),F(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),F(za(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Vt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Vu(h.shape,c.shape,n,s,a,i,!0),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=vt(A,p),ct(f.outShape,A.shape));let y;d!=null&&(y=M(d,"prelu weights","fused depthwiseConv2d"));let g=(b,v)=>{F(Mr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[I,T,R,$]=v,z=jc(b,R,l),_=r3(T.shape,z,I,n,a,s,i),V=a3(T,z,I.shape,n,a,s,i);if($!=null){let j=Uc(A,z);return[_,V,j]}return[_,V]},x={x:h,filter:c,bias:A,preluActivationWeights:y},k={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?_a((b,v,I)=>{let T=D.runKernel(ni,x,k);return I([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):_a((b,v,I,T)=>{let R=D.runKernel(ni,x,k);return T([v,b,R,I]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var $R=O({fusedDepthwiseConv2d_:LR});function WR({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Gc(D.state.gradientDepth,s)===!1){let $=Be(e,t,n,a);return r!=null&&($=se($,r)),Hc($,s,i,o)}let l=M(e,"a","fused matMul"),d=M(t,"b","fused matMul");[l,d]=vt(l,d);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?d.shape[d.rank-1]:d.shape[d.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?d.shape[d.rank-2]:d.shape[d.rank-1],m=l.shape.slice(0,-2),f=d.shape.slice(0,-2),A=Tt(m),y=Tt(f);F(l.rank>=2&&d.rank>=2&&l.rank===d.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${d.rank}.`),F(er(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${d.shape} must match.`),F(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${d.shape} and transposeA=${n} and transposeB=${a} must match.`);let g=l.shape.slice(0,-2).concat([c,h]),x=n?H(l,[A,u,c]):H(l,[A,c,u]),k=a?H(d,[y,h,p]):H(d,[y,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=vt(b,l),ct(g,b.shape));let v;i!=null&&(v=M(i,"prelu weights","fused matMul"));let I=($,z)=>{let[_,V,j,U]=z,X=jc(H($,j.shape),j,s),G,ee;if(!n&&!a?(G=Be(X,V,!1,!0),ee=Be(_,X,!0,!1)):!n&&a?(G=Be(X,V,!1,!1),ee=Be(X,_,!0,!1)):n&&!a?(G=Be(V,X,!1,!0),ee=Be(_,X,!1,!1)):(G=Be(V,X,!0,!0),ee=Be(X,_,!0,!0)),r!=null){let Y=Uc(U,X);return[G,ee,Y]}else return[G,ee]},T={a:x,b:k,bias:b,preluActivationWeights:v},R={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?_a(($,z,_)=>{let V=D.runKernel(ei,T,R);return _([$,z,V]),{value:H(V,g),gradFunc:I}})(x,k):_a(($,z,_,V)=>{let j=D.runKernel(ei,T,R);return V([$,z,j,_]),{value:H(j,g),gradFunc:I}})(x,k,b)}var DR=O({fusedMatMul_:WR});function BR(e){return OA(e,.54,.46)}var VR=O({hammingWindow_:BR});function jR(e){return OA(e,.5,.5)}var s3=O({hannWindow_:jR});function UR(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Me(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=ot([Me(e,s,t-o),Gu([o],r)]);i.push(l),s+=n}return i.length===0?Kn([],[0,t]):H(ot(i),[i.length,t])}var i3=O({frame_:UR});function HR(e,t,n,a,r=s3){a==null&&(a=n3(t));let s=i3(e,t,n),i=B(s,r(t));return nd(i,a)}var GR=O({stft_:HR});function qR(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),d=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${d},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===d,()=>`Error in cropAndResize: boxInd must be have size [${d}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return D.runKernel(ho,u,p)}var XR=O({cropAndResize_:qR});function KR(e){let t=M(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return D.runKernel(bo,n,{})}var ZR=O({flipLeftRight_:KR});function YR(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return D.runKernel(el,s,i)}var JR=O({rotateWithOffset_:YR});function vl(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function QR(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=vl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return D.runKernel(Do,{boxes:s,scores:i},l)}var eM=O({nonMaxSuppression_:QR});function nM(e,t,n){let a=tM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function tM(e,t,n){return rM(e,t,n||aM)}function aM(e,t){return e>t?1:e<t?-1:0}function rM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function o3(e,t,n,a,r){return _A(e,t,n,a,r,0)}function l3(e,t,n,a,r,s){return _A(e,t,n,a,r,0,!1,s,!0)}function u3(e,t,n,a,r,s){return _A(e,t,n,a,r,s,!0)}function _A(e,t,n,a,r,s,i=!1,o=!1,l=!1){let d=[];for(let A=0;A<t.length;A++)t[A]>r&&d.push({score:t[A],boxIndex:A,suppressBeginIndex:0});d.sort(d3);let u=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&d.length>0;){let A=d.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y<r)break;let k=!1;for(let b=p.length-1;b>=x;--b){let v=sM(e,g,p[b]);if(v>=a){k=!0;break}if(A.score=A.score*iM(a,u,v),A.score<=r)break}A.suppressBeginIndex=p.length,k||(A.score===y?(p.push(g),c.push(A.score)):A.score>r&&nM(d,A,d3))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function sM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),d=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-d)*(c-u);if(h<=0||m<=0)return 0;let f=Math.max(s,d),A=Math.max(i,u),y=Math.min(o,p),g=Math.min(l,c),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(h+m-x)}function iM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function d3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function oM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=vl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),d=l[0],u=l[1],{selectedIndices:p}=o3(d,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),nn(p,"int32")}var lM=oM;function uM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=vl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let d={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=D.runKernel(zo,d,u);return{selectedIndices:p[0],selectedScores:p[1]}}var dM=O({nonMaxSuppressionWithScore_:uM});async function pM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=vl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let d=await Promise.all([i.data(),o.data()]),u=d[0],p=d[1],{selectedIndices:c,selectedScores:h}=u3(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nn(c,"int32"),selectedScores:nn(h)}}var cM=pM;function hM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=vl(i,o,n,a,r,null),d=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:d,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=D.runKernel(Oo,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var fM=O({nonMaxSuppressionPadded_:hM});async function mM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=vl(i,o,n,a,r,null),d=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=l3(c,h,d,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nn(m,"int32"),validOutputs:Ie(f,"int32")}}var AM=mM;function yM(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},d=D.runKernel(Ls,o,l);return i?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var p3=O({resizeBilinear_:yM});function gM(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},d=D.runKernel(Su,o,l);return i?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var c3=O({resizeNearestNeighbor_:gM});function xM(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},d={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return D.runKernel(tc,l,d)}var bM=O({transform_:xM});function vM(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Rc(0,s,1,"int32"),[-1,1]),l=Rc(0,i,1,"int32"),d=ye(o,l),u=la(hi(d,Ie(+t,"int32")),Dr(d,Ie(-n,"int32"))),p=Ct([s,i],a.dtype);return H(zn(ua(H(a,[-1,s,i])).map(c=>In(u,c,p))),r)}var wM=O({bandPart_:vM});function kM(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=ln(e,e.shape[0],0).map(r=>Or(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(D.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(Te(B(n[i],s)),n[i]);s=ye(s,o)}return ge(s,Vc(s,"euclidean"))}));return t?zn(n,0):n}var IM=O({gramSchmidt_:kM});function SM(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return h3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,d)=>l*d),a=ua(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[d,u]=h3(l,t);r.push(d),s.push(u)});let i=H(zn(r,0),e.shape),o=H(zn(s,0),e.shape);return[i,o]}}function h3(e,t=!1){return D.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=hA(n),s=Oa(e),i=Kn([[1]],[1,1]),o=Oa(i),l=n>=a?a:n;for(let d=0;d<l;++d){let u=s,p=o,c=r;[o,s,r]=D.tidy(()=>{let h=Me(s,[d,d],[n-d,1]),m=Vc(h),f=Me(s,[d,d],[1,1]),A=In(oa(f,0),Kn([[-1]]),Kn([[1]])),y=ye(f,B(A,m)),g=ge(h,y);g.shape[0]===1?o=Oa(i):o=ot([i,Me(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=wt(ge(Be(A,y),m)),k=Me(s,[d,0],[n-d,a]),b=B(x,o),v=Ze(o);if(d===0)s=ye(k,Be(b,Be(v,k)));else{let R=ye(k,Be(b,Be(v,k)));s=ot([Me(s,[0,0],[d,a]),R],0)}let I=Ze(b),T=Me(r,[0,d],[n,r.shape[1]-d]);if(d===0)r=ye(T,Be(Be(T,o),I));else{let R=ye(T,Be(Be(T,o),I));r=ot([Me(r,[0,0],[n,d]),R],1)}return[o,s,r]}),Ee([u,p,c])}return!t&&n>a&&(r=Me(r,[0,0],[n,a]),s=Me(s,[0,0],[a,a])),[r,s]})}var NM=O({qr_:SM}),un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(un||(un={}));function TM(e,t,n=un.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===un.NONE)return s;if(n===un.SUM)return Te(s);if(n===un.MEAN){if(r==null)return kt(s);{let i=a.size/r.size,o=ge(Te(s),Te(r));return i>1?ge(o,Ie(i)):o}}if(n===un.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ge(Te(s),Ie(a.size));{let i=B(r,$n(a.shape)),o=Ae(Te(Ai(i,Ie(0))),"float32");return ge(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ir=O({computeWeightedLoss_:TM});function EM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),rn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Ot(ye(r,s));return ir(o,i,a)}var CM=O({absoluteDifference_:EM});function RM(e,t,n,a,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),rn(s.shape,i.shape,"Error in cosineDistance: ");let l=Ie(1),d=ye(l,Te(B(s,i),n,!0));return ir(d,o,r)}var MM=O({cosineDistance_:RM});function FM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),rn(r.shape,s.shape,"Error in hingeLoss: ");let o=Ie(1);r=ye(B(Ie(2),r),o);let l=La(ye(o,B(r,s)));return ir(l,i,a)}var $M=O({hingeLoss_:FM});function DM(e,t,n,a=1,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),rn(s.shape,i.shape,"Error in huberLoss: ");let l=Ie(a),d=Ot(ye(i,s)),u=yl(d,l),p=ye(d,u),c=se(B(Ie(.5),st(u)),B(l,p));return ir(c,o,r)}var OM=O({huberLoss_:DM});function zM(e,t,n,a=1e-7,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),rn(s.shape,i.shape,"Error in logLoss: ");let l=Ie(1),d=Ie(a),u=wt(B(s,Fn(se(i,d)))),p=B(ye(l,s),Fn(se(ye(l,i),d))),c=ye(u,p);return ir(c,o,r)}var _M=O({logLoss_:zM});function PM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),rn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Lc(r,s);return ir(o,i,a)}var LM=O({meanSquaredError_:PM});function WM(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");rn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=La(a),s=B(a,n),i=Ic(qn(wt(Ot(a))));return se(ye(r,s),i)}function BM(e,t,n,a=0,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),rn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let d=Ie(a),u=Ie(1),p=Ie(.5);s=se(B(s,ye(u,d)),B(p,d))}let l=WM(s,i);return ir(l,o,r)}var VM=O({sigmoidCrossEntropy_:BM});function jM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return _a((a,r,s)=>{let i=gA(r,[n],!0),o=ye(Ae(r,"float32"),i);s([a,o]);let l=wt(B(o,a));return{value:Te(l,[n]),gradFunc:(d,u)=>{let[p,c]=u,h=mi(d.shape,[n]);return[B(H(d,h),ye(Ae(p,"float32"),qn(c))),B(H(d,h),ye(qn(c),Ae(p,"float32")))]}}})(e,t)}function UM(e,t,n,a=0,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),rn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let d=Ie(a),u=Ie(1),p=Ie(s.shape[1]);s=se(B(s,ye(u,d)),ge(d,p))}let l=jM(s,i);return ir(l,o,r)}var HM=O({softmaxCrossEntropy_:UM});function GM(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=D.runKernel(Qp,i);return{outputIndices:o[0],outputShape:o[1]}}var qM=O({sparseReshape_:GM}),XM={fft:td,ifft:xl,rfft:nd,irfft:Pc},KM={hammingWindow:VR,hannWindow:s3,frame:i3,stft:GR},Ye={flipLeftRight:ZR,resizeNearestNeighbor:c3,resizeBilinear:p3,rotateWithOffset:JR,cropAndResize:XR,nonMaxSuppression:eM,nonMaxSuppressionAsync:lM,nonMaxSuppressionWithScore:dM,nonMaxSuppressionWithScoreAsync:cM,nonMaxSuppressionPadded:fM,nonMaxSuppressionPaddedAsync:AM,transform:bM},f3={bandPart:wM,gramSchmidt:IM,qr:NM},ZM={absoluteDifference:CM,computeWeightedLoss:ir,cosineDistance:MM,hingeLoss:$M,huberLoss:OM,logLoss:_M,meanSquaredError:LM,sigmoidCrossEntropy:VM,softmaxCrossEntropy:HM},m3={sparseReshape:qM},or=class extends Ab{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ee(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Lb(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(or,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var qc=class extends or{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:L(()=>Ue(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:L(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;L(()=>{let l=se(B(i,this.rho),B(st(s),1-this.rho)),d=B(ge(Jt(se(o,this.epsilon)),Jt(se(i,this.epsilon))),s),u=se(B(o,this.rho),B(st(d),1-this.rho));i.assign(l),o.assign(u);let p=se(B(d,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};qc.className="Adadelta";Rr(qc);var Xc=class extends or{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:L(()=>Gu(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;L(()=>{let i=se(s,st(r));s.assign(i);let o=se(B(ge(r,Jt(se(i,D.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Xc.className="Adagrad";Rr(Xc);var Kc=class extends or{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],L(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=ye(1,this.accBeta1),a=ye(1,this.accBeta2);t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:L(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:L(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let d=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=se(B(d,this.beta1),B(l,1-this.beta1)),c=se(B(u,this.beta2),B(st(l),1-this.beta2)),h=ge(p,n),m=ge(c,a);d.assign(p),u.assign(c);let f=se(B(ge(h,se(Jt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),L(()=>{this.accBeta1.assign(sr(this.beta1,this.iterations_+1)),this.accBeta2.assign(sr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Kc.className="Adam";Rr(Kc);var Zc=class extends or{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],L(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=ye(1,this.accBeta1),a=ge(-this.learningRate,se(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let d=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=se(B(d,this.beta1),B(l,1-this.beta1)),c=B(u,this.beta2),h=Ot(l),m=Pa(c,h);d.assign(p),u.assign(m);let f=se(B(ge(a,n),ge(p,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Zc.className="Adamax";Rr(Zc);var ad=class extends or{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=D.registeredVariables[t];L(()=>{let s=se(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ad.className="SGD";Rr(ad);var Yc=class extends ad{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:L(()=>Ue(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&L(()=>{let i,o=se(B(this.m,r),s);this.useNesterov?i=se(B(this.c,se(s,B(o,this.m))),a):i=se(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Yc.className="Momentum";Rr(Yc);var Jc=class extends or{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:L(()=>Ue(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:L(()=>Ue(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:L(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;L(()=>{let l=se(B(i,this.decay),B(st(s),1-this.decay));if(this.centered){let d=this.accumulatedMeanGrads[n].variable,u=se(B(d,this.decay),B(s,1-this.decay)),p=ge(B(s,this.learningRate),Jt(ye(l,se(st(u),this.epsilon)))),c=se(B(o,this.momentum),p);i.assign(l),d.assign(u),o.assign(c);let h=ye(a,c);a.assign(h)}else{let d=se(B(i,this.decay),B(st(s),1-this.decay)),u=se(B(o,this.momentum),ge(B(s,this.learningRate),Jt(se(d,this.epsilon))));i.assign(d),o.assign(u);let p=ye(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Jc.className="RMSProp";Rr(Jc);var yi=class{static sgd(e){return new ad(e)}static momentum(e,t,n=!1){return new Yc(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Jc(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Kc(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new qc(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Zc(e,t,n,a,r)}static adagrad(e,t=.1){return new Xc(e,t)}},gi={sgd:yi.sgd,momentum:yi.momentum,adadelta:yi.adadelta,adagrad:yi.adagrad,rmsprop:yi.rmsprop,adamax:yi.adamax,adam:yi.adam},YM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Qc(){return new Promise(e=>YM(()=>e()))}var C={};Fe(C,{ERF_A1:()=>lF,ERF_A2:()=>uF,ERF_A3:()=>dF,ERF_A4:()=>pF,ERF_A5:()=>cF,ERF_P:()=>oF,PARALLELIZE_THRESHOLD:()=>PA,SELU_SCALE:()=>y3,SELU_SCALEALPHA:()=>A3,applyActivation:()=>Hc,assertAndGetBroadcastShape:()=>ct,assertAxesAreInnerMostDims:()=>RE,assertParamsConsistent:()=>JM,assignToTypedArray:()=>bF,axesAreInnerMostDims:()=>AA,calculateShapes:()=>rb,checkEinsumDimSizes:()=>SF,combineLocations:()=>Bb,complexWithEvenIndex:()=>yF,complexWithOddIndex:()=>gF,computeConv2DInfo:()=>Vu,computeConv3DInfo:()=>kb,computeDefaultPad:()=>aA,computeDilation2DInfo:()=>eT,computeOptimalWindowSize:()=>eF,computeOutAndReduceShapes:()=>Vb,computeOutShape:()=>QM,computePool2DInfo:()=>wb,computePool3DInfo:()=>tT,convertConv2DDataFormat:()=>vb,decodeEinsumEquation:()=>kF,eitherStridesOrDilationsAreOne:()=>za,expandShapeToKeepDim:()=>mi,exponent:()=>wF,exponents:()=>vF,fromStringArrayToUint8:()=>RF,fromUint8ToStringArray:()=>CF,getAxesPermutation:()=>jb,getBroadcastDims:()=>HT,getComplexWithIndex:()=>xF,getEinsumComputePath:()=>NF,getEinsumPermutation:()=>IF,getFusedBiasGradient:()=>Uc,getFusedDyActivation:()=>jc,getImageCenter:()=>tF,getInnerMostAxes:()=>ME,getPermuted:()=>aF,getReductionAxes:()=>zt,getReshaped:()=>nF,getReshapedPermuted:()=>rF,getSliceBeginCoords:()=>sF,getSliceSize:()=>iF,getUndoAxesPermutation:()=>yA,isIdentityPermutation:()=>TF,log:()=>fF,mergeRealAndImagArrays:()=>mF,prepareAndValidate:()=>ab,prepareSplitSize:()=>EF,segment_util:()=>g3,shouldFuse:()=>Gc,slice_util:()=>sn,splitRealAndImagArrays:()=>AF,tupleValuesAreOne:()=>Mr,upcastType:()=>ia,validateInput:()=>Vm,validateUpdateShape:()=>Bm,warn:()=>hF});function JM(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function QM(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var PA=30;function eF(e){return e<=PA?e:Ip(e,Math.floor(Math.sqrt(e)))}function tF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function nF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function aF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function rF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function sF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function iF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var A3=1.7580993408473768,y3=1.0507009873554805,oF=.3275911,lF=.254829592,uF=-.284496736,dF=1.421413741,pF=-1.453152027,cF=1.061405429;function hF(...e){J().getBool("IS_TEST")||console.warn(...e)}function fF(...e){J().getBool("IS_TEST")||console.log(...e)}function mF(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function AF(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function yF(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function gF(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function xF(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function bF(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function vF(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function wF(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var LA="->",MF=/->/g,x3=",",b3="...";function kF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(MF,"").length)/LA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${LA}").`);let[a,r]=e.split(LA);F(a.indexOf(b3)===-1,()=>`The ellipsis notation ("${b3}") is not supported yet.`);let s=a.split(x3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==x3&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let d=o.length,u=r.length,p=[];for(let c=u;c<d;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function IF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function SF(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:F(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function NF(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=FF(t,o);for(let d of l)s.indexOf(d)===-1&&(a[i].push(d),s.push(d))}return{path:n,steps:a}}function TF(e){return e.every((t,n)=>t===n)}function FF(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function EF(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var g3={};Fe(g3,{collectGatherOpShapeInfo:()=>OF,computeOutShape:()=>DF,segOpComputeOptimalWindowSize:()=>$F});function $F(e,t){let n=!1,a;for(e<=PA?(a=e,n=!0):a=Ip(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Ip(e,a+1);return a}function DF(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function OF(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,d=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),d*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:d,dimSize:i,outputShape:o}}function CF(e){try{return e.map(t=>ic(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function RF(e){return e.map(t=>Mu(t))}var Wa={};Fe(Wa,{nonMaxSuppressionV3Impl:()=>o3,nonMaxSuppressionV4Impl:()=>l3,nonMaxSuppressionV5Impl:()=>u3,whereImpl:()=>Yb});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var zF=Wa.whereImpl,eh=class extends du{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new wp(this,nr())}nextDataId(){return eh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return nr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return zF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};eh.nextDataId=0;var WA={};Fe(WA,{addImpl:()=>w3,bincountImpl:()=>BA,bincountReduceImpl:()=>k3,ceilImpl:()=>I3,concatImpl:()=>VA,expImpl:()=>S3,expm1Impl:()=>N3,floorImpl:()=>T3,gatherV2Impl:()=>E3,greaterImpl:()=>C3,lessImpl:()=>R3,linSpaceImpl:()=>M3,logImpl:()=>F3,maxImpl:()=>$3,maximumImpl:()=>D3,minimumImpl:()=>O3,multiplyImpl:()=>jA,negImpl:()=>z3,notEqualImpl:()=>_3,prodImpl:()=>P3,rangeImpl:()=>HA,rsqrtImpl:()=>L3,simpleAbsImpl:()=>v3,sliceImpl:()=>th,sparseReshapeImpl:()=>W3,squaredDifferenceImpl:()=>B3,stridedSliceImpl:()=>V3,subImpl:()=>j3,tileImpl:()=>U3,topKImpl:()=>H3,transposeImpl:()=>UA,uniqueImpl:()=>G3});function v3(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var _F=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=v3(r),n.makeOutput(a,t.shape,"float32")},PF={kernelName:eo,backendName:"cpu",kernelFunc:_F};function Rt(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),d=w.sizeFromShape(i),u=w.getTypedArrayFromDType(s,d),p=t.length,c=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let g=w.indexToLoc(y,o,l),x=g.slice(-p);f.forEach(I=>x[I]=0);let k=w.locToIndex(x,p,h),b=g.slice(-c);A.forEach(I=>b[I]=0);let v=w.locToIndex(b,c,m);u[y]=e(a[k],r[v])}return[u,i]}}function _n(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var LF={kernelName:Cp,backendName:"cpu",kernelFunc:_n};function nh(e,t,n="float32"){if(n==="complex64"){let r=nh(e,t,"float32"),s=nh(e,t,"float32");return _n({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function Ba(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var WF={kernelName:ks,backendName:"cpu",kernelFunc:Ba};function xi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var BF={kernelName:Zp,backendName:"cpu",kernelFunc:xi};function _r(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Ba({inputs:{x:r},backend:n});let i=nh(n,r.shape,r.dtype),o=_r({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=_n({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=xi({inputs:{input:r},backend:n}),o=_r({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Ba({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,d]=Rt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(d,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var VF={kernelName:ds,backendName:"cpu",kernelFunc:_r};function Ut(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let d=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,d,u,p);return l.makeTensorInfo(h,p,c)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let d=_r({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(d.dataId),p=u.complexTensorInfos.real,c=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=_r({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,k=l.data.get(g.dataId).values,[b,v,I]=n(i.shape,o.shape,h,m,x,k),T=l.makeTensorInfo(I,"float32",b),R=l.makeTensorInfo(I,"float32",v),$=_n({inputs:{real:T,imag:R},backend:l});return l.disposeIntermediateTensorInfo(d),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(R),$}else{let d=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,d,u,p);return l.makeTensorInfo(h,p,c)}}}function GA(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),d=o.length,u=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",l),c=w.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=w.computeStrides(t),x=n.length,k=w.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let v=b%f.length,I=b%A.length,T=e(f[v*2],f[v*2+1],A[I*2],A[I*2+1]);p[b]=T.real,c[b]=T.imag}else for(let b=0;b<p.length;b++){let v=w.indexToLoc(b,d,u),I=v.slice(-y);h.forEach(_=>I[_]=0);let T=w.locToIndex(I,y,g),R=v.slice(-x);m.forEach(_=>R[_]=0);let $=w.locToIndex(R,x,k),z=e(f[T*2],f[T*2+1],A[$*2],A[$*2+1]);p[b]=z.real,c[b]=z.imag}return[p,c,o]}}var w3=Rt((e,t)=>e+t),jF=GA((e,t,n,a)=>({real:e+n,imag:t+a})),rd=Ut(kr,w3,jF),UF={kernelName:kr,backendName:"cpu",kernelFunc:rd};function BA(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function k3(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=We([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let d=e.get(o,l);if(d<0)throw new Error("Input x must be non-negative!");d>=n||(a?i.set(1,o,d):t.size>0?i.set(i.get(o,d)+t.get(o,l),o,d):i.set(i.get(o,d)+1,o,d))}return i}function wl(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function nt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,d=w.sizeFromShape(i.shape),u=n||i.dtype,p=w.getArrayFromDType(u,d);for(let c=0;c<d;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,u,p)}}function kl(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,d=n||i.dtype,u=t(l,d,r);return o.makeTensorInfo(i.shape,d,u)}}var I3=wl(e=>Math.ceil(e)),HF=kl(ps,I3),GF={kernelName:ps,backendName:"cpu",kernelFunc:HF};function VA(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let d=0;d<i.shape[0];++d){let u=d*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var S3=wl(e=>Math.exp(e)),q3=kl(gs,S3),qF={kernelName:gs,backendName:"cpu",kernelFunc:q3},N3=wl(e=>Math.expm1(e)),XF=kl(xo,N3),KF={kernelName:xo,backendName:"cpu",kernelFunc:XF},T3=wl(e=>Math.floor(e)),ZF=kl(xs,T3),YF={kernelName:xs,backendName:"cpu",kernelFunc:ZF};function E3(e,t,n){let a=We(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let d=e.locToIndex(s);a.values[r]=e.values[d]}return a}var C3=Rt((e,t)=>e>t?1:0),JF=Ut(ko,C3,null,"bool"),QF={kernelName:ko,backendName:"cpu",kernelFunc:JF},R3=Rt((e,t)=>e<t?1:0),e$=Ut(To,R3,null,"bool"),t$={kernelName:To,backendName:"cpu",kernelFunc:e$};function M3(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var F3=wl(e=>Math.log(e)),n$=kl(Ss,F3),a$={kernelName:Ss,backendName:"cpu",kernelFunc:n$};function $3(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let d=e[i+l];d>o&&(o=d)}r[s]=o}return r}var D3=Rt((e,t)=>Math.max(e,t)),r$=Ut(Ts,D3),s$={kernelName:Ts,backendName:"cpu",kernelFunc:r$},O3=Rt((e,t)=>Math.min(e,t)),i$=Ut(Ms,O3),o$={kernelName:Ms,backendName:"cpu",kernelFunc:i$},jA=Rt((e,t)=>e*t),l$=GA((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),ah=Ut($s,jA,l$),u$={kernelName:$s,backendName:"cpu",kernelFunc:ah};function z3(e,t,n){let a=w.createScalarValue(-1,n);return jA([],t,a,e,n)}function d$(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=z3(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var p$={kernelName:Fo,backendName:"cpu",kernelFunc:d$},_3=Rt((e,t)=>e!==t?1:0),c$=Ut($o,_3,null,"bool"),h$={kernelName:$o,backendName:"cpu",kernelFunc:c$};function UA(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),d=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<i;++u){let p=w.indexToLoc(u,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=w.locToIndex(c,s,l);d[h]=e[u]}return d}function Zn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,d=UA(l,r.shape,r.dtype,s,o);return{dataId:a.write(d,o,r.dtype),shape:o,dtype:r.dtype}}var f$={kernelName:Qs,backendName:"cpu",kernelFunc:Zn};function P3(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=ia(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let d=0;d<o.length;++d){let u=d*l,p=1;for(let c=0;c<l;++c)p*=n[u+c];o[d]=p}return{outVals:o,outShape:r,outDtype:i}}function m$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),d=C.getAxesPermutation(l,o),u=l,p=r,c=[];d!=null&&(p=Zn({inputs:{x:r},backend:n,attrs:{perm:d}}),c.push(p),u=C.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:A}=P3(p.shape,p.dtype,h,u),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var A$={kernelName:Lo,backendName:"cpu",kernelFunc:m$};function HA(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let d=1;d<l.length;d++)l[d]=l[d-1]+n;return l}var L3=wl(e=>1/Math.sqrt(e)),y$=kl(js,L3),g$={kernelName:js,backendName:"cpu",kernelFunc:y$};function th(e,t,n,a,r){let s=sn.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=sn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,d=We(a,r,l),u=We(n,r);for(let p=0;p<u.size;++p){let c=u.indexToLoc(p),h=c.map((m,f)=>m+t[f]);u.set(d.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(u.values):u.values}function bi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=sn.parseSliceParams(r,s,i);sn.assertParamsValid(r,o,l);let d=n.data.get(r.dataId).values,u=th(d,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var x$={kernelName:Ho,backendName:"cpu",kernelFunc:bi};function W3(e,t,n,a,r){let s=w.sizeFromShape(a),i=t[0],o=r.length,l=[],d=1,u=-1;for(let A=0;A<o;++A){let y=r[A];if(y===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${A}`);u=A,l.push(1)}else{if(y<0)throw new Error(`size ${A} must be non-negative, not ${y}`);d*=y,l.push(y)}}if(u!==-1){if(d<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(s/d);if(d*A!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${d}. inputShape=${a} outputShape= ${l}`);l[u]=A}let p=w.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let A=c-2;A>=0;--A)h[A]=h[A+1]*a[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=w.getArrayFromDType(n,i*o);for(let A=0;A<i;++A){let y=0;for(let g=0;g<c;++g)y+=e[A*c+g]*h[g];for(let g=0;g<o;++g)f[A*o+g]=Math.trunc(y/m[g]),y%=m[g]}return[f,[i,o],l]}var B3=Rt((e,t)=>{let n=e-t;return n*n}),b$=Ut(Ks,B3),v$={kernelName:Ks,backendName:"cpu",kernelFunc:b$};function V3(e,t,n,a){let r=We(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var j3=Rt((e,t)=>e-t),w$=GA((e,t,n,a)=>({real:e-n,imag:t-a})),qA=Ut(Zs,j3,w$),k$={kernelName:Zs,backendName:"cpu",kernelFunc:qA};function U3(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=We(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function H3(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),d=w.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let g=0;g<h.length;g++)m.push({value:h[g],index:g});m.sort((g,x)=>x.value-g.value);let f=p*a,A=l.subarray(f,f+a),y=d.subarray(f,f+a);for(let g=0;g<a;g++)A[g]=m[g].value,y[g]=m[g].index}let u=t.slice();return u[u.length-1]=a,[We(u,n,l),We(u,"int32",d)]}function G3(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Dt(s,a,e),d=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,d.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Dt(p,a);d.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)c.set(l.get(A,m,y),A,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var X3="3.5.0";ul("cpu",()=>new eh,1);var K3=nt(mo,e=>e>=0?e:Math.exp(e)-1),I$={kernelName:mo,backendName:"cpu",kernelFunc:K3};function Z3(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let d=0;d<o.length;d++)l[d]=o[d]<0?s*o[d]:o[d];return n.makeTensorInfo(r.shape,"float32",l)}var S$={kernelName:Is,backendName:"cpu",kernelFunc:Z3},N$=Rt((e,t)=>e<0?t*e:e);function Y3(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=N$(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var T$={kernelName:_s,backendName:"cpu",kernelFunc:Y3},J3=nt(Ps,e=>Math.max(0,e)),E$={kernelName:Ps,backendName:"cpu",kernelFunc:J3},Q3=nt(Ws,e=>Math.min(Math.max(0,e),6)),C$={kernelName:Ws,backendName:"cpu",kernelFunc:Q3},e7=nt(Hs,e=>1/(1+Math.exp(-e))),R$={kernelName:Hs,backendName:"cpu",kernelFunc:e7};function XA(e,t,n,a,r){if(n==="linear")return Ba({inputs:{x:t},backend:e});if(n==="relu")return J3({inputs:{x:t},backend:e});if(n==="elu")return K3({inputs:{x:t},backend:e});if(n==="relu6")return Q3({inputs:{x:t},backend:e});if(n==="prelu")return Y3({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return Z3({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return e7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ht(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let d=n.data.get(r.dataId);if(d.complexTensorInfos!=null){let u=d.complexTensorInfos.real,p=d.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var M$={kernelName:Bo,backendName:"cpu",kernelFunc:ht};function t7(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,d=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[d-1]:s.shape[d-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[d-2]:s.shape[d-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(f),g=A===y||A===1||y===1;w.assert(l>=2&&d>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let k=i?[A,u,c]:[A,c,u],b=o?[y,h,p]:[y,p,h],v=ht({inputs:{x:r},backend:n,attrs:{shape:k}}),I=ht({inputs:{x:s},backend:n,attrs:{shape:b}}),T=i?v.shape[1]:v.shape[2],R=i?v.shape[2]:v.shape[1],$=o?I.shape[1]:I.shape[2],z=Math.max(A,y),_=n.data.get(v.dataId).values,V=n.data.get(I.dataId).values,j=w.computeStrides(v.shape),U=w.computeStrides(I.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,re,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=R*$,Q=We([z,R,$],v.dtype),de=Q.values,oe=n.blockSize;for(let me=0;me<z;me++)for(let ce=0;ce<R;ce+=oe)for(let ke=0;ke<$;ke+=oe)for(let Se=0;Se<T;Se+=oe){let $e=Math.min(ce+oe,R),ze=Math.min(ke+oe,$),De=Math.min(Se+oe,T);for(let Qe=ce;Qe<$e;Qe++)for(let et=ke;et<ze;et++){let rt=0;for(let Xe=Se;Xe<De;Xe++){let pt=Math.min(me,A-1)*X,Ve=Math.min(me,y-1)*te,An=_[pt+Qe*G+Xe*ee],xt=V[Xe*Y+et*re+Ve];rt+=An*xt}de[me*ie+(Qe*$+et)]+=rt}}return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(I),n.makeTensorInfo(x,Q.dtype,Q.values)}var F$={kernelName:us,backendName:"cpu",kernelFunc:t7};function $$(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:d,activation:u,leakyreluAlpha:p}=a,c,h,m,f=[];c=t7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:d},backend:n}),i&&(h=rd({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),u&&(m=XA(n,c,u,o,p),f.push(c),c=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return c}var D$={kernelName:ei,backendName:"cpu",kernelFunc:$$},O$=nt(to,e=>Math.acos(e)),z$={kernelName:to,backendName:"cpu",kernelFunc:O$},_$=nt(no,e=>Math.acosh(e)),P$={kernelName:no,backendName:"cpu",kernelFunc:_$};function L$(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=We(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let d=0;d<i.length;d++)i[d]+=l[d]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var W$={kernelName:is,backendName:"cpu",kernelFunc:L$};function B$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,d=C.getAxesPermutation(l,r.shape.length),u=r;d!=null&&(u=Zn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,c]=C.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let k=0;k<h;++k){let b=f[g+k];x=x&&b}m[y]=x}d!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(p,u.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ht({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var V$={kernelName:ao,backendName:"cpu",kernelFunc:B$};function j$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,d=C.getAxesPermutation(l,r.shape.length),u=r;d!=null&&(u=Zn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,c]=C.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let k=0;k<h;++k){let b=f[g+k];x=x||b}m[y]=x}d!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(p,u.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ht({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var U$={kernelName:ro,backendName:"cpu",kernelFunc:j$};function H$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=Zn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=C.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(u),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let k=0;k<m;++k){let b=f[y+k];b>g&&(g=b,x=k)}h[A]=x}return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",h)}var G$={kernelName:os,backendName:"cpu",kernelFunc:H$};function q$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=Zn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=C.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(u),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let k=0;k<m;++k){let b=f[y+k];b<g&&(g=b,x=k)}h[A]=x}return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",h)}var X$={kernelName:hu,backendName:"cpu",kernelFunc:q$},K$=nt(so,e=>Math.asin(e)),Z$={kernelName:so,backendName:"cpu",kernelFunc:K$},Y$=nt(io,e=>Math.asinh(e)),J$={kernelName:io,backendName:"cpu",kernelFunc:Y$},Q$=nt(oo,e=>Math.atan(e)),eD={kernelName:oo,backendName:"cpu",kernelFunc:Q$},tD=Rt((e,t)=>Math.atan2(e,t)),nD=Ut(uo,tD),aD={kernelName:uo,backendName:"cpu",kernelFunc:nD},rD=nt(lo,e=>Math.atanh(e)),sD={kernelName:lo,backendName:"cpu",kernelFunc:rD};function KA(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,d=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(r.outShape,n),A=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],g=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let k=0;k<r.batchSize;++k){let b=k*y,v=k*a[0];for(let I=0;I<r.inChannels;++I)for(let T=0;T<r.outHeight;++T){let R=T*i-c,$=Math.max(0,R),z=Math.min(r.inHeight,u+R),_=b+T*g;for(let V=0;V<r.outWidth;++V){let j=V*o-h,U=Math.max(0,j),X=Math.min(r.inWidth,p+j),G=m,ee=0,Y=0;for(let te=$;te<z;te+=l){let ie=v+te*a[1];for(let Q=U;Q<X;Q+=d){let de=ie+Q*a[2],oe=e[de+I];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let re=_+V*x+I;A[re]=s==="avg"?ee/Y:G}}}return f}function n7(e,t,n,a,r=!1,s=!1){let i=We(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,d=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=We(t,n,e);for(let A=0;A<a.batchSize;++A)for(let y=0;y<a.inChannels;++y)for(let g=0;g<a.outHeight;++g){let x=g*o-h,k=x;for(;k<0;)k+=d;let b=Math.min(a.inHeight,p+x);for(let v=0;v<a.outWidth;++v){let I=v*l-m,T=I;for(;T<0;)T+=u;let R=Math.min(a.inWidth,c+I),$=Number.NEGATIVE_INFINITY,z=-1;for(let _=k;_<b;_+=d){let V=_-x;for(let j=T;j<R;j+=u){let U=j-I,X=f.get(A,_,j,y);X>$&&($=X,r?z=s?((A*a.inHeight+_)*a.inWidth+j)*a.inChannels+y:(_*a.inWidth+j)*a.inChannels+y:z=V*c+U)}}i.set(z,A,g,v,y)}}return i}function a7(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,d=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,A=r.padInfo.top,y=r.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),k=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],v=r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[3]*r.outShape[4],T=r.outShape[4];for(let R=0;R<r.batchSize;++R){let $=R*b,z=R*a[0];for(let _=0;_<r.inChannels;++_)for(let V=0;V<r.outDepth;++V){let j=V*i-f,U=j;for(;U<0;)U+=d;let X=Math.min(r.inDepth,c+j),G=$+V*v;for(let ee=0;ee<r.outHeight;++ee){let Y=ee*o-A,re=Y;for(;re<0;)re+=u;let te=Math.min(r.inHeight,h+Y),ie=G+ee*I;for(let Q=0;Q<r.outWidth;++Q){let de=Q*l-y,oe=de;for(;oe<0;)oe+=p;let me=Math.min(r.inWidth,m+de),ce=ie+Q*T,ke=g,Se=0,$e=0;for(let De=U;De<X;De+=d){let Qe=z+De*a[1];for(let et=re;et<te;et+=u){let rt=Qe+et*a[2];for(let Xe=oe;Xe<me;Xe+=p){let pt=rt+Xe*a[3],Ve=e[pt+_];if(s==="max"&&Ve>ke?ke=Ve:s==="avg"&&(Se+=Ve,$e++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let ze=ce+_;k[ze]=s==="avg"?Se/$e:ke}}}}return x}function iD(e,t){let n=We(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,d=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*a-c,x=g;for(;x<0;)x+=i;let k=Math.min(t.inDepth,d+g);for(let b=0;b<t.outHeight;++b){let v=b*r-h,I=v;for(;I<0;)I+=o;let T=Math.min(t.inHeight,u+v);for(let R=0;R<t.outWidth;++R){let $=R*s-m,z=$;for(;z<0;)z+=l;let _=Math.min(t.inWidth,p+$),V=Number.NEGATIVE_INFINITY,j=-1;for(let U=x;U<k;U+=i){let X=U-g;for(let G=I;G<T;G+=o){let ee=G-v;for(let Y=z;Y<_;Y+=l){let re=Y-$,te=e.get(f,U,G,Y,A);te>=V&&(V=te,j=X*u*p+ee*u+re)}}}n.set(j,f,y,b,R,A)}}}return n}function oD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;w.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=Ba({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=KA(c,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var lD={kernelName:ls,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:d}=a;ve(r,"avgPool3d");let u=C.computePool3DInfo(r.shape,s,i,1,o,l,d),p=n.data.get(r.dataId).values,c=a7(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var dD={kernelName:fu,backendName:"cpu",kernelFunc:uD};function pD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=a;ve([r,s],"avgPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,d),p=u.strideDepth,c=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,k=u.effectiveFilterDepth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,I=k-1-u.padInfo.front,T=v-1-u.padInfo.left,R=b-1-u.padInfo.top,$=We(s.shape,"float32"),z=1/(m*f*A),_=n.bufferSync(r);for(let V=0;V<u.batchSize;++V)for(let j=0;j<u.inChannels;++j)for(let U=0;U<u.inDepth;++U)for(let X=0;X<u.inHeight;++X)for(let G=0;G<u.inWidth;++G){let ee=U-I,Y=X-R,re=G-T,te=0;for(let ie=0;ie<k;ie+=y){let Q=(ee+ie)/p;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(Y+de)/c;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me<v;me+=x){let ce=(re+me)/h;ce<0||ce>=u.outWidth||Math.floor(ce)!==ce||(te+=_.get(V,Q,oe,ce,j))}}}$.set(te*z,V,U,X,G,j)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var cD={kernelName:Tp,backendName:"cpu",kernelFunc:pD};function hD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:d}=a,u=C.computePool2DInfo(i.shape,o,l,1,d),p=u.strideHeight,c=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,k=y-1-u.padInfo.top,b=We(i.shape,"float32"),v=1/(h*m),I=n.data.get(r.dataId).values,T=We(r.shape,"float32",I);for(let R=0;R<u.batchSize;++R)for(let $=0;$<u.inChannels;++$)for(let z=0;z<u.inHeight;++z)for(let _=0;_<u.inWidth;++_){let V=z-k,j=_-x,U=0;for(let X=0;X<y;X+=f){let G=(V+X)/p;if(!(G<0||G>=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(j+ee)/c;Y<0||Y>=u.outWidth||Math.floor(Y)!==Y||(U+=T.get(R,G,Y,$))}}b.set(U*v,R,z,_,$)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var fD={kernelName:Np,backendName:"cpu",kernelFunc:hD};function mD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:d}=a;d==null&&(d=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=h.length,g=c.length,x=p.length,k=0,b=0,v=0,I=0;for(let T=0;T<u.length;++T)f[T]=m[k++]+(u[T]-p[b++])*h[v++]/Math.sqrt(c[I++]+d),k>=A&&(k=0),b>=x&&(b=0),v>=y&&(v=0),I>=g&&(I=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var AD={kernelName:vs,backendName:"cpu",kernelFunc:mD};function yD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(r.shape,s,o),d=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(u,i,s.length),h=ht({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Zn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:u}}),A=bi({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var gD={kernelName:mu,backendName:"cpu",kernelFunc:yD};function xD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,d=BA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}var bD={kernelName:Ep,backendName:"cpu",kernelFunc:xD},vD=nt(Ir,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),wD={kernelName:Ir,backendName:"cpu",kernelFunc:vD},kD=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let d=0;d<o.length;d++){let u=o[d],p=l[d];a[d]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},ID={kernelName:Au,backendName:"cpu",kernelFunc:kD};function Il(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var SD={kernelName:jp,backendName:"cpu",kernelFunc:Il};function Sl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return Ba({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(k=>xi({inputs:{input:k},backend:n})),A=o.map(k=>Il({inputs:{input:k},backend:n})),y=Sl({inputs:f,backend:n,attrs:{axis:s}}),g=Sl({inputs:A,backend:n,attrs:{axis:s}}),x=_n({inputs:{real:y,imag:g},backend:n});return f.forEach(k=>n.disposeIntermediateTensorInfo(k)),A.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let d=o.map(f=>{let A=w.sizeFromShape(f.shape.slice(s));return ht({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=d.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(d.map(f=>f.shape),1);let p=d[0].shape[0]===1,c=VA(u,i,t[0].dtype,p),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ND={kernelName:po,backendName:"cpu",kernelFunc:Sl};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:d,dimRoundingMode:u}=a;ve([r,s],"conv2d");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.padInfo.left,g=c.padInfo.top,x=c.dataFormat==="channelsLast",k=new Dt(c.outShape,r.dtype),b=w.computeStrides(r.shape),v=w.computeStrides(s.shape),I=b[0],T=x?b[1]:b[2],R=x?b[2]:1,$=x?1:b[1],z=k.strides[0],_=x?k.strides[1]:k.strides[2],V=x?k.strides[2]:1,j=x?1:k.strides[1],U=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,G=k.values;for(let ee=0;ee<c.batchSize;++ee){let Y=ee*I,re=ee*z;for(let te=0;te<c.outHeight;++te){let ie=re+te*_,Q=te*c.strideHeight-g;for(let de=0;de<h;++de){let oe=Q+de*f;if(oe<0||oe>=c.inHeight)continue;let me=de*v[0],ce=Y+oe*T;for(let ke=0;ke<c.outWidth;++ke){let Se=ie+ke*V,$e=ke*c.strideWidth-y;for(let ze=0;ze<m;++ze){let De=$e+ze*A;if(De<0||De>=c.inWidth)continue;let Qe=me+ze*v[1],et=ce+De*R,rt=Qe;for(let Xe=0;Xe<c.inChannels;++Xe){let pt=U[et+Xe*$];for(let Ve=0;Ve<c.outChannels;++Ve)G[Se+Ve*j]+=pt*X[rt+Ve];rt+=c.outChannels}}}}}}return n.makeTensorInfo(k.shape,k.dtype,G)}var TD={kernelName:cs,backendName:"cpu",kernelFunc:r7};function ED(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:d,filterShape:u}=a;ve([r,s],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,u,i,1,o,d,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:A}=c,y=c.dataFormat==="channelsLast",g=new Dt(c.filterShape,"float32"),x=c.padInfo.left,k=c.padInfo.top,b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,I=new Dt(r.shape,r.dtype,b),T=new Dt(s.shape,s.dtype,v);for(let R=0;R<f;++R){let $=Math.max(0,Math.ceil((k-R)/h)),z=Math.min(c.outHeight,(c.inHeight+k-R)/h);for(let _=0;_<A;++_){let V=Math.max(0,Math.ceil((x-_)/m)),j=Math.min(c.outWidth,(c.inWidth+x-_)/m);for(let U=0;U<c.inChannels;++U)for(let X=0;X<c.outChannels;++X){let G=0;for(let ee=0;ee<c.batchSize;++ee)for(let Y=$;Y<z;++Y){let re=R+Y*h-k;for(let te=V;te<j;++te){let ie=_+te*m-x;y?G+=I.get(ee,re,ie,U)*T.get(ee,Y,te,X):G+=I.get(ee,U,re,ie)*T.get(ee,X,Y,te)}}g.set(G,R,_,U,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var CD={kernelName:Rp,backendName:"cpu",kernelFunc:ED};function RD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:d,dimRoundingMode:u}=a;ve([r,s],"conv2dBackpropInput");let p=w.computeStrides(s.shape),c=w.computeStrides(r.shape),h=C.convertConv2DDataFormat(d),m=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Dt(m.inShape,"float32"),A=f.values,y=n.data.get(r.dataId).values,g=n.data.get(s.dataId).values,[x,k,b]=p,{batchSize:v,filterHeight:I,filterWidth:T,inChannels:R,inHeight:$,inWidth:z,outChannels:_,outHeight:V,outWidth:j,strideHeight:U,strideWidth:X}=m;h=m.dataFormat;let G=I-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=h==="channelsLast",re=f.strides[0],te=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],de=c[0],oe=Y?c[1]:c[2],me=Y?c[2]:1,ce=Y?1:c[1];for(let ke=0;ke<v;++ke)for(let Se=0;Se<R;++Se)for(let $e=0;$e<$;++$e){let ze=$e-G,De=Math.max(0,Math.ceil(ze/U)),Qe=Math.min(V,(I+ze)/U);for(let et=0;et<z;++et){let rt=et-ee,Xe=Math.max(0,Math.ceil(rt/X)),pt=Math.min(j,(T+rt)/X),Ve=0;for(let xt=De;xt<Qe;++xt){let Vn=xt*U-ze;for(let Xt=Xe;Xt<pt;++Xt){let yn=Xt*X-rt,jn=de*ke+oe*xt+me*Xt,Mn=x*(I-1-Vn)+k*(T-1-yn)+b*Se;for(let an=0;an<_;++an){let Kt=y[jn+ce*an],Ra=g[Mn+an];Ve+=Kt*Ra}}}let An=re*ke+te*$e+ie*et+Q*Se;A[An]=Ve}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var MD={kernelName:hs,backendName:"cpu",kernelFunc:RD};function FD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let d=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:A}=d,y=A.front,g=A.left,x=A.top,k=new Dt(d.outShape,r.dtype),b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,I=k.values,T=w.computeStrides(r.shape),R=w.computeStrides(s.shape);for(let $=0;$<d.batchSize;++$){let z=$*T[0],_=$*k.strides[0];for(let V=0;V<d.outDepth;++V){let j=_+V*k.strides[1],U=V*d.strideDepth-y;for(let X=0;X<u;++X){let G=U+X*h;if(G<0||G>=d.inDepth)continue;let ee=X*R[0],Y=z+G*T[1];for(let re=0;re<d.outHeight;++re){let te=j+re*k.strides[2],ie=re*d.strideHeight-x;for(let Q=0;Q<p;++Q){let de=ie+Q*m;if(de<0||de>=d.inHeight)continue;let oe=ee+Q*R[1],me=Y+de*T[2];for(let ce=0;ce<d.outWidth;++ce){let ke=te+ce*d.outChannels,Se=ce*d.strideWidth-g;for(let $e=0;$e<c;++$e){let ze=Se+$e*f;if(ze<0||ze>=d.inWidth)continue;let De=oe+$e*R[2],Qe=me+ze*d.inChannels,et=De;for(let rt=0;rt<d.inChannels;++rt){let Xe=b[Qe+rt];for(let pt=0;pt<d.outChannels;++pt)I[ke+pt]+=Xe*v[et+pt];et+=d.outChannels}}}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var $D={kernelName:yu,backendName:"cpu",kernelFunc:FD};function DD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let d=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=C.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,A=p.filterHeight,y=p.filterWidth,g=new Dt(p.filterShape,"float32"),x=g.values,[k,b,v,I]=g.strides,T=n.data.get(s.dataId).values,[R,$,z,_]=u,V=n.data.get(r.dataId).values,[j,U,X,G]=d,ee=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let te=0;te<f;++te){let ie=Math.max(0,Math.ceil((ee-te)/c)),Q=Math.min(p.outDepth,(p.inDepth+ee-te)/c),de=te*k;for(let oe=0;oe<A;++oe){let me=Math.max(0,Math.ceil((re-oe)/h)),ce=Math.min(p.outHeight,(p.inHeight+re-oe)/h),ke=oe*b+de;for(let Se=0;Se<y;++Se){let $e=Math.max(0,Math.ceil((Y-Se)/m)),ze=Math.min(p.outWidth,(p.inWidth+Y-Se)/m),De=Se*v+ke;for(let Qe=0;Qe<p.inChannels;++Qe){let et=Qe*I+De;for(let rt=0;rt<p.outChannels;++rt){let Xe=0;for(let pt=0;pt<p.batchSize;++pt){let Ve=pt*j,An=pt*R;for(let xt=ie;xt<Q;++xt){let Vn=(te+xt*c-ee)*U+Ve,Xt=xt*$+An;for(let yn=me;yn<ce;++yn){let jn=(oe+yn*h-re)*X+Vn,Mn=yn*z+Xt;for(let an=$e;an<ze;++an){let Kt=(Se+an*m-Y)*G+jn,Ra=an*_+Mn;Xe+=V[Kt+Qe]*T[Ra+rt]}}}}x[et+rt]=Xe}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var OD={kernelName:Mp,backendName:"cpu",kernelFunc:DD};function zD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let d=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=C.computeConv3DInfo(l,s.shape,o,1,i),c=new Dt(p.inShape,"float32"),h=c.values,[m,f,A,y]=c.strides,g=n.data.get(r.dataId).values,[x,k,b,v]=d,I=n.data.get(s.dataId).values,[T,R,$,z]=u,{batchSize:_,filterDepth:V,filterHeight:j,filterWidth:U,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:re,outDepth:te,outHeight:ie,outWidth:Q,strideDepth:de,strideHeight:oe,strideWidth:me}=p,ce=V-1-p.padInfo.front,ke=j-1-p.padInfo.top,Se=U-1-p.padInfo.left;for(let $e=0;$e<_;++$e)for(let ze=0;ze<X;++ze)for(let De=0;De<G;++De){let Qe=De-ce,et=Math.max(0,Math.ceil(Qe/de)),rt=Math.min(te,(V+Qe)/de);for(let Xe=0;Xe<ee;++Xe){let pt=Xe-ke,Ve=Math.max(0,Math.ceil(pt/oe)),An=Math.min(ie,(j+pt)/oe);for(let xt=0;xt<Y;++xt){let Vn=xt-Se,Xt=Math.max(0,Math.ceil(Vn/me)),yn=Math.min(Q,(U+Vn)/me),jn=0;for(let Mn=et;Mn<rt;++Mn){let an=Mn*de-Qe;for(let Kt=Ve;Kt<An;++Kt){let Ra=Kt*oe-pt;for(let ta=Xt;ta<yn;++ta){let na=ta*me-Vn,fr=x*$e+k*Mn+b*Kt+v*ta,Ka=T*(V-1-an)+R*(j-1-Ra)+$*(U-1-na)+z*ze;for(let mr=0;mr<re;++mr){let Wi=g[fr+mr],Ma=I[Ka+mr];jn+=Wi*Ma}}}}h[m*$e+f*De+A*Xe+y*xt+ze]=jn}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var _D={kernelName:Fp,backendName:"cpu",kernelFunc:zD},PD=nt(fs,e=>Math.cos(e)),LD={kernelName:fs,backendName:"cpu",kernelFunc:PD},WD=nt(co,e=>Math.cosh(e)),BD={kernelName:co,backendName:"cpu",kernelFunc:WD};function VD(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:d}=a,[u,p,c,h]=r.shape,m=s.shape[0],[f,A]=o,y=We([m,f,A,h],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,k=n.data.get(r.dataId).values,b=w.computeStrides(r.shape),v=w.computeStrides(y.shape);for(let I=0;I<m;I++){let T=I*4,R=g[T],$=g[T+1],z=g[T+2],_=g[T+3],V=x[I];if(V>=u)continue;let j=f>1?(z-R)*(p-1)/(f-1):0,U=A>1?(_-$)*(c-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?R*(p-1)+X*j:.5*(R+z)*(p-1);if(G<0||G>p-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<h;Y++){let re=Y+ee*v[2]+X*v[1]+I*v[0];y.values[re]=d}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),re=G-ee;for(let te=0;te<A;te++){let ie=A>1?$*(c-1)+te*U:.5*($+_)*(c-1);if(ie<0||ie>c-1){for(let me=0;me<h;me++){let ce=me+te*v[2]+X*v[1]+I*v[0];y.values[ce]=d}continue}let Q=Math.floor(ie),de=Math.ceil(ie),oe=ie-Q;for(let me=0;me<h;me++){let ce=me+Q*b[2]+ee*b[1]+V*b[0],ke=k[ce];ce=me+de*b[2]+ee*b[1]+V*b[0];let Se=k[ce];ce=me+Q*b[2]+Y*b[1]+V*b[0];let $e=k[ce];ce=me+de*b[2]+Y*b[1]+V*b[0];let ze=k[ce],De=ke+(Se-ke)*oe,Qe=$e+(ze-$e)*oe;ce=me+te*v[2]+X*v[1]+I*v[0],y.values[ce]=De+(Qe-De)*re}}}else for(let ee=0;ee<A;++ee){let Y=A>1?$*(c-1)+ee*U:.5*($+_)*(c-1);if(Y<0||Y>c-1){for(let ie=0;ie<h;ie++){let Q=ie+ee*v[2]+X*v[1]+I*v[0];y.values[Q]=d}continue}let re=Math.round(Y),te=Math.round(G);for(let ie=0;ie<h;ie++){let Q=ie+re*b[2]+te*b[1]+V*b[0],de=ie+ee*v[2]+X*v[1]+I*v[0];y.values[de]=k[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var jD={kernelName:ho,backendName:"cpu",kernelFunc:VD};function UD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),d=r;l!=null&&(d=Zn({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=C.getInnerMostAxes(1,r.shape.length)[0];if(u!==d.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${d.shape.length-1} but got axis=${u}`);let p=ia(d.dtype,"int32"),c=w.makeZerosTypedArray(w.sizeFromShape(d.shape),p),h=n.data.get(d.dataId).values,m=d.shape[d.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<h.length;y+=m)for(let g=0;g<m;g++){let x=f(y,g);if(g===0)c[x]=i?0:h[x];else{let k=f(y,g-1);c[x]=i?h[k]+c[k]:h[x]+c[k]}}let A=n.makeTensorInfo(d.shape,p,c);if(l!=null){let y=C.getUndoAxesPermutation(l),g=Zn({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(d),g}return A}var HD={kernelName:ms,backendName:"cpu",kernelFunc:UD};function GD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,u=BA(l,d,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),d=n.bufferSync(s),u=k3(l,d,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var qD={kernelName:$p,backendName:"cpu",kernelFunc:GD};function XD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],d=r.shape[2],u=r.shape[3],p=l*s,c=d*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),A=0;for(let y=0;y<o;++y)for(let g=0;g<p;++g){let x=Math.floor(g/s),k=g%s;for(let b=0;b<c;++b){let v=Math.floor(b/s),I=b%s,T=(k*s+I)*h;for(let R=0;R<h;++R){let $=R+T+u*(v+d*(x+l*y));f[A++]=m[$]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var KD={kernelName:fo,backendName:"cpu",kernelFunc:XD};function s7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:d}=a;ve([r,s],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,d,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=h,x=g.left,k=g.top,b=h.outChannels/h.inChannels,v=new Dt(h.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,R=v.values;for(let $=0;$<h.batchSize;++$){let z=$*u[0],_=$*v.strides[0];for(let V=0;V<h.outHeight;++V){let j=_+V*v.strides[1],U=V*h.strideHeight-k;for(let X=0;X<m;++X){let G=U+X*A;if(G<0||G>=h.inHeight)continue;let ee=X*p[0],Y=z+G*u[1];for(let re=0;re<h.outWidth;++re){let te=j+re*v.strides[2],ie=re*h.strideWidth-x;for(let Q=0;Q<f;++Q){let de=ie+Q*y;if(de<0||de>=h.inWidth)continue;let oe=ee+Q*p[1],me=Y+de*h.inChannels,ce=te,ke=oe;for(let Se=0;Se<h.inChannels;++Se){let $e=I[me+Se];for(let ze=0;ze<b;++ze)R[ce+ze]+=$e*T[ke+ze];ce+=b,ke+=b}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var ZD={kernelName:As,backendName:"cpu",kernelFunc:s7};function YD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,filterShape:u}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,u,i,o,l,d,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,A=new Dt(p.filterShape,"float32"),y=p.padInfo.left,g=p.padInfo.top,x=p.outChannels/p.inChannels,k=n.data.get(r.dataId).values,b=new Dt(r.shape,r.dtype,k),v=n.data.get(s.dataId).values,I=new Dt(s.shape,s.dtype,v);for(let T=0;T<m;++T){let R=Math.max(0,Math.ceil((g-T)/c)),$=Math.min(p.outHeight,(p.inHeight+g-T)/c);for(let z=0;z<f;++z){let _=Math.max(0,Math.ceil((y-z)/h)),V=Math.min(p.outWidth,(p.inWidth+y-z)/h);for(let j=0;j<p.outChannels;++j){let U=Math.trunc(j/x),X=j%x,G=0;for(let ee=0;ee<p.batchSize;++ee)for(let Y=R;Y<$;++Y){let re=T+Y*c-g;for(let te=_;te<V;++te){let ie=z+te*h-y;G+=b.get(ee,re,ie,U)*I.get(ee,Y,te,j)}}A.set(G,T,z,U,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var JD={kernelName:Dp,backendName:"cpu",kernelFunc:YD};function QD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,inputShape:u}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),c=w.computeStrides(s.shape),h=C.computeConv2DInfo(u,s.shape,i,o,l,d,!0),m=new Dt(h.inShape,"float32"),f=m.values,[A,y,g]=m.strides,x=n.data.get(r.dataId).values,[k,b,v]=p,I=n.data.get(s.dataId).values,[T,R,$]=c,{batchSize:z,filterHeight:_,filterWidth:V,inChannels:j,inHeight:U,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:re,strideWidth:te}=h,ie=_-1-h.padInfo.top,Q=V-1-h.padInfo.left,de=G/j;for(let oe=0;oe<z;++oe)for(let me=0;me<j;++me)for(let ce=0;ce<U;++ce){let ke=ce-ie,Se=Math.max(0,Math.ceil(ke/re)),$e=Math.min(ee,(_+ke)/re);for(let ze=0;ze<X;++ze){let De=ze-Q,Qe=Math.max(0,Math.ceil(De/te)),et=Math.min(Y,(V+De)/te),rt=0;for(let Xe=Se;Xe<$e;++Xe){let pt=Xe*re-ke;for(let Ve=Qe;Ve<et;++Ve){let An=Ve*te-De,xt=k*oe+b*Xe+v*Ve,Vn=T*(_-1-pt)+R*(V-1-An)+$*me;for(let Xt=0;Xt<de;++Xt){let yn=me*de+Xt,jn=x[xt+yn],Mn=I[Vn+Xt];rt+=jn*Mn}}}f[A*oe+y*ce+g*ze+me]=rt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var eO={kernelName:Op,backendName:"cpu",kernelFunc:QD};function tO(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=We([r,r],a.dtype),o=i.values;for(let d=0;d<s.length;d++)o[d*r+d]=s[d];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var nO={kernelName:zp,backendName:"cpu",kernelFunc:tO},aO={kernelName:gu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,d=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:k,strideWidth:b,filterHeight:v,filterWidth:I,dilationHeight:T,dilationWidth:R,outShape:$}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),z=w.sizeFromShape($),_=$.length,V=w.getArrayFromDType(a.dtype,z);for(let j=0;j<h;++j)for(let U=0;U<y;++U){let X=U*k-x.top;for(let G=0;G<g;++G){let ee=G*b-x.left;for(let Y=0;Y<A;++Y){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<v;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let de=0;de<I;++de){let oe=ee+de*R;if(oe>=0&&oe<f){let me=w.locToIndex([j,Q,oe,Y],u,w.computeStrides(a.shape)),ce=w.locToIndex([ie,de,Y],c,w.computeStrides(r.shape)),ke=d[me]+p[ce];ke>re&&(re=ke)}}}let te=w.locToIndex([j,U,G,Y],_,w.computeStrides($));V[te]=re}}}return{dataId:l.write(w.toTypedArray(V,a.dtype),$,a.dtype),shape:$,dtype:a.dtype}}},rO={kernelName:Pp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,d=t,u=w.toNestedArray(a.shape,d.data.get(a.dataId).values),p=w.toNestedArray(r.shape,d.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:k,filterHeight:b,filterWidth:v,dilationHeight:I,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===R.length,()=>`Error in ${Pp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=w.toNestedArray(R,d.data.get(s.dataId).values),z=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let _=0;_<c;++_)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*k-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,re=0;for(let te=0;te<b;++te){let ie=j+te*I;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=u[_][ie][de][G]+p[te][Q][G];oe>ee&&(ee=oe,Y=te,re=Q)}}}z[Y][re][G]+=$[_][V][U][G]}}}return{dataId:d.write(w.toTypedArray(z,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},sO={kernelName:_p,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,d=t,u=w.toNestedArray(a.shape,d.data.get(a.dataId).values),p=w.toNestedArray(r.shape,d.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:k,filterHeight:b,filterWidth:v,dilationHeight:I,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===R.length,()=>`Error in ${_p}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=w.toNestedArray(R,d.data.get(s.dataId).values),z=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let _=0;_<c;++_)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*k-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=j<0?0:j,re=X<0?0:X;for(let te=0;te<b;++te){let ie=j+te*I;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=u[_][ie][de][G]+p[te][Q][G];oe>ee&&(ee=oe,Y=ie,re=de)}}}z[_][Y][re][G]+=$[_][V][U][G]}}}return{dataId:d.write(w.toTypedArray(z,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function sd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=_r({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Ba({inputs:{x:r},backend:n});let l=o.shape.length,d=w.parseAxisParam(s,o.shape),u=C.getAxesPermutation(d,l),p=d,c=o;u!=null&&(c=Zn({inputs:{x:o},backend:n,attrs:{perm:u}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,p),f=C.upcastType(c.dtype,"int32"),A=nh(n,h,f),y=w.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(c.dataId).values;for(let k=0;k<g.length;++k){let b=k*y,v=0;for(let I=0;I<y;++I)v+=x[b+I];g[k]=v}if(i){let k=C.expandShapeToKeepDim(A.shape,d),b=A;A=ht({inputs:{x:A},backend:n,attrs:{shape:k}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(c),A}var iO={kernelName:qs,backendName:"cpu",kernelFunc:sd};function oO(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:d,steps:u}=C.getEinsumComputePath(o,l),p=u.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of u[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=Zn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let k=x.shape.slice();for(let b=0;b<g.length;++b)k.splice(g[b],0,1);w.arraysEqual(x.shape,k)||(x=ht({inputs:{x},backend:n,attrs:{shape:k}}),m.push(x)),c===null?c=x:(c=ah({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(d[f]>=0&&(c=sd({inputs:{x:c},backend:n,attrs:{axis:d[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var lO={kernelName:Lp,backendName:"cpu",kernelFunc:oO};function uO(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let d=i[l];d>=1?s[l]=o[l]:s[l]=o[l]*(d+1)}return n.makeTensorInfo(r.shape,"float32",s)}var dO={kernelName:Wp,backendName:"cpu",kernelFunc:uO},pO=Rt((e,t)=>e===t?1:0),i7=Ut(yo,pO,null,"bool"),cO={kernelName:yo,backendName:"cpu",kernelFunc:i7},hO=C.ERF_P,fO=C.ERF_A1,mO=C.ERF_A2,AO=C.ERF_A3,yO=C.ERF_A4,gO=C.ERF_A5,xO=nt(Ao,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+hO*n);return t*(1-((((gO*a+yO)*a+AO)*a+mO)*a+fO)*a*Math.exp(-n*n))}),bO={kernelName:Ao,backendName:"cpu",kernelFunc:xO};function rh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ht({inputs:{x:r},backend:n,attrs:{shape:o}})}var vO={kernelName:go,backendName:"cpu",kernelFunc:rh},wO=Rt((e,t)=>e/t),ZA=Ut(ys,wO),YA={kernelName:ys,backendName:"cpu",kernelFunc:ZA};function o7(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,d=[r,s],u=w.sizeFromShape(d),p=w.getTypedArrayFromDType("float32",u),c=w.getTypedArrayFromDType("float32",u);for(let A=0;A<r;A++){let y=bi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=bi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),x=_n({inputs:{real:y,imag:g},backend:n}),{real:k,imag:b}=kO(x,t,n),v=C.mergeRealAndImagArrays(k,b);for(let I=0;I<s;I++){let T=C.getComplexWithIndex(v,I);p[A*s+I]=T.real,c[A*s+I]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(d,"float32",p),m=n.makeTensorInfo(d,"float32",c),f=_n({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function kO(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(IO(a)){let o=JA(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let d=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),c=Ba({inputs:{x:p},backend:n}),h=YA.kernelFunc({inputs:{a:d,b:p},backend:n}),m=YA.kernelFunc({inputs:{a:u,b:c},backend:n}),f=n.data.get(h.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=SO(o,a,t);return C.splitRealAndImagArrays(l)}}function IO(e){return(e&e-1)==0}function JA(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,d=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),c=r.makeTensorInfo(u,"float32",d),h=_n({inputs:{real:p,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",A),k=_n({inputs:{real:g,imag:x},backend:r}),b=JA(l,d,i,a,r),v=b.real,I=b.imag,T=[v.length],R=r.makeTensorInfo(T,"float32",v),$=r.makeTensorInfo(T,"float32",I),z=_n({inputs:{real:R,imag:$},backend:r}),_=JA(f,A,i,a,r),V=_.real,j=_.imag,U=[V.length],X=r.makeTensorInfo(U,"float32",V),G=r.makeTensorInfo(U,"float32",j),ee=_n({inputs:{real:X,imag:G},backend:r}),Y=C.exponents(n,a),re=[Y.real.length],te=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),Q=_n({inputs:{real:te,imag:ie},backend:r}),de=ah({inputs:{a:Q,b:ee},backend:r}),oe=rd({inputs:{a:z,b:de},backend:r}),me=qA({inputs:{a:z,b:de},backend:r}),ce=xi({inputs:{input:oe},backend:r}),ke=xi({inputs:{input:me},backend:r}),Se=Il({inputs:{input:oe},backend:r}),$e=Il({inputs:{input:me},backend:r}),ze=Sl({inputs:[ce,ke],backend:r,attrs:{axis:0}}),De=Sl({inputs:[Se,$e],backend:r,attrs:{axis:0}}),Qe=r.data.get(ze.dataId).values,et=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(k),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(ze),r.disposeIntermediateTensorInfo(De),{real:Qe,imag:et}}function SO(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),d=C.getComplexWithIndex(e,o);s+=d.real*l.real-d.imag*l.imag,i+=d.real*l.imag+d.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function NO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ht({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=o7(o,!1,n),d=ht({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),d}var TO={kernelName:Bp,backendName:"cpu",kernelFunc:NO};function QA(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return EO(o,r,i),t.makeTensorInfo(a,i,o)}var CO={kernelName:xu,backendName:"cpu",kernelFunc:QA};function EO(e,t,n){e.fill(t)}var RO={kernelName:bo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,d]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*d;for(let h=0;h<o;h++){let m=h*(l*d);for(let f=0;f<l;f++){let A=f*d;for(let y=0;y<d;y++){let g=[i,h,f,y][2],x=Math.round(l-g),k=c+m+A+y,b=u[k];if(x>=0&&x<l){let v=x*d,I=c+m+v+y;b=u[I]}s[k]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},MO=Rt((e,t)=>Math.floor(e/t)),FO=Ut(bs,MO,null,"int32"),$O={kernelName:bs,backendName:"cpu",kernelFunc:FO};function DO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=r7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=rd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=XA(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var OO={kernelName:ti,backendName:"cpu",kernelFunc:DO};function zO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=s7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=rd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=XA(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var _O={kernelName:ni,backendName:"cpu",kernelFunc:zO};function PO(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,d,u,p]=C.prepareAndValidate(a,r);if(d===0)return n.makeTensorInfo(l,a.dtype,[]);let c=We([d,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<d;f++){let A=[],y=0;for(let g=0;g<o;g++){let x=h[f*o+g];y+=x*p[g],A.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${A} does not index into ${a.shape}`);for(let g=0;g<u;g++)c.values[f*u+g]=m[y*u+g]}return n.makeTensorInfo(l,c.dtype,c.values)}var LO={kernelName:wo,backendName:"cpu",kernelFunc:PO};function WO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let d=w.sizeFromShape(s.shape),u=w.parseAxisParam(i,r.shape)[0],p=C.segment_util.collectGatherOpShapeInfo(r,s,u,l),c=ht({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=ht({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,d/p.batchSize]}}),m=[p.batchSize,p.outerSize,d/p.batchSize,p.sliceSize],f=n.bufferSync(h),A=n.bufferSync(c),y=E3(A,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var BO={kernelName:vo,backendName:"cpu",kernelFunc:WO},VO=Rt((e,t)=>e>=t?1:0),jO=Ut(ws,VO,null,"bool"),UO={kernelName:ws,backendName:"cpu",kernelFunc:jO};function HO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ht({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=o7(o,!0,n),d=ht({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),d}var GO={kernelName:Vp,backendName:"cpu",kernelFunc:HO},qO=nt(Io,e=>Number.isFinite(e)?1:0,"bool"),XO={kernelName:Io,backendName:"cpu",kernelFunc:qO},KO=nt(So,e=>Math.abs(e)===Infinity?1:0,"bool"),ZO={kernelName:So,backendName:"cpu",kernelFunc:KO},YO=nt(No,e=>Number.isNaN(e)?1:0,"bool"),JO={kernelName:No,backendName:"cpu",kernelFunc:YO},QO=Rt((e,t)=>e<=t?1:0),ez=Ut(Eo,QO,null,"bool"),tz={kernelName:Eo,backendName:"cpu",kernelFunc:ez};function nz(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=M3(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var az={kernelName:Up,backendName:"cpu",kernelFunc:nz},rz=nt(Co,e=>Math.log1p(e)),sz={kernelName:Co,backendName:"cpu",kernelFunc:rz},iz=Rt((e,t)=>e&&t),oz=Ut(Ro,iz,null,"bool"),lz={kernelName:Ro,backendName:"cpu",kernelFunc:oz},uz=nt(bu,e=>e?0:1,"bool"),dz={kernelName:bu,backendName:"cpu",kernelFunc:uz},pz=Rt((e,t)=>e||t),cz=Ut(vu,pz,null,"bool"),hz={kernelName:vu,backendName:"cpu",kernelFunc:cz};function fz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let d=r.shape[3],u=d-1,p=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let A=f%d,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let k=p[y];x+=k*k}return x}for(let f=0;f<c;f++){let A=m(f),y=p[f]*Math.pow(i+o*A,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var mz={kernelName:wu,backendName:"cpu",kernelFunc:fz};function Az(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:d,beta:u}=a;ve(i,"LRNGrad");let p=w.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(p),y=p;for(let g=0;g<y;g++){let x=g%c,k=g-x+Math.max(0,x-o),b=g-x+Math.min(c,x+o+1),v=0;for(let I=k;I<b;I++)v+=Math.pow(m[I],2);v=d*v+l;for(let I=k;I<b;I++){let T=-2*d*u*m[I]*f[g]/v;g===I&&(T+=Math.pow(v,-u)),T*=h[g],A[I]+=T}}return n.makeTensorInfo(i.shape,r.dtype,A)}var yz={kernelName:Hp,backendName:"cpu",kernelFunc:Az};function l7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,d=l.length,u=w.parseAxisParam(s,l),p=u,c=C.getAxesPermutation(p,d),h=o.data.get(r.dataId).values;if(c!=null){let k=new Array(d);for(let b=0;b<k.length;b++)k[b]=l[c[b]];h=UA(h,l,r.dtype,c,k),p=C.getInnerMostAxes(p.length,d),l=k}ve(r,"max"),C.assertAxesAreInnerMostDims("max",p,d);let[m,f]=C.computeOutAndReduceShapes(l,p),A=w.sizeFromShape(f),y=$3(h,A,m,r.dtype),g=o.write(y,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,u)),{dataId:g,shape:x,dtype:r.dtype}}var gz={kernelName:Ns,backendName:"cpu",kernelFunc:l7};function xz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;w.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=Ba({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=KA(c,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var bz={kernelName:Es,backendName:"cpu",kernelFunc:xz};function vz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:d}=a;ve(r,"maxPool3d");let u=C.computePool3DInfo(r.shape,s,i,1,o,l,d),p=n.data.get(r.dataId).values,c=a7(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var wz={kernelName:ku,backendName:"cpu",kernelFunc:vz};function kz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=a;ve([r,s],"maxPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,d),p=n.bufferSync(s),c=iD(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,k=u.effectiveFilterHeight,b=u.effectiveFilterWidth,v=x-1-u.padInfo.front,I=b-1-u.padInfo.left,T=k-1-u.padInfo.top,R=We(s.shape,"float32"),$=n.bufferSync(r);for(let z=0;z<u.batchSize;++z)for(let _=0;_<u.inChannels;++_)for(let V=0;V<u.inDepth;++V)for(let j=0;j<u.inHeight;++j)for(let U=0;U<u.inWidth;++U){let X=V-v,G=j-T,ee=U-I,Y=0;for(let re=0;re<x;re+=A){let te=(X+re)/h;if(!(te<0||te>=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie<k;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=u.outHeight||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(ee+de)/f;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*k*b-1-c.get(z,te,Q,oe,_),ce=re*k*b+ie*b+de,ke=me===ce?1:0;ke!==0&&(Y+=$.get(z,te,Q,oe,_)*ke)}}}R.set(Y,z,V,j,U,_)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var Iz={kernelName:qp,backendName:"cpu",kernelFunc:kz};function Sz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:d,pad:u,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,d,1,u,p),h=n.data.get(o.dataId).values,m=We(c.outShape,o.dtype,n7(h,o.shape,o.dtype,c).values),f=c.strideHeight,A=c.strideWidth,y=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,k=c.effectiveFilterWidth,b=k-1-c.padInfo.left,v=x-1-c.padInfo.top,I=We(o.shape,"float32"),T=n.data.get(r.dataId).values,R=We(r.shape,"float32",T);for(let $=0;$<c.batchSize;++$)for(let z=0;z<c.inChannels;++z)for(let _=0;_<c.inHeight;++_)for(let V=0;V<c.inWidth;++V){let j=_-v,U=V-b,X=0;for(let G=0;G<x;G+=y){let ee=(j+G)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<k;Y+=g){let re=(U+Y)/A;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let te=x*k-1-m.get($,ee,re,z),ie=G*k+Y,Q=te===ie?1:0;Q!==0&&(X+=R.get($,ee,re,z)*Q)}}I.set(X,$,_,V,z)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var Nz={kernelName:Gp,backendName:"cpu",kernelFunc:Sz};function Tz(e,t,n,a,r){let s=w.computeStrides(t),i=KA(e,t,n,s,r,"max"),o=n7(e,t,n,r,!0,a);return[i.values,o.values]}var Ez={kernelName:Xp,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let d=l.data.get(a.dataId).values,u=C.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=Tz(d,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(c,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function Cz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],d=w.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([d]));u.push(p);let c=_r({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(c);let h=ZA({inputs:{a:c,b:p},backend:n});u.push(h);let m=sd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Rz={kernelName:Cs,backendName:"cpu",kernelFunc:Cz};function Mz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,d=C.getAxesPermutation(l,r.shape.length),u=r;d!=null&&(u=Zn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,c]=C.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let k=0;k<h;++k){let b=f[g+k];b<x&&(x=b)}m[y]=x}d!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(p,u.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ht({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var Fz={kernelName:Rs,backendName:"cpu",kernelFunc:Mz};function $z(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((g,x)=>g[0]+r.shape[x]+g[1]),l=s.map(g=>g[0]),d=s.map((g,x)=>g[0]+r.shape[x]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,A=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let g=0;g<m;g++){let x=w.indexToLoc(g,f,A);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-u:x[b]>=d[b]&&(x[b]=(d[b]-1)*2-x[b]+u);x=x.map((b,v)=>b-l[v]);let k=w.locToIndex(x,c,h);y[g]=p[k]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var Dz={kernelName:Fs,backendName:"cpu",kernelFunc:$z},Oz=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),zz=Ut(Mo,Oz),_z={kernelName:Mo,backendName:"cpu",kernelFunc:zz},Pz=Yi(_g());function u7(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),d=l7({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=C.expandShapeToKeepDim(d.shape,l),p=ht({inputs:{x:d},backend:n,attrs:{shape:u}}),c=qA({inputs:{a:r,b:p},backend:n}),h=q3({inputs:{x:c},backend:n}),m=sd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:u}}),A=ZA({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var Lz={kernelName:Xs,backendName:"cpu",kernelFunc:u7};function Wz(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:u7({inputs:{logits:r},backend:n,attrs:{dim:-1}}),d=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,c=[d,s],h=w.makeZerosTypedArray(w.sizeFromShape(c),"int32");for(let m=0;m<d;++m){let f=m*u,A=new Float32Array(u-1);A[0]=p[f];for(let x=1;x<A.length;++x)A[x]=A[x-1]+p[f+x];let y=Pz.alea(i.toString()),g=m*s;for(let x=0;x<s;++x){let k=y();h[g+x]=A.length;for(let b=0;b<A.length;b++)if(k<A[b]){h[g+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var Bz={kernelName:Kp,backendName:"cpu",kernelFunc:Wz},Vz=Wa.nonMaxSuppressionV3Impl;function jz(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let d=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=Vz(d,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Uz={kernelName:Do,backendName:"cpu",kernelFunc:jz},Hz=Wa.nonMaxSuppressionV4Impl;function Gz(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:d}=a;ve(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=Hz(u,p,i,o,l,d);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var qz={kernelName:Oo,backendName:"cpu",kernelFunc:Gz},Xz=Wa.nonMaxSuppressionV5Impl;function Kz(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:d}=a;ve(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=d,{selectedIndices:A,selectedScores:y}=Xz(u,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Zz={kernelName:zo,backendName:"cpu",kernelFunc:Kz};function Yz(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=w.sizeFromShape(r.shape),d=new Float32Array(l*s);d.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(d[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",d)}var Jz={kernelName:Ds,backendName:"cpu",kernelFunc:Yz};function sh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=xi({inputs:{input:a},backend:n}),s=sh({inputs:{x:r},backend:n}),i=Il({inputs:{input:a},backend:n}),o=sh({inputs:{x:i},backend:n}),l=_n({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return QA({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var Qz={kernelName:Qo,backendName:"cpu",kernelFunc:sh};function d7(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=xi({inputs:{input:a},backend:n}),s=d7({inputs:{x:r},backend:n}),i=Il({inputs:{input:a},backend:n}),o=sh({inputs:{x:i},backend:n}),l=_n({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return QA({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var e_={kernelName:_o,backendName:"cpu",kernelFunc:d7};function p7(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return rh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=rh({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),d=Sl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),d}var t_={kernelName:Po,backendName:"cpu",kernelFunc:p7};function n_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,g)=>y[0]+r.shape[g]+y[1]),l=s.map(y=>y[0]),d=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),p=r.shape.length,c=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),A=w.getTypedArrayFromDType(r.dtype,h);i!==0&&A.fill(i);for(let y=0;y<u;y++){let g=w.indexToLoc(y,p,c).map((k,b)=>k+l[b]),x=w.locToIndex(g,m,f);A[x]=d[y]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var c7={kernelName:Os,backendName:"cpu",kernelFunc:n_},a_=Rt((e,t)=>Math.pow(e,t)),r_=Ut(zs,a_),s_={kernelName:zs,backendName:"cpu",kernelFunc:r_};function i_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=HA(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var o_={kernelName:Iu,backendName:"cpu",kernelFunc:i_},l_=nt(Wo,e=>1/e),u_={kernelName:Wo,backendName:"cpu",kernelFunc:l_};function d_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=w.computeStrides(r.shape),[d,u]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(w.sizeFromShape([p,d,u,m])),y=[s&&d>1?c-1:c,s&&u>1?h-1:h],g=[s&&d>1?d-1:d,s&&u>1?u-1:u],x=0,k=y[0]/g[0],b=y[1]/g[1];for(let v=0;v<p;v++)for(let I=0;I<d;I++){let T;i?T=k*(I+.5)-.5:T=k*I;let R=Math.max(0,Math.floor(T)),$=T-R,z=Math.min(c-1,Math.ceil(T)),_=v*l[0]+R*l[1],V=v*l[0]+z*l[1];for(let j=0;j<u;j++){let U;i?U=b*(j+.5)-.5:U=b*j;let X=Math.max(0,Math.floor(U)),G=U-X,ee=Math.min(h-1,Math.ceil(U)),Y=_+X*l[2],re=V+X*l[2],te=_+ee*l[2],ie=V+ee*l[2];for(let Q=0;Q<m;Q++){let de=f[Y+Q],oe=f[re+Q],me=f[te+Q],ce=f[ie+Q],ke=de+(me-de)*G,Se=oe+(ce-oe)*G,$e=ke+(Se-ke)*$;A[x++]=$e}}}return n.makeTensorInfo([p,d,u,m],"float32",A)}var p_={kernelName:Ls,backendName:"cpu",kernelFunc:d_};function c_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,d,u,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*d*u*p),f=[i&&c>1?d-1:d,i&&h>1?u-1:u],A=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,k=0;for(let b=0;b<l;b++){let v=b*o[0];for(let I=0;I<c;I++){let T=I*y,R=Math.floor(T),$=Math.min(Math.ceil(T),d-1),z=v+R*o[1],_=v+$*o[1],V=T-R,j=1-V;for(let U=0;U<h;U++){let X=U*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),u-1),Y=X-G,re=1-Y,te=z+G*o[2],ie=z+ee*o[2],Q=_+G*o[2],de=_+ee*o[2],oe=j*re,me=j*Y,ce=V*re,ke=V*Y;for(let Se=0;Se<p;Se++){let $e=x[k++];m[te+Se]+=$e*oe,m[ie+Se]+=$e*me,m[Q+Se]+=$e*ce,m[de+Se]+=$e*ke}}}}return n.makeTensorInfo([l,u,d,p],"float32",m)}var h_={kernelName:Jp,backendName:"cpu",kernelFunc:c_};function f_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[d,u]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(p*d*u*m),y=[s&&d>1?c-1:c,s&&u>1?h-1:h],g=[s&&d>1?d-1:d,s&&u>1?u-1:u],x=y[0]/g[0],k=y[1]/g[1],b=0;for(let v=0;v<p;v++){let I=v*l[0];for(let T=0;T<d;T++){let R=i?x*(T+.5):x*T,$=Math.min(c-1,s?Math.round(R):Math.floor(R));i&&($=Math.max(0,$));let z=I+$*l[1];for(let _=0;_<u;_++){let V=i?k*(_+.5):k*_,j=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(j=Math.max(0,j));let U=z+j*l[2];for(let X=0;X<m;X++){let G=f[U+X];A[b++]=G}}}}return n.makeTensorInfo([p,d,u,m],r.dtype,A)}var m_={kernelName:Su,backendName:"cpu",kernelFunc:f_};function A_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[d,u,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(d*u*p*c),A=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],g=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/g[0],k=y[1]/g[1],b=1/x,v=1/k,I=Math.ceil(b)*2+2,T=Math.ceil(v)*2+2;for(let R=0;R<d;R++){let $=R*o[0];for(let z=0;z<u;z++){let _=$+z*o[1],V=Math.floor(z*b),j=Math.floor(V-I/2);for(let U=0;U<p;U++){let X=_+U*o[2],G=Math.floor(U*v),ee=Math.floor(G-T/2);for(let Y=0;Y<c;Y++){let re=0;for(let te=0;te<I;te++){let ie=te+j;if(ie<0||ie>=h)continue;let Q=$+ie*l[1],de=ie*x,oe=Math.min(u-1,i?Math.round(de):Math.floor(de));if(z===oe)for(let me=0;me<T;me++){let ce=me+ee;if(ce<0||ce>=m)continue;let ke=Q+ce*l[2],Se=ce*k,$e=Math.min(p-1,i?Math.round(Se):Math.floor(Se));U===$e&&(re+=A[ke+Y])}}f[X+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var y_={kernelName:Yp,backendName:"cpu",kernelFunc:A_};function g_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Ba({inputs:{x:r},backend:n});let l=new Dt(r.shape,r.dtype),d=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(d.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var x_={kernelName:Bs,backendName:"cpu",kernelFunc:g_},b_={kernelName:el,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[d,u,p,c]=a.shape,[h,m]=C.getImageCenter(i,u,p),f=255,A=Math.sin(r),y=Math.cos(r),g=o.data.get(a.dataId).values;for(let x=0;x<d;x++){let k=x*p*u*c;for(let b=0;b<u;b++){let v=b*(p*c);for(let I=0;I<p;I++){let T=I*c;for(let R=0;R<c;R++){let $=[d,b,I,R],z=$[2],_=$[1],V=(z-h)*y-(_-m)*A,j=(z-h)*A+(_-m)*y;V=Math.round(V+h),j=Math.round(j+m);let U=s;if(typeof s!="number"&&(R===3?U=f:U=s[R]),V>=0&&V<p&&j>=0&&j<u){let G=j*(p*c),ee=V*c,Y=k+G+ee+R;U=g[Y]}let X=k+v+T+R;l[X]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},v_=nt(Vs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),w_={kernelName:Vs,backendName:"cpu",kernelFunc:v_};function h7(e,t,n,a,r,s,i,o,l,d){let u=[a/r,r],p=e.values,c=t.values;if(a===0)return We(n,t.dtype);let h=We(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=p[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)d?h.values[A*r+y]+=c[m*r+y]:h.values[A*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function k_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:d,strides:u,outputSize:p}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=h7(h,m,i,p,d,l,o,u,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var I_={kernelName:Vo,backendName:"cpu",kernelFunc:k_};function S_(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,u=ia(r.dtype,s.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),c=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=d[m];return n.makeTensorInfo(r.shape,u,p)}var N_={kernelName:jo,backendName:"cpu",kernelFunc:S_},T_=C.SELU_SCALEALPHA,E_=C.SELU_SCALE,C_=nt(Uo,e=>e>=0?E_*e:T_*(Math.exp(e)-1)),R_={kernelName:Uo,backendName:"cpu",kernelFunc:C_},M_=nt(qo,e=>e<0?-1:e>0?1:0),F_={kernelName:qo,backendName:"cpu",kernelFunc:M_},$_=nt(Us,e=>Math.sin(e)),D_={kernelName:Us,backendName:"cpu",kernelFunc:$_},O_=nt(Go,e=>Math.sinh(e)),z_={kernelName:Go,backendName:"cpu",kernelFunc:O_},__=11920928955078125e-23,f7=Math.log(__)+2,P_=nt(Xo,e=>{let t=e>-f7,n=e<f7,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),L_={kernelName:Xo,backendName:"cpu",kernelFunc:P_};function W_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<r.shape.length;++A)l.push([0,0]);let d=c7.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=C.getReshaped(d.shape,s,o,!1),p=C.getPermuted(u.length,s.length,!1),c=C.getReshapedPermuted(d.shape,s,o,!1),h=ht({inputs:{x:d},backend:n,attrs:{shape:u}}),m=Zn({inputs:{x:h},backend:n,attrs:{perm:p}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var B_={kernelName:Nu,backendName:"cpu",kernelFunc:W_};function V_(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[d,u,p]=W3(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(u,a.dtype,d),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var j_={kernelName:Qp,backendName:"cpu",kernelFunc:V_};function U_(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:d,sliceSize:u,strides:p,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=h7(m,f,o,c,u,d,l,p,A,h);return n.makeTensorInfo(o,y.dtype,y.values)}var H_={kernelName:ec,backendName:"cpu",kernelFunc:U_};function G_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),d=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let c=[...u];c[o]=p;let h=bi({inputs:{x:r},backend:n,attrs:{begin:d,size:c}});return d[o]+=p,h})}var q_={kernelName:Ko,backendName:"cpu",kernelFunc:G_},X_=nt(Gs,e=>Math.sqrt(e)),K_={kernelName:Gs,backendName:"cpu",kernelFunc:X_},Z_={kernelName:Tu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Y_=nt(Nr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),J_={kernelName:Nr,backendName:"cpu",kernelFunc:Y_};function Q_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:d,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=sn.sliceInfo(r.shape,s,i,o,l,d,u,p,c),x=ht({inputs:{x:r},backend:n,attrs:{shape:y}}),k;if(h){let v=bi({inputs:{x},backend:n,attrs:{begin:m,size:A}});k=ht({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))k=n.makeTensorInfo(g,r.dtype,[]);else{let v=n.bufferSync(x),I=V3(g,v,f,m);k=n.makeTensorInfo(I.shape,I.dtype,I.values)}let b=ht({inputs:{x:k},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(k),b}var eP={kernelName:Zo,backendName:"cpu",kernelFunc:Q_},tP=nt(Ys,e=>Math.tan(e)),nP={kernelName:Ys,backendName:"cpu",kernelFunc:tP},aP=nt(Js,e=>Math.tanh(e)),rP={kernelName:Js,backendName:"cpu",kernelFunc:aP};function sP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=U3(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var iP={kernelName:Sr,backendName:"cpu",kernelFunc:sP};function oP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,d]=H3(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(d.shape,d.dtype,d.values)]}var lP={kernelName:Yo,backendName:"cpu",kernelFunc:oP};function pP(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:d}=n,[u,p,c,h]=r.shape,[m,f]=d!=null?d:[p,c],A=[u,m,f,h],y=w.computeStrides(r.shape),g=y[0],x=y[1],k=y[2],b=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(A));b.fill(l);let v=a.data.get(r.dataId).values,I=a.data.get(s.dataId).values;for(let T=0;T<u;++T){let R=s.shape[0]===1?I:I.subarray(T*8,T*8+8);for(let $=0;$<m;++$)for(let z=0;z<f;++z)for(let _=0;_<h;++_){let V,j=R[6]*z+R[7]*$+1;if(j===0)continue;let U=(R[0]*z+R[1]*$+R[2])/j,X=(R[3]*z+R[4]*$+R[5])/j,G=m7(U,c,o),ee=m7(X,p,o);switch(i){case"nearest":V=uP(v,p,c,g,x,k,T,ee,G,_,l);break;case"bilinear":V=dP(v,p,c,g,x,k,T,ee,G,_,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=T*g+$*x+z*k+_;b[Y]=V}return a.makeTensorInfo(A,r.dtype,b)}return{dataId:a.write(b,A,r.dtype),shape:r.shape,dtype:r.dtype}}var cP={kernelName:tc,backendName:"cpu",kernelFunc:pP};function m7(e,t,n){switch(n){case"reflect":return hP(e,t);case"wrap":return fP(e,t);case"nearest":return AP(e,t);case"constant":default:return mP(e,t)}}function hP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function fP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function mP(e,t){return e}function AP(e,t){return w.clamp(0,e,t-1)}function id(e,t,n,a,r,s,i,o,l,d,u){let p=i*a+o*r+l*s+d;return 0<=o&&o<t&&0<=l&&l<n?e[p]:u}function uP(e,t,n,a,r,s,i,o,l,d,u){let p=Math.round(o),c=Math.round(l);return id(e,t,n,a,r,s,i,p,c,d,u)}function dP(e,t,n,a,r,s,i,o,l,d,u){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*id(e,t,n,a,r,s,i,p,c,d,u)+(l-c)*id(e,t,n,a,r,s,i,p,m,d,u),A=(m-l)*id(e,t,n,a,r,s,i,h,c,d,u)+(l-c)*id(e,t,n,a,r,s,i,h,m,d,u);return(h-o)*f+(o-p)*A}function yP(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:d}=G3(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([d.length],"int32",d)]}var gP={kernelName:nc,backendName:"cpu",kernelFunc:yP};function xP(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),d=0;for(let h=0;h<i;h++)h!==s&&(l[d++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){u[s]=h;let m=bi({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});c[h]=ht({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var bP={kernelName:Jo,backendName:"cpu",kernelFunc:xP};function vP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,d=[],u=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=rh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,u.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=i7({inputs:{a:A,b:c},backend:n}),g=_r({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=ah({inputs:{a:g,b:r},backend:n}),k=sd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});d.push(k),u.push(A),u.push(y),u.push(g),u.push(x),u.push(k)}let h=p7({inputs:d,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var wP={kernelName:Eu,backendName:"cpu",kernelFunc:vP},kP=[D$,PF,z$,P$,UF,W$,V$,U$,G$,X$,Z$,J$,eD,aD,sD,lD,dD,cD,fD,F$,AD,gD,bD,VF,GF,wD,LF,ID,ND,CD,MD,TD,OD,_D,$D,LD,BD,jD,HD,qD,KD,ZD,JD,eO,nO,aO,sO,rO,YA,lO,I$,dO,cO,bO,qF,vO,KF,TO,CO,RO,YF,$O,OO,_O,LO,BO,QF,UO,WF,GO,SD,XO,ZO,JO,S$,t$,tz,az,a$,sz,lz,dz,hz,mz,yz,s$,bz,wz,Iz,Nz,Ez,gz,Rz,Fz,o$,Dz,_z,Bz,u$,p$,Uz,qz,Zz,h$,Jz,e_,t_,c7,s_,T$,A$,o_,BF,u_,E$,C$,M$,p_,h_,m_,y_,x_,b_,w_,g$,I_,N_,R_,R$,F_,D_,z_,x$,Lz,L_,B_,j_,H_,q_,K_,Z_,v$,J_,eP,k$,iO,nP,rP,iP,lP,f$,cP,gP,bP,wP,Qz];for(let e of kP)ai(e);var A7={};Fe(A7,{assertNotComplex:()=>Nl,bindCanvasToFramebuffer:()=>NP,bindColorTextureToFramebuffer:()=>oh,bindTextureToProgramUniformSampler:()=>M7,bindTextureUnit:()=>E7,bindVertexBufferToProgramAttribute:()=>e1,callAndCheck:()=>xe,canBeRepresented:()=>y7,createFragmentShader:()=>b7,createFramebuffer:()=>T7,createProgram:()=>v7,createStaticIndexBuffer:()=>I7,createStaticVertexBuffer:()=>k7,createTexture:()=>S7,createVertexShader:()=>x7,getBatchDim:()=>vi,getExtensionOrThrow:()=>od,getFramebufferErrorMessage:()=>F7,getMaxTexturesInShader:()=>O7,getNumChannels:()=>IP,getProgramUniformLocation:()=>R7,getProgramUniformLocationOrThrow:()=>C7,getRowsCols:()=>wi,getShapeAs3D:()=>lh,getTextureShapeFromLogicalShape:()=>$7,getWebGLDisjointQueryTimerVersion:()=>z7,getWebGLErrorMessage:()=>g7,getWebGLMaxTextureSize:()=>D7,hasExtension:()=>Yn,isCapableOfRenderingToFloatTexture:()=>_7,isDownloadFloatTextureEnabled:()=>P7,isReshapeFree:()=>ud,isWebGLFenceEnabled:()=>L7,isWebGLVersionEnabled:()=>n1,linkProgram:()=>w7,resetMaxTextureSize:()=>TP,resetMaxTexturesInShader:()=>EP,unbindColorTextureFromFramebuffer:()=>t1,unbindTextureUnit:()=>SP,validateFramebuffer:()=>ld,validateProgram:()=>ih,validateTextureSize:()=>N7});var ki={},a1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function uh(e,t){ki[e]=t}function Va(e){if(!(e in ki)){let n=CP(e);if(n!==null)ki[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ki[e];return t.isContextLost()?(delete ki[e],Va(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ki[e])}function RP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function CP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=RP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ki[e]},!1),e===1?t.getContext("webgl",a1)||t.getContext("experimental-webgl",a1):t.getContext("webgl2",a1)}var dd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(dd||(dd={}));var Jn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Jn||(Jn={}));var Qt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Qt||(Qt={}));function pd(e,t){return[t,e]}function MP(e,t){return e*t}function cd(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Tl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function FP(e,t){let[n,a]=Tl(e,t);return n*a*4}function r1(e,t){let n=e,a,r,s,i,o,l,d,u,p,c;return J().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,d=4,u=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,d=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:d,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&$P(e),n}function $P(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+g7(e,t))}var DP=596e-10,OP=65504;function y7(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||DP<Math.abs(e)&&Math.abs(e)<OP)}function g7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function od(e,t){return lr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function x7(e,t){let n=lr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function b7(e,t){let n=lr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw zP(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var _P=/ERROR: [0-9]+:([0-9]+):/g;function zP(e,t){let n=_P.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>w.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),d=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(d[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function v7(e){return lr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function w7(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function ih(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function k7(e,t){let n=lr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function I7(e,t){let n=lr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function IP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function S7(e){return lr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function N7(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function T7(e){return lr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function e1(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function E7(e,t,n){W7(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function SP(e,t){W7(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function C7(e,t,n){return lr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function R7(e,t,n){return e.getUniformLocation(t,n)}function M7(e,t,n,a){xe(e,()=>E7(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function NP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function oh(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function t1(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ld(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+F7(e,t))}function F7(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function lr(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function W7(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function vi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function wi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function lh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[vi(e),...wi(e)]),t}function $7(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=vi(e),s=2,i=2;return e.length&&([s,i]=wi(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function dh(e){return e%2==0}function ud(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||dh(n)&&dh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&dh(e[0])&&dh(t[0])}var ph,ch;function D7(e){if(ph==null){let t=Va(e);ph=t.getParameter(t.MAX_TEXTURE_SIZE)}return ph}function TP(){ph=null}function EP(){ch=null}function O7(e){if(ch==null){let t=Va(e);ch=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ch)}function z7(e){if(e===0)return 0;let t,n=Va(e);return Yn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Yn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Yn(e,t){return e.getExtension(t)!=null}function n1(e){try{if(Va(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function _7(e){if(e===0)return!1;let t=Va(e);if(e===1){if(!Yn(t,"OES_texture_float"))return!1}else if(!Yn(t,"EXT_color_buffer_float"))return!1;return s1(t)}function P7(e){if(e===0)return!1;let t=Va(e);if(e===1){if(!Yn(t,"OES_texture_float")||!Yn(t,"WEBGL_color_buffer_float"))return!1}else{if(Yn(t,"EXT_color_buffer_float"))return s1(t);let n="EXT_color_buffer_half_float";if(Yn(t,n)){let a=t.getExtension(n);return PP(t,a)}return!1}return s1(t)}function s1(e){let t=r1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function PP(e,t){let n=r1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function L7(e){return e!==2?!1:Va(e).fenceSync!=null}function Nl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Re=J();Re.registerFlag("HAS_WEBGL",()=>Re.getNumber("WEBGL_VERSION")>0);Re.registerFlag("WEBGL_VERSION",()=>n1(2)?2:n1(1)?1:0);Re.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Re.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Re.get("WEBGL_VERSION")===2);Re.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Re.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Re.registerFlag("WEBGL_PACK",()=>Re.getBool("HAS_WEBGL"));Re.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_CLIP",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_REDUCE",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_LAZILY_UNPACK",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_CONV_IM2COL",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>D7(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>O7(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Re.getNumber("WEBGL_VERSION");return e===0?0:z7(e)});Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Re.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!_u.isMobile());Re.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>_7(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Re.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Re.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Re.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>P7(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_FENCE_API_ENABLED",()=>L7(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Re.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Re.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Re.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>_u.isMobile()&&Re.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,a,r,s,i,o,l,d;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",d=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,d=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:d}}function Ii(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function i1(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var B7=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,LP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=dd.DENSE;let t=cd(e),n=dn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ii(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},WP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=dd.DENSE;let t=cd(e),n=dn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ii(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},BP=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Jn.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
|
|
${B7}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},VP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Jn.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
|
|
${B7}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},jP=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=dn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${i1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},UP=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=dn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let d=0;d<=1;d++){let u=l*2+d;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${d} < ${e[2]}) {
|
|
localCoords[2] += ${d};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${u}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${u}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${u}] = values[2];
|
|
} else {
|
|
result[${u}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${i1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},V7={};Fe(V7,{bindVertexProgramAttributeStreams:()=>Y7,createBufferFromOutputTexture:()=>ev,createFloat16MatrixTexture:()=>q7,createFloat16PackedMatrixTexture:()=>Z7,createFloat32MatrixTexture:()=>G7,createIndexBuffer:()=>H7,createPackedMatrixTexture:()=>K7,createUnsignedBytesMatrixTexture:()=>X7,createVertexBuffer:()=>U7,createVertexShader:()=>j7,downloadByteEncodedFloatMatrixFromOutputTexture:()=>nv,downloadFloat32MatrixFromBuffer:()=>tv,downloadMatrixFromPackedOutputTexture:()=>rv,downloadPackedMatrixFromBuffer:()=>av,getInternalFormatForFloat16MatrixTexture:()=>l1,getInternalFormatForFloat16PackedMatrixTexture:()=>p1,getInternalFormatForFloat32MatrixTexture:()=>o1,getInternalFormatForPackedMatrixTexture:()=>d1,getInternalFormatForUnsignedBytesMatrixTexture:()=>u1,uploadDenseMatrixToTexture:()=>J7,uploadPixelDataToTexture:()=>Q7});function j7(e){let t=dn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return x7(e,n)}function U7(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return k7(e,t)}function H7(e){let t=new Uint16Array([0,1,2,2,1,3]);return I7(e,t)}function hd(e,t,n,a,r,s){N7(t,n);let i=S7(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function o1(e){return e.internalFormatFloat}function G7(e,t,n,a){let[r,s]=pd(t,n);return hd(e,r,s,o1(a),a.textureFormatFloat,e.FLOAT)}function l1(e){return e.internalFormatHalfFloat}function q7(e,t,n,a){let[r,s]=pd(t,n);return hd(e,r,s,l1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function u1(e){return e.downloadTextureFormat}function X7(e,t,n,a){let[r,s]=pd(t,n);return hd(e,r,s,u1(a),e.RGBA,e.UNSIGNED_BYTE)}function d1(e){return e.internalFormatPackedFloat}function K7(e,t,n,a){let[r,s]=Tl(t,n);return hd(e,r,s,d1(a),e.RGBA,e.FLOAT)}function p1(e){return e.internalFormatPackedHalfFloat}function Z7(e,t,n,a){let[r,s]=Tl(t,n);return hd(e,r,s,p1(a),e.RGBA,a.textureTypeHalfFloat)}function Y7(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),e1(e,t,"clipSpacePos",n,3,s,a)&&e1(e,t,"uv",n,2,s,r)}function J7(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q7(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ev(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function tv(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function nv(e,t,n,a){let[r,s]=pd(t,n),i=4,o=new Uint8Array(MP(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function av(e,t,n,a,r,s,i,o){let l=e,d=new Float32Array(FP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,d),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),d}function rv(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var hh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,uh(t,e)):this.gl=Va(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=od(this.gl,r),Yn(this.gl,s))this.textureHalfFloatExtension=od(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Yn(this.gl,a))this.colorBufferHalfFloatExtension=od(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Yn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Yn(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=U7(this.gl),this.indexBuffer=H7(this.gl),this.framebuffer=T7(this.gl),this.textureConfig=r1(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),G7(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),q7(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),X7(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Q7(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),J7(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Z7(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),K7(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(t1(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>nv(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return av(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return tv(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=ev(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>rv(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=b7(t,e),a=j7(t),r=v7(t);return xe(t,()=>t.attachShader(r,a)),xe(t,()=>t.attachShader(r,n)),w7(t,r),this.debug&&ih(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=Y7(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ih(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?C7(this.gl,e,t):R7(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),M7(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Tl(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ih(this.gl,this.program),ld(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=od(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=HP(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),oh(this.gl,e,this.framebuffer),this.debug&&ld(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(oh(this.gl,this.outputTexture,this.framebuffer),this.debug&&ld(this.gl)):t1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;oh(a,e,this.framebuffer),this.debug&&ld(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function HP(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:sv}=C;function eL(e,t,n,a){let r=[];e.forEach(h=>{let m=w.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>GP(h,t,a)).join(`
|
|
`),o=t.texShape,l=dn(),d=KP(l),u,p,c=JP(l);return t.isPacked?(u=qP(t.logicalShape,o),p=YP(l)):(u=XP(t.logicalShape,o),p=ZP(l)),a&&(c+=QP),[c,d,p,s,u,i,n].join(`
|
|
`)}function El(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return tL(e);case 1:return nL(e);case 2:return aL(e);case 3:return rL(e);case 4:return sL(e);case 5:return iL(e);case 6:return oL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function iv(e){switch(e.shapeInfo.logicalShape.length){case 0:return lL(e);case 1:return uL(e);case 2:return dL(e);case 3:return pL(e);default:return cL(e)}}function GP(e,t,n=!1){let a="";n?a+=iv(e):a+=El(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=hL(e,t):a+=fL(e,t)),a}function qP(e,t){switch(e.length){case 0:return ov();case 1:return mL(e,t);case 2:return gL(e,t);case 3:return AL(e,t);default:return yL(e,t)}}function XP(e,t){switch(e.length){case 0:return ov();case 1:return xL(e,t);case 2:return IL(e,t);case 3:return bL(e,t);case 4:return vL(e,t);case 5:return wL(e,t);case 6:return kL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function KP(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function ZP(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function YP(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function JP(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${SL}
|
|
${NL}
|
|
${TL}
|
|
`}var SL=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,NL=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,TL=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,QP=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function ov(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function mL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function xL(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function AL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function bL(e,t){let n=Ii(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function yL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function vL(e,t){let n=Ii(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function wL(e,t){let n=Ii(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function kL(e,t){let n=Ii(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function gL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function IL(e,t){return w.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Si(e){return`offset${e}`}function lL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=dn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function tL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Si(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function uL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=dn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function nL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Cl(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Si(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function dL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=dn();if(r!=null&&w.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],d=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${d}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function aL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&w.arraysEqual(t,r)){let p=r[0],c=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=w.squeezeShape(t),o=s;if(o.length<t.length){let p=Rl(e,o),c=["row","col"];return`
|
|
${El(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${Ml(c,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${Cl(e)}
|
|
}
|
|
`;let l=r[0],d=r[1],u=Si(n);return d===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${u};
|
|
vec2 uv = uvFromFlat(${l}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Rl(e,p),m=["b","row","col"];return`
|
|
${iv(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${Ml(m,c)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),d=l*Math.ceil(t[1]/2),u=dn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${d}, ${l}, b, row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`}function rL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=w.squeezeShape(t),l=i;if(l.length<t.length){let m=Rl(e,l),f=["row","col","depth"];return`
|
|
${El(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${Ml(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${Cl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.texShape,u=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Si(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cL(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],d=Math.ceil(t[n-1]/2),u=d*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${u} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],c=`b${m} * ${u} + `+c;let h=dn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${c};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function sL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=w.squeezeShape(t);if(o.length<t.length){let m=Rl(e,o),f=["row","col","depth","depth2"];return`
|
|
${El(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${Ml(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${Cl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],c=u[1];if(c===i&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Si(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function iL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:d}=w.squeezeShape(t);if(l.length<t.length){let f=Rl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${El(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${Ml(A,d)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Cl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Si(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function oL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let A=Rl(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${El(A)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${Ml(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,d=t[2]*l,u=t[1]*d;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${d}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Cl(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===u&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${d}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Si(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${d} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Cl(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function hL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=sv(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),d=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${p[A+d]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((A,y)=>`coords.${p[y+d]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(A)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function fL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let d=lt(l),u=sv(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&u.length>=1?c="coords = 0;":c=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${h[A+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${d} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Rl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ml(e,t){return t.map(n=>e[n]).join(", ")}function EL(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=eL(s,o,r,t.packedInputs),d=e.createProgram(l),u=null,p=e.getUniformLocation(d,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(d,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(d,m,f),c[`offset${m}`]=e.getUniformLocation(d,`offset${m}`,f)}return{program:t,source:l,webGLProgram:d,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function lv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function CL(e,t,n,a,r){lv(t.inShapeInfos,n),lv([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let d=t.program.variableNames[l],u=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`];if(u!=null){if(o.isUniform){if(w.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(u,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function RL(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:ML,bincountImpl:uv,bincountReduceImpl:FL,ceilImpl:$L,concatImpl:DL,expImpl:OL,expm1Impl:zL,floorImpl:_L,gatherV2Impl:PL,greaterImpl:LL,lessImpl:WL,linSpaceImpl:BL,logImpl:VL,maxImpl:jL,maximumImpl:UL,minimumImpl:HL,multiplyImpl:GL,negImpl:qL,prodImpl:XL,rangeImpl:KL,rsqrtImpl:ZL,simpleAbsImpl:dv,sliceImpl:YL,sparseReshapeImpl:JL,stridedSliceImpl:QL,subImpl:eW,tileImpl:tW,topKImpl:nW,transposeImpl:c1,uniqueImpl:aW}=WA;function pv(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:pv(e,t)}function rW(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var lW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=pn("rc",t),a=lt(t),r=sW(t,e,n),s=iW(t,e[e.length-1],e[e.length-2],n),i=oW(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function uW(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function sW(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function iW(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function oW(e,t){let n=e.length,a=uW(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var cv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${dW(t)}
|
|
${i1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function dW(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Ii(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var pW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=fv(t,n),r=mv(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=hv(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===Qt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===Qt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===Qt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===Qt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===Qt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=fv(n,a),s=mv(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=hv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],d=l.indexOf(e);if(d<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(d,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function cW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function hv(e,t,n,a,r){let s=hW(t,a),i;if(r){let[l,d]=Tl(e[0],e[1]);i=l*d}else{let[l,d]=pd(e[0],e[1]);i=l*d}let o=cW(n,s);return i*o}function hW(e,t){switch(e){case Qt.PACKED_2X2_FLOAT32:return d1(t);case Qt.PACKED_2X2_FLOAT16:return p1(t);case Qt.UNPACKED_FLOAT32:return o1(t);case Qt.UNPACKED_FLOAT16:return l1(t);case Qt.PACKED_4X1_UNSIGNED_BYTE:return u1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function fW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Qt.PACKED_2X2_FLOAT32:Qt.UNPACKED_FLOAT32:e?Qt.PACKED_2X2_FLOAT16:Qt.UNPACKED_FLOAT16}function fv(e,t){if(e===Jn.UPLOAD)return Qt.PACKED_2X2_FLOAT32;if(e===Jn.RENDER||e==null)return fW(t);if(e===Jn.DOWNLOAD||e===Jn.PIXELS)return Qt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function mv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Pr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},xa="if (isnan(x)) return x;",mW="return x;",Av="return abs(x);",AW="return (x >= 0.0) ? x : (exp(x) - 1.0);",yW=xa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,gW=xa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,fh="return x;",xW="return 1.0 / (1.0 + exp(-1.0 * x));",bW="return x;",vW=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,wW=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,kW=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,IW="return 1.0 / (1.0 + exp(-1.0 * x));",Fl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},SW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),a=lt(t),r=rW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},NW=Wa.whereImpl,TW=1e-7,EW=1e-4,h1={};function CW(e){return e in h1||(h1[e]={}),h1[e]}var RW=128,MW=600;function FW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*MW/1024/1024}var $l=class extends du{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Va(J().getNumber("WEBGL_VERSION"));this.binaryCache=CW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new hh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new pW(this.gpgpu),this.numMBBeforeWarning=FW(),this.texData=new wp(this,nr())}nextDataId(){return $l.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:Jn.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:Jn.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Fl(i,fh):p=new Pr(i,fh);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,d;l&&(d=w.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);u=C.mergeRealAndImagArrays(p,c)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-d),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Fl(a,fh):h=new Pr(a,fh);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,d;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){d=this.decode(e);let h=this.texData.get(d.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...cd(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=C.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}d!=null&&this.disposeIntermediateTensorInfo(d);let p=this.convertAndCacheOnCPU(e,u),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&nr().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!y7(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...cd(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=J().getBool("WEBGL_PACK")&&a===!0,i=s?lh(t):t,o=s?new VP(i):new BP(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),d=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(d.texture,d.texShape[0],d.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,d)=>({name:s[d],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let d=this.texData.get(e);d.texture=null,d.texShape=null,d.isPacked=!1,d.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=RW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return NW(e.shape,t)}packedUnaryOp(e,t,n){let a=new Fl(e.shape,t),r=this.compileAndRun(a,[e],n);return nr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=dv(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Av,e.dtype);let t=new Pr(e.shape,Av),n=this.compileAndRun(t,[e]);return nr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return nr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new SW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new lW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[vi(e.shape),...wi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[vi(t),...wi(t)],s=new cv(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=lh(a),i;n?i=new WP(s):i=new LP(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===dd.DENSE){let f=cd(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),w.sizeFromShape(s.shape)===0)return i.values=w.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!ud(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let d={shape:s.shape,texData:i,isUniform:!1},u=RL(e,l,d),p=this.getAndSaveBinary(u,()=>EL(this.gpgpu,e,l,d)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),CL(this.gpgpu,p,l,d,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=L(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?TW:EW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,d;l&&(d=w.now());let u=t.texShape;if(u==null&&(u=$7(n,o),t.texShape=u),r!=null){let p=lh(n),c,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=Tl(u[0],u[1]),c=new UP(p,[m,h],f)):c=new jP(p,[m,h],f);let A=this.makeTensorInfo([m,h],a);f?this.texData.get(A.dataId).usage=Jn.PIXELS:this.texData.get(A.dataId).usage=Jn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),h,m,r);let y=!0,g=this.runWebGLProgram(c,[A],a,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-d)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=$W(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};$l.nextDataId=0;function $W(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var yv="3.5.0";function gv(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}_u.isBrowser()&&ul("webgl",()=>new $l,2);var DW={forceHalfFloat:gv},xv=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Dl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},mh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,fd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${lt(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=pn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Pn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var OW={kernelName:ks,backendName:"webgl",kernelFunc:Pn};function Lr(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Pn({inputs:{x:a},backend:n}),l=Pn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var zW={kernelName:Cp,backendName:"webgl",kernelFunc:Lr},bv="return (a < 0.) ? b * a : a;",vv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function _W(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new fd(vv,r.shape,i.shape):new Dl(bv,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var PW={kernelName:Is,backendName:"webgl",kernelFunc:_W},wv="return (a < 0.) ? b * a : a;",kv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function LW(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new fd(kv,a.shape,r.shape):new Dl(wv,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var WW={kernelName:_s,backendName:"webgl",kernelFunc:LW},Iv="if (isnan(x)) return x;",BW=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,VW=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let d=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return d?u=new Fl(i.shape,t):u=new Pr(i.shape,e),o.runWebGLProgram(u,[i],l)}}function en({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:d}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(d.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[k,b]=x,v={dataId:k.dataId,dtype:k.dtype,shape:l.shape},I={dataId:b.dataId,dtype:b.dtype,shape:d.shape},T=new Dl(e,l.shape,d.shape);return u.runWebGLProgram(T,[v,I],ia(k.dtype,b.dtype))}),g=Lr({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let p=s||ia(l.dtype,d.dtype);if(u.shouldExecuteOnCPU([l,d])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(d.dataId),[A,y]=r(l.shape,d.shape,m.values,f.values,p),g=u.makeTensorInfo(y,p),x=u.texData.get(g.dataId);return x.values=A,g}let c=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new fd(t,l.shape,d.shape,n):h=new Dl(e,l.shape,d.shape),u.runWebGLProgram(h,[l,d],p)}}function Ah(e,t=!1){if(e==="linear")return t?bW:mW;if(e==="relu")return t?wW:yW;if(e==="elu")return t?vW:AW;if(e==="relu6")return t?kW:gW;if(e==="prelu")return t?kv:wv;if(e==="leakyrelu")return t?vv:bv;if(e==="sigmoid")return t?IW:xW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Sv=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let d=a?e[1]:e[2],u=Math.ceil(d/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Nv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Tv=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},Ev="return a * b;";function f1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),d=new Tv(Nv.REAL,a.shape,r.shape),u=new Tv(Nv.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(d,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=Lr({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[d,u]=GL(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),c=n.texData.get(p.dataId);return c.values=d,p}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new fd(Ev,a.shape,r.shape):i=new Dl(Ev,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var jW={kernelName:$s,backendName:"webgl",kernelFunc:f1};function UW(e,t,n){let a=[vi(e.shape),...wi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[vi(t),...wi(t)],i=new cv(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),d=w.sizeFromShape(l);w.assert(o===d,()=>`The new shape (${l}) has ${d} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!ud(r.shape,l)&&!(u.texture!==null&&ud(u.shape,l))?UW(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var HW={kernelName:Bo,backendName:"webgl",kernelFunc:fe},Cv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},GW=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let d=Math.floor(n/4)*4,u=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${d}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${d};
|
|
if (${u===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function qW(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Ni(e,t,n,a){let r=qW(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:d}=r[i],u,p;n==="mean"?u=i===0?new Cv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:d},o):new Cv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:d}):u=new GW({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:d},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var KW=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=XW(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function XW(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var ZW=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let d=0;d<n.length;d++)n[d]=e[t[d]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=lt(this.rank),r=pv("rc",this.rank),s=new Array(this.rank);for(let d=0;d<t.length;d++)s[t[d]]=r[d];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function yh(e,t,n){let a=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ZW(e.shape,t):new KW(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function YW(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),d=l!=null,u=e;d&&(u=yh(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=C.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let m=w.sizeFromShape(c),f=w.sizeFromShape(e.shape)/m,A=fe({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=lc(e.dtype),g=Ni(A,y,"sum",a),x=fe({inputs:{x:g},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(g),d&&a.disposeIntermediateTensorInfo(u),x}function gh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return YW(r,s,i,n)}var JW={kernelName:qs,backendName:"webgl",kernelFunc:gh};function cn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let d;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=c1(u,r.shape,r.dtype,s,l);d=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(d.dataId);c.values=p}else d=yh(r,s,i);return d}var QW={kernelName:Qs,backendName:"webgl",kernelFunc:cn},Rv=1e3;function xh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let d=e.shape.length,u=t.shape.length,p=n?e.shape[d-2]:e.shape[d-1],c=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[d-1]:e.shape[d-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=w.sizeFromShape(f),g=w.sizeFromShape(A),x=y===g||y===1||g===1;w.assert(d>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let k=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[y,p,h]:[y,h,p],v=a?[g,m,c]:[g,c,m],I=fe({inputs:{x:e},backend:r,attrs:{shape:b}}),T=fe({inputs:{x:t},backend:r,attrs:{shape:v}}),R=[I,T],$=Math.max(y,g),z=n?I.shape[1]:I.shape[2],_=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?Ah(l,!0):null,X=_||V||j||U!=null,G;if((h===1||m===1)&&z>Rv&&X===!1){let Y=I,re=T;n&&(Y=cn({inputs:{x:I},backend:r,attrs:{perm:[0,2,1]}}),R.push(Y)),a&&(re=cn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),R.push(re));let te=m!==1,ie=m===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:r,attrs:{shape:[$,z,1]}}),R.push(Q));let de=m===1?2:1,oe=re;ie&&(oe=fe({inputs:{x:re},backend:r,attrs:{shape:[$,1,z]}}),R.push(oe));let me=f1({inputs:{a:Q,b:oe},backend:r});G=gh({inputs:{x:me},backend:r,attrs:{axis:de,keepDims:!0}}),R.push(me)}else{let Y=ia(e.dtype,t.dtype),re=new Sv(b,v,[$,h,m],n,a,_,U,V,j),te=[I,T];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));te.push(ie),R.push(ie)}G=r.runWebGLProgram(re,te,Y)}let ee=fe({inputs:{x:G},backend:r,attrs:{shape:k}});R.push(G);for(let Y of R)r.disposeIntermediateTensorInfo(Y);return ee}function eB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:d,activation:u,leakyreluAlpha:p}=a;return xh({a:r,b:s,transposeA:l,transposeB:d,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var tB={kernelName:ei,backendName:"webgl",kernelFunc:eB},Mv="return abs(x);";function nB(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=dv(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Fl(a.shape,Mv):r=new Pr(a.shape,Mv),n.runWebGLProgram(r,[a],a.dtype)}var aB={kernelName:eo,backendName:"webgl",kernelFunc:nB},rB=xa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,sB=qe({opSnippet:rB}),iB={kernelName:to,backendName:"webgl",kernelFunc:sB},oB=xa+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,lB=qe({opSnippet:oB}),uB={kernelName:no,backendName:"webgl",kernelFunc:lB},Fv="return a + b;",dB=en({opSnippet:Fv,packedOpSnippet:Fv,supportsComplex:!0,cpuKernelImpl:ML}),pB={kernelName:kr,backendName:"webgl",kernelFunc:dB},cB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},hB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function bh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Pn({inputs:{x:a[0]},backend:n});if(a.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=bh({inputs:a.slice(0,o),backend:n}),d=bh({inputs:a.slice(o),backend:n});return bh({inputs:[l,d],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ia(o,l)),s=a.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new hB(a[0].shape,s):new cB(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var fB={kernelName:is,backendName:"webgl",kernelFunc:bh};function mB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),d=C.getInnerMostAxes(d.length,o)),C.assertAxesAreInnerMostDims("all",d,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,d),m=w.sizeFromShape(h),f=fe({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(p),y}var AB={kernelName:ao,backendName:"webgl",kernelFunc:mB};function yB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),d=C.getInnerMostAxes(d.length,o)),C.assertAxesAreInnerMostDims("any",d,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,d),m=w.sizeFromShape(h),f=fe({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(p),y}var gB={kernelName:ro,backendName:"webgl",kernelFunc:yB},xB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},bB=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),d=pn("coords",o),u,p;if(s===1){p=o+1;let I=lt(p);u=`
|
|
${I} sourceLocR = ${I}(${d.join()}, 0);
|
|
++${d[o-1]};
|
|
${I} sourceLocG = ${I}(${d.join()}, 0);
|
|
++${d[o-2]};
|
|
${I} sourceLocA = ${I}(${d.join()}, 0);
|
|
--${d[o-1]};
|
|
${I} sourceLocB = ${I}(${d.join()}, 0);
|
|
--${d[o-2]};`}else p=o,u=`
|
|
${l} sourceLocR = coords;
|
|
++${d[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${d[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${d[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${d[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(I=>"int "+I),f=pn("sourceLocR",p-1).concat("inIdx.r"),A=pn("sourceLocG",p-1).concat("inIdx.g"),y=pn("sourceLocB",p-1).concat("inIdx.b"),g=pn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",k=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,v=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${v}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${d[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${d[o-2]} < ${i[o-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${k}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function $v(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new xB(o,n,a==null),d=[t];a!=null&&d.push(a);let u=e.runWebGLProgram(l,d,"int32");if(u.shape[1]===1)return u;let p=$v(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function Dv(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new bB(r,i,n,a==null),l=a==null?[t]:[t,a],d=e.runWebGLProgram(o,l,"int32");if(d.shape.length===t.shape.length){let u=Dv(e,t,n,d);return e.disposeIntermediateTensorInfo(d),u}return d}function Ov(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,r),l=w.sizeFromShape(o),d=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(d);let u=$v(e,d,a);s.push(u);let p=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return Dv(e,t,a)}function vB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=cn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=Ov(n,l,i[0],"max");return d.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var wB={kernelName:os,backendName:"webgl",kernelFunc:vB};function kB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=cn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=Ov(n,l,i[0],"min");return d.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var IB={kernelName:hu,backendName:"webgl",kernelFunc:kB},SB=xa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,NB=qe({opSnippet:SB}),TB={kernelName:so,backendName:"webgl",kernelFunc:NB},EB=xa+"return log(x + sqrt(x * x + 1.0));",CB=qe({opSnippet:EB}),RB={kernelName:io,backendName:"webgl",kernelFunc:CB},MB=xa+`
|
|
return atan(x);
|
|
`,FB=qe({opSnippet:MB}),$B={kernelName:oo,backendName:"webgl",kernelFunc:FB},DB=BW+`
|
|
return atan(a, b);
|
|
`,OB=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+VW+`
|
|
return result;
|
|
`,zB=en({opSnippet:DB,packedOpSnippet:OB}),_B={kernelName:uo,backendName:"webgl",kernelFunc:zB},PB=xa+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,LB=qe({opSnippet:PB}),WB={kernelName:lo,backendName:"webgl",kernelFunc:LB},md=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,d=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let I=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${I} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:A:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let k=Math.floor(s/4)*4,b=s%4,v=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${d}, d),
|
|
getValue(batch, xR, xC + 2 * ${d}, d),
|
|
getValue(batch, xR, xC + 3 * ${d}, d)
|
|
);
|
|
|
|
${v}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${d}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${d}, d),
|
|
getValue(batch, xR, xC + 2 * ${d}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},m1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,d=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${d}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${R} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let k="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let v=Math.floor(s/4)*4,I=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${k}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${d}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${I===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function BB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Nl(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;w.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:r},backend:n});let p=new md(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var VB={kernelName:ls,backendName:"webgl",kernelFunc:BB};function jB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:d}=a,u=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,u,o,l,d),c=new m1(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var UB={kernelName:fu,backendName:"webgl",kernelFunc:jB},HB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,d=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${d}, ${u});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},GB=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,d=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,A=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${d}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function qB(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:d,dimRoundingMode:u}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,d,u),h=new GB(c);return n.runWebGLProgram(h,[r],i.dtype)}var XB={kernelName:Tp,backendName:"webgl",kernelFunc:qB};function KB(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Nl([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:d}=a,u=C.computePool2DInfo(i.shape,o,l,1,d),p=new HB(u);return n.runWebGLProgram(p,[r],i.dtype)}var ZB={kernelName:Np,backendName:"webgl",kernelFunc:KB};function YB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return xh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var JB={kernelName:us,backendName:"webgl",kernelFunc:YB},QB=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},eV=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},tV=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let d=[a,r,s],u=null;i!=null&&(u=i.shape,d.push(i));let p=null;o!=null&&(p=o.shape,d.push(o));let c=J().getBool("WEBGL_PACK_NORMALIZATION")?new eV(a.shape,r.shape,s.shape,u,p,l):new QB(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(c,d,d[0].dtype)},nV={kernelName:vs,backendName:"webgl",kernelFunc:tV},rV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,a=aV(this.rank),r,s=e.map((i,o)=>`sourceLoc.${A1[o]} = start[${o}] + coords.${A1[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},A1=["x","y","z","w","u","v"];function aV(e){if(e===1)return"sourceLoc";if(e<=6)return A1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var sV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),a=pn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((d,u)=>`start[${u}]`).join()});`:e.map((d,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function iV(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=sn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Ad(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=sn.parseSliceParams(r,s,i);if(sn.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=YL(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:d}=n.texData.get(r.dataId),u=sn.isSliceContinous(r.shape,o,l);if(d||!u){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sV(l):new rV(l),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),iV(r,o,l,n)}var oV={kernelName:Ho,backendName:"webgl",kernelFunc:Ad},lV=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=C.getReshaped(r.shape,s,o),d=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(u,i,s.length),h=[],m=fe({inputs:{x:r},backend:n,attrs:{shape:l}}),f=cn({inputs:{x:m},backend:n,attrs:{perm:d}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:u}}),y=Ad({inputs:{x:A},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(A),h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},uV={kernelName:mu,backendName:"webgl",kernelFunc:lV};function dV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),d=uv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}var pV={kernelName:Ep,backendName:"webgl",kernelFunc:dV},cV="return float(a != b);",zv=en({opSnippet:cV,dtype:"bool"}),hV={kernelName:$o,backendName:"webgl",kernelFunc:zv};function yd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Pn({inputs:{x:r.complexTensorInfos.real},backend:n})}var fV={kernelName:Zp,backendName:"webgl",kernelFunc:yd},mV="return float(int(x));";function AV(e,t){let n=new Pr(e.shape,mV),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function y1(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Pn({inputs:{x:r},backend:n});let i=Ct(r.shape),o=y1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Lr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=yd({inputs:{input:r},backend:n}),o=y1({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Pn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return AV(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=zv({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var yV={kernelName:ds,backendName:"webgl",kernelFunc:y1},_v="return ceil(x);",gV=qe({opSnippet:_v,packedOpSnippet:_v,cpuKernelImpl:$L}),xV={kernelName:ps,backendName:"webgl",kernelFunc:gV},bV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},vV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function wV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;J().getBool("WEBGL_PACK_CLIP")?o=new vV(r.shape):o=new bV(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var kV={kernelName:Ir,backendName:"webgl",kernelFunc:wV},IV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Pv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function SV(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new IV(a.shape),i=[Pv(a,r.complexTensorInfos.real),Pv(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var NV={kernelName:Au,backendName:"webgl",kernelFunc:SV},TV=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},EV=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=lt(a),s=pn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],d=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${d.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${vh(i,l,f)}),
|
|
vec2(${vh(d,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${vh(i,l,h)}),
|
|
vec2(${vh(d,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function vh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function wh(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Pn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var CV={kernelName:jp,backendName:"webgl",kernelFunc:wh};function Ol(e,t,n){let a=e[0].dtype;if(a==="complex64"){let u=e.map(f=>yd({inputs:{input:f},backend:n})),p=e.map(f=>wh({inputs:{input:f},backend:n})),c=Ol(u,t,n),h=Ol(p,t,n),m=Lr({inputs:{real:c,imag:h},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let u=e.map(y=>{let g=w.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=C.computeOutShape(u.map(y=>y.shape),1),h=u[0].shape[0]===1,m=DL(p,c,a,h),f=C.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,a,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),p=Ol(e.slice(0,u),t,n),c=Ol(e.slice(u),t,n),h=Ol([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new EV(e.map(p=>p.shape),t);return n.runWebGLProgram(u,e,a)}let{tensors2D:s,outShape:i}=RV(e,t,n),o=new TV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let d=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),d}function RV(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>fe({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function Lv(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(d=>d.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(d=>w.sizeFromShape(d.shape)>0);if(o.length===1)return Pn({inputs:{x:o[0]},backend:n});let l=o.map(d=>d.shape);return C.assertParamsConsistent(l,s),Ol(o,s,n)}var MV={kernelName:po,backendName:"webgl",kernelFunc:Lv},Wv=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,d=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",k="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,k="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${d};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${k}
|
|
setOutput(result);
|
|
}
|
|
`}},FV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,d=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$V=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:d,dilationHeight:u,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=dn(),A=p==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let k=0;k<=1;k++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${k};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${u} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${c}.);
|
|
d1 = offsetX + ${d} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${k*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${k*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function Bv({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,d=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(p===1||c===1)&&u>Rv,x=l[2]%2!=0&&!!d.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let k=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=fe({inputs:{x:e},backend:a,attrs:{shape:[1,k,n.inChannels]}}),v=fe({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=xh({a:b,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),y.push(b),y.push(v),y.push(I)}else{let k=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,k,n.inChannels],dtype:e.dtype},v=d.shape;d.shape=d.shape.slice(),d.shape[d.shape.length-2]++,w.assert(ud(d.shape,b.shape),()=>`packed reshape ${d.shape} to ${b.shape} isn't free`);let I=fe({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let T=xh({a:b,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),R=a.texData.get(T.dataId);w.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),d.shape=v,R.shape=n.outShape,A=Pn({inputs:{x:T},backend:a}),A.shape=n.outShape,y.push(T)}for(let k of y)a.disposeIntermediateTensorInfo(k);return A}function Vv({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:d,inChannels:u,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*d*u,A=c*p,y=[f,A],g=!0,x=!1,k=[],b=fe({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),v=fe({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});k.push(b),k.push(v);let I=new $V(y,b.shape,n),T=a.runWebGLProgram(I,[b],"float32"),R=fe({inputs:{x:T},backend:a,attrs:{shape:[1,y[0],y[1]]}});k.push(T),k.push(R);let $=r!=null,z=s!=null,_=o==="leakyrelu",V=o?Ah(o,!0):null,j=new Sv(R.shape,v.shape,[1,A,n.outChannels],g,x,$,V,z,_),U=[R,v];if(r&&U.push(r),z&&U.push(s),_){let Y=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));U.push(Y),k.push(Y)}let X=a.runWebGLProgram(j,U,"float32"),G=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],ee=fe({inputs:{x:X},backend:a,attrs:{shape:G}});k.push(X);for(let Y of k)a.disposeIntermediateTensorInfo(Y);return ee}function DV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:d,dimRoundingMode:u}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=Bv({x:r,filter:s,convInfo:c,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=Vv({x:r,filter:s,convInfo:c,backend:n});else{let f=new Wv(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=fe({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var OV={kernelName:cs,backendName:"webgl",kernelFunc:DV},zV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},_V=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,d=s?2:3,u=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${d}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},PV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},LV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,d=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function WV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:d,filterShape:u}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,u,i,1,o,d,!1,p),h=new zV(c);return n.runWebGLProgram(h,[r,s],"float32")}var BV={kernelName:Rp,backendName:"webgl",kernelFunc:WV};function VV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:d,dimRoundingMode:u}=a,p=C.convertConv2DDataFormat(d),c=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new _V(c);return n.runWebGLProgram(h,[r,s],"float32")}var jV={kernelName:hs,backendName:"webgl",kernelFunc:VV};function UV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,d=C.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new FV(d);return n.runWebGLProgram(u,[r,s],"float32")}var HV={kernelName:yu,backendName:"webgl",kernelFunc:UV};function GV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,d=C.computeConv3DInfo(r.shape,l,i,1,o),u=new PV(d);return n.runWebGLProgram(u,[r,s],"float32")}var qV={kernelName:Mp,backendName:"webgl",kernelFunc:GV};function XV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,d=C.computeConv3DInfo(l,s.shape,o,1,i),u=new LV(d);return n.runWebGLProgram(u,[r,s],"float32")}var KV={kernelName:Fp,backendName:"webgl",kernelFunc:XV},ZV=Iv+`
|
|
return cos(x);
|
|
`,YV=qe({opSnippet:ZV}),JV={kernelName:fs,backendName:"webgl",kernelFunc:YV},QV=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,ej=qe({opSnippet:QV}),tj={kernelName:co,backendName:"webgl",kernelFunc:ej},nj=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[d]=t,[u,p]=n;this.outputShape=[d,u,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[g,x,k]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${k};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},aj=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:d}=a,u=new nj(r.shape,s.shape,o,l,d);return n.runWebGLProgram(u,[r,s,i],"float32")},rj={kernelName:ho,backendName:"webgl",kernelFunc:aj},Hv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${jv(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${lt(a)} coords = getOutputCoords();
|
|
int end = ${Uv(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Uv(a,"coords")} = idx;
|
|
val += getX(${jv(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function jv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Uv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,d=C.getAxesPermutation([s],l),u=r;d!=null&&(u=cn({inputs:{x:r},backend:n,attrs:{perm:d}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=u.shape[p],h=Pn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new Hv(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new Hv(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(d!=null){let m=C.getUndoAxesPermutation(d),f=cn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var ij={kernelName:ms,backendName:"webgl",kernelFunc:sj};function oj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),d=n.readSync(s.dataId),u=uv(l,d,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),d=n.bufferSync(s),u=FL(l,d,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var lj={kernelName:$p,backendName:"webgl",kernelFunc:oj},uj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function dj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],d=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=d*s,h=u/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new uj(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var pj={kernelName:fo,backendName:"webgl",kernelFunc:dj},Gv=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,d=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(a?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${u});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},qv=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,d=e.padInfo.left,u=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)y+=`
|
|
vec4 xTexelC${b*2};
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let v=0;v<f;v++)y+=`
|
|
xTexelC${v*2} = vec4(0.0);
|
|
xC${v} = vec4(0.0);`;y+=`
|
|
xR = xRCorner + ${b*c};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let v=0;v<A/2+1;v++){let I=v*2;if(y+=`
|
|
xC = xCCorner + ${I*h};
|
|
`,p===1){if(I<f&&(d%2==1?(y+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelC${I} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
`,h===1&&I>0?y+=`
|
|
xC${I} = vec4(xTexelC${I-2}.zw, xTexelC${I}.xy);
|
|
`:y+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${I} = vec4(previous.zw, xTexelC${I}.xy);
|
|
} else {
|
|
xC${I} = vec4(0.0, 0.0, xTexelC${I}.xy);
|
|
}
|
|
`):y+=`
|
|
if (xC >= 0 && xC < ${o}) {
|
|
xTexelC${I} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xC${I} = xTexelC${I};
|
|
`,I+1<f)){let T=d%2==0?w.nearestLargerEven(h):h;h%2==0&&d%2==1||h%2!=0&&d%2!=1?(y+=`
|
|
xCOffset = xC + ${d%2} + ${T};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelC${I+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
`,h>1&&(y+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelC${I} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`),y+=`
|
|
xC${I+1} = vec4(xTexelC${I}.zw, xTexelC${I+2}.xy);
|
|
`):T===1?y+=`
|
|
xC${I+1} = xTexelC${I};
|
|
`:y+=`
|
|
xCOffset = xC + ${T};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelC${I+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xC${I+1} = xTexelC${I+2};
|
|
`}}else I<f&&(d%2==1?(y+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelC${I} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o}) {
|
|
xTexelC${I+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xC${I} = vec4(xTexelC${I}.zw, xTexelC${I+2}.zw);
|
|
`,I+1<f&&(y+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${I+1} = vec4(xTexelC${I+2}.xy, final.xy);
|
|
`)):(y+=`
|
|
if(xC >= 0 && xC < ${o}) {
|
|
xTexelC${I} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelC${I+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.);
|
|
}
|
|
}
|
|
|
|
xC${I} = vec4(
|
|
xTexelC${I}.xy, xTexelC${I+2}.xy);
|
|
`,I+1<f&&(y+=`
|
|
xC${I+1} = vec4(xTexelC${I}.zw, xTexelC${I+2}.zw);
|
|
`)));I<f&&(y+=`
|
|
wTexel = getW(${b}, ${I}, d1, q);
|
|
dotProd += xC${I} * vec4(wTexel.xz, wTexel.xz);
|
|
`,I+1<f&&(y+=`
|
|
wTexel = getW(${b}, ${I+1}, d1, q);
|
|
dotProd += xC${I+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}y+=`
|
|
}
|
|
`}let g="",x="";n&&(a?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${d});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${y}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${k}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function cj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:d}=a,u=l;u==null&&(u=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!0),c;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new qv(p):c=new Gv(p),n.runWebGLProgram(c,[r,s],"float32")}var hj={kernelName:As,backendName:"webgl",kernelFunc:cj},fj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Aj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,filterShape:u}=a,p=C.computeConv2DInfo(r.shape,u,i,o,l,d,!0),c=new fj(p);return n.runWebGLProgram(c,[r,s],"float32")}var yj={kernelName:Dp,backendName:"webgl",kernelFunc:Aj};function gj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,inputShape:u}=a,p=C.computeConv2DInfo(u,s.shape,i,o,l,d,!0),c=new mj(p);return n.runWebGLProgram(c,[r,s],"float32")}var xj={kernelName:Op,backendName:"webgl",kernelFunc:gj},bj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function vj(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=fe({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new bj(s),l=n.runWebGLProgram(o,[i],i.dtype),d=fe({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),d}var wj={kernelName:zp,backendName:"webgl",kernelFunc:vj},kj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:d}=e,{top:u,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${d};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function Ij(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,d=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new kj(d);u=n.runWebGLProgram(p,[r,s],"float32");let c=fe({inputs:{x:u},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(u),c}var Sj={kernelName:gu,backendName:"webgl",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:d,steps:u}=C.getEinsumComputePath(o,l),p=u.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of u[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=cn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let k=x.shape.slice();for(let b=0;b<g.length;++b)k.splice(g[b],0,1);w.arraysEqual(x.shape,k)||(x=fe({inputs:{x},backend:n,attrs:{shape:k}}),m.push(x)),c===null?c=x:(c=f1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(d[f]>=0&&(c=gh({inputs:{x:c},backend:n,attrs:{axis:d[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Tj={kernelName:Lp,backendName:"webgl",kernelFunc:Nj},Ej="return (x >= 0.0) ? x : (exp(x) - 1.0);",Cj=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Rj=qe({opSnippet:Ej,packedOpSnippet:Cj}),Mj={kernelName:mo,backendName:"webgl",kernelFunc:Rj},Fj="return (b >= 1.0) ? a : a * (b + 1.0);",$j=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Dj=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new fd($j,a.shape,r.shape):new Dl(Fj,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},Oj={kernelName:Wp,backendName:"webgl",kernelFunc:Dj},zj=`
|
|
return vec4(equal(a, b));
|
|
`,_j="return float(a == b);",Pj=en({opSnippet:_j,packedOpSnippet:zj,dtype:"bool"}),Lj={kernelName:yo,backendName:"webgl",kernelFunc:Pj},Wj=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Bj=qe({opSnippet:Wj}),Vj={kernelName:Ao,backendName:"webgl",kernelFunc:Bj},Xv="return exp(x);",Kv=qe({opSnippet:Xv,packedOpSnippet:Xv,cpuKernelImpl:OL}),jj={kernelName:gs,backendName:"webgl",kernelFunc:Kv};function g1(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),fe({inputs:{x:s},backend:a,attrs:{shape:o}})}var Uj={kernelName:go,backendName:"webgl",kernelFunc:g1},Zv="return exp(x) - 1.0;",Hj=qe({opSnippet:Zv,packedOpSnippet:Zv,cpuKernelImpl:zL}),Gj={kernelName:xo,backendName:"webgl",kernelFunc:Hj},Yv=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Jv(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,d=new Yv("real",l,t),u=new Yv("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(d,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=Lr({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=fe({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function qj(e){let{inputs:t,backend:n}=e,{input:a}=t;return Jv(a,!1,n)}var Xj={kernelName:Bp,backendName:"webgl",kernelFunc:qj},Kj=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function x1(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new Kj(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var Zj={kernelName:xu,backendName:"webgl",kernelFunc:x1},Yj=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Jj={kernelName:bo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new Yj(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},Qv="return floor(x);",Qj=qe({opSnippet:Qv,packedOpSnippet:Qv,cpuKernelImpl:_L}),eU={kernelName:xs,backendName:"webgl",kernelFunc:Qj},tU=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,nU=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,aU=en({opSnippet:tU,packedOpSnippet:nU,dtype:"int32"}),rU={kernelName:bs,backendName:"webgl",kernelFunc:aU},sU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},iU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},lU={kernelName:ac,backendName:"webgl",kernelFunc:oU},zl;function oU(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,d]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[d,l],p=[d,l,s];(o||i)&&(zl==null&&(zl=document.createElement("canvas").getContext("2d")),zl.canvas.width=l,zl.canvas.height=d,zl.drawImage(r,0,0,l,d),r=zl.canvas);let c=n.makeTensorInfo(u,"int32");n.texData.get(c.dataId).usage=Jn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=J().getBool("WEBGL_PACK")?new iU(p):new sU(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function uU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(u),A=C.computeConv2DInfo(r.shape,s.shape,l,p,d,c,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Bv({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=Vv({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let k=i!=null,b=o!=null,v=h==="leakyrelu",I=h?Ah(h,!1):null,T=new Wv(A,k,I,b,v),R=[r,s];if(i&&R.push(i),o&&R.push(o),v){let $=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));R.push($),g.push($)}y=n.runWebGLProgram(T,R,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(k=>n.disposeIntermediateTensorInfo(k)),x}var dU={kernelName:ti,backendName:"webgl",kernelFunc:uU};function pU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dilations:u,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(r.shape,s.shape,l,f,d,p,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=c?Ah(c,y):null,x=[r,s],k=i!=null,b=o!=null,v=c==="leakyrelu";if(k&&x.push(i),b&&x.push(o),v){let R=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(R),m.push(R)}let I;y?I=new qv(A,k,g,b,v):I=new Gv(A,k,g,b,v);let T=n.runWebGLProgram(I,x,"float32");return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),T}var cU={kernelName:ni,backendName:"webgl",kernelFunc:pU},hU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=lt(t.length),r=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function fU(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,d,u]=C.prepareAndValidate(a,r),p=fe({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),c=fe({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/d,d]}}),h=new hU(i,u,[l,d]),m=n.runWebGLProgram(h,[c,p],c.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var mU={kernelName:wo,backendName:"webgl",kernelFunc:fU},yU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),a=AU(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function AU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function gU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=w.sizeFromShape(s.shape),p=[],c=fe({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=fe({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}});p.push(c),p.push(h);let m=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let g=n.bufferSync(h),x=n.bufferSync(c),k=PL(x,g,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let f=new yU(c.shape,m),A=n.runWebGLProgram(f,[c,h],c.dtype);p.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:d.outputShape}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var xU={kernelName:vo,backendName:"webgl",kernelFunc:gU},bU="return float(a > b);",vU=`
|
|
return vec4(greaterThan(a, b));
|
|
`,wU=en({opSnippet:bU,packedOpSnippet:vU,cpuKernelImpl:LL,dtype:"bool"}),kU={kernelName:ko,backendName:"webgl",kernelFunc:wU},IU="return float(a >= b);",SU=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,NU=en({opSnippet:IU,packedOpSnippet:SU,dtype:"bool"}),TU={kernelName:ws,backendName:"webgl",kernelFunc:NU};function EU(e){let{inputs:t,backend:n}=e,{input:a}=t;return Jv(a,!0,n)}var CU={kernelName:Vp,backendName:"webgl",kernelFunc:EU},RU="return float(!isnan(x) && !isinf(x));",MU=qe({opSnippet:RU,dtype:"bool"}),FU={kernelName:Io,backendName:"webgl",kernelFunc:MU},$U="return float(isinf(x));",DU=qe({opSnippet:$U,dtype:"bool"}),OU={kernelName:So,backendName:"webgl",kernelFunc:DU},zU="return float(isnan(x));",_U=qe({opSnippet:zU,dtype:"bool"}),PU={kernelName:No,backendName:"webgl",kernelFunc:_U},LU="return float(a < b);",WU=`
|
|
return vec4(lessThan(a, b));
|
|
`,BU=en({opSnippet:LU,packedOpSnippet:WU,cpuKernelImpl:WL,dtype:"bool"}),VU={kernelName:To,backendName:"webgl",kernelFunc:BU},jU="return float(a <= b);",UU=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,HU=en({opSnippet:jU,packedOpSnippet:UU,dtype:"bool"}),GU={kernelName:Eo,backendName:"webgl",kernelFunc:HU};function qU(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=BL(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var XU={kernelName:Up,backendName:"webgl",kernelFunc:qU},KU=`if (x < 0.0) return NAN;
|
|
return log(x);`,ZU=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,YU=qe({opSnippet:KU,packedOpSnippet:ZU,cpuKernelImpl:VL}),JU={kernelName:Ss,backendName:"webgl",kernelFunc:YU},QU="return log(1.0 + x);",eH=qe({opSnippet:QU}),tH={kernelName:Co,backendName:"webgl",kernelFunc:eH},nH="return float(a >= 1.0 && b >= 1.0);",aH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,rH=en({opSnippet:nH,packedOpSnippet:aH,dtype:"bool"}),sH={kernelName:Ro,backendName:"webgl",kernelFunc:rH},iH="return float(!(x >= 1.0));",oH=qe({opSnippet:iH}),lH={kernelName:bu,backendName:"webgl",kernelFunc:oH},uH="return float(a >= 1.0 || b >= 1.0);",dH=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,pH=en({opSnippet:uH,packedOpSnippet:dH,dtype:"bool"}),cH={kernelName:vu,backendName:"webgl",kernelFunc:pH},hH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},fH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},mH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,d=J().getBool("WEBGL_PACK_NORMALIZATION")?new fH(r.shape,s,i,o,l):new hH(r.shape,s,i,o,l);return n.runWebGLProgram(d,[r],r.dtype)},AH={kernelName:wu,backendName:"webgl",kernelFunc:mH},yH=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},gH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:d,beta:u}=a,p=new yH(r.shape,o,l,d,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},xH={kernelName:Hp,backendName:"webgl",kernelFunc:gH};function bH(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=fe({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ni(i,e.dtype,"max",a),l=fe({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function e6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=u!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let g=n.texData.get(h.dataId).values,x=new Array(o);for(let v=0;v<x.length;v++)x[v]=r.shape[u[v]];let k=c1(g,r.shape,r.dtype,u,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=k}else h=yh(r,u,n);d=C.getInnerMostAxes(d.length,o)}C.assertAxesAreInnerMostDims("max",d,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,d),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(c){let g=n.texData.get(h.dataId).values,x=jL(g,w.sizeFromShape(f),A,r.dtype);y=n.makeTensorInfo(A,r.dtype);let k=n.texData.get(y.dataId);k.values=x}else y=bH(h,f,A,n);return p&&n.disposeIntermediateTensorInfo(h),y}var vH={kernelName:Ns,backendName:"webgl",kernelFunc:e6},wH=xv+`
|
|
return max(a, b);
|
|
`,kH=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+mh+`
|
|
return result;
|
|
`,IH=en({opSnippet:wH,packedOpSnippet:kH,cpuKernelImpl:UL}),SH={kernelName:Ts,backendName:"webgl",kernelFunc:IH};function NH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Nl(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;w.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:r},backend:n});let p=new md(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var TH={kernelName:Es,backendName:"webgl",kernelFunc:NH};function EH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:d}=a,u=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,u,o,d,l),c=new m1(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var CH={kernelName:ku,backendName:"webgl",kernelFunc:EH},RH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},MH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,d=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=d-1-e.padInfo.left,h=o*l*d-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${d} +
|
|
wR * ${d} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function FH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:d,dimRoundingMode:u}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,d,u),h=new m1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new MH(c),A=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var $H={kernelName:qp,backendName:"webgl",kernelFunc:FH};function DH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Nl([s,i],"maxPoolGrad");let{filterSize:l,strides:d,pad:u,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,d,1,u,p),h=!0,m=new md(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),A=new RH(c),y=n.runWebGLProgram(A,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var OH={kernelName:Gp,backendName:"webgl",kernelFunc:DH};function zH(e,t,n,a){let r=new md(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new md(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var _H={kernelName:Xp,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let d=[1,1];w.assert(C.eitherStridesOrDilationsAreOne(s,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${d}'`);let u=C.computePool2DInfo(a.shape,r,s,d,i),[p,c]=zH(a,o,u,l);return[p,c]}};function PH(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=fe({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ni(i,"float32","mean",a),l=fe({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var LH={kernelName:Cs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),d=l,u=C.getAxesPermutation(d,o),p=u!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,k=new Array(o);for(let I=0;I<k.length;I++)k[I]=a.shape[u[I]];let b=c1(x,a.shape,a.dtype,u,k);m=i.makeTensorInfo(k,a.dtype);let v=i.texData.get(m.dataId);v.values=b}else m=yh(a,u,i);h.push(m),d=C.getInnerMostAxes(d.length,o)}C.assertAxesAreInnerMostDims("sum",d,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,d),y=f;r&&(y=C.expandShapeToKeepDim(f,l));let g=PH(m,A,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return g}};function WH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),d=C.getInnerMostAxes(d.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",d,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,d),m=w.sizeFromShape(h),f=fe({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(p),y}var BH={kernelName:Rs,backendName:"webgl",kernelFunc:WH},VH=xv+`
|
|
return min(a, b);
|
|
`,jH=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+mh+`
|
|
return result;
|
|
`,UH=en({opSnippet:VH,packedOpSnippet:jH,cpuKernelImpl:HL}),HH={kernelName:Ms,backendName:"webgl",kernelFunc:UH},GH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((d,u)=>d[0]+e[u]+d[1]);let a=e.length,r=lt(a),s=t.map(d=>d[0]).join(","),i=t.map((d,u)=>d[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},qH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=lt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=pn("rc",a),l=pn("source",a),d=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${o[a-1]} += 1;
|
|
if(${d}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${o[a-1]} += 1;
|
|
if(${d}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${o[a-1]} += 1;
|
|
if(${d}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},XH=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qH(a.shape,r,s):new GH(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},KH={kernelName:Fs,backendName:"webgl",kernelFunc:XH},ZH=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,YH=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+mh+`
|
|
return result;
|
|
`,JH=en({opSnippet:ZH,packedOpSnippet:YH}),QH={kernelName:Mo,backendName:"webgl",kernelFunc:JH},eG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},tG=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,nG=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,t6=en({opSnippet:tG,packedOpSnippet:nG,checkOutOfBounds:!0}),aG={kernelName:ys,backendName:"webgl",kernelFunc:t6},n6="return a - b;",a6=en({opSnippet:n6,packedOpSnippet:n6,supportsComplex:!0,cpuKernelImpl:eW}),rG={kernelName:Zs,backendName:"webgl",kernelFunc:a6};function r6(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=e6({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),d=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=a6({inputs:{a:r,b:d},backend:n}),p=Kv({inputs:{x:u},backend:n}),c=gh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=fe({inputs:{x:c},backend:n,attrs:{shape:l}}),m=t6({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var sG={kernelName:Xs,backendName:"webgl",kernelFunc:r6};function iG(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:r6({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),d=l.shape[0],u=l.shape[1],p=new eG(d,u,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var oG={kernelName:Kp,backendName:"webgl",kernelFunc:iG},s6="return -x;";function lG(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=qL(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Fl(a.shape,s6):r=new Pr(a.shape,s6),n.runWebGLProgram(r,[a],a.dtype)}var uG={kernelName:Fo,backendName:"webgl",kernelFunc:lG},dG=Wa.nonMaxSuppressionV3Impl;function pG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,d=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=dG(d,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var cG={kernelName:Do,backendName:"webgl",kernelFunc:pG},hG=Wa.nonMaxSuppressionV4Impl;function fG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:d}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=hG(u,p,i,o,l,d);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var mG={kernelName:Oo,backendName:"webgl",kernelFunc:fG},AG=Wa.nonMaxSuppressionV5Impl;function yG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:d}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=d,{selectedIndices:A,selectedScores:y}=AG(u,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var gG={kernelName:zo,backendName:"webgl",kernelFunc:yG},xG=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},bG=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),d=new xG(l,s,i,o),u=fe({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(d,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let c=[...r.shape,s],h=fe({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},vG={kernelName:Ds,backendName:"webgl",kernelFunc:bG};function kh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=yd({inputs:{input:a},backend:n}),s=kh({inputs:{x:r},backend:n}),i=wh({inputs:{input:a},backend:n}),o=kh({inputs:{x:i},backend:n}),l=Lr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return x1({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var wG={kernelName:Qo,backendName:"webgl",kernelFunc:kh};function i6(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=yd({inputs:{input:a},backend:n}),s=i6({inputs:{x:r},backend:n}),i=wh({inputs:{input:a},backend:n}),o=kh({inputs:{x:i},backend:n}),l=Lr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return x1({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var kG={kernelName:_o,backendName:"webgl",kernelFunc:i6};function IG(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return g1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=g1({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),d=Lv({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),d}var SG={kernelName:Po,backendName:"webgl",kernelFunc:IG},NG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,d)=>l[0]+e[d]+l[1]);let a=e.length,r=lt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,d)=>l[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},TG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=lt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",a),l=pn("source",a),d=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${d}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${d}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},o6=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new TG(r.shape,s,i):new NG(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},EG={kernelName:Os,backendName:"webgl",kernelFunc:o6},CG=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,RG=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+mh+`
|
|
return result;
|
|
`,MG=en({opSnippet:CG,packedOpSnippet:RG}),FG={kernelName:zs,backendName:"webgl",kernelFunc:MG};function $G(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],d=w.parseAxisParam(s,r.shape),u=d,p=C.getAxesPermutation(u,o),c=r;p!=null&&(c=cn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:A,outDtype:y}=XL(c.shape,c.dtype,m,u);h=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,u),A=w.sizeFromShape(f),y=fe({inputs:{x:c},backend:n,attrs:{shape:[-1,A]}}),g=lc(r.dtype),x=Ni(y,g,"prod",n);h=fe({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,d);h=fe({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var DG={kernelName:Lo,backendName:"webgl",kernelFunc:$G},l6=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=KL(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},OG={kernelName:Iu,backendName:"webgl",kernelFunc:l6},zG="return 1.0 / x;",_G=qe({opSnippet:zG}),PG={kernelName:Wo,backendName:"webgl",kernelFunc:_G},LG=xa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,WG=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,BG=qe({opSnippet:LG,packedOpSnippet:WG}),VG={kernelName:Ps,backendName:"webgl",kernelFunc:BG},jG=xa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,UG=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,HG=qe({opSnippet:jG,packedOpSnippet:UG}),GG={kernelName:Ws,backendName:"webgl",kernelFunc:HG},qG=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${d[0]/u[0]},
|
|
${d[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},XG=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${d[0]/u[0]},
|
|
${d[1]/u[1]},
|
|
${d[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function KG(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,d]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new XG(r.shape,l,d,s,i):new qG(r.shape,l,d,s,i);return n.runWebGLProgram(u,[r],"float32")}var ZG={kernelName:Ls,backendName:"webgl",kernelFunc:KG},YG=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],d=o[0]/l[0],u=o[1]/l[1],p=1/d,c=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${d});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function JG(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new YG(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var QG={kernelName:Jp,backendName:"webgl",kernelFunc:JG},eq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${d[0]/u[0]},
|
|
${d[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function tq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,d]=o,u=new eq(r.shape,l,d,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var nq={kernelName:Su,backendName:"webgl",kernelFunc:tq},aq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],d=o[0]/l[0],u=o[1]/l[1],p=1/d,c=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${d});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function rq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new aq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var sq={kernelName:Yp,backendName:"webgl",kernelFunc:rq},iq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=lt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},oq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=pn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${d(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function d(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,g)=>c(g,h)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function lq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Pn({inputs:{x:r},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new oq(r.shape,o):new iq(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var uq={kernelName:Bs,backendName:"webgl",kernelFunc:lq},dq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},pq={kernelName:el,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new dq(a.shape,s),[d,u]=C.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(d,u,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},cq=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,hq=qe({opSnippet:cq}),fq={kernelName:Vs,backendName:"webgl",kernelFunc:hq},mq="return inversesqrt(x);",Aq=qe({opSnippet:mq,cpuKernelImpl:ZL}),yq={kernelName:js,backendName:"webgl",kernelFunc:Aq},u6=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(r.length),l=lt(s.length),d="";n===1?d="i":n===2&&(d="i, j");let u=`getIndices(${d})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function gq(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:d,strides:u,outputSize:p}=C.calculateShapes(s,r,i),c=[p/d,d];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=fe({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=fe({inputs:{x:s},backend:n,attrs:{shape:[l,d]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new u6(l,o,h.shape.length,m.shape.length,u,c),y=n.runWebGLProgram(A,[m,h,f],m.dtype),g=fe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var xq={kernelName:Vo,backendName:"webgl",kernelFunc:gq},bq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let d=0;d<t.length;d++)l.push(`${i[d]}`),d<e&&o.push(`${i[d]}`);a=o.join(),r=l.join()}let s=lt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function vq(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new bq(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ia(r.dtype,s.dtype))}var wq={kernelName:jo,backendName:"webgl",kernelFunc:vq},kq=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Iq=qe({opSnippet:kq}),Sq={kernelName:Uo,backendName:"webgl",kernelFunc:Iq},Nq="return 1.0 / (1.0 + exp(-1.0 * x));",Tq=qe({opSnippet:Nq}),Eq={kernelName:Hs,backendName:"webgl",kernelFunc:Tq},Cq=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Rq=qe({opSnippet:Cq}),Mq={kernelName:qo,backendName:"webgl",kernelFunc:Rq},Fq=Iv+`
|
|
return sin(x);
|
|
`,$q=qe({opSnippet:Fq}),Dq={kernelName:Us,backendName:"webgl",kernelFunc:$q},Oq=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,zq=qe({opSnippet:Oq}),_q={kernelName:Go,backendName:"webgl",kernelFunc:zq},Pq=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Lq=qe({opSnippet:Pq}),Wq={kernelName:Xo,backendName:"webgl",kernelFunc:Lq},Bq=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let d=[],u=o6({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),c=C.getPermuted(p.length,s.length,!1),h=C.getReshapedPermuted(u.shape,s,o,!1),m=fe({inputs:{x:u},backend:n,attrs:{shape:p}}),f=cn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:f},backend:n,attrs:{shape:h}});return d.push(u),d.push(m),d.push(f),d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},Vq={kernelName:Nu,backendName:"webgl",kernelFunc:Bq};function jq(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[d,u,p]=JL(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(u,a.dtype,d),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var Uq={kernelName:Qp,backendName:"webgl",kernelFunc:jq};function Hq(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:d,strides:u,outputSize:p}=C.calculateShapes(s,r,o),c=!1,h=new u6(d,l,r.shape.length,s.shape.length,u,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=fe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var Gq={kernelName:ec,backendName:"webgl",kernelFunc:Hq};function qq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),d=r.shape.length,u=new Array(d).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=Ad({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=c,m})}var Xq={kernelName:Ko,backendName:"webgl",kernelFunc:qq},Kq="return sqrt(x);",Zq=qe({opSnippet:Kq}),Yq={kernelName:Gs,backendName:"webgl",kernelFunc:Zq},Jq="return x * x;",Qq=qe({opSnippet:Jq}),eX={kernelName:Tu,backendName:"webgl",kernelFunc:Qq},d6="return (a - b) * (a - b);",tX=en({opSnippet:d6,packedOpSnippet:d6}),nX={kernelName:Ks,backendName:"webgl",kernelFunc:tX};function aX({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=xa+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Pr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var rX={kernelName:Nr,backendName:"webgl",kernelFunc:aX},sX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=lt(n.length),s=lt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,d)=>(o++,n.length===1?`coords * strides[${d}] + begin[${d}]`:`coords[${o-1}] * strides[${d}] + begin[${d}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function iX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:d,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=sn.sliceInfo(r.shape,s,i,o,l,d,u,p,c),x=fe({inputs:{x:r},backend:n,attrs:{shape:y}}),k;if(h){let v=Ad({inputs:{x},backend:n,attrs:{begin:m,size:A}});k=fe({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))k=n.makeTensorInfo(g,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let v=n.texData.get(x.dataId).values,I=We(x.shape,x.dtype,v),T=QL(g,I,f,m);k=n.makeTensorInfo(g,x.dtype,T.values)}else{let v=new sX(m,f,g);k=n.runWebGLProgram(v,[x],x.dtype)}let b=fe({inputs:{x:k},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(k),b}var oX={kernelName:Zo,backendName:"webgl",kernelFunc:iX},lX="return tan(x);",uX=qe({opSnippet:lX}),dX={kernelName:Ys,backendName:"webgl",kernelFunc:uX},pX=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,cX=qe({opSnippet:pX}),hX={kernelName:Js,backendName:"webgl",kernelFunc:cX},mX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=fX(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function fX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function p6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId).map(u=>w.decodeString(u)),l=We(r.shape,r.dtype,o),d=tW(l,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new mX(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var AX={kernelName:Sr,backendName:"webgl",kernelFunc:p6};function yX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,d]=nW(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(d.shape,d.dtype,d.values)]}var gX={kernelName:Yo,backendName:"webgl",kernelFunc:yX},xX=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function bX(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:d}=a,[u,p,c,h]=r.shape,[m,f]=d!=null?d:[p,c],A=[u,m,f,h],y=new xX(p,c,i,o,l,A);return n.runWebGLProgram(y,[r,s],"float32")}var vX={kernelName:tc,backendName:"webgl",kernelFunc:bX};function wX(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Nl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:d}=aW(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([d.length],"int32",d)]}var kX={kernelName:nc,backendName:"webgl",kernelFunc:wX};function IX(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],d=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(d[u++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let A=Ad({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});m[f]=y,p.push(A)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var SX={kernelName:Jo,backendName:"webgl",kernelFunc:IX},NX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",d=Math.floor(n/4)*4,u=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${d}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${d};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function TX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],d=0,u=C.getAxesPermutation([d],o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),d=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(p.shape,d,i),h=w.sizeFromShape([p.shape[d]]),m=fe({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=lc(r.dtype),A=(k,b,v,I,T)=>{let R=k.shape[0],$=k.shape[1],z=C.segment_util.segOpComputeOptimalWindowSize($,T),_={windowSize:z,inSize:$,batchSize:R,numSegments:T},V=new NX(_,b),j=n.compileAndRun(V,[k,v],I);if(l.push(j),j.shape[1]===T)return j;let U=l6({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=p6({inputs:{x:U},backend:n,attrs:{reps:[$/z]}});return l.push(U),l.push(X),A(j,b,X,I,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:c}}),x=g;if(u!=null){l.push(g);let k=C.getUndoAxesPermutation(u);x=cn({inputs:{x},backend:n,attrs:{perm:k}})}return l.forEach(k=>n.disposeIntermediateTensorInfo(k)),x}var EX={kernelName:Eu,backendName:"webgl",kernelFunc:TX},CX=[AH,xH,tB,aB,iB,uB,pB,fB,AB,gB,wB,IB,TB,RB,_B,$B,WB,UB,VB,XB,ZB,JB,nV,uV,pV,yV,xV,kV,NV,zW,MV,BV,jV,OV,qV,KV,HV,JV,tj,rj,ij,lj,pj,yj,xj,hj,wj,Sj,Tj,Mj,Oj,Lj,Vj,jj,Uj,Gj,Xj,Zj,Jj,eU,rU,lU,dU,cU,mU,xU,kU,TU,OW,CU,CV,FU,OU,PU,PW,VU,GU,XU,tH,JU,sH,lH,cH,vH,CH,TH,$H,OH,_H,SH,LH,BH,HH,KH,QH,oG,jW,uG,cG,mG,gG,hV,vG,kG,SG,EG,FG,WW,DG,OG,fV,aG,PG,GG,VG,HW,ZG,QG,nq,sq,uq,pq,fq,yq,xq,wq,Sq,Eq,Mq,Dq,_q,oV,sG,Wq,Vq,Uq,Gq,Xq,Yq,eX,nX,rX,oX,rG,JW,dX,hX,AX,gX,vX,QW,kX,SX,EX,wG];for(let e of CX)ai(e);var Sn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Sn||(Sn={}));var gd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(gd||(gd={}));var c6;function RX(e){c6=e.wasm.cwrap(ei,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function MX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:d,activation:u,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=gd[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],g=d?s.shape[1]:s.shape[2],x=r.shape[0],k=n.makeOutput([x,y,g],r.dtype),b=n.dataIdMap.get(k.dataId).id,v=new Uint8Array(new Int32Array(r.shape).buffer),I=new Uint8Array(new Int32Array(s.shape).buffer);return c6(c,v,r.shape.length,h,I,s.shape.length,l,d,A,m,f,p||0,b),k}var FX={kernelName:ei,backendName:"wasm",setupFunc:RX,kernelFunc:MX};function hn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),d=s.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(o,d),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var $X=hn(eo);function fn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:d,b:u}=l,p=o.dataIdMap.get(d.dataId).id,c=o.dataIdMap.get(u.dataId).id,h=n!=null?n:d.dtype,m=C.assertAndGetBroadcastShape(d.shape,u.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(d.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>a(p,A,d.shape.length,c,y,u.shape.length,Sn[d.dtype],g);if(t&&d.dtype==="float32")return x(),f;let k=C.getBroadcastDims(d.shape,m),b=C.getBroadcastDims(u.shape,m),v=k.every((T,R)=>T===R),I=b.every((T,R)=>T===R);if(v&&I)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${d.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var DX=!0,OX=fn(kr,DX),h6;function zX(e){h6=e.wasm.cwrap(is,null,["array","number","number","number"])}function _X(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return h6(s,r.length,Sn[a.dtype],i),a}var PX={kernelName:is,backendName:"wasm",setupFunc:zX,kernelFunc:_X};function Ih(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var LX={kernelName:ks,backendName:"wasm",kernelFunc:Ih},f6;function WX(e){f6=e.wasm.cwrap(Qs,null,["number","array","number","number","number","array","number"])}function Sh(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=VX(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=BX(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Ih({inputs:t,backend:n});return m.shape=o,m}let d=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(d.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return f6(u,h,l.shape.length,Sn[l.dtype],p,c,s.length),d}function BX(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function VX(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var jX={kernelName:Qs,backendName:"wasm",kernelFunc:Sh,setupFunc:WX};function Wr(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,d=!1;if(o!=null){let u=new Array(r);for(let c=0;c<u.length;c++)u[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=Sh({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(d=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:d}}var m6;function UX(e){m6=e.wasm.cwrap(ao,null,["number, number, number"])}function HX(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:d,axes:u,originalAxes:p,inputWasTransposed:c}=Wr(i,r,t);if(c){let g=t.dataIdMap.get(d.dataId).id;l=d,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",u,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,u),A=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;m6(o,A,g)}if(c&&t.disposeData(d.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var GX={kernelName:ao,backendName:"wasm",setupFunc:UX,kernelFunc:HX},A6;function qX(e){A6=e.wasm.cwrap(ro,null,["number, number, number"])}function XX(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:d,axes:u,originalAxes:p,inputWasTransposed:c}=Wr(i,r,t);if(c){let g=t.dataIdMap.get(d.dataId).id;l=d,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",u,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,u),A=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;A6(o,A,g)}if(c&&t.disposeData(d.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var KX={kernelName:ro,backendName:"wasm",setupFunc:qX,kernelFunc:XX},y6;function ZX(e){y6=e.wasm.cwrap(os,null,["number","number","number","number","number"])}function YX(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:d,axes:u,inputWasTransposed:p}=Wr(s,r,t);if(p){let y=t.dataIdMap.get(d.dataId).id;y!==i&&(l=d,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),A=l.shape[u[0]];return y6(o,Sn[l.dtype],f,A,m),p&&t.disposeData(d.dataId),h}var JX={kernelName:os,backendName:"wasm",kernelFunc:YX,setupFunc:ZX},g6;function QX(e){g6=e.wasm.cwrap(ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eK(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=n,u=C.computePool2DInfo(r.shape,i,o,1,l,d),p=u.filterHeight,c=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.strideHeight,g=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let k=a.makeOutput(u.outShape,"float32"),b=a.dataIdMap.get(k.dataId).id;return g6(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,b),k}var tK={kernelName:ls,backendName:"wasm",setupFunc:QX,kernelFunc:eK};function ba(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var nK={kernelName:Bo,backendName:"wasm",kernelFunc:ba},x6;function aK(e){x6=e.wasm.cwrap(us,null,["number","array","number","number","array","number","number","number","number"])}function rK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,d=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[d-1]:s.shape[d-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[d-2]:s.shape[d-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(f),g=A===y||A===1||y===1;w.assert(l>=2&&d>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let k=i?[A,u,c]:[A,c,u],b=o?[y,h,p]:[y,p,h],v=ba({inputs:{x:r},backend:n,attrs:{shape:k}}),I=ba({inputs:{x:s},backend:n,attrs:{shape:b}}),T=n.dataIdMap.get(v.dataId).id,R=n.dataIdMap.get(I.dataId).id,$=i?v.shape[2]:v.shape[1],z=o?I.shape[1]:I.shape[2],_=Math.max(A,y),V=n.makeOutput([_,$,z],v.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(v.shape).buffer),X=new Uint8Array(new Int32Array(I.shape).buffer);return x6(T,U,v.shape.length,R,X,I.shape.length,i,o,j),n.disposeData(v.dataId),n.disposeData(I.dataId),V.shape=x,V}var sK={kernelName:us,backendName:"wasm",setupFunc:aK,kernelFunc:rK};function Nh(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var iK={kernelName:ds,backendName:"wasm",kernelFunc:Nh},oK=hn(ps),b6;function lK(e){b6=e.wasm.cwrap(Ir,null,["number","number","number","number"])}function uK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(l.dataId).id;return b6(o,s,i,d),l}var dK={kernelName:Ir,backendName:"wasm",setupFunc:lK,kernelFunc:uK};function v6(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return Ih({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let k=w.sizeFromShape(x.shape.slice(a));return ba({inputs:{x},backend:n,attrs:{shape:[-1,k]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,A=VA(m,r,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),d=0,u=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return d+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*d;for(let f=0;f<p.length;f++){let A=u[f],y=h*A,g=p[f].subarray(y,y+A);c.set(g,m),m+=A}}return i}var pK={kernelName:po,backendName:"wasm",kernelFunc:v6},w6;function cK(e){w6=e.wasm.cwrap(cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:d,pad:u,dimRoundingMode:p,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!1,h),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,x=m.padInfo.bottom,k=m.padInfo.left,b=m.dilationHeight,v=m.dilationWidth,I=m.strideHeight,T=m.strideWidth,R=m.inChannels,$=m.outChannels,z=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let _=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(_.dataId).id;return w6(i,r.shape[0],r.shape[1],r.shape[2],o,f,A,y,g,x,k,z,b,v,I,T,R,$,V),_}var fK={kernelName:cs,backendName:"wasm",setupFunc:cK,kernelFunc:hK},k6;function mK(e){k6=e.wasm.cwrap(hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function AK(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:d,inputShape:u}=a,p=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(u,s.shape,i,p,o,d,!1,c),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:x,outChannels:k,outHeight:b,outWidth:v,strideHeight:I,strideWidth:T}=h,R=f-1-h.padInfo.top,$=A-1-h.padInfo.left,z=h.dataFormat==="channelsLast",_=w.computeStrides(h.inShape),V=w.computeStrides(r.shape),[j,U,X]=w.computeStrides(s.shape),G=_[0],ee=z?_[1]:_[2],Y=z?_[2]:1,re=z?1:_[1],te=V[0],ie=z?V[1]:V[2],Q=z?V[2]:1,de=z?1:V[1],oe=t.makeOutput(h.inShape,"float32"),me=t.dataIdMap.get(oe.dataId).id,ce=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(s.dataId).id;return k6(ce,ke,m,f,A,g,x,y,b,v,k,I,T,R,$,j,U,X,G,ee,Y,re,te,ie,Q,de,me),oe}var yK={kernelName:hs,backendName:"wasm",setupFunc:mK,kernelFunc:AK},gK=hn(fs),b1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(b1||(b1={}));var I6;function xK(e){I6=e.wasm.cwrap(ho,null,["number","number","number","number","array","number","number","number","number","number"])}function bK(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:d}=n,u=l.shape[0],[p,c]=i,h=[u,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Nh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(d.dataId).id,x=t.makeOutput(h,"float32"),k=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return I6(A,y,g,u,b,p,c,b1[r],s,k),f!=null&&t.disposeData(f.dataId),x}var vK={kernelName:ho,backendName:"wasm",setupFunc:xK,kernelFunc:bK},S6;function wK(e){S6=e.wasm.cwrap(ms,null,["number","number","number","number","number","number"])}function kK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let d=C.getAxesPermutation([s],l),u=r;d!==null&&(u=Sh({inputs:{x:r},attrs:{perm:d},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(c.dataId).id;S6(m,i?1:0,o?1:0,h,f,Sn[r.dtype]);let A=c;if(d!==null){let y=C.getUndoAxesPermutation(d);A=Sh({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(c.dataId)}return A}var IK={kernelName:ms,backendName:"wasm",setupFunc:wK,kernelFunc:kK},N6;function SK(e){N6=e.wasm.cwrap(fo,null,["number","number","number","array","number","array","array","number","number"])}function NK(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],d=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=d*s,h=u/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),k=t.dataIdMap.get(f.dataId).id;return N6(A,s,i==="NHWC"?1:0,y,r.shape.length-1,g,x,m.length,k),f}var TK={kernelName:fo,backendName:"wasm",setupFunc:SK,kernelFunc:NK},T6;function EK(e){T6=e.wasm.cwrap(As,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function CK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:d,pad:u,dimRoundingMode:p}=n,c=d==null?[1,1]:d,h=C.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!0),m=h.filterHeight,f=h.filterWidth,A=h.padInfo.top,y=h.padInfo.right,g=h.padInfo.bottom,x=h.padInfo.left,k=h.dilationHeight,b=h.dilationWidth,v=h.strideHeight,I=h.strideWidth,T=h.inChannels,R=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(h.outShape,"float32"),_=a.dataIdMap.get(z.dataId).id;return T6(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,A,y,g,x,$,k,b,v,I,T,R,_),z}var RK={kernelName:As,backendName:"wasm",setupFunc:EK,kernelFunc:CK},MK=!1,FK=fn(yo,MK,"bool"),$K=hn(gs);function v1(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ba({inputs:{x:r},backend:a,attrs:{shape:o}})}var DK={kernelName:go,backendName:"wasm",kernelFunc:v1};function OK(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var zK={kernelName:xu,backendName:"wasm",kernelFunc:OK},E6;function _K(e){E6=e.wasm.cwrap(bo,null,["number","number","number","number","number","number"])}function PK(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,d,u]=a.shape;return E6(s,o,l,d,u,i),r}var LK={kernelName:bo,backendName:"wasm",kernelFunc:PK,setupFunc:_K},WK=hn(xs),BK=!1,VK=fn(bs,BK),C6;function jK(e){C6=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number"])}function UK(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:d}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=d!=null?t.dataIdMap.get(d.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return C6(u,p,c,h,m,r,A),f}var HK={kernelName:vs,backendName:"wasm",setupFunc:jK,kernelFunc:UK},R6;function GK(e){R6=e.wasm.cwrap(ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dilations:u,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,u,d,c),A=gd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,k=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);k=Q.id}let b=f.filterHeight,v=f.filterWidth,I=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,z=f.dilationHeight,_=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),te=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return R6(y,G,ee,Y,g,b,v,k,I,T,R,$,X,z,_,V,j,U,x,A,ie,m||0,te),re}var XK={kernelName:ti,backendName:"wasm",setupFunc:GK,kernelFunc:qK},M6;function KK(e){M6=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ZK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dilations:u,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,u,d,c,!0),A=gd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,k=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);k=Q.id}let b=f.filterHeight,v=f.filterWidth,I=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,z=f.dilationHeight,_=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),te=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return M6(y,G,ee,Y,g,b,v,k,I,T,R,$,X,z,_,V,j,U,x,A,ie,m||0,te),re}var YK={kernelName:ni,backendName:"wasm",setupFunc:KK,kernelFunc:ZK},F6;function JK(e){F6=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","array","number"])}function QK(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Lm.prepareAndValidate(a,r),d=t.makeOutput(s,a.dtype);if(i===0)return d;let u=r.shape,p=u[u.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(d.dataId).id;return F6(c,Sn[a.dtype],h,i,p,o,m,f),d}var eZ={kernelName:wo,backendName:"wasm",setupFunc:JK,kernelFunc:QK},$6;function tZ(e){$6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function nZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=ba({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),p=w.sizeFromShape(s.shape),c=ba({inputs:{x:s},attrs:{shape:[d.batchSize,p/d.batchSize]},backend:t}),h=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(u.shape)).buffer),k=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return $6(A,Sn[r.dtype],x,f,y,d.batchSize,k,g),t.disposeData(u.dataId),t.disposeData(c.dataId),m.shape=d.outputShape,m}var aZ={kernelName:vo,backendName:"wasm",setupFunc:tZ,kernelFunc:nZ},rZ=!1,sZ=fn(ko,rZ,"bool"),iZ=!1,oZ=fn(ws,iZ,"bool"),D6;function lZ(e){D6=e.wasm.cwrap(Is,null,["number","number","number"])}function uZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;D6(r,n,i)}return s}var dZ={kernelName:Is,backendName:"wasm",setupFunc:lZ,kernelFunc:uZ},pZ=!1,cZ=fn(To,pZ,"bool"),hZ=!1,fZ=fn(Eo,hZ,"bool"),mZ=hn(Ss),AZ=!1,yZ=fn(Ro,AZ,"bool"),O6;function gZ(e){O6=e.wasm.cwrap(Ns,null,["number, number, number"])}function xZ(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:d,axes:u,originalAxes:p,inputWasTransposed:c}=Wr(i,r,t);if(c){let g=t.dataIdMap.get(d.dataId).id;l=d,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",u,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,u),A=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;O6(o,A,g)}if(c&&t.disposeData(d.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var bZ={kernelName:Ns,backendName:"wasm",setupFunc:gZ,kernelFunc:xZ},vZ=!1,wZ=fn(Ts,vZ),z6;function kZ(e){z6=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function IZ(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=n,u=C.computePool2DInfo(r.shape,i,o,1,l,d),p=u.filterHeight,c=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,k=u.strideWidth,b=u.inChannels,v=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let I=a.makeOutput(u.outShape,"float32"),T=a.dataIdMap.get(I.dataId).id;return z6(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,k,b,v,T),I}var SZ={kernelName:Es,backendName:"wasm",setupFunc:kZ,kernelFunc:IZ},_6;function NZ(e){_6=e.wasm.cwrap(Cs,null,["number, number, number"])}function TZ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Wr(i,r,t),m=p;if(h){let k=t.dataIdMap.get(u.dataId).id;k!==o&&(d=u,l=k,m=C.getInnerMostAxes(m.length,d.shape.length))}C.assertAxesAreInnerMostDims("mean",m,d.shape.length);let[f,A]=C.computeOutAndReduceShapes(d.shape,m),y=w.sizeFromShape(A),g=d;d.dtype!=="float32"&&(g=Nh({backend:t,inputs:{x:d},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(d.shape)!==0){let k=t.dataIdMap.get(x.dataId).id;_6(l,y,k)}if(h&&t.disposeData(u.dataId),s){let k=C.expandShapeToKeepDim(x.shape,c);x.shape=k}return d.dtype!=="float32"&&t.disposeData(g.dataId),x}var EZ={kernelName:Cs,backendName:"wasm",setupFunc:NZ,kernelFunc:TZ},P6;function CZ(e){P6=e.wasm.cwrap(Rs,null,["number, number, number"])}function RZ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Wr(i,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(d=u,l=x)}let m=d.shape.length;C.assertAxesAreInnerMostDims("min",p,m);let[f,A]=C.computeOutAndReduceShapes(d.shape,p),y=w.sizeFromShape(A),g=t.makeOutput(f,d.dtype);if(w.sizeFromShape(d.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;P6(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var MZ={kernelName:Rs,backendName:"wasm",setupFunc:CZ,kernelFunc:RZ},FZ=!1,$Z=fn(Ms,FZ),w1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(w1||(w1={}));var L6;function DZ(e){L6=e.wasm.cwrap(Fs,null,["number","array","number","number","array","array","number","number"])}function OZ(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return L6(i,d,t.shape.length,Sn[t.dtype],c,h,w1[r],l),o}var zZ={kernelName:Fs,backendName:"wasm",kernelFunc:OZ,setupFunc:DZ},_Z=!0,PZ=fn($s,_Z),LZ=hn(Fo);function k1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var W6;function WZ(e){W6=e.wasm.cwrap(Do,"number",["number","number","number","number","number"])}function BZ(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,d=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=W6(d,u,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=k1(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var VZ={kernelName:Do,backendName:"wasm",setupFunc:WZ,kernelFunc:BZ},B6;function jZ(e){B6=e.wasm.cwrap(Oo,"number",["number","number","number","number","number","bool"])}function UZ(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:d}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(d.dataId).id,c=B6(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=k1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([],"int32",A);return[y,g]}var HZ={kernelName:Oo,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ},V6;function GZ(e){V6=e.wasm.cwrap(zo,"number",["number","number","number","number","number","number"])}function qZ(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:d}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(d.dataId).id,c=V6(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=k1(t,c);t.wasm._free(A);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([m],"float32",f);return[y,g]}var XZ={kernelName:zo,backendName:"wasm",setupFunc:GZ,kernelFunc:qZ},KZ=!1,ZZ=fn($o,KZ,"bool"),j6;function YZ(e){j6=e.wasm.cwrap(Ds,null,["number","number","number","number","number"])}function JZ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),d=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return j6(u,s,i,o,d),l}var QZ={kernelName:Ds,backendName:"wasm",setupFunc:YZ,kernelFunc:JZ};function eY(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var tY={kernelName:_o,backendName:"wasm",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return v1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=v1({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),d=v6({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeData(u.dataId)),d}var aY={kernelName:Po,backendName:"wasm",kernelFunc:nY},U6;function rY(e){U6=e.wasm.cwrap(Os,null,["number","array","number","number","array","array","number","number"])}function sY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return U6(i,d,t.shape.length,Sn[t.dtype],c,h,r,l),o}var iY={kernelName:Os,backendName:"wasm",kernelFunc:sY,setupFunc:rY},oY=!1,lY=fn(zs,oY),H6;function uY(e){H6=e.wasm.cwrap(_s,null,["number","number","number"])}function dY(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return H6(s,i,l),o}var pY={kernelName:_s,backendName:"wasm",setupFunc:uY,kernelFunc:dY},G6;function cY(e){G6=e.wasm.cwrap(Lo,null,["number","number","number","number"])}function hY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Wr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(d=u,l=x,m=C.getInnerMostAxes(m.length,d.shape.length))}C.assertAxesAreInnerMostDims("prod",m,d.shape.length);let[f,A]=C.computeOutAndReduceShapes(d.shape,m),y=w.sizeFromShape(A),g=t.makeOutput(f,d.dtype);if(w.sizeFromShape(d.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;G6(l,y,Sn[g.dtype],x)}if(h&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var fY={kernelName:Lo,backendName:"wasm",setupFunc:cY,kernelFunc:hY},mY=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=HA(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},AY={kernelName:Iu,backendName:"wasm",kernelFunc:mY},yY=!0,gY=fn(ys,yY),xY=hn(Ps),bY=hn(Ws),q6;function vY(e){q6=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number"])}function wY(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,d]=o,[u,p,c,h]=r.shape,m=[u,l,d,h],f=t.dataIdMap.get(r.dataId),A;f.dtype!=="float32"&&(A=Nh({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return q6(y,u,p,c,h,l,d,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var kY={kernelName:Ls,backendName:"wasm",setupFunc:vY,kernelFunc:wY},X6;function IY(e){X6=e.wasm.cwrap(Bs,null,["number","array","number","array","number","number"])}function SY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return Ih({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);X6(l,u,i.length,p,r.shape.length,d);let c=ba({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var NY={kernelName:Bs,backendName:"wasm",kernelFunc:SY,setupFunc:IY},K6;function TY(e){K6=e.wasm.cwrap(el,null,["number","number","number","number","number","number","number","number","array","number","number"])}function EY(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,A]=C.getImageCenter(o,c,h),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],k=new Uint8Array(new Int32Array(x).buffer);return K6(d,p,c,h,m,s,f,A,k,x.length,u),l}var CY={kernelName:el,backendName:"wasm",kernelFunc:EY,setupFunc:TY},RY=hn(Vs),MY=hn(js),Z6;function FY(e){Z6=e.wasm.cwrap(Vo,null,["number","number","number","number","number","number","array","number","number"])}function $Y(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:d,sliceSize:u,strides:p,outputSize:c}=Wm.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),A=t.dataIdMap.get(o.dataId).id;return Z6(h,m,Sn[s.dtype],l,d,u,f,c,A),o}var DY={kernelName:Vo,backendName:"wasm",setupFunc:FY,kernelFunc:$Y},Y6;function OY(e){Y6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function zY(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,d=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(d.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return Y6(i,o,l,h,u),d}var _Y={kernelName:jo,backendName:"wasm",kernelFunc:zY,setupFunc:OY},J6;function PY(e){J6=e.wasm.cwrap(Hs,null,["number","number"])}function LY(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||J6(a,s),r}var WY={kernelName:"Sigmoid",backendName:"wasm",setupFunc:PY,kernelFunc:LY},BY=hn(Us);function Th(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=sn.parseSliceParams(t,n,a),o=sn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),d=r.makeOutput(i,t.dtype),u=w.computeStrides(t.shape),p=r.dataIdMap.get(d.dataId);if(o){let m=sn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(d).set(l.subarray(m,m+w.sizeFromShape(i))),d}if(t.dtype==="string"){let m=th(l,s,i,t.shape,t.dtype);return p.stringBytes=m,d}let c=r.typedArrayFromHeap(d),h=t.shape.length;if(h===2)VY(l,u[0],c,s,i);else if(h===3)jY(l,u[0],u[1],c,s,i);else if(h===4)UY(l,u[0],u[1],u[2],c,s,i);else{let m=th(l,s,i,t.shape,t.dtype);c.set(m)}return d}function VY(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let d=i;d<l;d++){let u=d*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function jY(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],d=r[2],u=o+s[0],p=l+s[1];for(let c=o;c<u;c++)for(let h=l;h<p;h++){let m=c*t+h*n+d;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function UY(e,t,n,a,r,s,i){let o=0,l=s[0],d=s[1],u=s[2],p=l+i[0],c=d+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let A=d;A<c;A++)for(let y=u;y<h;y++){let g=f*t+A*n+y*a+m;r.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var HY={kernelName:Ho,backendName:"wasm",kernelFunc:Th},Q6;function GY(e){Q6=e.wasm.cwrap(Xs,null,["number","number","number","number"])}function qY(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||Q6(r,i,o,l),s}var XY={kernelName:Xs,backendName:"wasm",setupFunc:GY,kernelFunc:qY};function KY(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),d=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let c=[...u];c[o]=p;let h=Th({inputs:{x:r},attrs:{begin:d,size:c},backend:a});return d[o]+=p,h})}var ZY={kernelName:Ko,backendName:"wasm",kernelFunc:KY},YY=hn(Gs),JY=hn(Tu),QY=!0,eJ=fn(Ks,QY),ew;function tJ(e){ew=e.wasm.cwrap(Nr,null,["number","number","number"])}function nJ(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return ew(i,r,l),o}var aJ={kernelName:Nr,backendName:"wasm",setupFunc:tJ,kernelFunc:nJ},tw;function rJ(e){tw=e.wasm.cwrap(Zo,null,["number","array","number","array","array","array","array","array","number","number"])}function sJ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:d,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:c}=a,h=C.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=C.slice_util.maskToAxes(p),A=r.shape.slice();f.forEach($=>{s[$]=0,i[$]=1,A.splice($,0,1)});let y=ba({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:k}=C.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,d,u);s=g,i=x,o=k;let b=C.slice_util.maskToAxes(c);b.forEach($=>{i[$]=s[$]+1,o[$]=1});let v=C.slice_util.computeOutShape(s,i,o),I=v.filter(($,z)=>b.indexOf(z)===-1);if(o.every($=>$===1)){let $=Th({inputs:{x:y},attrs:{begin:s,size:v},backend:t});t.disposeData(y.dataId);let z=ba({inputs:{x:$},attrs:{shape:I},backend:t});return t.disposeData($.dataId),z}let T=t.makeOutput(I,"float32");if(!I.some($=>$===0)){let $=t.dataIdMap.get(y.dataId).id,z=new Uint8Array(new Int32Array(w.computeStrides(y.shape)).buffer),_=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(I).buffer),X=new Uint8Array(new Int32Array(w.computeStrides(I)).buffer),G=t.dataIdMap.get(T.dataId).id;tw($,z,y.shape.length,_,V,j,U,X,I.length,G)}t.disposeData(y.dataId);let R=ba({inputs:{x:T},attrs:{shape:I},backend:t});return t.disposeData(T.dataId),R}var iJ={kernelName:Zo,backendName:"wasm",setupFunc:rJ,kernelFunc:sJ},oJ=!0,lJ=fn(Zs,oJ),nw;function uJ(e){nw=e.wasm.cwrap(qs,null,["number, number, number"])}function dJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Wr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(d=u,l=x,m=C.getInnerMostAxes(m.length,d.shape.length))}C.assertAxesAreInnerMostDims("sum",m,d.shape.length);let[f,A]=C.computeOutAndReduceShapes(d.shape,m),y=w.sizeFromShape(A),g=t.makeOutput(f,d.dtype);if(w.sizeFromShape(d.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;nw(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var pJ={kernelName:qs,backendName:"wasm",setupFunc:uJ,kernelFunc:dJ},cJ=hn(Ys),hJ=hn(Js),aw;function fJ(e){aw=e.wasm.cwrap(Sr,null,["number","array","number","array","number","number"])}function mJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),d=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return aw(s,l,r.shape.length,d,o.length,Sn[u.dtype],p),u}var AJ={kernelName:Sr,backendName:"wasm",setupFunc:fJ,kernelFunc:mJ},rw;function yJ(e){rw=e.wasm.cwrap(Yo,null,["number","array","number","number","number","bool","number","number"])}var gJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let d=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(d.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return rw(i,o,a.shape.length,Sn[a.dtype],r,s,u,c),[d,p]},xJ={kernelName:Yo,backendName:"wasm",setupFunc:yJ,kernelFunc:gJ};function bJ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),d=0;for(let h=0;h<o;h++)h!==s&&(l[d++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=Th({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var vJ={kernelName:Jo,backendName:"wasm",kernelFunc:bJ};function wJ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var kJ={kernelName:Qo,backendName:"wasm",kernelFunc:wJ},IJ=[$X,OX,PX,GX,KX,JX,tK,sK,iK,oK,dK,pK,fK,yK,gK,vK,IK,TK,RK,FK,$K,DK,zK,LK,WK,VK,FX,HK,XK,YK,eZ,aZ,sZ,oZ,LX,dZ,cZ,fZ,mZ,yZ,bZ,wZ,SZ,EZ,MZ,$Z,zZ,PZ,LZ,VZ,HZ,XZ,ZZ,QZ,tY,aY,iY,lY,pY,fY,AY,gY,xY,bY,nK,kY,NY,CY,MY,RY,DY,_Y,WY,BY,HY,XY,ZY,YY,JY,eJ,aJ,iJ,lJ,pJ,cJ,hJ,AJ,xJ,jX,vJ,kJ];for(let e of IJ)ai(e);var I1=J();I1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));I1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(I1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var sw=Yi(J9()),SJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',NJ=Yi(Q9()),iw=class extends du{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new wp(this,nr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let d=t;this.dataIdMap.set(e,{id:s,stringBytes:d,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(a)*w.bytesPerElement(n));return TJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function EJ(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function ow(e,t,n){if(Eh!=null)return Eh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),xd!=null&&xd[a]!=null?xd[a]:n+a}async function CJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let d=SJ,u=new Blob([d],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?ow(e,t,bd!=null?bd:l):l+o},S1&&(r.instantiateWasm=EJ(ow(e,t,bd!=null?bd:"")));let s=!1;r.onAbort=()=>{s||vd||(vd=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Eh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+sw.default.toString()],{type:"text/javascript"}),i=(0,sw.default)(r)):i=(0,NJ.default)(r),i.then(o=>{s=!0,vd=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function TJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var RJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Eh=null,bd=null,xd={},vd=!1,S1=!1;function MJ(e,t=!1){if(Gm("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),vd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Eh=e,S1=t}function FJ(e,t=!1){if(vd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")bd=e;else{xd=e;let n=RJ.filter(a=>xd[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}S1=t}var lw="3.5.0",$J=2;ul("wasm",async()=>{let{wasm:e}=await CJ();return new iw(e)},$J);Z().prototype.abs=function(){return this.throwIfDisposed(),Ot(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),Xm(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),Km(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Ac(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Wu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Bu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),Zm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Z().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Z().prototype.asin=function(){return this.throwIfDisposed(),Ym(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),Jm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),Qm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),eA(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),tA(this)};Z().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ju(this,e,t,n,a)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Uu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),pi(this,e,t,n,a,r)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),pl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),sA(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),kn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),gc(this,e,t,n,a,r,s)};Z().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),xc(this,e,t,n,a,r)};Z().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ar(this,e,t,n,a,r,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Hu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),bc(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),vc(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),lA(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),hl(this,e,t,n,a,r,s)};Z().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),uA(this,e,t,n,a,r)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),dA(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Db(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),fl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Fr(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),pA(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),qn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),on(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),cA(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),td(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),ml(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),fc(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),ci(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Dr(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),oa(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),xl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Pc(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),zb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),_b(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),fA(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),qu(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),hi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),kc(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),mA(this,e,t,n,a)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),Wb(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Nc(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),gA(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),Fn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Ic(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),la(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Xu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Tc(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Ub(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Ku(this,e,t,n,a)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Xn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Pa(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),kt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),Al(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),yl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),bA(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),vA(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),wt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Vc(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ol(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Dn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),rr(this,e,t)};Z().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),qb(this,e,t,n,a,r)};Z().prototype.pow=function(e){return this.throwIfDisposed(),sr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),Yu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Cc(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),IA(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),La(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Mc(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),p3(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),c3(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),On(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),nd(this)};Z().prototype.round=function(){return this.throwIfDisposed(),SA(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Fc(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),$c(this)};Z().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),NA(this,e,t,n,a,r,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),wn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),TA(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Dc(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Oc(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Me(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),ed(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),fi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Zu(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),ln(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Jt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),st(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Lc(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Or(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return zn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),bl(this,e)};Z().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),CA(this,e,t,n,a,r,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),RA(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),di(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),$r(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),Ae(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),Ae(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),Ae(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),MA(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ze(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Bc(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),FA(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),ua(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),In(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var uw={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,bl(Ae(n,"float32"),-1))}}},DJ={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=st(Ae(n,"float32")),r=Jt(ye(Ie(1),a));return wt(ge(e,r))}}}},OJ={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Jt(ye(st(Ae(n,"float32")),1));return ge(e,a)}}}},zJ={kernelName:kr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Te(s,i)),H(s,a.shape)}}}},_J={kernelName:is,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},PJ={kernelName:os,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},LJ={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},WJ={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Jt(ye(Ie(1),st(Ae(n,"float32")))))}}},BJ={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Jt(se(Ie(1),st(Ae(n,"float32"))));return ge(e,a)}}}},VJ={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=se(st(n),st(a)),i=B(e,ge(a,s)),o=zt(n.shape,r);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(st(n),st(a)),i=wt(B(e,ge(n,s))),o=zt(a.shape,r);return o.length>0&&(i=Te(i,o)),H(i,a.shape)}}}},jJ={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(st(Ae(n,"float32")),1))}}},UJ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ye(Ie(1),st(Ae(n,"float32"))))}}};function HJ(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,d=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(d.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),s!=null&&F(Vt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:d},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=D.runKernel(Tp,p,c);return u?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var GJ=O({avgPool3dGrad_:HJ}),qJ={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>GJ(e,a,r,s,i,o)}}};function XJ(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,d=!1;i.rank===3&&(d=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=D.runKernel(Np,u,p);return d?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var KJ=O({avgPoolGrad_:XJ}),ZJ={kernelName:ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>KJ(e,a,r,s,i)}}},YJ={kernelName:us,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,r,!1,!0),b:()=>Be(a,e,!0,!1)}:!s&&i?{a:()=>Be(e,r,!1,!1),b:()=>Be(e,a,!0,!1)}:s&&!i?{a:()=>Be(r,e,!1,!0),b:()=>Be(a,e,!1,!1)}:{a:()=>Be(r,e,!0,!0),b:()=>Be(e,a,!0,!0)}}},JJ={kernelName:mu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Zu(e,a,r)}}},QJ={kernelName:Tx,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Te(e,o,!0)}}},eQ={kernelName:ds,gradFunc:e=>({x:()=>e.clone()})},tQ={kernelName:ps,gradFunc:e=>({x:()=>Ue(e)})},nQ={kernelName:Ir,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>In(la(Dr(a,r),hi(a,s)),e,Ue(e))}}},aQ={kernelName:Au,inputsToSave:["x"],gradFunc:uw.gradFunc},rQ={kernelName:po,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=sa(r,t[0].shape)[0],i=a.map(o=>o[s]);return ln(e,i,s).map(o=>()=>o)}},sQ={kernelName:cs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Mr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>iA(a.shape,e,r,i,o,l),filter:()=>zA(a,e,r.shape,i,o,l)}}},iQ={kernelName:hs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ar(e,r,s,i,o,1,l),filter:()=>zA(e,a,r.shape,s,i,o,l)}}};function oQ(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return D.runKernel(Mp,o,l)}var lQ=O({conv3DBackpropFilter_:oQ}),uQ={kernelName:yu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(Mr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>Mb(i.shape,e,o,r,s),filter:()=>lQ(i,e,o.shape,r,s)}}},dQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(wt(Dc(Ae(n,"float32"))),e)}}},pQ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Oc(Ae(n,"float32")),e)}}},cQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=jb([r],a.rank),l=vc(e,r,s,!i);return o!=null&&(l=Ze(l,o)),l}}}},hQ={kernelName:As,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(Mr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,d]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(d.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${d.rank}.`),F(l.shape[3]===d.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),F(za(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Vt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>r3(l.shape,e,d,r,s,a,i),filter:()=>a3(l,e,d.shape,r,s,a,i)}}},fQ={kernelName:gu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>D.runKernel(_p,s,n),filter:()=>D.runKernel(Pp,i,n)}}},mQ={kernelName:mo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>D.runKernel(Wp,a)}}},AQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(qn(wt(st(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},yQ={kernelName:gs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},gQ={kernelName:go,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},xQ={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,qn(n))}}},bQ={kernelName:xs,gradFunc:e=>({x:()=>Ue(e)})},vQ={kernelName:bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=ge(e,Ae(a,"float32")),i=zt(n.shape,r);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(Te(s,i),a.shape));let o=st(a);return wt(ge(s,Ae(o,"float32")))}}}},wQ={kernelName:vs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?Ie(1):o,d=zt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=ye(r,s),c=B(e,l),h=Fc(se(i,Ie(a))),m=B(B(B(h,h),h),Ie(-.5));return{x:()=>s.rank===1?H(B(B(e,$r(H(h,[1,1,1,s.shape[0]]),u)),l),r.shape):H(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,Ie(-1)),c);return s.rank===1&&(f=Te(f,d)),H(f,s.shape)},variance:()=>{let f=B(B(m,p),c);return s.rank===1&&(f=Te(f,d)),H(f,s.shape)},scale:()=>{let f=B(p,h),A=B(e,f);return s.rank===1&&(A=Te(A,d)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,d)),H(f,s.shape)}}}},kQ={kernelName:vo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=sa(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,d=o.slice(0,i),u=d.length,p=o.slice(s,o.length).slice(1),c=p.length,h=dw(0,u),m=dw(u+1,u+1+c),f=pw([d,[l],p]),A=H(e,f),y=H(r,[l]),g=pw([[u],h,m]),x=Ze(A,g),k=FA(x,y,a.shape[i]),b=yA(g);return k=Ze(k,b),k},indices:()=>r}}};function dw(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function pw(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var IQ={kernelName:ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ue(n),b:()=>Ue(a)}}},SQ={kernelName:ks,gradFunc:e=>({x:()=>Ae(e,"float32")})},NQ={kernelName:Io,gradFunc:e=>({x:()=>Ue(e)})},TQ={kernelName:So,gradFunc:e=>({x:()=>Ue(e)})},EQ={kernelName:No,gradFunc:e=>({x:()=>Ue(e)})},CQ={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=oa(a,0);return{x:()=>In(s,e,B(e,r))}}},RQ={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(n,1))}}},MQ={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Ae(n,"float32"))}}},FQ={kernelName:Ex,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=qn(a);return ye(e,B(Te(e,r,s),i))}}}};function $Q(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return D.runKernel(Hp,o,l)}var DQ=O({localResponseNormalizationBackprop_:$Q}),OQ={kernelName:wu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>DQ(a,r,e,s,i,o,l)}}};function cw(e,t,n,a){return t.rank<n.rank&&(t=H(t,mi(t.shape,a))),e.rank<n.rank&&(e=H(e,mi(e.shape,a))),{x:()=>B(e,Ae(Fr(n,t),e.dtype))}}var hw={kernelName:Ns,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=sa(r,s.shape),l=cw(e,i,s,o);return{x:()=>l.x()}}},zQ={kernelName:Ts,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,Ae(Dr(n,a),"float32")),b:()=>B(e,Ae(kc(n,a),"float32"))}}};function _Q(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),d=M(n,"output","maxPool3dGrad"),u=o,p=l,c=d,h=!1;l.rank===4&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=H(d,[1,d.shape[0],d.shape[1],d.shape[2],d.shape[3]])),F(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},A=D.runKernel(qp,m,f);return h?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var PQ=O({maxPool3dGrad_:_Q}),LQ={kernelName:ku,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>PQ(e,a,r,s,i,o,l)}}};function WQ(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),d=M(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:d},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return D.runKernel(Gp,u,p)}var BQ=O({maxPoolGrad_:WQ}),VQ={kernelName:Es,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>BQ(e,a,r,s,i,o)}}},jQ={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=sa(r,a.shape),i=Vb(a.shape,s)[1],o=Tt(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let d=H(e,l);return ge(B(d,$n(a.shape,"float32")),o)}}}},UQ={kernelName:Rs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=sa(r,s.shape),l=cw(e,i,s,o);return{x:()=>l.x()}}},HQ={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,Ae(hi(n,a),"float32")),b:()=>B(e,Ae(oa(n,a),"float32"))}}},GQ={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Me(e,s,a.shape)}}},qQ={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=zt(n.shape,r);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=B(e,wt(ml(ge(n,a)))),i=zt(a.shape,r);return i.length>0?H(Te(s,i),a.shape):s}}}},XQ={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=B(e,Ae(a,"float32")),i=zt(n.shape,r);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=zt(a.shape,r);return i.length>0?H(Te(s,i),a.shape):s}}}},KQ={kernelName:Fo,gradFunc:e=>({x:()=>wt(e)})},ZQ={kernelName:Ds,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ct(n.shape,"float32")}}},YQ={kernelName:_o,gradFunc:e=>({x:()=>Ue(e)})},JQ={kernelName:Po,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ua(e,a).map(r=>()=>r)}},fw={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Me(e,s,a.shape)}}},QQ={kernelName:zs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ct(s.shape,i.shape);return{a:()=>{let l=Ae(i,"float32"),d=B(e,B(l,sr(s,ye(l,Ie(1))))),u=zt(s.shape,o);return u.length>0&&(d=Te(d,u)),H(d,s.shape)},b:()=>{let l=oa(s,0),d=In(l,Fn(s),Ue(s)),u=B(e,B(r,d)),p=zt(i.shape,o);return p.length>0&&(u=Te(u,p)),H(u,i.shape)}}}},eee={kernelName:_s,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=oa(n,0);return{x:()=>In(r,e,B(e,a)),alpha:()=>{let s=In(r,Ue(e),B(e,n)),i=zt(a.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,a.shape)}}}},tee={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=ge(e,Ae(a,"float32")),i=zt(n.shape,r);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=B(e,Ae(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(Te(s,i),a.shape));let o=st(a);return wt(ge(s,Ae(o,"float32")))}}}},nee={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,wt(st(n)))}}},aee={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(hi(n,6),bl(n));return{x:()=>B(e,Ae(a,"float32"))}}},ree={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Ae(bl(n),"float32"))}}},see={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},iee={kernelName:Ls,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(Jp,r,n)}}},oee={kernelName:Su,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(Yp,r,n)}}},lee={kernelName:Bs,gradFunc:(e,t,n)=>{let{dims:a}=n,r=sa(a,e.shape);return{x:()=>On(e,r)}}},uee={kernelName:Vs,gradFunc:e=>({x:()=>Ue(e)})},dee={kernelName:js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>wt(ge(e,B(sr(n,1.5),2)))}}},pee={kernelName:jo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>Ae(Ue(n),"float32"),t:()=>B(e,Ae(n,e.dtype)),e:()=>B(e,Ae(Xu(n),e.dtype))}}},cee={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=oa(n,Ie(0)),r=Ie(A3),s=Ie(y3),i=B(e,s),o=B(B(e,r),qn(Ae(n,"float32")));return In(a,i,o)}}}},hee={kernelName:Hs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ye(Ie(1),n)))}}},fee={kernelName:qo,gradFunc:e=>({x:()=>Ue(e)})},mee={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Hu(Ae(n,"float32")),e)}}},Aee={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(bc(Ae(n,"float32")),e)}}},yee={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=hb(a,r,s),d=[];for(let u=0;u<e.rank;u++)d.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>rr(e,d)}}},gee={kernelName:Xs,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>ye(i,B(Te(i,[r],s),a))}}},xee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,wn(n))}}},mw={kernelName:Nu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Uu(e,a,r)}}},Aw={kernelName:Ko,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>ot(e,a)}}},bee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,B(Jt(Ae(n,"float32")),2))}}},vee={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(Ae(n,"float32"),2))}}},wee={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Ie(2);return{a:()=>B(e,B(r,ye(n,a))),b:()=>B(e,B(r,ye(a,n)))}}},kee={kernelName:Nr,gradFunc:e=>({x:()=>Ue(e)})},Iee={kernelName:Zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Te(s,i)),H(wt(s),a.shape)}}}},See={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;sa(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=B(i,$n(a.shape,"float32"));return{x:()=>o}}},Nee={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,st(Hu(n)))}}},Tee={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ye(Ie(1),st(n)),e)}}},Eee={kernelName:Sr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ue(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=se(s,Me(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=se(s,Me(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=se(s,Me(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let d=0;d<r[3];++d)s=se(s,Me(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],d*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},Cee={kernelName:Qs,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=yA(r);return{x:()=>Ze(e,s)}}},Ree={kernelName:Jo,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>zn(e,r)}}},Fee={kernelName:Eu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Mee(e,n)}}};function Mee(e,t){let n=Pa(t,Ue(t)),a=ci(e,n),r=Dr(t,Ie(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=on(r,o+1);r=la(r,$n(a.shape,"bool"));let i=Ue(a);return In(r,a,i)}var $ee={kernelName:Qo,gradFunc:e=>({x:()=>Ue(e)})},Dee=[uw,DJ,OJ,zJ,_J,PJ,LJ,WJ,BJ,VJ,jJ,UJ,qJ,ZJ,YJ,JJ,QJ,eQ,tQ,nQ,aQ,rQ,iQ,sQ,uQ,dQ,pQ,cQ,hQ,fQ,tee,mQ,AQ,yQ,gQ,xQ,vQ,bQ,wQ,kQ,IQ,SQ,NQ,TQ,EQ,CQ,RQ,MQ,FQ,OQ,hw,hw,zQ,LQ,VQ,jQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,fw,fw,QQ,eee,nee,aee,ree,see,iee,oee,lee,uee,dee,pee,cee,hee,fee,mee,Aee,yee,gee,xee,mw,mw,Aw,Aw,bee,wee,vee,kee,Iee,See,Nee,Tee,Eee,Cee,Ree,Fee,$ee];for(let e of Dee)Cx(e);var yw={};Fe(yw,{maxNorm:()=>Oee,minMaxNorm:()=>Pee,nonNeg:()=>_ee,unitNorm:()=>zee});var N1;function _t(){return N1==null&&(N1=bb().epsilon()),N1}function va(){return"channelsLast"}var ur=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ur.prototype)}},wa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,wa.prototype)}},W=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,W.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},gw=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,gw.prototype)}};function Ti(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ja(e,t){if(!e)throw new gw(t)}function xw(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Nn(e){return e.length===1?e[0]:e}function ft(e){return Array.isArray(e)?e:[e]}function dr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ei(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var da={};function T1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function E1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>E1(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:E1(a))}}}function wd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in da)i=da[s];else if(i=t[s],i==null)throw new W(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new W(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in da?[o,l]=da.className:i in t&&([o,l]=t[i]),o==null)throw new W(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let d={};for(let h of Object.keys(da))d[h]=da[h];for(let h of Object.keys(n))d[h]=n[h];let u=s.config;u.customObjects=d;let p=Object.assign({},da);for(let h of Object.keys(n))da[h]=n[h];E1(s.config);let c=l(o,s.config,n,r);return da=Object.assign({},p),c}else{let d=Object.assign({},da);for(let p of Object.keys(n))da[p]=n[p];let u=new o(s.config);return da=Object.assign({},d),u}}}function Lee(e,t){return e<t?-1:e>t?1:0}function Ch(e,t){return-1*Lee(e,t)}function Br(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Wee(e){if(e==null)throw new W(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ci(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new W(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function C1(e,t,n=0,a=Infinity){return ja(n>=0),ja(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Ht(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Ht(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${bw(e)}.`)}function bw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>bw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Bee(e,t){let n=w.now(),a;return(...r)=>{let s=w.now();return s-n<t||(n=s,a=e(...r)),a}}function vw(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function R1(e,t){return L(()=>Jt(Te(B(e,e),t,!0)))}var kd=class extends ae.Serializable{getConfig(){return{}}},M1=class extends kd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=R1(e,this.axis),n=kn(t,0,this.maxValue);return B(e,ge(n,se(_t(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};M1.className="MaxNorm";ae.registerClass(M1);var F1=class extends kd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>ge(e,se(_t(),R1(e,this.axis))))}getConfig(){return{axis:this.axis}}};F1.className="UnitNorm";ae.registerClass(F1);var $1=class extends kd{apply(e){return La(e)}};$1.className="NonNeg";ae.registerClass($1);var D1=class extends kd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=R1(e,this.axis),n=se(B(this.rate,kn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,ge(n,se(_t(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};D1.className="MinMaxNorm";ae.registerClass(D1);var ww={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return T1(e)}function kw(e,t={}){return wd(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in ww?ww[e]:e,config:{}};return kw(t)}else return e instanceof kd?e:kw(e)}function Oee(e){return new M1(e)}function zee(e){return new F1(e)}function _ee(){return new $1}function Pee(e){return new D1(e)}var Iw={};Fe(Iw,{constant:()=>Uee,glorotNormal:()=>Yee,glorotUniform:()=>Zee,heNormal:()=>Jee,heUniform:()=>Qee,identity:()=>Xee,leCunNormal:()=>ete,leCunUniform:()=>tte,ones:()=>jee,orthogonal:()=>nte,randomNormal:()=>Gee,randomUniform:()=>Hee,truncatedNormal:()=>qee,varianceScaling:()=>Kee,zeros:()=>Vee});var ate=["channelsFirst","channelsLast"],rte=["nearest","bilinear"],ste=["valid","same","causal"],ite=["max","avg"],ote=["sum","mul","concat","ave"],_l=new Map;function Et(e){Ci(ate,"DataFormat",e)}function lte(e){Ci(rte,"InterpolationFormat",e)}function Qn(e){Ci(ste,"PaddingMode",e)}function Sw(e){Ci(ite,"PoolMode",e)}var Id=[],Nw="/";function Ri(e,t){Id.push(e);try{let n=t();return Id.pop(),n}catch(n){throw Id.pop(),n}}function ute(){return Id.length===0?"":Id.join(Nw)+Nw}function Ew(e){if(!Tw(e))throw new Error("Not a valid tensor name: '"+e+"'");return ute()+e}function Cw(e){if(!Tw(e))throw new Error("Not a valid tensor name: '"+e+"'");_l.has(e)||_l.set(e,0);let t=_l.get(e);if(_l.set(e,_l.get(e)+1),t>0){let n=`${e}_${t}`;return _l.set(n,1),n}else return e}var dte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Tw(e){return!!e.match(dte)}function pte(e){return e===parseInt(e.toString(),10)}function Vr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function Rw(e){return e=Array.isArray(e)?new Float32Array(e):e,nn(e)}function Pl(e){return Al(Rw(e)).dataSync()[0]}function jr(e){return Xn(Rw(e)).dataSync()[0]}function ka(e,t){if(t<e)throw new W(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Sd(e,t){return e.asType(t)}function Nd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function cte(e,t){return L(()=>{if(e.shape.length!==2)throw new W(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Nd(e,1);return O1(n,[1,t,1])})}function hte(e){let t=[Vr(e.shape)];return e.reshape(t)}function fte(e){if(e.rank<=1)throw new W(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Vr(e.shape,1)];return e.reshape(t)}function Mi(e,t,n){return L(()=>{switch(e.rank){case 1:return zc(e,t,n);case 2:return EA(e,[t,0],[n,e.shape[1]]);case 3:return _c(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Qu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Me(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Me(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new W(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function z1(e,t,n){return L(()=>{switch(e.rank){case 1:return zc(e,t,n);case 2:return EA(e,[0,t],[e.shape[0],n]);case 3:return _c(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Qu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Rh(e,t,n,a){return L(()=>{switch(e.rank){case 1:return zc(e,t,n);case 2:switch(a){case 1:return Mi(e,t,n);case 2:return z1(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Mi(e,t,n);case 2:return _c(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return z1(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Mi(e,t,n);case 2:return Qu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Qu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return z1(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${a}`)}default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function _1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function Mw(e,t){switch(e.rank){case 1:return Eb([e,t]);case 2:return cl([e,t],0);case 3:return Cb([e,t],0);case 4:return Rb([e,t],0);default:throw new W(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function O1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new W(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return $r(e,t)}function Mh(e,t=0,n=1,a,r){return Xb(e,t,n,a,r)}function Ua(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return zr.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?P1(e.rank,a,va()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),d=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...d],c=!1,h=!1;return zr.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?P1(e.rank,a,va()):null,activation:n}).reshape(p)}}function Fw(e,t,n){return L(()=>(Array.isArray(t)?t=nn(t,"int32"):t=t.toInt(),ci(e,t,n)))}function Td(e){return B(e,e)}function P1(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new W(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new W(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ia(e,t,n){return L(()=>(n==null&&(n=va()),Et(n),e.add(P1(e.rank,t,n))))}function mte(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return fl(e)}function Ate(e){return L(()=>ge(e,Ot(e).add(1)))}function $w(e,t,n,a){return L(()=>t3(e,t,n,a))}function yte(e){return L(()=>{let t=se(.5,B(.2,e));return kn(t,0,1)})}function Ed(e,t,n=!1){return n?e():t()}var gte=["fanIn","fanOut","fanAvg"],xte=["normal","uniform","truncatedNormal"];function bte(e){Ci(gte,"FanMode",e)}function vte(e){Ci(xte,"Distribution",e)}var pa=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},L1=class extends pa{apply(e,t){return Ct(e,t)}};L1.className="Zeros";ae.registerClass(L1);var Fh=class extends pa{apply(e,t){return $n(e,t)}};Fh.className="Ones";ae.registerClass(Fh);var W1=class extends pa{constructor(e){super();if(typeof e!="object")throw new W(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new W(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return L(()=>B(Ie(this.value),$n(e,t)))}getConfig(){return{value:this.value}}};W1.className="Constant";ae.registerClass(W1);var B1=class extends pa{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return gl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};B1.className="RandomUniform";ae.registerClass(B1);var V1=class extends pa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Mh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};V1.className="RandomNormal";ae.registerClass(V1);var j1=class extends pa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Wc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};j1.className="TruncatedNormal";ae.registerClass(j1);var U1=class extends pa{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return L(()=>{if(e.length!==2||e[0]!==e[1])throw new W("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,hA(e[0]))})}getConfig(){return{gain:this.gain}}};U1.className="Identity";ae.registerClass(U1);function wte(e,t="channelsLast"){let n,a;if(Et(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Vr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Vr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Vr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Tn=class extends pa{constructor(e){super();if(e.scale<0)throw new W(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,bte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,vte(this.distribution),this.seed=e.seed}apply(e,t){let n=wte(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Wc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return gl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Tn.className="VarianceScaling";ae.registerClass(Tn);var $h=class extends Tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};$h.className="GlorotUniform";ae.registerClass($h);var Dh=class extends Tn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Dh.className="GlorotNormal";ae.registerClass(Dh);var Oh=class extends Tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Oh.className="HeNormal";ae.registerClass(Oh);var zh=class extends Tn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};zh.className="HeUniform";ae.registerClass(zh);var _h=class extends Tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};_h.className="LeCunNormal";ae.registerClass(_h);var Ph=class extends Tn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Tn.className}};Ph.className="LeCunNormal";ae.registerClass(Ph);var H1=class extends pa{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return L(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Mh(n,0,1,"float32"),r=f3.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};H1.className="Orthogonal";ae.registerClass(H1);var Dw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Ow(e,t={}){return wd(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function It(e){return T1(e)}function At(e){if(typeof e=="string"){let t=e in Dw?Dw[e]:e;if(t==="GlorotNormal")return new Dh;if(t==="GlorotUniform")return new $h;if(t==="HeNormal")return new Oh;if(t==="HeUniform")return new zh;if(t==="LeCunNormal")return new _h;if(t==="LeCunUniform")return new Ph;{let n={};return n.className=t,n.config={},Ow(n)}}else return e instanceof pa?e:Ow(e)}function Vee(){return new L1}function jee(){return new Fh}function Uee(e){return new W1(e)}function Hee(e){return new B1(e)}function Gee(e){return new V1(e)}function qee(e){return new j1(e)}function Xee(e){return new U1(e)}function Kee(e){return new Tn(e)}function Zee(e){return new $h(e)}function Yee(e){return new Dh(e)}function Jee(e){return new Oh(e)}function Qee(e){return new zh(e)}function ete(e){return new _h(e)}function tte(e){return new Ph(e)}function nte(e){return new H1(e)}var zw={};Fe(zw,{Layer:()=>Ge,RNN:()=>Ha,RNNCell:()=>Cd,activation:()=>Lte,add:()=>Xte,alphaDropout:()=>Mne,average:()=>Kte,averagePooling1d:()=>G1,averagePooling2d:()=>q1,averagePooling3d:()=>X1,avgPool1d:()=>rne,avgPool2d:()=>ine,avgPool3d:()=>lne,avgPooling1d:()=>sne,avgPooling2d:()=>one,avgPooling3d:()=>une,batchNormalization:()=>tne,bidirectional:()=>kne,concatenate:()=>Zte,conv1d:()=>Rte,conv2d:()=>Mte,conv2dTranspose:()=>Fte,conv3d:()=>$te,conv3dTranspose:()=>Dte,convLstm2d:()=>xne,convLstm2dCell:()=>bne,cropping2D:()=>zte,dense:()=>Wte,depthwiseConv2d:()=>Pte,dot:()=>ene,dropout:()=>Bte,elu:()=>Ite,embedding:()=>qte,flatten:()=>jte,gaussianDropout:()=>Rne,gaussianNoise:()=>Cne,globalAveragePooling1d:()=>dne,globalAveragePooling2d:()=>pne,globalMaxPool1d:()=>Sne,globalMaxPool2d:()=>Nne,globalMaxPooling1d:()=>Pw,globalMaxPooling2d:()=>Lw,gru:()=>hne,gruCell:()=>fne,input:()=>_w,inputLayer:()=>kte,layerNormalization:()=>nne,leakyReLU:()=>Nte,lstm:()=>mne,lstmCell:()=>Ane,masking:()=>Fne,maxPool1d:()=>Tne,maxPool2d:()=>Ene,maxPooling1d:()=>Ww,maxPooling2d:()=>Bw,maxPooling3d:()=>cne,maximum:()=>Yte,minimum:()=>Jte,multiply:()=>Qte,permute:()=>Gte,prelu:()=>Tte,reLU:()=>Ste,repeatVector:()=>Ute,reshape:()=>Hte,rnn:()=>vne,separableConv2d:()=>Ote,simpleRNN:()=>yne,simpleRNNCell:()=>gne,softmax:()=>Ete,spatialDropout1d:()=>Vte,stackedRNNCells:()=>wne,thresholdedReLU:()=>Cte,timeDistributed:()=>Ine,upSampling2d:()=>_te,zeroPadding2d:()=>ane});var $ne=0;function Vw(){return $ne++}var Lh={};function Wh(e=""){return e in Lh||(Lh[e]=0),Lh[e]+=1,e+Lh[e].toString()}function K1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Bh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function _e(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new W(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new W(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Vh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var jw="Variable",Uw=class{constructor(e,t="float32",n=jw,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Vw(),n=n==null?jw:n,this.originalName=Ew(n),this.name=Cw(this.originalName),this.trainable_=a,this.constraint=r,this.val=Zb(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Dne(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Dne(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Z1(e){return e.map(t=>t.read())}function Y1(e){e.forEach(t=>{t[0].write(t[1])})}var Mt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Sa=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=Vw(),s!=null&&(this.originalName=Ew(s),this.name=Cw(this.originalName)),this.rank=t.length}},One=0,jh=class{constructor(e,t){this.callArgs=t,this.id=One++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},zne=0,Ge=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=zne++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=dr(n)+"_"+Wh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new wa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new W(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Nn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Nn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ur(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ur(`Layer ${this.name} is not connected, no input to return.`);return Nn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ur(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ur(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Nn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new W(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new W(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),d=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(d!=null&&[d,null].indexOf(u)===-1)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${d} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ft(e),a=!0;for(let s of n)if(!(s instanceof Sa)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Sa){r=!1;break}if(a===r)throw new W("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ri(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(Nn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Nn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=_ne(e),i=this.computeOutputShape(s),o,l=Pne(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((d,u)=>new Sa(l,d,this,ft(e),t,this.name,u)):o=new Sa(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ur(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ur(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new wa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Vh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Z1(e?this.trainableWeights:this.weights)}setWeights(e){L(()=>{let t=this.weights;if(t.length!==e.length)throw new W(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Z1(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new W(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Y1(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new W(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=At("zeros"));let o=a.apply(t,n),l=new Uw(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ft(e);t=ft(t),n=ft(n),a=ft(a),r=Bh(r),s=Bh(s);let l=[],d=[],u=[];for(let p of o)l.push(p.sourceLayer),d.push(p.nodeIndex),u.push(p.tensorIndex);new jh({outboundLayer:this,inboundLayers:l,nodeIndices:d,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function _ne(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return Nn(t)}function Pne(e){return"float32"}function Hw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],d=Hw(i,o,l);for(let u of d)r.indexOf(u)===-1&&r.push(u)}return r}}}var Ll=class extends Ge{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Wh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new W("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new W("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new W("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Sa(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new W(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Ll.className="InputLayer";ae.registerClass(Ll);function Gw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new W("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Ll({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Ur(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ee(a)}}function qw(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Xw;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Xw||(Xw={}));var Lne=125,Wl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Kw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Wne=class extends Wl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=L(()=>se(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:L(()=>{let a=B(ge(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),jt(t[n])}))}},Zw=class extends Wl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},Yw=class extends Wl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=Lne),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=Bee(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Ur(n),a.push(this.yield(e,t,n))),a.push(Qc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ur(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ur(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Qc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ur(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ur(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Qc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ur(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ur(e),await this.trainEnd(e))}};function Jw(e,t){return e==null&&(e={}),e instanceof Wl?[e]:Array.isArray(e)&&e[0]instanceof Wl?e:ft(e).map(n=>new Yw(n,t))}var ca=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ca.checkForDuplicate(t),ca.constructors[e]==null&&(ca.constructors[e]=[]),ca.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ca.constructors)ca.constructors[+t].forEach(n=>{if(n===e)throw new W("Duplicate callback constructor.")})}static clear(){ca.constructors={}}static createCallbacks(e){let t=[];for(let n in ca.constructors){let a=+n;e>=a&&t.push(...ca.constructors[a])}return t.map(n=>new n)}};ca.constructors={};function Qw(e,t,n,a,r,s,i,o,l){let d=new Zw,u=[new Wne,...ca.createCallbacks(t)];e!=null&&u.push(...e),u.push(d);let p=new Kw(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:d}}function Na(e,t={},n=!1){return wd(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Uh(e,t){return L(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(Td(e),t,!0),a=Gu(n.shape,_t()),r=Jt(Pa(n,a));return ge(e,r)})}function Fi(e,t){return L(()=>kt(Td(ye(t,e)),-1))}function Hh(e,t){return L(()=>kt(Ot(ye(t,e)),-1))}function Bl(e,t){return L(()=>{let n=ye(e,t),a=kn(Ot(e),_t(),Number.MAX_VALUE),r=Ot(ge(n,a));return B(100,kt(r,-1))})}function Bne(e,t){return L(()=>{let n=kn(t,_t(),Number.MAX_VALUE),a=Fn(se(1,n)),r=kn(e,_t(),Number.MAX_VALUE),s=Fn(se(1,r));return kt(Td(ye(a,s)),-1)})}function Vne(e,t){return L(()=>{let n=Pa(0,ye(1,B(e,t)));return kt(Td(n),-1)})}function jne(e,t){return L(()=>{let n=Pa(0,ye(1,B(e,t)));return kt(n,-1)})}function Une(e,t){return L(()=>{let n=Te(B(e,t),-1),a=Xn(B(ye(1,e),t),-1);return Pa(0,se(1,ye(a,n)))})}function Hne(e,t){return L(()=>{let n=Math.log(2),a=ye(t,e),r=ye(se(a,fi(B(-2,a))),n);return kt(r,-1)})}function Rd(e,t,n=!1){return L(()=>{if(n)t=ed(t);else{let a=Te(t,t.shape.length-1,!0);t=ge(t,a)}return t=kn(t,_t(),1-_t()),wt(Te(B(e.toFloat(),Fn(t)),t.shape.length-1))})}function Gh(e,t,n=!1){return L(()=>{let a=ml(hte(e)).toInt();t=kn(t,_t(),1-_t());let r=t.shape,s=ol(a,r[r.length-1]).reshape(r);return Rd(s,t,n)})}function Gne(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new W(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return L(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function qh(e,t){return L(()=>{let n;return n=kn(t,_t(),1-_t()),n=Fn(ge(n,ye(1,n))),kt(Gne(e,n),-1)})}function qne(e,t){return L(()=>{let n=kn(e,_t(),1),a=kn(t,_t(),1);return Te(B(e,Fn(ge(n,a))),-1)})}function Xne(e,t){return L(()=>{let n=Fn(se(_t(),t));return kt(ye(t,B(e,n)),-1)})}function J1(e,t){return L(()=>{let n=Uh(e,-1),a=Uh(t,-1),r=B(n,a);return wt(Te(r,-1))})}var Xh={meanSquaredError:Fi,meanAbsoluteError:Hh,meanAbsolutePercentageError:Bl,meanSquaredLogarithmicError:Bne,squaredHinge:Vne,hinge:jne,categoricalHinge:Une,logcosh:Hne,categoricalCrossentropy:Rd,sparseCategoricalCrossentropy:Gh,binaryCrossentropy:qh,kullbackLeiblerDivergence:qne,poisson:Xne,cosineProximity:J1};function Q1(e){if(typeof e=="string"){if(e in Xh)return Xh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new W(t)}else return e}function ey(e,t){return L(()=>{let n=B(.5,Dn(t)),a=Sd(oa(t,n),e.dtype);return kt(Fr(e,a),-1)})}function ty(e,t){return L(()=>Sd(Fr(Bu(e,-1),Bu(t,-1)),"float32"))}function e4(e,t){return L(()=>la(e.equal(1),t.equal(1)).sum().cast("float32"))}function Kne(e,t){return L(()=>la(e.equal(1),t.equal(0)).sum().cast("float32"))}function Zne(e,t){return L(()=>la(e.equal(0),t.equal(1)).sum().cast("float32"))}function t4(e,t){return L(()=>{let n=e4(e,t),a=Zne(e,t),r=n.add(a);return In(oa(r,0),n.div(r),0).cast("float32")})}function Yne(e,t){return L(()=>{let n=e4(e,t),a=Kne(e,t),r=n.add(a);return In(oa(r,0),n.div(r),0).cast("float32")})}function n4(e,t){return qh(e,t)}function a4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Fr(e,t).asType("float32")}var Jne=Fi,Qne=Fi,eae=Hh,tae=Hh,nae=Bl,aae=Bl,ny=Rd,rae=J1,r4=Gh,Kh={binaryAccuracy:ey,categoricalAccuracy:ty,precision:t4,categoricalCrossentropy:ny,sparseCategoricalCrossentropy:r4,mse:Jne,MSE:Qne,mae:eae,MAE:tae,mape:nae,MAPE:aae,cosine:rae};function sae(e){if(typeof e=="string"&&e in Kh)return Kh[e];if(typeof e!="string"&&e!=null)return e;throw new W(`Unknown metric ${e}`)}function Zh(e){if(ja(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Xh))if(Xh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Kh))if(Kh[n]===e){t=n;break}return t!==void 0?t:e.name}}function iae(e){let t={Adagrad:()=>gi.adagrad(.01),Adadelta:()=>gi.adadelta(1,.95,_t()),Adam:()=>gi.adam(.001,.9,.999,_t()),Adamax:()=>gi.adamax(.002,.9,.999,_t(),0),RMSProp:()=>gi.rmsprop(.001,.9,0,_t()),SGD:()=>gi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new W(`Unknown Optimizer ${e}`)}var s4=1*1024*1024;function i4(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!ay(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>s4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${s4}.`)}}function ay(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!ay(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!ay(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function pae(e,t,n,a=console.log){let r=lae(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),Yh(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?uae(o[u],n,a):dae(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=oae(e),d=Vh(e.nonTrainableWeights);a(`Total params: ${l+d}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${d}`),a("_".repeat(t))}function oae(e){let t;return e.collectedTrainableWeights!=null?t=Vh(e.collectedTrainableWeights):t=Vh(e.trainableWeights),t}function lae(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Yh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function uae(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];Yh(i,t,n)}function dae(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let c=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],d=[`${i} (${o})`,r,e.countParams().toString(),l];Yh(d,t,a);for(let u=1;u<s.length;++u)Yh(["","","",s[u]],t,a)}function o4(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Md(e,t){if(e===null)return null;if(typeof e=="string")return Ei(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];o4(t,r,s)?n.push(s):n.push(Md(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ei(a);n[s]=Md(r,s)}}return n}}function ry(e,t){if(e==null)return null;if(typeof e=="string")return dr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];o4(t,r,s)?n.push(s):n.push(ry(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=dr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=ry(r,a)}return n}}var sy="3.5.0";function cae(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return Ae(t,e.dtype)}catch(n){throw new W(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var $i=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof $i)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=cae(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new W(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Sa){if(this.id2Value[e.id]==null)throw new W(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new W(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Sa){if(this.id2Value[e.id]==null)throw new W(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new W(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},iy={},l4={};function Fd(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],d=t.names();for(let m of o)d.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,c;if(iy[u]==null){let m=hae(i,t);p=m.sorted,c=m.recipientCounts,iy[u]=p,l4[u]=c}p=iy[u],c={},r||Object.assign(c,l4[u]);let h=new $i(t);for(let m=0;m<p.length;++m){if(a!=null){let R=hc().numTensors;R>a.maxNumTensors&&(a.maxNumTensors=R),R<a.minNumTensors&&(a.minNumTensors=R)}let f=p[m],A=f.sourceLayer;if(A instanceof Ll)continue;let y=[],g=[],x=[],k=!1;for(let R of f.inputs){let $=h.getValue(R),z=h.getMask(R);y.push($),g.push(z),z!=null&&(k=!0),r||(c[R.name]--,c[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!$.isDisposed&&R.sourceLayer.stateful!==!0&&x.push($))}k&&(n=n||{},n.mask=g[0]);let b=ft(A.apply(y,n)),v=null;A.supportsMasking&&(v=A.computeMask(y,g));let I=fae(f),T=Array.isArray(I)?I:[I];for(let R=0;R<T.length;++R){h.hasKey(T[R])||h.add(T[R],b[R],Array.isArray(v)?v[0]:v);let $=o.indexOf(T[R].name);$!==-1&&(l[$]=b[R])}r||Ee(x)}return h.disposeMasks(),s?l:l[0]}function hae(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=u4(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=u4(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(d=>a[l].add(d))}}return{sorted:n,recipientCounts:mae(a)}}function mae(e){let t={};for(let n in e)t[n]=e[n].size;return t}function u4(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let d of o.inputs)r[d.name]==null&&(r[d.name]=new Set),r[d.name].add(o.name),!n.has(d.name)&&s.push(d)}}return{sorted:a,recipientMap:r}}function fae(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ga=class extends Ge{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Wh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Br(this.inputs).length!==this.inputs.length)throw new W(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Br(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,k=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(k)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,k=y.tensorIndex;ja(x===0,"input layer has >1 nodes"),ja(k===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Ll))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,g,x,k,b,v)=>{(k==null||b==null||v==null)&&(k=y.sourceLayer,b=y.nodeIndex,v=y.tensorIndex);let I=k.inboundNodes[b];if(x.indexOf(I)!==-1)throw new wa(`The tensor ${y.name} at layer "${k.name}" is part of a cycle.`);if(g.indexOf(I)!==-1)return;this.containerNodes.add(Ga.nodeKey(k,b)),k.id in s||(s[k.id]=Object.keys(s).length),x.indexOf(I)===-1&&x.push(I);let T=I.inboundLayers.length;for(let R=0;R<T;R++){let $=I.inputTensors[R],z=I.inboundLayers[R],_=I.nodeIndices[R],V=I.tensorIndices[R];o($,g,x,z,_,V)}for(g.push(I);x.indexOf(I)>=0;)x.splice(x.indexOf(I),1);i.push(I)},l=[],d=[];for(let y of this.outputs)o(y,l,d);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];g=Math.max(g,x),a[y.outboundLayer.id]=g,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let k=0;k<y.inboundLayers.length;k++){let b=y.inboundLayers[k],v=y.nodeIndices[k],I=b.inboundNodes[v],T=t[I.id]==null?0:t[I.id];t[I.id]=Math.max(g+1,T),n[I.id]=I}}let p={};for(let y in t){let g=t[y];g in p||(p[g]=[]),p[g].push(n[y])}let c={};for(let y in a){let g=a[y];g in c||(c[g]=[]),c[g].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(Ch);this.layers=[];for(let y of h){let g=c[y];g.sort((x,k)=>{let b=s[x.id],v=s[k.id];return b<v?-1:b>v?1:0});for(let x of g)x instanceof Ga&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Ch);let m=this.inputs.slice(),f=[];for(let y of h)for(let g of p[y]){let x=g.outboundLayer;if(x!=null){for(let k of g.inputTensors)if(m.indexOf(k)===-1)throw new wa(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let k of g.outputTensors)m.push(k);f.push(x.name)}}this.nodesByDepth=p;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new wa(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new W("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new W(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new W(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new W(`${s.length} of ${a} weights are not set: ${s}`)}Y1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${sy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ry(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return L(()=>{e=ft(e);let n=new $i;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Fd(this.outputs,n,t)})}computeMask(e,t){return L(()=>{e=ft(e);let n;return t==null?n=Ti(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Bh(e);if(t.length!==this.inputLayers.length)throw new W(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],d=o.name+"_0_0";n[d]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Ch);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let d=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(d.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,x=n[g];u.push(x)}let p=d.computeOutputShape(Nn(u)),c=Bh(p),h=d.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${d.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],d=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${d}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];ja(o in n),r.push(n[o])}return Nn(r)}runInternalGraph(e,t){t==null&&(t=Ti(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],d=e[o],u=t[o];n[l.id]=[d,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Ch);for(let o of a){let l=this.nodesByDepth[o];for(let d of l){let u=d.outboundLayer,p=d.inputTensors,c=d.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,A,y,g;if(d.callArgs!=null&&(m=d.callArgs),h.length===1){let[x,k]=h[0];m.mask==null&&(m.mask=k),y=ft(u.call(x,m)),g=ft(u.computeMask(x,k)),f=[x],A=[k]}else f=h.map(x=>x[0]),A=h.map(x=>x[1]),m.mask==null&&(m.mask=A),y=ft(u.call(f,m)),g=ft(u.computeMask(f,A));if(u.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let k=c[x],b=y[x],v=g[x];n[k.id]=[b,v]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ja(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,d]=n[o.id];i.push(l.shape),r.push(l),s.push(d)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Ga?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Ga.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new W(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new W("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new W(`No such layer: ${e}`)}calculateLosses(){return L(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Ga.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],c=Ga.nodeKey(s,u),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let A=p.inboundLayers[f],y=p.nodeIndices[f],g=p.tensorIndices[f],x=Ga.nodeKey(A,y),k=t[x];k==null&&(k=0),m.push([A.name,k,g,h])}l.push(m)}}}let d={};d.name=s.name,d.className=i,d.config=o,d.inboundNodes=l,n.push(d)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ga.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let d=t[l];d==null&&(d=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,d,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ga.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let d=t[l];d==null&&(d=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,d,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let x of A){let k=x[0],b=x[1],v=x[2];if(g=x[3]==null?{}:x[3],!(k in r)){i(f,A);return}let I=r[k];if(I.inboundNodes.length<=b){i(f,A);return}let T=I.inboundNodes[b];y.push(T.outputTensors[v])}y.length>0&&f.apply(Nn(y),g)}function l(f){let A=f.name,y=Na(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new W(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let d=t.name,u=t.layers;for(let f of u)l(f);for(;!Wee(s);)for(let f of u){let A=r[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let A=f[0],y=f[1],g=f[2];ja(A in r);let x=r[A].inboundNodes[y].outputTensors;p.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];ja(A in r);let x=r[A].inboundNodes[y].outputTensors;c.push(x[g])}return new e({inputs:p,outputs:c,name:d})}get stateful(){if(this._stateful)throw new W("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){L(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Aae(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function d4(e,t){return Aae(e,t,"classWeight")}async function p4(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=L(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ee(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),nn(i,"float32")}else return null}function yae(e,t){return B(e,t)}var gae=32;function h4(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=c4("input",e.inputNames,n),i=c4("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function c4(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new W(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function xae(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function vae(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(f4(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=xae(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),d;r?d=l.slice().concat(l.map(A=>"val_"+A)):d=l.slice();let u=Jw(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=Qw(u,p,n.epochs,null,null,bae(t,n),null,r,d);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await c.onEpochBegin(m);let y=0,g=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:k,ys:b}=h4(e,x.value),v={};v.batch=g,v.size=k[0].shape[0],await c.onBatchBegin(g,v);let I=[];if(n.classWeight!=null){let $=d4(n.classWeight,e.outputNames);for(let z=0;z<$.length;++z)I.push(await p4(b[z],null,$[z]))}let T=k.concat(b).concat(I),R=o(T);Ee(T);for(let $=0;$<l.length;++$){let z=l[$],_=R[$];v[z]=_,jt(_)}await c.onBatchEnd(g,v),qw(v),g++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let k;f4(n.validationData)?k=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):k=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?gae:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)A[`val_${e.metricsNames[b]}`]=k[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,A),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function bae(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function f4(e){return typeof e.iterator=="function"}function wae(e){return typeof e.next=="function"}async function kae(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=wae(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let d=await i.next();if(s=L(()=>{if(d.value){let{xs:u,ys:p}=h4(e,d.value),c=u.concat(p),h=L(()=>r(c));if(Ee(c),l===0)for(let f=0;f<h.length;++f)s.push(Ie(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let A=h[f],y=s[f];s[f]=L(()=>se(s[f],B(m,A))),l>0&&Ee(y)}Ee(h),o+=m,++l}return s}),d.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let d=0;d<s.length;++d){let u=s[d];s[d]=ge(s[d],o),Ee(u)}return Nn(s)}function oy(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function $d(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Mi(a,t,n-t)):Mi(e,t,n-t)}function ly(e,t){return L(()=>e==null?null:Array.isArray(e)?e.map(n=>ly(n,t)):Fw(e,t.dtype==="int32"?t:t.toInt()))}function uy(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function Iae(e,t,n,a,r,s,i,o,l,d,u,p,c,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),c==null&&(c=0);let f=!1;if(l!=null&&d!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new W("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;A!=null&&(y=ka(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=Qw(o,i,s,c,A,h,r,f,p);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let k=c;k<s;++k){await g.onEpochBegin(k);let b={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Oe("batch shuffling is not implemneted yet");u&&w.shuffle(y);let v=nn(y),I=uy(A,r);for(let T=0;T<I.length;++T){let R={};if(await g.onBatchBegin(T,R),L(()=>{let $=I[T][0],z=I[T][1],_=Mi(v,$,z-$);R.batch=T,R.size=z-$;let V=ly(n,_),j=t(V);for(let U=0;U<a.length;++U){let X=a[U],G=j[U];R[X]=G,jt(G)}if(T===I.length-1&&f){let U=e.testLoop(l,d,r);for(let X=0;X<a.length;++X){let G=a[X],ee=U[X];jt(ee),b["val_"+G]=ee}}}),await g.onBatchEnd(T,R),qw(R),e.stopTraining_)break}v.dispose()}if(await g.onEpochEnd(k,b),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function Sae(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,d,u;try{let p=a.batchSize==null?32:a.batchSize;oy(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new W(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let v=!0,I=await e.standardizeUserData(i,o,null,null,v,p);l=I[0],d=I[1],f=l.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let v=Math.floor(r[0].shape[0]*(1-a.validationSplit)),I=r[0].shape[0];l=$d(r,v,I),r=$d(r,0,v),d=$d(s,v,I),s=$d(s,0,v),f=l.concat(d)}else a.validationSteps!=null&&(m=!0);let A=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,k;m?(e.makeTestFunction(),x=e.testFunction,k=g.slice().concat(g.map(v=>"val_"+v))):(x=null,f=[],k=g.slice());let b=Jw(a.callbacks,a.yieldEvery);return await Iae(e,y,A,g,p,a.epochs,a.verbose,b,x,f,a.shuffle,k,a.initialEpoch,null,null)}finally{e.isTraining=!1,Di(r,t),Di(s,n),Di(l,i),Di(d,o),u!=null&&Ee(u)}}function m4(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Nd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Di(e,t){if(e==null)return;let n=[];if(t instanceof Le)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Le)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function Nae(e){return e instanceof Le}function dy(e){return Array.isArray(e)}function A4(e){return!Nae(e)&&!dy(e)}function y4(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(dy(e)&&e.length>0)i=!0;else if(A4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new W(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(A4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new W(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(dy(e)){if(e=e,e.length!==t.length)throw new W(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new W(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=m4(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new W(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let d=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&d!==u)throw new W(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Tae(e,t,n){let a=Br(e.map(s=>s.shape[0]));a.sort();let r=Br(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new W(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new W(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new W(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function Eae(e,t,n){let a=[Fi,qh,Rd];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Rd&&s.shape[s.shape.length-1]===1)throw new W(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),d=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],c=d[u];if(c!=null&&p!==c)throw new W(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function g4(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new W(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new W(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new W(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let d=o.shape[l],u=n[i][l];if(u!=null&&u!==d)throw new W(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Cae(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Rae="layers-model",pr=class extends Ga{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new W("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");pae(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=iae(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof or))throw new W("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new W(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Q1(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new W(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Q1(s))}else{let s=Q1(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ri("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=Cae(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ri("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",d,u,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===qh?["accuracy","acc"].indexOf(c)!==-1?u=ey:["crossentropy","ce"].indexOf(c)!==-1&&(u=n4):this.lossFunctions[s]===Gh?["accuracy","acc"].indexOf(c)!==-1?u=a4:["crossentropy","ce"].indexOf(c)!==-1&&(u=r4):["accuracy","acc"].indexOf(c)!==-1?u=ty:["crossentropy","ce"].indexOf(c)!==-1&&(u=ny);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=u,d=l+f}else p=sae(c),d=l+Zh(c);let h;Ri(d,()=>{h=p}),r(s,d,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;oy(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Nn(l)}finally{Di(s[0],e),Di(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),kae(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new W(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new W(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new W("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new $i;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new W(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new W(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Fd(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Ti(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new W(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return L(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=uy(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)L(()=>{let o=r[i][0],l=r[i][1],d=$d(e,o,l),u=[];if(Array.isArray(d))for(let c=0;c<d.length;++c)u.push({key:this.inputs[c],value:d[c]});else u.push({key:this.inputs[0],value:d});let p=new $i(u);return Fd(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Nn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=m4(e);g4(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return oy(a),this.predictLoop(n,a)}finally{Di(n,e)}}predictOnBatch(e){g4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new wa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Gh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=y4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=y4(t,this.feedOutputNames,r,!1,"target"),Tae(e,t,null),Eae(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new W(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let d=d4(a,this.outputNames);l=[];for(let u=0;u<d.length;++u)l.push(await p4(o[u],null,d[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return L(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=uy(s,n),l=nn(ka(0,s));for(let d=0;d<o.length;++d){let u=o[d][0],p=o[d][1],c=Mi(l,u,p-u),h=ly(t,c),m=e(h);if(d===0)for(let f=0;f<m.length;++f)i.push(Ie(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],B(p-u,A))}}for(let d=0;d<i.length;++d)i[d]=ge(i[d],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;xw(e,a)>1&&(r+=`_${xw(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let d=[];for(let h=0;h<this.inputs.length;++h)d.push({key:this.inputs[h],value:n[h]});let u=new $i(d),p=Fd(this.outputs,u,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=yae(m,r[h]));let f=kt(m);t.push(f),h===0?c=m:c=se(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],A=this.metricsTensors[h][1];m=kt(f(a[A],p[A]))}jt(m),s.push(m)}return c=kt(c),this.calculateLosses().forEach(h=>{c=se(c,h)}),c},o=this.collectedTrainableWeights.map(d=>d.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>L(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new $i(s),o=Fd(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let d=this.lossFunctions[l],u=kt(d(r[l],o[l]));l===0?n=u:n=se(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let d=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=kt(d(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return Sae(this,e,t,n)}async fitDataset(e,t){return vae(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),Nn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=hc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-hc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=dr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>dr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=dr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[dr(Zh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>dr(Zh(e)));{let e={};for(let t in this.metrics)e[t]=dr(Zh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Md(e.optimizer_config),n=Na(t),a;if(typeof e.loss=="string")a=Ei(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ei(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ei(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ei(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ei(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=vn.getSaveHandlers(e);if(i.length===0)throw new W(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new W(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new W("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await vn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Rae,generatedBy:`TensorFlow.js tfjs-layers v${sy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await vn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=vn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;i4(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){i4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};pr.className="Model";ae.registerClass(pr);var x4=class extends pr{};x4.className="Functional";ae.registerClass(x4);async function Mae(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Md(n),r=Na(a,t);if(e.weightsManifest!=null){let s=await vn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ee(s)}return r}async function $ae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=vn.getLoadHandlers(e,t);if(n.length===0)n.push(vn.browserHTTPRequest(e,t));else if(n.length>1)throw new W(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Fae(e,void 0,t)}async function Fae(e,t,n){if(n==null&&(n={}),e.load==null)throw new W("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Na(Md(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new W("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:d,optimizerWeights:u}=Dae(a.weightData,a.weightSpecs);o.loadWeights(d,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ee(d),Ee(u.map(p=>p.tensor))}return o}function Dae(e,t){let n=vn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Vl=class extends pr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Wh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new W(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Vl||e instanceof pr,n;if(t){if(n=e,n.outputs.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new W("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new W("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=Gw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new W(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Hw(this.outputs[0])}this.inboundNodes=[],new jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ti(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new pr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new W("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Vl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Na(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new W("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new W("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Vl.className="Sequential";ae.registerClass(Vl);function Oae(e){return new pr(e)}function zae(e){return new Vl(e)}function _ae(e,t){return t==null&&(t={}),$ae(e,t)}function _w(e){return Gw(e)}function Pae(e,t){ca.registerCallbackConstructor(e,t)}var En=class extends ae.Serializable{getConfig(){return{}}},b4=class extends En{apply(e,t=1){return mte(e,t)}};b4.className="elu";ae.registerClass(b4);var v4=class extends En{apply(e){return $c(e)}};v4.className="selu";ae.registerClass(v4);var w4=class extends En{apply(e){return La(e)}};w4.className="relu";ae.registerClass(w4);var k4=class extends En{apply(e){return L(()=>yl(6,La(e)))}};k4.className="relu6";ae.registerClass(k4);var I4=class extends En{apply(e){return e}};I4.className="linear";ae.registerClass(I4);var S4=class extends En{apply(e){return wn(e)}};S4.className="sigmoid";ae.registerClass(S4);var N4=class extends En{apply(e){return yte(e)}};N4.className="hardSigmoid";ae.registerClass(N4);var T4=class extends En{apply(e){return fi(e)}};T4.className="softplus";ae.registerClass(T4);var E4=class extends En{apply(e){return Ate(e)}};E4.className="softsign";ae.registerClass(E4);var C4=class extends En{apply(e){return di(e)}};C4.className="tanh";ae.registerClass(C4);var py=class extends En{apply(e,t=-1){return ed(e,t)}};py.className="softmax";ae.registerClass(py);var R4=class extends En{apply(e,t=-1){return Nc(e,t)}};R4.className="logSoftmax";ae.registerClass(R4);var M4=class extends En{apply(e,t=1){return L(()=>wn(e.mul(t)).mul(e))}};M4.className="swish";ae.registerClass(M4);var F4=class extends En{apply(e){return L(()=>B(e,di(fi(e))))}};F4.className="mish";ae.registerClass(F4);function Hr(e){return e.getClassName()}function cy(e,t={}){return wd(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function Gr(e){if(e==null){let t={};return t.className="linear",t.config={},cy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},cy(t)}else return e instanceof En?e:cy(e)}function hy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var $4=class extends ae.Serializable{},Dd=class extends $4{constructor(e){super();hy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return L(()=>{let t=Ct([1]);return this.hasL1&&(t=se(t,Te(B(this.l1,Ot(e))))),this.hasL2&&(t=se(t,Te(B(this.l2,Td(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Dd.className="L1L2";ae.registerClass(Dd);function Lae(e){return hy(e),new Dd({l1:e!=null?e.l1:null,l2:0})}function Wae(e){return hy(e),new Dd({l2:e!=null?e.l2:null,l1:0})}var D4={l1l2:"L1L2"};function ut(e){return T1(e)}function O4(e,t={}){return wd(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in D4?D4[e]:e,config:{}};return O4(t)}else return e instanceof $4?e:O4(e)}var fy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=_e(e);let n=La(e);return this.maxValue!=null&&(n=kn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};fy.className="ReLU";ae.registerClass(fy);var my=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return qu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};my.className="LeakyReLU";ae.registerClass(my);var Ay=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=At(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=yt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new W(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Mt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=_e(e),Yu(e,this.alpha.read())}getConfig(){let e={alphaInitializer:It(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Ay.className="PReLU";ae.registerClass(Ay);var yy=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return fl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};yy.className="ELU";ae.registerClass(yy);var gy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=_e(e);return n.mul(Sd(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};gy.className="ThresholdedReLU";ae.registerClass(gy);var xy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new py().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=_e(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};xy.className="Softmax";ae.registerClass(xy);function jl(e,t,n){if(typeof e=="number")return Ti(e,t);if(e.length!==t)throw new W(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!pte(r))throw new W(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ta(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function qa(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+jr([n-t,0]);else if(a==="same")e=e*t;else throw new W(`Unsupport padding mode: ${a}.`);return e}function by(e,t){return L(()=>(Et(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function z4(e,t){return L(()=>(Et(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function Bae(e,t,n,a=1,r="valid",s,i=1){return L(()=>{if(s==null&&(s=va()),Et(s),e.shape.length!==3)throw new W(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new W(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new W(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ze(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=gc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ia(o,n)),o})}function _4(e,t,n,a=[1,1],r="valid",s,i,o=null){return L(()=>{if(s==null&&(s=va()),Et(s),e.rank!==3&&e.rank!==4)throw new W(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new W(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=by(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=zr.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function Vae(e,t,n,a=[1,1,1],r="valid",s,i){return L(()=>{if(s==null&&(s=va()),Et(s),e.rank!==4&&e.rank!==5)throw new W(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new W(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=z4(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=oA(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ia(o,n)),s==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var vy=class extends Ge{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",vy.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=jl(t.kernelSize,e,"kernelSize"),this.strides=jl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Qn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Et(this.dataFormat),this.activation=Gr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=At(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=yt(t.biasRegularizer),this.activityRegularizer=yt(t.activityRegularizer),this.dilationRate=jl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new W(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new W(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new W(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ja("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!C1(e.kernelSize,"number",1,3))throw new W(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Hr(this.activation),useBias:this.useBias,biasInitializer:It(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Od=class extends vy{constructor(e,t){super(e,t);this.kernel=null,Od.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=At(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=yt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return L(()=>{e=_e(e);let n,a=this.bias==null?null:this.bias.read(),r=vw(this.activation.getClassName());if(r!=null&&this.rank===2)n=_4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=Bae(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=_4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Vae(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ta(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:It(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new W(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},zd=class extends Od{constructor(e){super(2,e);zd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!C1(e.kernelSize,"number",1,2))throw new W(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};zd.className="Conv2D";ae.registerClass(zd);var _d=class extends Od{constructor(e){super(3,e);_d.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new W(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};_d.className="Conv3D";ae.registerClass(_d);var wy=class extends zd{constructor(e){super(e);if(this.inputSpec=[new Mt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new W("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Mt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=_e(e);if(n.shape.length!==4)throw new W(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],d=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=qa(o,p,d,this.padding),m=qa(l,c,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let A=xc(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Ze(A,[0,3,1,2])),this.bias!=null&&(A=Ia(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=at(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=qa(t[a],o,s,this.padding),t[r]=qa(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};wy.className="Conv2DTranspose";ae.registerClass(wy);var ky=class extends _d{constructor(e){super(e);if(this.inputSpec=[new Mt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new W("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Mt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=_e(e);if(n.shape.length!==5)throw new W(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],d=a[s],u=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=qa(l,m,p,this.padding),g=qa(d,f,c,this.padding),x=qa(u,A,h,this.padding),k=[r,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let b=Fb(n,this.kernel.read(),k,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Ze(b,[0,4,1,2,3])),this.bias!==null&&(b=Ia(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=at(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],d=this.strides[0],u=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=qa(t[a],d,i,this.padding),t[r]=qa(t[r],u,o,this.padding),t[s]=qa(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ky.className="Conv3DTranspose";ae.registerClass(ky);var P4=class extends Od{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new W("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new W("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new W(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=yt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=yt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length<this.rank+2)throw new W(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Mt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{e=_e(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=NA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ia(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=It(this.depthwiseInitializer),e.pointwiseInitializer=It(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};P4.className="SeparableConv";var Iy=class extends P4{constructor(e){super(2,e)}};Iy.className="SeparableConv2D";ae.registerClass(Iy);var Jh=class extends Od{constructor(e){super(1,e);Jh.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!C1(e.kernelSize,"number",1,1))throw new W(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Jh.className="Conv1D";ae.registerClass(Jh);var Sy=class extends Ge{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return L(()=>{if(e=_e(e),this.dataFormat==="channelsLast"){let n=Rh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Rh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Rh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Rh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sy.className="Cropping2D";ae.registerClass(Sy);var Ny=class extends Ge{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,lte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return L(()=>{let n=_e(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ze(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ny.className="UpSampling2D";ae.registerClass(Ny);function jae(e,t,n=[1,1],a="valid",r,s){return L(()=>{r==null&&(r=va()),Et(r);let i=by(e,r);if(e.rank!==4)throw new W(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new W(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=hl(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}var Ty=class extends vy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=At(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=yt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new W(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{e=_e(e);let n=jae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ia(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ta(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ta(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=It(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};Ty.className="DepthwiseConv2D";ae.registerClass(Ty);function L4(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new W("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function W4(e,t,n,a=!1,r,s,i=!1,o=!1){return L(()=>{let l=t.shape.length;if(l<3)throw new W(`Input should be at least 3D, but is ${l}D.`);let d=[1,0].concat(ka(2,l));if(t=Ze(t,d),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=on(r,-1)),r=Ze(r,d)),a&&(t=On(t,0),r!=null&&(r=On(r,0)));let u=[],p,c=n,h=t.shape[0],m=ua(t),f;r!=null&&(f=ua(r));for(let y=0;y<h;++y){let g=m[y],x=L(()=>e(g,c));if(r==null)p=x[0],c=x[1];else{let k=L(()=>{let b=f[y],v=Dn(b).sub(b),I=x[0].mul(b).add(c[0].mul(v)),T=c.map((R,$)=>x[1][$].mul(b).add(R.mul(v)));return{output:I,newStates:T}});p=k.output,c=k.newStates}o&&u.push(p)}let A;return o&&(A=zn(u,1)),[p,A,c]})}var Ha=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new W("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Qh({cells:e.cell}):t=e.cell,t.stateSize==null)throw new W("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Mt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ka(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){K1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return L(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");K1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Mt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new W(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Mt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new ur("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Ct([n,a])):this.states_=[Ct([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Ct([n,a])):this.states_[0]=Ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new W(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=L4(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Mt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Sa){let o=[e].concat(s),l=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=d,u}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=_e(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new W(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=W4((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],d=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?d:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return L(()=>{let t=Ct(e.shape);return t=Te(t,[1,2]),t=Nd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?O1(t,[1,n]):t):this.cell.stateSize>1?[O1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Ha.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Na(a,n);return new e(Object.assign(t,{cell:r}))}};Ha.className="RNN";ae.registerClass(Ha);var Cd=class extends Ge{},e0=class extends Cd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Gr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Pl([1,jr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,jr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qr({ones:()=>Dn(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qr({ones:()=>Dn(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Ua(B(e,s),this.kernel.read()):r=Ua(e,this.kernel.read()),this.bias!=null&&(r=Ia(r,this.bias.read())),i!=null&&(n=B(n,i));let o=se(r,Ua(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Hr(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};e0.className="SimpleRNNCell";ae.registerClass(e0);var Ey=class extends Ha{constructor(e){e.cell=new e0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Ey.className="SimpleRNN";ae.registerClass(Ey);var t0=class extends Cd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new W("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=Gr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Gr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Pl([1,jr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,jr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qr({ones:()=>Dn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qr({ones:()=>Dn(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let d=Ua(e,this.kernel.read());this.useBias&&(d=Ia(d,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let u=this.recurrentKernel.read(),[p,c]=ln(u,[2*this.units,this.units],u.rank-1),h=Ua(a,p),[m,f,A]=ln(d,3,d.rank-1),[y,g]=ln(h,2,h.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let x=Ua(B(o,a),c);l=this.activation.apply(se(A,x));let k=se(B(i,a),B(se(1,wt(i)),l));return[k,k]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Hr(this.activation),recurrentActivation:Hr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};t0.className="GRUCell";ae.registerClass(t0);var Cy=class extends Ha{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new t0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Cy.className="GRU";ae.registerClass(Cy);var Pd=class extends Cd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Gr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Gr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Pl([1,jr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,jr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends pa{apply(i,o){let l=r.apply([s]),d=new Fh().apply([s]),u=r.apply([s*2]);return Mw(Mw(l,d),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new W(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qr({ones:()=>Dn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qr({ones:()=>Dn(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,d,u;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let p=Ua(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),p=se(p,Ua(a,this.recurrentKernel.read())),this.useBias&&(p=Ia(p,this.bias.read()));let[c,h,m,f]=ln(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),d=se(B(l,r),B(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let A=B(u,this.activation.apply(d));return[A,A,d]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Hr(this.activation),recurrentActivation:Hr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Pd.className="LSTMCell";ae.registerClass(Pd);var Ry=class extends Ha{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Pd(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ry.className="LSTM";ae.registerClass(Ry);var Qh=class extends Cd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return L(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){K1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ri(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Na(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Z1(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Y1(t)}};Qh.className="StackedRNNCells";ae.registerClass(Qh);function qr(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>$w(t(),n),i=()=>Ed(s,t,a);return!r||r<=1?jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>jt(o.clone()))}var Uae=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},B4=class extends Ha{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Mt({ndim:5})]}call(e,t){return L(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new W("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return L(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Ct(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new ur("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(r)):this.states_=[Ct(r)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(r)):this.states_[0]=Ct(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new W(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],d=e[o?4:3],u=Ta(l,a[0],r,s[0],i[0]),p=Ta(d,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};B4.className="ConvRNN2D";var n0=class extends Pd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=jl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ht(o,"kernelSize")),this.strides=jl(a||1,2,"strides"),this.strides.forEach(o=>Ht(o,"strides")),this.padding=r||"valid",Qn(this.padding),this.dataFormat=s||"channelsLast",Et(this.dataFormat),this.dilationRate=jl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ht(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,d=this.filters;o=new(t=class extends pa{apply(u,p){let c=l.apply([d]),h=$n([d]),m=l.apply([d*2]);return _1([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return L(()=>{if(e.length!==3)throw new W(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=qr({ones:()=>Dn(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,re,te)=>!re||!re[te]?Y:B(re[te],Y),d=l(a,o,0),u=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=qr({ones:()=>Dn(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),A=l(r,h,2),y=l(r,h,3),g=3,[x,k,b,v]=ln(this.kernel.read(),i,g),[I,T,R,$]=this.useBias?ln(this.bias.read(),i):[null,null,null,null];d=this.inputConv(d,x,I,this.padding),u=this.inputConv(u,k,T,this.padding),p=this.inputConv(p,b,R,this.padding),c=this.inputConv(c,v,$,this.padding);let[z,_,V,j]=ln(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,z),f=this.recurrentConv(f,_),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(d,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(B(X,s),B(U,this.activation.apply(se(p,A)))),ee=B(this.recurrentActivation.apply(se(c,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Uae(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=ar(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ia(r,n,this.dataFormat):r}recurrentConv(e,t){return ar(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};n0.className="ConvLSTM2DCell";ae.registerClass(n0);var My=class extends B4{constructor(e){let t=new n0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};My.className="ConvLSTM2D";ae.registerClass(My);var a0=class extends Ge{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ed(()=>$w(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};a0.className="Dropout";ae.registerClass(a0);var Fy=class extends a0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Fy.className="SpatialDropout1D";ae.registerClass(Fy);var $y=class extends Ge{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=Gr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=yt(e.kernelRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e),a=vw(this.activation.getClassName()),r;return a!=null?r=Ua(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Ua(n,this.kernel.read()),this.bias!=null&&(r=Ia(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Hr(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};$y.className="Dense";ae.registerClass($y);var Dy=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new W(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Vr(e,1)]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return fte(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Dy.className="Flatten";ae.registerClass(Dy);var Oy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.activation=Gr(e.activation)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.activation.apply(n)})}getConfig(){let e={activation:Hr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Oy.className="Activation";ae.registerClass(Oy);var zy=class extends Ge{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return L(()=>(e=_e(e),cte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};zy.className="RepeatVector";ae.registerClass(zy);var _y=class extends Ge{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new W("Can only specifiy one unknown dimension.");else r*=l}let i=Vr(e);if(s!==null){if(r===0||i%r!=0)throw new W(n);a[s]=i/r}else if(i!==r)throw new W(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};_y.className="Reshape";ae.registerClass(_y);var Py=class extends Ge{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ka(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Mt({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ze(_e(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Permute";ae.registerClass(Py);var Ly=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=_e(e),a=-1;return Wu(Ai(n,this.maskValue),a)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e),a=-1,r=!0,s=Wu(Ai(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};Ly.className="Masking";ae.registerClass(Ly);var Wy=class extends Ge{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=At(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=yt(e.embeddingsRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return L(()=>this.maskZero?(e=_e(e),Ai(e,Ue(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e);return n.dtype!=="int32"&&(n=Sd(n,"int32")),Fw(this.embeddings.read(),n.as1D()).reshape(at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:It(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Embedding";ae.registerClass(Wy);var Oi=class extends Ge{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new W("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[at(e)]),e=e,e.length<2)throw new W(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Br(t),t.length>1)throw new W(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Br(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return L(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=jr(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Nd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let d=o.shape,u=d[0],p=d.slice(1).concat([u]),c=o.reshape([u].concat(Vr(d.slice(1))));c=Ze(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(l>1){let d=ka(1,l).concat([0]);n.push(Ze(o,d)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,d=o[l-1],u=[d].concat(o.slice(0,o.length-1));s=Ze(s.reshape([-1,d]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(ka(0,i-1));s=Ze(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Br(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return L(()=>{if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an Array");if(!Array.isArray(e))throw new W("`inputs` should be an Array");if(t.length!==e.length)throw new W(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:on(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=la(n,t[a]);return n})}},By=class extends Oi{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};By.className="Add";ae.registerClass(By);var Vy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};Vy.className="Multiply";ae.registerClass(Vy);var jy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return B(1/e.length,t)})}};jy.className="Average";ae.registerClass(jy);var Uy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Pa(t,e[n]);return t})}};Uy.className="Maximum";ae.registerClass(Uy);var Hy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=yl(t,e[n]);return t})}};Hy.className="Minimum";ae.registerClass(Hy);var Gy=class extends Oi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new W("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new W("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return L(()=>_1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new W("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new W("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new W(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return L(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Dn(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(on(t[s],-1)):a.push(t[s]);let r=ot(a,this.axis);return Ac(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Gy.className="Concatenate";ae.registerClass(Gy);function Ld(e,t){for(;e<0;)e+=t;return e}function Hae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return L(()=>{let i;if(a>r){i=a-r;let l=[];for(let d=0;d<i;++d)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let d=0;d<i;++d)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,d=s[1]===t.shape.length-1;o=e.matMul(t,l,d)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let d=[];for(let u=l;u<l+i;++u)d.push(u);o=o.squeeze(d)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var qy=class extends Oi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new W(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new W(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Ld(r,e[s].shape.length)):a=[Ld(this.axes,t.shape.length),Ld(this.axes,n.shape.length)],this.normalize&&(t=Uh(t,a[0]),n=Uh(n,a[1])),Hae(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Ld(this.axes,e.length),Ld(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};qy.className="Dot";ae.registerClass(qy);var Xy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e);return Ed(()=>Mh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Xy.className="GaussianNoise";ae.registerClass(Xy);var Ky=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.rate>0&&this.rate<1?Ed(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Mh(n.shape,1,a))},()=>n,t.training||!1):n})}};Ky.className="GaussianDropout";ae.registerClass(Ky);var Zy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||_e(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ed(()=>{let a=_e(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Dr(gl(n),this.rate);o=Sd(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,d=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(d)},()=>_e(e),t.training||!1)}return e})}};Zy.className="AlphaDropout";ae.registerClass(Zy);function Wd(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Ib(e,t,n,a,r,s);else if(e.rank===3)i=Sb(e,t,n,a,r,s);else if(e.rank===4)i=Nb(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Gae(e,t,n,a,r=.001){return L(()=>{let s=Ec(e,a),i=s.mean,o=s.variance;return[Wd(e,i,o,n,t,r),i,o]})}function qae(e,t,n,a,r=.001){return L(()=>{let s=Ec(e,a),i=s.mean,o=s.variance,l=[];for(let h of ka(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let d=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),c=n==null?null:n.reshape(l);return[Wd(e,d,u,c,p,r),i,o]})}function Xae(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),ka(0,e.rank-1))?Gae(e,t,n,a,r):qae(e,t,n,a,r)}var Yy=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.movingMeanInitializer=At(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=At(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new W(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Mt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training,a=_e(e),r=a.shape,s=r.length,i=ka(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ti(1,s);l[o]=r[o];let d=i.slice();d.sort();let u=!w.arraysEqual(d,ka(0,s).slice(0,s-1)),p=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Wd(a,A,y,g,x,this.epsilon)}else return Wd(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=Xae(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{L(()=>{let x=1-g,k=A.read(),b=k.sub(y).mul(x);A.write(k.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),movingMeanInitializer:It(this.movingMeanInitializer),movingVarianceInitializer:It(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="BatchNormalization";ae.registerClass(Yy);var Jy=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Br(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=_e(e),a=n.shape,r=a.length;return L(()=>{let s=!0,{mean:i,variance:o}=Ec(n,this.axis,s),l=Ti(1,r);for(let m of this.axis)l[m]=a[m];let d=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=d(this.gamma.read()),p=d(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),u=u.tile(h),p=p.tile(h),Wd(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="LayerNormalization";ae.registerClass(Jy);function Kae(e,t,n){return L(()=>{if(e.rank!==4)throw new W(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new W("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=va()),n!=="channelsLast"&&n!=="channelsFirst")throw new W(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],rr(e,a)})}var Qy=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?va():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new W(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new W(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new W(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return L(()=>Kae(_e(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="ZeroPadding2D";ae.registerClass(Qy);function r0(e,t,n,a,r,s){return L(()=>{Et(r),Sw(s),Qn(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=va()),s==null&&(s="max"),e=by(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Ku(e,t,n,o):i=ju(e,t,n,o),r==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}function V4(e,t,n,a,r,s){return L(()=>{Et(r),Sw(s),Qn(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=va()),s==null&&(s="max"),e=z4(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=xA(e,t,n,o):i=rA(e,t,n,o),r==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var j4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new W(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new W(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Qn(this.padding),this.inputSpec=[new Mt({ndim:3})]}computeOutputShape(e){e=at(e);let t=Ta(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return L(()=>{this.invokeCallHook(e,t),e=Nd(_e(e),2);let n=this.poolingFunction(_e(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Or(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},e2=class extends j4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),r0(e,t,n,a,r,"max")}};e2.className="MaxPooling1D";ae.registerClass(e2);var t2=class extends j4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),r0(e,t,n,a,r,"avg")}};t2.className="AveragePooling1D";ae.registerClass(t2);var U4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new W(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Qn(this.padding),this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ta(t,this.poolSize[0],this.padding,this.strides[0]),n=Ta(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},n2=class extends U4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),r0(e,t,n,a,r,"max")}};n2.className="MaxPooling2D";ae.registerClass(n2);var a2=class extends U4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),r0(e,t,n,a,r,"avg")}};a2.className="AveragePooling2D";ae.registerClass(a2);var H4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new W(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Qn(this.padding),this.inputSpec=[new Mt({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ta(t,this.poolSize[0],this.padding,this.strides[0]),n=Ta(n,this.poolSize[1],this.padding,this.strides[1]),a=Ta(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},r2=class extends H4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),V4(e,t,n,a,r,"max")}};r2.className="MaxPooling3D";ae.registerClass(r2);var s2=class extends H4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Qn(a),V4(e,t,n,a,r,"avg")}};s2.className="AveragePooling3D";ae.registerClass(s2);var G4=class extends Ge{constructor(e){super(e);this.inputSpec=[new Mt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},i2=class extends G4{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=_e(e);return kt(n,1)})}};i2.className="GlobalAveragePooling1D";ae.registerClass(i2);var o2=class extends G4{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=_e(e);return Xn(n,1)})}};o2.className="GlobalMaxPooling1D";ae.registerClass(o2);var q4=class extends Ge{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},l2=class extends q4{call(e,t){return L(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?kt(n,[1,2]):kt(n,[2,3])})}};l2.className="GlobalAveragePooling2D";ae.registerClass(l2);var u2=class extends q4{call(e,t){return L(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?Xn(n,[1,2]):Xn(n,[2,3])})}};u2.className="GlobalMaxPooling2D";ae.registerClass(u2);var X4=class extends Ge{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Na(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},d2=class extends X4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new W(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return L(()=>(e=_e(e),W4((n,a)=>[_e(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};d2.className="TimeDistributed";ae.registerClass(d2);function Zae(e){Ci(ote,"BidirectionalMergeMode",e)}var Yae="concat",p2=class extends X4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Na(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Na(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Yae:e.mergeMode,Zae(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Nn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=L4(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new W("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let d=n.map(u=>new Mt({shape:u.shape}));this.forwardLayer.stateSpec=d.slice(0,l/2),this.backwardLayer.stateSpec=d.slice(l/2),i.push(...d)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Sa;for(let l of s)if(l instanceof Sa!==o)throw new W("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),d=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=d;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=On(r,1));let i;return this.mergeMode==="concat"?i=_1([a,r]):this.mergeMode==="sum"?i=se(a,r):this.mergeMode==="ave"?i=B(.5,se(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ri(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ri(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Na(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};p2.className="Bidirectional";ae.registerClass(p2);function kte(e){return new Ll(e)}function Ite(e){return new yy(e)}function Ste(e){return new fy(e)}function Nte(e){return new my(e)}function Tte(e){return new Ay(e)}function Ete(e){return new xy(e)}function Cte(e){return new gy(e)}function Rte(e){return new Jh(e)}function Mte(e){return new zd(e)}function Fte(e){return new wy(e)}function $te(e){return new _d(e)}function Dte(e){return new ky(e)}function Ote(e){return new Iy(e)}function zte(e){return new Sy(e)}function _te(e){return new Ny(e)}function Pte(e){return new Ty(e)}function Lte(e){return new Oy(e)}function Wte(e){return new $y(e)}function Bte(e){return new a0(e)}function Vte(e){return new Fy(e)}function jte(e){return new Dy(e)}function Ute(e){return new zy(e)}function Hte(e){return new _y(e)}function Gte(e){return new Py(e)}function qte(e){return new Wy(e)}function Xte(e){return new By(e)}function Kte(e){return new jy(e)}function Zte(e){return new Gy(e)}function Yte(e){return new Uy(e)}function Jte(e){return new Hy(e)}function Qte(e){return new Vy(e)}function ene(e){return new qy(e)}function tne(e){return new Yy(e)}function nne(e){return new Jy(e)}function ane(e){return new Qy(e)}function G1(e){return new t2(e)}function rne(e){return G1(e)}function sne(e){return G1(e)}function q1(e){return new a2(e)}function ine(e){return q1(e)}function one(e){return q1(e)}function X1(e){return new s2(e)}function lne(e){return X1(e)}function une(e){return X1(e)}function dne(e){return new i2(e)}function pne(e){return new l2(e)}function Pw(e){return new o2(e)}function Lw(e){return new u2(e)}function Ww(e){return new e2(e)}function Bw(e){return new n2(e)}function cne(e){return new r2(e)}function hne(e){return new Cy(e)}function fne(e){return new t0(e)}function mne(e){return new Ry(e)}function Ane(e){return new Pd(e)}function yne(e){return new Ey(e)}function gne(e){return new e0(e)}function xne(e){return new My(e)}function bne(e){return new n0(e)}function vne(e){return new Ha(e)}function wne(e){return new Qh(e)}function kne(e){return new p2(e)}function Ine(e){return new d2(e)}var Sne=Pw,Nne=Lw,Tne=Ww,Ene=Bw;function Cne(e){return new Xy(e)}function Rne(e){return new Ky(e)}function Mne(e){return new Zy(e)}function Fne(e){return new Ly(e)}var K4={};Fe(K4,{MAPE:()=>lre,MSE:()=>pre,binaryAccuracy:()=>Jae,binaryCrossentropy:()=>Qae,categoricalAccuracy:()=>tre,categoricalCrossentropy:()=>nre,cosineProximity:()=>sre,mape:()=>ure,meanAbsoluteError:()=>ire,meanAbsolutePercentageError:()=>ore,meanSquaredError:()=>dre,mse:()=>cre,precision:()=>are,recall:()=>rre,sparseCategoricalAccuracy:()=>ere});function Jae(e,t){return ey(e,t)}function Qae(e,t){return n4(e,t)}function ere(e,t){return a4(e,t)}function tre(e,t){return ty(e,t)}function nre(e,t){return ny(e,t)}function are(e,t){return t4(e,t)}function rre(e,t){return Yne(e,t)}function sre(e,t){return J1(e,t)}function ire(e,t){return Hh(e,t)}function ore(e,t){return Bl(e,t)}function lre(e,t){return Bl(e,t)}function ure(e,t){return Bl(e,t)}function dre(e,t){return Fi(e,t)}function pre(e,t){return Fi(e,t)}function cre(e,t){return Fi(e,t)}var Z4={};Fe(Z4,{modelFromJSON:()=>Mae});var Y4={};Fe(Y4,{l1:()=>fre,l1l2:()=>hre,l2:()=>mre});function hre(e){return new Dd(e)}function fre(e){return Lae(e)}function mre(e){return Wae(e)}var J4=class extends Wl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof pr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function s0(e,t){return e<t}function Q4(e,t){return e>t}var e8=class extends J4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=s0:this.mode==="max"?this.monitorFunc=Q4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Q4:this.monitorFunc=s0,this.monitorFunc===s0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===s0?Infinity:-Infinity}async onEpochEnd(e,t){await Ur(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Are(e){return new e8(e)}var yre={earlyStopping:Are},Ea;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ea||(Ea={}));var t8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(t8||(t8={}));var c2={};function gre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};c2[e]=n}function n8(e){return c2[e]}function xre(e){delete c2[e]}function S(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return mn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>mn(p,n,a,r));let d=mn(t.inputNames.slice(o)[0],n,a,r),u=d.dataSync();return s.type==="number"?u[0]:w.toNestedArray(d.shape,u)}let i=t.attrParams[e];return i&&i.value}function mn(e,t,n,a){let[r,s]=Ln(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[i0(r,o)]);return i!==void 0?t[i0(r,i)][s]:void 0}function bre(e,t,n){return t[i0(e,n.currentContextId)]}function cr(e,t){let[n,a]=Ln(e);return[i0(n,t&&t.currentContextId),a]}function i0(e,t){return t?`${e}-${t}`:e}function Ln(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function o0(e,t,n){let a=S("pad",e,t,n);if(a==="explicit"){a=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function hr(e){return e.kept?e:Oa(e)}var a8={};Fe(a8,{json:()=>vre});var vre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],r8={};Fe(r8,{json:()=>wre});var wre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],s8={};Fe(s8,{json:()=>kre});var kre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],i8={};Fe(i8,{json:()=>Ire});var Ire=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],o8={};Fe(o8,{json:()=>Sre});var Sre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],l8={};Fe(l8,{json:()=>Nre});var Nre=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],u8={};Fe(u8,{json:()=>Tre});var Tre=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],d8={};Fe(d8,{json:()=>Ere});var Ere=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],p8={};Fe(p8,{json:()=>Cre});var Cre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],c8={};Fe(c8,{json:()=>Rre});var Rre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],h8={};Fe(h8,{json:()=>Mre});var Mre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],f8={};Fe(f8,{json:()=>Fre});var Fre=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],m8={};Fe(m8,{json:()=>$re});var $re=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],A8={};Fe(A8,{json:()=>Dre});var Dre=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],y8={};Fe(y8,{json:()=>Ore});var Ore=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],g8={};Fe(g8,{json:()=>zre});var zre=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],x8={};Fe(x8,{json:()=>_re});var _re=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],v8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[a8,r8,s8,i8,o8,l8,u8,h8,c8,d8,f8,m8,A8,y8,g8,x8,p8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],d={},u={};t!=null&&(d=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=cr(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=cr(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(d).length>0?Object.keys(d).forEach(m=>{let[f]=cr(m),A=i[f];A&&(A.signatureKey=d[m],o.push(A))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=n8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=h2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=h2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=v2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=v2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=m2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=m2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=b2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=b2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=f2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=f2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=k2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=k2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=x2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=x2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=w2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=w2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=y2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=y2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=g2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=g2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=b8(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=b8(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((d,u)=>(d[u.name]=this.mapNode(u),u.op==="Const"&&a.push(d[u.name]),d),{}));let s=[],i=[];e.signature.inputArg.forEach(d=>{let[u]=cr(d.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:A2(d.type),type:"dtype"}},children:[]};p.signatureKey=d.name,s.push(p),r[u]=p}),Object.keys(r).forEach(d=>{let u=r[d];u.inputNames.forEach(p=>{let[c]=cr(p);u.inputs.push(r[c]),r[c].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(d=>{let[u,p]=cr(o[d.name]),c=r[u];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Pre(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function w8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Pre(e);return t?n:n.toLowerCase()}function h2(e,t,n,a=!1){let r=e[t];return r!=null?w8(r.s,a):n}function f2(e,t,n){let a=e[t];return a?a.b:n}function m2(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function A2(e){switch(typeof e=="string"&&(e=Ea[e]),e){case Ea.DT_FLOAT:return"float32";case Ea.DT_INT32:case Ea.DT_INT64:case Ea.DT_INT8:case Ea.DT_UINT8:return"int32";case Ea.DT_BOOL:return"bool";case Ea.DT_DOUBLE:return"float32";case Ea.DT_STRING:return"string";default:return null}}function b8(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function y2(e,t,n){let a=e[t];return a&&a.type?A2(a.type):n}function g2(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>A2(r)):n}function k8(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function x2(e,t,n){let a=e[t];return a&&a.shape?k8(a.shape):n}function b2(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function v2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>w8(s,a)):n}function w2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>k8(r)):n}function k2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Lre=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return m2(this.node.rawAttrs,e,t);if(n.s!=null)return h2(this.node.rawAttrs,e,t);if(n.b!=null)return f2(this.node.rawAttrs,e,t);if(n.shape!=null)return x2(this.node.rawAttrs,e,t);if(n.type!=null)return y2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return b2(this.node.rawAttrs,e,t);if(n.list.s!=null)return v2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return w2(this.node.rawAttrs,e,t);if(n.list.b!=null)return k2(this.node.rawAttrs,e,t);if(n.list.type!=null)return g2(this.node.rawAttrs,e,t)}return t}},Wre=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[mc(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[vA(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[B(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[ge(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[dA(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[fc(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[ye(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[yl(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[Pa(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[sr(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[Lc(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bre=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ot(S("x",e,t,n))];case"Acos":return[Xm(S("x",e,t,n))];case"Acosh":return[Km(S("x",e,t,n))];case"Asin":return[Ym(S("x",e,t,n))];case"Asinh":return[Jm(S("x",e,t,n))];case"Atan":return[Qm(S("x",e,t,n))];case"Atan2":return[eA(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[tA(S("x",e,t,n))];case"Ceil":return[sA(S("x",e,t,n))];case"Complex":return[Tr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[Hu(S("x",e,t,n))];case"Cosh":return[bc(S("x",e,t,n))];case"Elu":return[fl(S("x",e,t,n))];case"Erf":return[pA(S("x",e,t,n))];case"Exp":return[qn(S("x",e,t,n))];case"Expm1":return[cA(S("x",e,t,n))];case"Floor":return[ml(S("x",e,t,n))];case"Log":return[Fn(S("x",e,t,n))];case"Log1p":return[Ic(S("x",e,t,n))];case"Imag":return[wc(S("x",e,t,n))];case"Neg":return[wt(S("x",e,t,n))];case"Reciprocal":return[IA(S("x",e,t,n))];case"Real":return[Ju(S("x",e,t,n))];case"Relu":return[La(S("x",e,t,n))];case"Round":return[SA(S("x",e,t,n))];case"Selu":return[$c(S("x",e,t,n))];case"Sigmoid":return[wn(S("x",e,t,n))];case"Sin":return[Dc(S("x",e,t,n))];case"Sign":return[TA(S("x",e,t,n))];case"Sinh":return[Oc(S("x",e,t,n))];case"Softplus":return[fi(S("x",e,t,n))];case"Sqrt":return[Jt(S("x",e,t,n))];case"Square":return[st(S("x",e,t,n))];case"Tanh":return[di(S("x",e,t,n))];case"Tan":return[RA(S("x",e,t,n))];case"ClipByValue":return[kn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[Mc(S("x",e,t,n))];case"Rsqrt":return[Fc(mn(e.inputNames[0],t,n))];case"Prod":return[Cc(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[qu(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[Yu(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[fA(mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ha(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function I8(e){return!(typeof e=="number"||e.some(t=>t<0))}function Bd(e,t,n){let a=I2(e,n),r=!I8(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=I2(s.shape,a)}),!I8(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function I2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var Vre=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ha(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return ga([],[0].concat(this.elementShape));let n=this.readMany(e);return ha(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),zn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ga([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ha(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ua(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];L(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],d=[0,l,0],u=[1,e[o],r];s[o]=H(Me(t,d,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Vd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ha(t,r.shape,"TensorList shape mismatch: "),jt(r)}),this.idTensor=Ie(0),this.maxNumElements=a,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Vd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ha(e,this.elementShape,"TensorList shape mismatch: ");let a=Bd(this.elementShape,this.tensors,e);return L(()=>{let r=this.tensors.map(s=>H(s,a));return zn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Bd(this.elementShape,this.tensors,e),a=this.tensors.pop();return ha(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ha(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ha(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Bd(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ha(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ha(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Bd(this.elementShape,this.tensors,n);return e.length===0?ga([],[0].concat(a)):L(()=>{let r=e.map(s=>H(this.tensors[s],a));return zn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ha(this.elementShape,t,"TensorList shape mismatch: ");let n=Bd(this.elementShape,this.tensors,t);return this.size()===0?ga([],[0].concat(n)):L(()=>{let a=this.tensors.map(r=>H(r,n));return ot(a,0)})}};function jre(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ha(r,t,"TensorList shape mismatch: ");let s=ua(e);return new Vd(s,t,a)}function Ure(e,t,n){return new Vd([],e,t,n)}function Hre(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Vd([],n,e.dtype,a),i=ua(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Gre(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=I2(s,n),o=a===0?0:e.size/a,l=L(()=>{let u=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];u[p]=H(Me(e,h,m),i)}return e.dispose(),u}),d=new Vd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)d.setItem(u,l[u]);return d}var qre=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),s=S("cond",e,t,n),i=S("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=S("body",e,t,n),r=S("cond",e,t,n),s=S("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let d=s;for(;l[0];){let u=d;d=await n.functionMap[a].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);let p=d.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return d}case"LoopCond":{let a=S("pred",e,t,n);return[hr(a)]}case"Switch":{let a=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=hr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>mn(r,t,n)!==void 0);if(a){let r=mn(a,t,n);return[hr(r)]}return}case"Enter":{let a=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(a),[hr(r)]}case"Exit":{let a=S("tensor",e,t,n);return n.exitFrame(),[hr(a)]}case"NextIteration":{let a=S("tensor",e,t,n);return n.nextIteration(),[hr(a)]}case"TensorArrayV3":{let a=S("size",e,t,n),r=S("dtype",e,t,n),s=S("elementShape",e,t,n),i=S("dynamicSize",e,t,n),o=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),d=S("name",e,t,n),u=new Vre(d,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let a=S("tensorArrayId",e,t,n),r=S("index",e,t,n),s=S("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),s=S("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),s=S("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=S("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),s=S("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[Ie(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=S("tensorListId",e,t,n),r=S("index",e,t,n),s=S("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=S("tensorListId",e,t,n),r=S("index",e,t,n),s=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=S("indices",e,t,n),r=S("tensor",e,t,n),s=S("elementShape",e,t,n),i=S("numElements",e,t,n),o=Hre(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=S("elementShape",e,t,n),r=S("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=S(s,e,t,n),o=Ure(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=S("tensorListId",e,t,n),r=S("indices",e,t,n),s=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n),i=S("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=S("tensor",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n),i=jre(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=S("tensorListId",e,t,n),r=n.getTensorList(a.id),s=S("dtype",e,t,n),i=S("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=S("tensorListId",e,t,n),r=S("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=S("tensor",e,t,n),r=S("elementShape",e,t,n),s=S("lengths",e,t,n),i=Gre(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function S8(e,t,n){let[a,r]=S("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=S("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=S("strides",e,t,n),u=o0(e,t,n),p=S("dataFormat",e,t,n).toUpperCase(),c=S("dilations",e,t,n),[h,m]=S("args",e,t,n),f=S("leakyreluAlpha",e,t,n);return{stride:d,pad:u,dataFormat:p,dilations:c,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var Xre=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=S("stride",e,t,n),r=S("pad",e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[gc(S("x",e,t,n),S("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=S("strides",e,t,n),r=o0(e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[ar(S("x",e,t,n),S("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:d,leakyreluAlpha:u}=S8(e,t,n);return[zr.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:d,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:d,leakyreluAlpha:u}=S8(e,t,n);return[zr.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:d,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=S("outputShape",e,t,n),r=S("strides",e,t,n),s=o0(e,t,n);return[xc(S("x",e,t,n),S("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=S("strides",e,t,n),r=o0(e,t,n),s=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[hl(S("input",e,t,n),S("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[oA(S("x",e,t,n),S("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[ju(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[Ku(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Hb(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[rA(S("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[xA(S("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("dilations",e,t,n),i=a[1],o=a[2],l=s[1],d=s[2];return[uA(S("x",e,t,n),S("filter",e,t,n),[i,o],r,[l,d],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kre=(e,t,n)=>{switch(e.op){case"Fill":{let a=S("shape",e,t,n),r=S("dtype",e,t,n),s=S("value",e,t,n);return[Gu(a,s,r)]}case"LinSpace":{let a=S("start",e,t,n),r=S("stop",e,t,n),s=S("num",e,t,n);return[Pb(a,r,s)]}case"Multinomial":{let a=S("logits",e,t,n),r=S("numSamples",e,t,n),s=S("seed",e,t,n);return[Gb(a,r,s)]}case"OneHot":{let a=S("indices",e,t,n),r=S("depth",e,t,n),s=S("onValue",e,t,n),i=S("offValue",e,t,n);return[ol(a,r,s,i)]}case"Ones":return[$n(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[Dn(S("x",e,t,n))];case"RandomUniform":return[gl(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let a=S("start",e,t,n),r=S("stop",e,t,n),s=S("step",e,t,n);return[Rc(a,r,s,S("dtype",e,t,n))]}case"TruncatedNormal":{let a=S("shape",e,t,n),r=S("mean",e,t,n),s=S("stdDev",e,t,n),i=S("seed",e,t,n);return[Wc(a,r,s,S("dtype",e,t,n),i)]}case"Zeros":return[Ct(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[Ue(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function S2(e,t,n){let a=S("boxes",e,t,n),r=S("scores",e,t,n),s=S("maxOutputSize",e,t,n),i=S("iouThreshold",e,t,n),o=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Zre=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=S2(e,t,n),d=await Ye.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=S2(e,t,n),l=S("padToMaxOutputSize",e,t,n),d=await Ye.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=S2(e,t,n);return[await Ye.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=Ae(S("condition",e,t,n),"bool"),r=[await $A(a)];return a.dispose(),r}case"ListDiff":return Kb(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yre=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=S("x",e,t,n),r=S("k",e,t,n),s=S("sorted",e,t,n),i=MA(a,r,s);return[i.values,i.indices]}case"Unique":{let a=S("x",e,t,n),r=Bc(a);return[r.values,r.indices]}case"UniqueV2":{let a=S("x",e,t,n),r=S("axis",e,t,n),s=Bc(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jre=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=S("default",e,t,n);return[mn(e.name,t,n)||a];case"Placeholder":return[mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let d=S("x",e,t,n);return[hr(d)]}case"IdentityN":return S("x",e,t,n).map(d=>hr(d));case"Snapshot":let r=S("x",e,t,n);return[hr(r)];case"Shape":return[nn(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(d=>nn(d.shape));case"Size":return[Ie(S("x",e,t,n).size,"int32")];case"Rank":return[Ie(S("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let s=S("x",e,t,n),i=S("data",e,t,n),o=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let d=0;d<i.length;d++)console.log(Array.prototype.slice.call(i[d].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qre=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),L(()=>{let a=ua(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return L(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return zn(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},ese=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),s=S("valueDType",e,t,n),i=new Qre(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,a),s=S("keys",e,t,n),i=S("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,a),s=S("keys",e,t,n),i=S("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},tse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=S("images",e,t,n),r=S("size",e,t,n),s=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[Ye.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=S("images",e,t,n),r=S("size",e,t,n),s=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[Ye.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=S("image",e,t,n),r=S("boxes",e,t,n),s=S("boxInd",e,t,n),i=S("cropSize",e,t,n),o=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[Ye.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nse=(e,t,n)=>{switch(e.op){case"Equal":return[Fr(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Ai(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[oa(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Dr(S("a",e,t,n),S("b",e,t,n))];case"Less":return[kc(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[hi(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[la(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[Xu(S("a",e,t,n))];case"LogicalOr":return[Tc(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[In(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ase=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[Ob(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Ze(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[a,r]=S("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[d,u]=S("args",e,t,n);return[zr.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:d,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},rse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[pi(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[pi(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[mA(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[ed(S("x",e,t,n))];case"LogSoftmax":return[Nc(S("x",e,t,n))];case"SparseToDense":return[DA(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},sse=(e,t,n)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Xn(S("x",e,t,n),i,o)]}case"Mean":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[kt(S("x",e,t,n),i,o)]}case"Min":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Al(S("x",e,t,n),i,o)]}case"Sum":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Te(S("x",e,t,n),i,o)]}case"All":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Ac(S("x",e,t,n),i,o)]}case"Any":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Wu(S("x",e,t,n),i,o)]}case"ArgMax":{let i=S("axis",e,t,n);return[Bu(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[Zm(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Cc(S("x",e,t,n),i,o)]}case"Cumsum":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[vc(S("x",e,t,n),i,o,l)]}case"Bincount":let a=S("x",e,t,n),r=S("weights",e,t,n),s=S("size",e,t,n);return[Tb(a,r,s)];case"DenseBincount":{let i=S("x",e,t,n),o=S("weights",e,t,n),l=S("size",e,t,n),d=S("binaryOutput",e,t,n);return[$b(i,o,l,d)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ise=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=S("n",e,t,n),r=S("axis",e,t,n),s=S("tensors",e,t,n);return s=s.slice(0,a),[ot(s,r)]}case"Gather":{let a=S("x",e,t,n),r=S("indices",e,t,n);return[ci(a,Ae(r,"int32"),0)]}case"GatherV2":{let a=S("axis",e,t,n),r=S("batchDims",e,t,n),s=S("x",e,t,n),i=S("indices",e,t,n);return[ci(s,Ae(i,"int32"),a,r)]}case"Reverse":{let a=S("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=S("x",e,t,n);return[On(s,r)]}case"ReverseV2":{let a=S("axis",e,t,n),r=S("x",e,t,n);return[On(r,a)]}case"Slice":{let a=S("begin",e,t,n),r=S("size",e,t,n);return[Me(S("x",e,t,n),a,r)]}case"StridedSlice":{let a=S("begin",e,t,n),r=S("end",e,t,n),s=S("strides",e,t,n),i=S("beginMask",e,t,n),o=S("endMask",e,t,n),l=S("ellipsisMask",e,t,n),d=S("newAxisMask",e,t,n),u=S("shrinkAxisMask",e,t,n),p=S("x",e,t,n);return[CA(p,a,r,s,i,o,l,d,u)]}case"Pack":return L(()=>{let a=S("axis",e,t,n),r=S("tensors",e,t,n),s=r[0].shape,i=Or(r[0]).shape,o=r.map(l=>{let d=w.arraysEqual(l.shape,s);if(!d&&!w.arraysEqual(Or(l).shape,i))throw new Error("the input tensors shape does not match");return d?l:H(l,s)});return[zn(o,a)]});case"Unpack":{let a=S("axis",e,t,n),r=S("tensor",e,t,n);return ua(r,a)}case"Tile":{let a=S("reps",e,t,n);return[$r(S("x",e,t,n),a)]}case"Split":case"SplitV":{let a=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),s=S("x",e,t,n);return ln(s,r,a)}case"ScatterNd":{let a=S("indices",e,t,n),r=S("values",e,t,n),s=S("shape",e,t,n);return[Qb(a,r,s)]}case"GatherNd":{let a=S("x",e,t,n),r=S("indices",e,t,n);return[e3(a,r)]}case"SparseToDense":{let a=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),s=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[DA(a,s,r,s.dtype===i.dtype?i:Ae(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ose=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:a,outputShape:r}=m3.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[a,r]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},lse=(e,t,n)=>{switch(e.op){case"FFT":return[td(S("x",e,t,n))];case"IFFT":return[xl(S("x",e,t,n))];case"RFFT":return[nd(S("x",e,t,n))];case"IRFFT":return[Pc(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},use=(e,t,n)=>{switch(e.op){case"Cast":return[Ae(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let a=S("axis",e,t,n);return[on(S("x",e,t,n),a)]}case"Squeeze":{let a=S("axis",e,t,n);return[Or(S("x",e,t,n),a)]}case"Reshape":return[H(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[bA(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[rr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let a=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[Zu(S("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=S("blockShape",e,t,n),r=S("crops",e,t,n);return[Uu(S("x",e,t,n),a,r)]}case"DepthToSpace":{let a=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[lA(S("x",e,t,n),a,r)]}case"BroadcastTo":return[pl(S("x",e,t,n),S("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function N8(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return L(()=>Wre(s,i,o));case"basic_math":return L(()=>Bre(s,i,o));case"control":return qre(s,i,o);case"convolution":return L(()=>Xre(s,i,o));case"creation":return L(()=>Kre(s,i,o));case"dynamic":return Zre(s,i,o);case"evaluation":return L(()=>Yre(s,i,o));case"image":return L(()=>tse(s,i,o));case"graph":return L(()=>Jre(s,i,o));case"logical":return L(()=>nse(s,i,o));case"matrices":return L(()=>ase(s,i,o));case"normalization":return L(()=>rse(s,i,o));case"reduction":return L(()=>sse(s,i,o));case"slice_join":return L(()=>ise(s,i,o));case"sparse":return L(()=>ose(s,i,o));case"spectral":return L(()=>lse(s,i,o));case"transformation":return L(()=>use(s,i,o));case"hash_table":return ese(s,i,o,a);case"custom":let l=n8(s.op);if(l&&l.customExecutor)return l.customExecutor(new Lre(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var T8=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function C8(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,d=Object.keys(e).map(c=>Ln(c)[0]),u=[];a!=null&&(u=a.map(c=>Ln(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((E8(c)||dse(c)||pse(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&d.indexOf(c.name)===-1&&u.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function cse(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Ln(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,d=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||d.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return d}var hse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],fse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],mse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function E8(e){return hse.indexOf(e.op)>=0}function dse(e){return fse.indexOf(e.op)>=0}function pse(e){return mse.indexOf(e.op)>=0}var N2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new N2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=C8(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return cse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Ln(u)[0]]),r=t.map(u=>Ln(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},d={};return L(()=>{let u=new T8(this.weightMap,l,d,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Ln(m),y=[];y[A]=e[m],p[f]=y});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let A=N8(f,p,u,this._resourceManager);if(w.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=A,this.checkTensorForDisposal(f.name,f,p,u,c,r,h)}}return this.parent==null&&u.dispose(c),t.map(m=>mn(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=bre(o.name,n,a);l!=null&&l.forEach(d=>{if(d&&!d.kept&&!r.has(d.id)){let u=i[d.id];u===1?(d.dispose(),delete i[d.id]):u!=null&&i[d.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new T8(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>mn(p,i,s)),l=o.map(p=>p.id),d=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...d,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!u.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(g=>this.graph.nodes[Ln(g)[0]]),i=n.map(g=>Ln(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:d,dynamicNode:u,syncInputs:p}=C8(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,k]=Ln(g),b=[];b[k]=e[g],h[x]=b});let m={},f=this.getFrozenTensorIds(h),A={};for(;c.length>0;){let g=this.processStack(s,c,t,h,A,f,i,m,l);await Promise.all(g)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!E8(g)&&!mn(g.name,h,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${d}]. ${g}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let d=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&S("isConstant",u.node,a,n)&&([p]=cr(u.node.name,n)),a[u.node.name]==null){let c=N8(u.node,a,n,this._resourceManager);p||([p]=cr(u.node.name,n));let h=n.currentContext;w.isPromise(c)?d.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return d}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=cr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!mn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!mn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Ln(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Ln(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Ase=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},yse="?tfjs-format=file",gse="model.json",R8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Ase}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=vn.browserHTTPRequest(e,this.loadOptions);else{let t=vn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(vn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=vn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new N2(v8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=v8.Instance.transformGraph(e.modelInitializer);this.initializer=new N2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=vn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Gt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${gse}${yse}`);let n=new R8(e,t);return await n.load(),n}var xse="3.5.0",M8={};Fe(M8,{CSVDataset:()=>$8,Dataset:()=>Ul,FileDataSource:()=>D8,TextLineDataset:()=>F8,URLDataSource:()=>O8,array:()=>bse,csv:()=>wse,func:()=>kse,generator:()=>Ise,microphone:()=>Nse,version_data:()=>Tse,webcam:()=>Sse,zip:()=>vse});var Ese=Yi(Pg()),Cse=Yi(Pg());function Rse(e,t){return l0(e,t)}function l0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Hl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=l0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Mse(e,t=_8){return z8(e,t)}function z8(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Hl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(d=>d[i]),l=z8(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function _8(e){return e===null?null:Hl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function P8(e,t){let n=new Map;l0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return l0(e,t,n)}function Hl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function $se(e){return e==null||Fse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||w.isTypedArray(e)}function Fse(e){return e===null||typeof e!="object"&&typeof e!="function"}function Ose(e){return Rse(e,Dse)}function Dse(e){return e instanceof Le?{value:e.clone(),recurse:!1}:Hl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var L8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},T2=class extends L8{constructor(){super(T2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};T2.INITIAL_CAPACITY=32;function W8(e){return new zse(e)}function E2(e){return new _se(e)}function Pse(e,t){return new B8(e,t)}function Wse(e,t=Xr.FAIL){return new Lse(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new qse(this,e)}filter(e){return new Hse(this,e)}map(e){return new Gse(this,e)}mapAsync(e){return new V8(this,e)}serialMapAsync(e){return new V8(this,e).serial()}flatmap(e){return new Xse(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Use(this,e,t)}columnMajorBatch(e,t=!0,n=_8){return this.rowMajorBatch(e,t).map(a=>Mse(a,n))}concatenate(e,t){return new B8(W8([this,e]),t)}take(e){return e<0||e==null?this:new jse(this,e)}skip(e){return e<0||e==null?this:new Vse(this,e)}prefetch(e){return new j8(this,e)}shuffle(e,t){return new Kse(this,e,t)}serial(){return new Bse(this)}},zse=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Ose(e),done:!1}}},_se=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Bse=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Vse=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},jse=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Use=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Hse=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},Gse=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Aa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Aa.getTensorsInContainer(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},qse=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},V8=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Aa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Aa.getTensorsInContainer(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},C2=class extends qt{constructor(){super();this.outputQueue=new T2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Xse=class extends C2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Aa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Aa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return!0}},B8=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Xr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Xr||(Xr={}));var Lse=class extends qt{constructor(e,t=Xr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await P8(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Xr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Xr.SHORTEST:return{value:null,done:!0};case Xr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},j8=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new L8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Kse=class extends j8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Cse.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Ul=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Wn(async()=>(await n.iterator()).columnMajorBatch(e,t,Zse),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Wn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Wn(async()=>(await t.iterator()).filter(a=>L(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Wn(async()=>(await t.iterator()).map(n=>L(()=>e(n))),this.size)}mapAsync(e){let t=this;return Wn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Wn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Wn(async()=>{let a=E2(async()=>({value:await t.iterator(),done:!1}));return Pse(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Wn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Ese.alea(t||w.now().toString());return Wn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Wn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ul.MAX_BUFFER_SIZE=1e4;function Wn(e,t=null){return new class extends Ul{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function bse(e){return Wn(async()=>W8(e),e.length)}function vse(e){if(!Hl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Wn(async()=>{let n=await P8(e,a=>{if(a instanceof Ul)return{value:a.iterator(),recurse:!1};if(Hl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Wse(n,Xr.SHORTEST)},t)}function Zse(e){if(e===null)return null;let t=e[0];return $se(t)?{value:Yse(e),recurse:!1}:{value:null,recurse:!0}}function Yse(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?zn(e):ga(e)}var F8=class extends Ul{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},u0='"',jd=Symbol("out"),U8=Symbol("field"),d0=Symbol("quote"),R2=Symbol("quoteafterquote"),H8=Symbol("quoteinquote"),$8=class extends Ul{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new F8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let d=Number(o);if(isNaN(d))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=d;else switch(i.dtype){case"float32":l=d;break;case"int32":l=Math.floor(d);break;case"bool":l=this.getBoolean(o);break;default:l=d}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=jd;for(let i=0;i<r;i++)switch(s){case jd:switch(e.charAt(i)){case u0:a=i+1,s=d0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=jd;break;default:s=U8,a=i;break}break;case U8:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=jd,a=i+1;break;default:}break;case d0:switch(e.charAt(i)){case u0:s=R2;break;default:}break;case R2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=jd,a=i+1;break;case u0:s=d0;break;default:s=H8;break}break;case H8:switch(e.charAt(i)){case u0:s=d0;break;default:}break;default:}if(s===R2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},G8=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new G8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),ga(n,t)}},q8=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=nn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Kn([s,r,o,i],[1,4])}else this.cropBox=Kn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new q8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=oi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return L(()=>{let t=on(Ae(e,"float32"),0),n;n=Ye.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},X8=class{},K8=class extends qt{split(e){return new Jse(this,e)}},Jse=class extends K8{constructor(e,t){super();this.upstream=e,this.impl=new Qse(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Qse=class extends C2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},tie=class extends qt{decodeUTF8(){return new eie(this)}},eie=class extends K8{constructor(e){super();this.upstream=e,this.impl=new nie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},nie=class extends C2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=oI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Z8=class extends tie{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function rie(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=aie(e));let r=await w.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new Z8(s,t)}else throw new Error(r.statusText)}var aie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Y8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var D8=class extends X8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Y8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Z8(this.input,this.options)}},O8=class extends X8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Y8(this.url)?new D8(this.url,this.fileOptions).iterator():rie(this.url,this.fileOptions)}};function wse(e,t={}){return new $8(new O8(e),t)}function kse(e){let t=E2(e);return Wn(async()=>t)}function Ise(e){return Wn(async()=>{let t=await e();return E2(()=>t.next())})}async function Sse(e,t){return q8.create(e,t)}async function Nse(e){return G8.create(e)}var Tse="3.5.0",sie={tfjs:(om==null?void 0:om.version)||void 0,"tfjs-core":(lm==null?void 0:lm.version)||void 0,"tfjs-data":(um==null?void 0:um.version)||void 0,"tfjs-layers":(dm==null?void 0:dm.version)||void 0,"tfjs-converter":(pm==null?void 0:pm.version)||void 0,"tfjs-backend-cpu":X3||void 0,"tfjs-backend-webgl":yv||void 0,"tfjs-backend-wasm":lw||void 0};var Bn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function J8(){if(!qm(Bn.name)){he("backend registration:",Bn.name);try{Bn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Bn.width,Bn.height):document.createElement("canvas")}catch(e){he("error: cannot create canvas:",e);return}try{Bn.gl=Bn.canvas.getContext("webgl2",Bn.webGLattr)}catch(e){he("error: cannot get WebGL2 context:",e);return}try{uh(2,Bn.gl)}catch(e){he("error: cannot set WebGL2 context:",e);return}try{let e=new hh(Bn.gl);ul(Bn.name,()=>new $l(e),Bn.priority)}catch(e){he("error: cannot register WebGL backend:",e);return}try{nl("webgl").forEach(t=>{let n={...t,backendName:Bn.name};ai(n)})}catch(e){he("error: cannot update WebGL backend registration:",e);return}try{ma.set("WEBGL_VERSION",2)}catch(e){he("error: cannot set WebGL backend flags:",e);return}he("backend registered:",Bn.name)}}var _2={};Fa(_2,{load:()=>W2,predict:()=>L2,triangulation:()=>dk,uvmap:()=>pk});function Q8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function Ud(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Gl(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function ql(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function p0(e,t=1.5){let n=Gl(e),a=Ud(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function c0(e){let t=Gl(e),n=Ud(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function M2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var ek=e=>({startEndTensor:e,startPoint:Me(e,[0,0],[-1,2]),endPoint:Me(e,[0,2],[-1,2])});var h0=[[1,0,0],[0,1,0],[0,0,1]];function iie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function F2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return iie(n)}function tk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Kr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function oie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function nk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Kr(e[r],oie(t,s)))}return n}function f0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=tk(t[0],t[1]),i=nk(s,r),o=tk(-t[0],-t[1]);return nk(i,o)}function ak(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Kr(t[0],n),-Kr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function rk(e,t){return[Kr(e,t[0]),Kr(e,t[1])]}function sk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let d=r*(l+.5);for(let u=0;u<i;u++){let p=r*(u+.5);for(let c=0;c<o;c++)n.push([p,d])}}}return n}var ik=6;function lie(e,t,n){let a=Me(e,[0,1],[-1,2]),r=se(a,t),s=Me(e,[0,3],[-1,2]),i=ge(s,n),o=ge(r,n),l=ge(i,2),d=ye(o,l),u=se(o,l),p=B(d,n),c=B(u,n);return cl([p,c],1)}var ok=class{constructor(t,n){this.model=t,this.anchorsData=sk(t.inputs[0].shape[1]),this.anchors=Kn(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=L(()=>{let c=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),h=this.model.predict(c),m;if(Array.isArray(h)){let g=h.sort((v,I)=>v.size-I.size),x=ot([g[0],g[2]],2),k=ot([g[1],g[3]],2);m=ot([k,x],1).squeeze(0)}else m=h.squeeze();let f=lie(m,this.anchors,[this.inputSize,this.inputSize]),A=Me(m,[0,0],[-1,1]),y=wn(A).squeeze();return[m,f,y]}),s=await Ye.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let l=i.map(p=>Me(a,[p,0],[1,-1])).map(p=>{let c=p.arraySync();return p.dispose(),c}),d=r.dataSync(),u=[];for(let p=0;p<l.length;p++){let c=i[p],h=d[c];if(h>this.config.face.detector.minConfidence){let m=ek(l[p]),f=this.anchorsData[c],A=L(()=>Me(n,[c,ik-1],[1,-1]).squeeze().reshape([ik,-1]));u.push({box:m,landmarks:A,anchor:f,confidence:h})}}return n.dispose(),a.dispose(),r.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function lk(e){let t=await Gt(Yt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new ok(t,e);return!t||!t.modelUrl?he("load model failed:",e.face.detector.modelPath):e.debug&&he("load model:",t.modelUrl),n}var Xa={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},$2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Hd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],zi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var uie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],die=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],pie=[33,133,362,263,1,78,308],Xie=uie.map(e=>Hd[e]),Kie=die.map(e=>Hd[e]),Zie=pie.map(e=>Hd[e]);var D2=Xa.leftEyeLower0,O2=Xa.rightEyeLower0,Xl={leftBounds:[D2[0],D2[D2.length-1]],rightBounds:[O2[0],O2[O2.length-1]]},m0={count:468,mouth:13,symmetryLine:[13,Xa.midwayBetweenEyes[0]]},uk={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Kl={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function A0(e,t,n,a){for(let r=0;r<$2.length;r++){let{key:s,indices:i}=$2[r],o=Xa[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let d=i[l];e[o[l]]=[t[d][0],t[d][1],(t[d][2]+e[o[l]][2])/2]}}}var z2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=Ud({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?f0(a,[0,0]):h0,l=a!==0?i.map(p=>[...rk(p,o),p[2]]):i,d=a!==0?ak(r):h0,u=[...Gl({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[p[0]+Kr(u,d[0]),p[1]+Kr(u,d[1]),p[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Xl.leftBounds[0]][2],a=t[Xl.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=c0(p0(M2([t[a],t[r]]),this.irisEnlarge)),o=Ud(i),l=Ye.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&ma.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<Kl.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],d=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],d])}return{rawCoords:s,iris:s.slice(Kl.index)}}getAdjustedIrisCoords(t,n,a){let r=t[Xa[`${a}EyeUpper0`][Kl.upperCenter]][2],s=t[Xa[`${a}EyeLower0`][Kl.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let d=i;return l===2?d=r:l===4&&(d=s),[o[0],o[1],d]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Q8({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=p0(o),d=c0(l),u=this.storedBoxes[i].landmarks.arraySync(),p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...d,confidence:p,landmarks:u}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=L(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,d,u=0,p;if(n.face.detector.rotation&&n.face.mesh.enabled&&ma.flags.IS_BROWSER){let[b,v]=i.landmarks.length>=m0.count?m0.symmetryLine:uk.symmetryLine;u=F2(i.landmarks[b],i.landmarks[v]);let I=Gl({startPoint:i.startPoint,endPoint:i.endPoint}),T=[I[0]/t.shape[2],I[1]/t.shape[1]],R=Ye.rotateWithOffset(t,u,0,T);p=f0(-u,I),n.face.mesh.enabled?d=ql({startPoint:i.startPoint,endPoint:i.endPoint},R,[this.meshSize,this.meshSize]).div(255):d=ql({startPoint:i.startPoint,endPoint:i.endPoint},R,[this.boxSize,this.boxSize]).div(255)}else{p=h0;let b=t.clone();n.face.mesh.enabled?d=ql({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.meshSize,this.meshSize]).div(255):d=ql({startPoint:i.startPoint,endPoint:i.endPoint},b,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:d};let[,c,h]=this.meshDetector.predict(d),m=c.dataSync()[0];if(m<n.face.detector.minConfidence)return null;let A=H(h,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:b,boxSize:v,crop:I}=this.getEyeBox(A,d,Xl.leftBounds[0],Xl.leftBounds[1],!0),{box:T,boxSize:R,crop:$}=this.getEyeBox(A,d,Xl.rightBounds[0],Xl.rightBounds[1]),_=this.irisModel.predict(ot([I,$])).dataSync(),V=_.slice(0,Kl.numCoordinates*3),{rawCoords:j,iris:U}=this.getEyeCoords(V,b,v,!0),X=_.slice(Kl.numCoordinates*3),{rawCoords:G,iris:ee}=this.getEyeCoords(X,T,R),Y=this.getLeftToRightEyeDepthDifference(A);Math.abs(Y)<30?(A0(A,j,"left",null),A0(A,G,"right",null)):Y<1?A0(A,j,"left",["EyeUpper0","EyeLower0"]):A0(A,G,"right",["EyeUpper0","EyeLower0"]);let re=this.getAdjustedIrisCoords(A,U,"left"),te=this.getAdjustedIrisCoords(A,ee,"right");A=A.concat(re).concat(te)}let y=this.transformRawCoords(A,i,u,p);i=p0(M2(y),1.5);let g=Kn(y);if(n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ma.flags.IS_BROWSER){let[b,v]=i.landmarks.length>=m0.count?m0.symmetryLine:uk.symmetryLine;u=F2(i.landmarks[b],i.landmarks[v]);let I=Gl({startPoint:i.startPoint,endPoint:i.endPoint}),T=[I[0]/t.shape[2],I[1]/t.shape[1]],R=Ye.rotateWithOffset(t.toFloat(),u,0,T);p=f0(-u,I),d=ql({startPoint:i.startPoint,endPoint:i.endPoint},R,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:m,boxConfidence:l,image:d,rawCoords:A},k=c0(i);return this.storedBoxes[o]={...k,landmarks:y,confidence:i.confidence,faceConfidence:m},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Wt=[null,null,null],P2;async function L2(e,t){let n=await P2.predict(e,t),a=[];for(let r of n||[]){if(r.isDisposedInternal)continue;let s=r.coords?r.coords.arraySync():[],i=s.map(u=>[u[0]/e.shape[2],u[1]/e.shape[1],u[2]/P2.meshSize]),o={};if(s&&s.length>0)for(let u of Object.keys(Xa))o[u]=Xa[u].map(p=>s[p]);let l=r.box?[Math.max(0,r.box.startPoint[0]),Math.max(0,r.box.startPoint[1]),Math.min(e.shape[2],r.box.endPoint[0])-Math.max(0,r.box.startPoint[0]),Math.min(e.shape[1],r.box.endPoint[1])-Math.max(0,r.box.startPoint[1])]:0,d=r.box?[r.box.startPoint[0]/e.shape[2],r.box.startPoint[1]/e.shape[1],(r.box.endPoint[0]-r.box.startPoint[0])/e.shape[2],(r.box.endPoint[1]-r.box.startPoint[1])/e.shape[1]]:[];a.push({confidence:Math.round(100*r.faceConfidence||100*r.boxConfidence||0)/100,boxConfidence:Math.round(100*r.boxConfidence)/100,faceConfidence:Math.round(100*r.faceConfidence)/100,box:l,boxRaw:d,mesh:s,meshRaw:i,annotations:o,image:r.image?r.image.clone():null}),r.coords&&r.coords.dispose(),r.image&&r.image.dispose()}return a}async function W2(e){return!Wt[0]&&e.face.enabled||!Wt[1]&&e.face.mesh.enabled||!Wt[2]&&e.face.iris.enabled?(Wt=await Promise.all([!Wt[0]&&e.face.enabled?lk(e):null,!Wt[1]&&e.face.mesh.enabled?Gt(Yt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Wt[2]&&e.face.iris.enabled?Gt(Yt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Wt[1]||!Wt[1].modelUrl?he("load model failed:",e.face.mesh.modelPath):e.debug&&he("load model:",Wt[1].modelUrl)),e.face.iris.enabled&&(!Wt[2]||!Wt[1].modelUrl?he("load model failed:",e.face.iris.modelPath):e.debug&&he("load model:",Wt[2].modelUrl))):e.debug&&(he("cached model:",Wt[0].model.modelUrl),he("cached model:",Wt[1].modelUrl),he("cached model:",Wt[2].modelUrl)),P2=new z2(Wt[0],Wt[1],Wt[2]),Wt}var dk=zi,pk=Hd;var B2={};Fa(B2,{load:()=>U2,predict:()=>g0});var cie=["angry","disgust","fear","happy","sad","surprise","neutral"],Ca,V2=[],y0=Number.MAX_SAFE_INTEGER,j2=[.2989,.587,.114];async function U2(e){return Ca?e.debug&&he("cached model:",Ca.modelUrl):(Ca=await Gt(Yt(e.modelBasePath,e.face.emotion.modelPath)),!Ca||!Ca.modelUrl?he("load model failed:",e.face.emotion.modelPath):e.debug&&he("load model:",Ca.modelUrl)),Ca}async function g0(e,t){return Ca?y0<t.face.emotion.skipFrames&&t.videoOptimized&&V2.length>0?(y0++,V2):(t.videoOptimized?y0=0:y0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let a=Ye.resizeBilinear(e,[Ca.inputs[0].shape[2],Ca.inputs[0].shape[1]],!1),[r,s,i]=ln(a,3,3);a.dispose();let o=B(r,j2[0]),l=B(s,j2[1]),d=B(i,j2[2]);r.dispose(),s.dispose(),i.dispose();let u=mc([o,l,d]);o.dispose(),l.dispose(),d.dispose();let p=L(()=>u.sub(.5).mul(2));u.dispose();let c=[];if(t.face.emotion.enabled){let h=await Ca.predict(p),m=h.dataSync();Ee(h);for(let f=0;f<m.length;f++)m[f]>t.face.emotion.minConfidence&&c.push({score:Math.min(.99,Math.trunc(100*m[f])/100),emotion:cie[f]});c.sort((f,A)=>A.score-f.score)}p.dispose(),V2=c,n(c)})):null}var H2={};Fa(H2,{enhance:()=>X2,load:()=>G2,match:()=>ck,predict:()=>v0,similarity:()=>q2});var ea,x0={age:0},b0=Number.MAX_SAFE_INTEGER;async function G2(e){return ea?e.debug&&he("cached model:",ea.modelUrl):(ea=await Gt(Yt(e.modelBasePath,e.face.description.modelPath)),!ea||!ea.modelUrl?he("load model failed:",e.face.description.modelPath):e.debug&&he("load model:",ea.modelUrl)),ea}function q2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function ck(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=q2(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function X2(e){return L(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let a=[[.05,.15,.85,.85]];return(n.shape.length===3?Ye.cropAndResize(on(n,0),a,[0],[ea.inputs[0].shape[2],ea.inputs[0].shape[1]]):Ye.cropAndResize(n,a,[0],[ea.inputs[0].shape[2],ea.inputs[0].shape[1]])).mul(255)})}async function v0(e,t){return ea?b0<t.face.description.skipFrames&&t.videoOptimized&&x0.age&&x0.age>0?(b0++,x0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let a=X2(e),r,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};t.face.description.enabled&&(r=await ea.predict(a)),Ee(a),r&&(L(()=>{let i=r.find(p=>p.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.description.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=r.find(p=>p.shape[1]===100).argMax(1).dataSync()[0],d=r.find(p=>p.shape[1]===100).dataSync();s.age=Math.round(d[l-1]>d[l+1]?10*l-100*d[l-1]:10*l+100*d[l+1])/10;let u=r.find(p=>p.shape[1]===1024);s.descriptor=[...u.dataSync()]}),r.forEach(i=>Ee(i))),x0=s,n(s)})):null}var hie=(e,t)=>{let n=A=>A*180/Math.PI,a=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},r=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],k=A[2]-y[2];return[g,x,k]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],k=A[0]*y[1]-A[1]*y[0];return[g,x,k]},i=A=>{let[y,g,x,k,b,v,I,T,R]=A,$,z,_;return k<1?k>-1?(_=Math.asin(k),z=Math.atan2(-I,y),$=Math.atan2(-v,b)):(_=-Math.PI/2,z=-Math.atan2(T,R),$=0):(_=Math.PI/2,z=Math.atan2(T,R),$=0),{pitch:2*-$,yaw:2*-z,roll:2*-_}},o=A=>{let y=(x,k,b,v)=>Math.atan2(v-k,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let d=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/d,A[1]*t[1]/d,A[2]]),p=a(r(u[1],u[0])),c=a(r(u[3],u[2])),h=a(s(c,p));c=s(p,h);let m=[c[0],c[1],c[2],p[0],p[1],p[2],h[0],h[1],h[2]];return{angle:i(m),matrix:m}},K2=async(e,t)=>{var u,p,c,h,m,f;let n,a,r,s,i,o,l=[];e.state="run:face",n=it();let d=await L2(t,e.config);if(e.perf.face=Math.trunc(it()-n),!d)return[];for(let A of d){if(e.analyze("Get Face"),!A.image||A.image.isDisposedInternal){he("Face object is disposed:",A.image);continue}let y=hie(A,[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?g0(A.image,e.config):{}:(e.state="run:emotion",n=it(),s=e.config.face.emotion.enabled?await g0(A.image,e.config):{},e.perf.emotion=Math.trunc(it()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?v0(A,e.config):[]:(e.state="run:description",n=it(),o=e.config.face.description.enabled?await v0(A.image,e.config):[],e.perf.embedding=Math.trunc(it()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((u=A==null?void 0:A.annotations)==null?void 0:u.leftEyeIris)&&((p=A==null?void 0:A.annotations)==null?void 0:p.rightEyeIris)&&(delete A.annotations.leftEyeIris,delete A.annotations.rightEyeIris);let g=((c=A.annotations)==null?void 0:c.leftEyeIris)&&((h=A.annotations)==null?void 0:h.rightEyeIris)?11.7*Math.max(Math.abs(A.annotations.leftEyeIris[3][0]-A.annotations.leftEyeIris[1][0]),Math.abs(A.annotations.rightEyeIris[4][1]-A.annotations.rightEyeIris[2][1])):0;l.push({...A,age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:g!==0?Math.trunc(g)/100:0,rotation:y,tensor:e.config.face.detector.return?(m=A.image)==null?void 0:m.squeeze():null}),(f=A.image)==null||f.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var tg={};Fa(tg,{load:()=>ag,predict:()=>ng});var Gd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],hk=Gd.length,qd=Gd.reduce((e,t,n)=>(e[t]=n,e),{}),fie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],mie=fie.map(([e,t])=>[qd[e],qd[t]]),fk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function mk(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Ak(e,[t,n],[a,r]){let s=(o,l,d)=>({score:o.score,box:[Math.trunc(o.box[0]*d),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*d),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:p,position:c})=>({score:u,part:p,position:{x:Math.trunc(c.x*d),y:Math.trunc(c.y*l)}}))});return e.map(o=>s(o,t/a,n/r))}var Z2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function Y2(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+hk)}}function J2(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=Y2(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function Q2(e,t,n){return e<t?t:e>n?n:e}function yk(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function eg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var w0=1,gk=16,Aie=20**2;function xk(e,t,n,a,r,s,i,o=2){let l=g=>({y:i.get(g.y,g.x,e),x:i.get(g.y,g.x,i.shape[2]/2+e)}),d=(g,x,k)=>({y:Q2(Math.round(g.y/s),0,x-1),x:Q2(Math.round(g.x/s),0,k-1)}),[u,p]=a.shape,c=d(t.position,u,p),h=l(c),f=eg(t.position,h);for(let g=0;g<o;g++){let x=d(f,u,p),k=Y2(x.y,x.x,n,r);f=eg({x:x.x*s,y:x.y*s},{x:k.x,y:k.y})}let A=d(f,u,p),y=a.get(A.y,A.x,n);return{position:f,part:Gd[n],score:y}}function yie(e,t,n,a,r,s){let i=fk.map(([f,A])=>[qd[f],qd[A]]),o=i.map(([,f])=>f),l=i.map(([f])=>f),d=t.shape[2],u=o.length,p=new Array(d),{part:c,score:h}=e,m=J2(c,a,n);p[c.id]={score:h,part:Gd[c.id],position:m};for(let f=u-1;f>=0;--f){let A=o[f],y=l[f];p[A]&&!p[y]&&(p[y]=xk(f,p[A],y,t,n,a,s))}for(let f=0;f<u;++f){let A=l[f],y=o[f];p[A]&&!p[y]&&(p[y]=xk(f,p[A],y,t,n,a,r))}return p}function gie(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-w0,0),d=Math.min(n+w0+1,s);for(let u=l;u<d;++u){let p=Math.max(a-w0,0),c=Math.min(a+w0+1,i);for(let h=p;h<c;++h)if(r.get(u,h,e)>t){o=!1;break}if(!o)break}return o}function xie(e,t){let[n,a,r]=t.shape,s=new Z2(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let d=t.get(i,o,l);d<e||gie(l,d,i,o,t)&&s.enqueue({score:d,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function bk(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{let s=r[a].position;return yk(n,t,s.y,s.x)<=Aie})}function bie(e,t){return t.reduce((a,{position:r,score:s},i)=>(bk(e,r,i)||(a+=s),a),0)/t.length}function vk(e,t,n,a,r,s){let i=[],o=xie(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),d=J2(l.part,gk,e);if(bk(i,d,l.part.id))continue;let p=yie(l,t,e,gk,n,a).filter(m=>m.score>s),c=bie(i,p),h=mk(p);c>s&&i.push({keypoints:p,box:h,score:Math.round(100*c)/100})}return i}var fa,vie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function ng(e,t){let n=L(()=>{let o=e.resizeBilinear([fa.inputs[0].shape[2],fa.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),d=fa.execute(o,vie).map(u=>u.squeeze([0]));return d[1]=d[1].sigmoid(),d}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await vk(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Ak(r,[e.shape[1],e.shape[2]],[fa.inputs[0].shape[2],fa.inputs[0].shape[1]])}async function ag(e){return fa?e.debug&&he("cached model:",fa.modelUrl):(fa=await Gt(Yt(e.modelBasePath,e.body.modelPath)),!fa||!fa.modelUrl?he("load model failed:",e.body.modelPath):e.debug&&he("load model:",fa.modelUrl)),fa}var lg={};Fa(lg,{load:()=>dg,predict:()=>ug});function k0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Xd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function wk(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function kk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function I0(e,t=1.5){let n=Xd(e),a=k0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function S0(e){let t=Xd(e),n=k0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Ik=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var rg=class{constructor(t){var n;this.model=t,this.anchors=Ik.map(a=>[a.x,a.y]),this.anchorsTensor=Kn(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=nn([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=nn([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return L(()=>{let n=Me(t,[0,0],[-1,2]),a=Me(t,[0,2],[-1,2]),r=se(ge(n,this.inputSizeTensor),this.anchorsTensor),s=ge(a,this.doubleInputSizeTensor),i=B(ye(r,s),this.inputSizeTensor),o=B(se(r,s),this.inputSizeTensor);return cl([i,o],1)})}normalizeLandmarks(t,n){return L(()=>{let a=se(ge(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=a.squeeze();a.dispose();let s=L(()=>wn(Me(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Me(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let d=await Ye.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),u=d.arraySync();s.dispose(),d.dispose();let p=[];for(let c of u)if(i[c]>=n.hand.minConfidence){let h=Me(l,[c,0],[1,-1]),m=Me(r,[c,5],[1,14]),f=L(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),l.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=L(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let d=l.box.dataSync(),u=d.slice(0,2),p=d.slice(2,4),c=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(kk({startPoint:u,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function wie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Sk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return wie(n)}var Nk=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Zr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function kie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function Tk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Zr(e[r],kie(t,s)))}return n}function sg(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=Nk(t[0],t[1]),i=Tk(s,r),o=Nk(-t[0],-t[1]);return Tk(i,o)}function Ek(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Zr(t[0],n),-Zr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function ig(e,t){return[Zr(e,t[0]),Zr(e,t[1])]}var Iie=5,Ck=1.65,Rk=[0,5,9,13,17,1,2],Sie=0,Nie=2,og=class{constructor(t,n){var a;this.handDetector=t,this.landmarkDetector=n,this.inputSize=(a=this.landmarkDetector)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let a=t.map(s=>ig([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return I0(S0(r),Iie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=I0(S0(n),Ck);a.palmLandmarks=[];for(let r=0;r<Rk.length;r++)a.palmLandmarks.push(t[Rk[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=k0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=sg(a,[0,0]),d=o.map(h=>[...ig(h,l),h[2]]),u=Ek(r),p=[...Xd(n),1],c=[Zr(p,u[0]),Zr(p,u[1])];return d.map(h=>[h[0]+c[0],h[1]+c[1],h[2]])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?Sk(o.palmLandmarks[Sie],o.palmLandmarks[Nie]):0,d=Xd(o),u=[d[0]/t.shape[2],d[1]/t.shape[1]],p=n.hand.rotation?Ye.rotateWithOffset(t,l,0,u):t.clone(),c=sg(-l,d),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=wk(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[A,y]=await this.landmarkDetector.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let x=H(y,[-1,3]),k=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(k,h,l,c),v=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=v;let I={landmarks:b,confidence:g,box:{topLeft:v.startPoint,bottomRight:v.endPoint}};s.push(I)}else this.storedBoxes[i]=null;y.dispose()}else{let l=I0(S0(o),Ck),d={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(d)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}};var Mk={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Yr,Jr,Fk;async function ug(e,t){let n=await Fk.estimateHands(e,t);if(!n)return[];let a=[];for(let r of n){let s={};if(r.landmarks)for(let l of Object.keys(Mk))s[l]=Mk[l].map(d=>r.landmarks[d]);let i=r.box?[Math.max(0,r.box.topLeft[0]),Math.max(0,r.box.topLeft[1]),Math.min(e.shape[2],r.box.bottomRight[0])-Math.max(0,r.box.topLeft[0]),Math.min(e.shape[1],r.box.bottomRight[1])-Math.max(0,r.box.topLeft[1])]:[],o=[r.box.topLeft[0]/e.shape[2],r.box.topLeft[1]/e.shape[1],(r.box.bottomRight[0]-r.box.topLeft[0])/e.shape[2],(r.box.bottomRight[1]-r.box.topLeft[1])/e.shape[1]];a.push({confidence:Math.round(100*r.confidence)/100,box:i,boxRaw:o,landmarks:r.landmarks,annotations:s})}return a}async function dg(e){!Yr||!Jr?([Yr,Jr]=await Promise.all([e.hand.enabled?Gt(Yt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Gt(Yt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!Yr||!Yr.modelUrl?he("load model failed:",e.hand.detector.modelPath):e.debug&&he("load model:",Yr.modelUrl),!Jr||!Jr.modelUrl?he("load model failed:",e.hand.skeleton.modelPath):e.debug&&he("load model:",Jr.modelUrl))):(e.debug&&he("cached model:",Yr.modelUrl),e.debug&&he("cached model:",Jr.modelUrl));let t=new rg(Yr);return Fk=new og(t,Jr),[Yr,Jr]}var pg={};Fa(pg,{load:()=>cg,predict:()=>hg});var $k=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Dk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Cn;async function cg(e){return Cn?e.debug&&he("cached model:",Cn.modelUrl):(Cn=await Gt(Yt(e.modelBasePath,e.body.modelPath)),Cn.width=parseInt(Cn.signature.inputs["input_1:0"].tensorShape.dim[2].size),Cn.height=parseInt(Cn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Cn||!Cn.modelUrl?he("load model failed:",e.body.modelPath):e.debug&&he("load model:",Cn.modelUrl)),Cn}async function hg(e,t){if(!Cn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},a=Ye.resizeBilinear(e,[Cn.width,Cn.height],!1),r=ge(a,[255]);a.dispose();let s=await Cn.predict(r),i=s.find(p=>p.size===195||p.size===155).dataSync();s.forEach(p=>p.dispose()),r.dispose();let o=[],l=i.length===195?$k:Dk,d=5;for(let p=0;p<i.length/d;p++)o.push({id:p,part:l[p],position:{x:Math.trunc(n.width*i[d*p+0]/255),y:Math.trunc(n.height*i[d*p+1]/255),z:Math.trunc(i[d*p+2])+0},score:(100-Math.trunc(100/(1+Math.exp(i[d*p+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[d*p+4]))))/100});return[{score:o.reduce((p,c)=>c.score>p?c.score:p,0),keypoints:o}]}var fg={};Fa(fg,{load:()=>Ag,predict:()=>yg});var N0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Rn,mg=[],T0=Number.MAX_SAFE_INTEGER,E0=2.5;async function Ag(e){if(Rn)e.debug&&he("cached model:",Rn.modelUrl);else{Rn=await Gt(Yt(e.modelBasePath,e.object.modelPath));let t=Object.values(Rn.modelSignature.inputs);if(Rn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Rn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Rn||!Rn.modelUrl?he("load model failed:",e.object.modelPath):e.debug&&he("load model:",Rn.modelUrl)}return Rn}async function Tie(e,t,n,a){let r=0,s=[];for(let d of[1,2,4])L(()=>{var A,y;let u=d*13,p=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===N0.length))==null?void 0:A.squeeze(),c=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]<N0.length))==null?void 0:y.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let g=0;g<p.shape[0];g++)for(let x=0;x<p.shape[1];x++){let k=f[g][x];if(k>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%u))/u,v=(.5+Math.trunc(g/u))/u,I=m[g].map(U=>U*(u/d/t)),[T,R]=[b-E0/d*I[0],v-E0/d*I[1]],[$,z]=[b+E0/d*I[2]-T,v+E0/d*I[3]-R],_=[T,R,$,z];_=_.map(U=>Math.max(0,Math.min(U,1)));let V=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],j={id:r++,strideSize:d,score:Math.round(100*k)/100,class:x+1,label:N0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*v)],centerRaw:[b,v],box:V.map(U=>Math.trunc(U)),boxRaw:_};s.push(j)}}});e.forEach(d=>Ee(d));let i=s.map(d=>d.boxRaw),o=s.map(d=>d.score),l=[];if(i&&i.length>0){let d=await Ye.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=d.dataSync(),Ee(d)}return s=s.filter((d,u)=>l.includes(u)).sort((d,u)=>u.score-d.score),s}async function yg(e,t){return Rn?T0<t.object.skipFrames&&t.videoOptimized&&mg.length>0?(T0++,mg):(t.videoOptimized?T0=0:T0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ye.resizeBilinear(e,[Rn.inputSize,Rn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await Rn.predict(i)),i.dispose();let l=await Tie(o,Rn.inputSize,a,t);mg=l,n(l)})):null}var Ok=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},zk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},_k=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),d=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(d=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].annotations.rightEyeIris[0][0],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].annotations.leftEyeIris[0][0];(c>.033||p>.033)&&(d=!1),c>.033&&t.push({iris:n,gesture:"looking right"}),p>.033&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||h<.015||m>.03||h>.03)&&(d=!1),(m<.015||h<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||h>.03)&&t.push({iris:n,gesture:"looking up"}),d&&t.push({iris:n,gesture:"looking center"})}return t},Pk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};var gg={};Fa(gg,{process:()=>xg});function Eie(e,t,n){let a=function(o,l,d){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(p,c)=>(d[c]=0,p))},r=function(o,l){let d=e.createShader(l);if(e.shaderSource(d,o),e.compileShader(d),!e.getShaderParameter(d,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(d));return d};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function Lk(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,d=null,u=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let v=Array.prototype.slice.call(arguments,1),I=p[b];i.push({func:I,args:v})},this.reset=function(){i=[]};let A=function(b,v){if(!(b===o&&v===l)){if(c.width=b,o=b,c.height=v,l=v,!d){let I=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);d=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,d),f.bufferData(f.ARRAY_BUFFER,I,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,v){let I=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,I);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let R=f.createTexture();return f.bindTexture(f.TEXTURE_2D,R),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,v,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,R,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:I,texture:R}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var R,$;let v=null,I=null,T=!1;t===0?v=n:v=(R=g(r))==null?void 0:R.texture,t++,a&&!(b&m.INTERMEDIATE)?(I=null,T=t%2==0):(r=(r+1)%2,I=($=g(r))==null?void 0:$.fbo),f.bindTexture(f.TEXTURE_2D,v),f.bindFramebuffer(f.FRAMEBUFFER,I),f.uniform1f(u.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let v=0;v<i.length;v++){a=v===i.length-1;let I=i[v];I.func.apply(this,I.args||[])}return c};let k=function(b){if(h[b])return u=h[b],f.useProgram(u.id),u;let v={};v.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),v.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),u=new Eie(f,v.VERTEX_IDENTITY,b);let I=Float32Array.BYTES_PER_ELEMENT,T=4*I;return f.enableVertexAttribArray(u.attribute.pos),f.vertexAttribPointer(u.attribute.pos,2,f.FLOAT,!1,T,0*I),f.enableVertexAttribArray(u.attribute.uv),f.vertexAttribPointer(u.attribute.uv,2,f.FLOAT,!1,T,2*I),h[b]=u,u};p.colorMatrix=function(b){let v=new Float32Array(b);v[4]/=255,v[9]/=255,v[14]/=255,v[19]/=255;let I=v[18]===1&&v[3]===0&&v[8]===0&&v[13]===0&&v[15]===0&&v[16]===0&&v[17]===0&&v[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,T=k(I);f.uniform1fv(T.uniform.m,v),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let v=(b||0)+1;p.colorMatrix([v,0,0,0,0,0,v,0,0,0,0,0,v,0,0,0,0,0,1,0])},p.saturation=function(b){let v=(b||0)*2/3+1,I=(v-1)*-.5;p.colorMatrix([v,I,I,0,0,I,v,I,0,0,I,I,v,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let v=(b||0)+1,I=-128*(v-1);p.colorMatrix([v,0,0,0,I,0,v,0,0,I,0,0,v,0,I,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let v=Math.cos(b),I=Math.sin(b),T=.213,R=.715,$=.072;p.colorMatrix([T+v*(1-T)+I*-T,R+v*-R+I*-R,$+v*-$+I*(1-$),0,0,T+v*-T+I*.143,R+v*(1-R)+I*.14,$+v*-$+I*-.283,0,0,T+v*-T+I*-(1-T),R+v*-R+I*R,$+v*(1-$)+I*$,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let v=new Float32Array(b),I=1/o,T=1/l,R=k(p.convolution.SHADER);f.uniform1fv(R.uniform.m,v),f.uniform2f(R.uniform.px,I,T),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let v=b||1;p.convolution.call(this,[0,-1*v,0,-1*v,1+4*v,-1*v,0,-1*v,0])},p.emboss=function(b){let v=b||1;p.convolution.call(this,[-2*v,-1*v,0,-1*v,1,1*v,0,1*v,2*v])},p.blur=function(b){let v=b/7/o,I=b/7/l,T=k(p.blur.SHADER);f.uniform2f(T.uniform.px,0,I),x(m.INTERMEDIATE),f.uniform2f(T.uniform.px,v,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let v=b/o,I=b/l,T=k(p.pixelate.SHADER);f.uniform2f(T.uniform.size,v,I),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var C0=2048,Ce,gt,Ft;function xg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Oa(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=r,o=s;if(i>C0&&(i=C0,o=i*s/r),o>C0&&(o=C0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ce||(Ce==null?void 0:Ce.width)!==i||(Ce==null?void 0:Ce.height)!==o)&&(Ce=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ce==null?void 0:Ce.width)!==i&&(Ce.width=i),(Ce==null?void 0:Ce.height)!==o&&(Ce.height=o));let l=Ce.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),t.filter.enabled){if((!Ft||!gt||Ce.width!==gt.width||(Ce==null?void 0:Ce.height)!==(gt==null?void 0:gt.height))&&(gt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height):document.createElement("canvas"),(gt==null?void 0:gt.width)!==(Ce==null?void 0:Ce.width)&&(gt.width=Ce==null?void 0:Ce.width),(gt==null?void 0:gt.height)!==(Ce==null?void 0:Ce.height)&&(gt.height=Ce==null?void 0:Ce.height),Ft=ma.flags.IS_BROWSER?new Lk({canvas:gt}):null),!Ft)return{tensor:null,canvas:Ce};Ft.reset(),Ft.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Ft.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ft.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ft.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Ft.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Ft.addFilter("hue",t.filter.hue),t.filter.negative&&Ft.addFilter("negative"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.vintage&&Ft.addFilter("brownie"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.kodachrome&&Ft.addFilter("kodachrome"),t.filter.technicolor&&Ft.addFilter("technicolor"),t.filter.polaroid&&Ft.addFilter("polaroid"),t.filter.pixelate!==0&&Ft.addFilter("pixelate",t.filter.pixelate),Ft.apply(Ce)}else gt=Ce,Ft&&(Ft=null);let d;if(gt.data){let p=[gt.height,gt.width,3];d=pc(gt.data,p,"int32")}else if(gt instanceof ImageData)d=oi.fromPixels(gt);else if(t.backend==="webgl"||t.backend==="humangl"){let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(gt,0,0),d=oi.fromPixels(p)}else{let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(gt,0,0);let h=c==null?void 0:c.getImageData(0,0,i,o);d=oi.fromPixels(h)}let u=d.toFloat();n=u.expandDims(0),d.dispose(),u.dispose()}let a=t.filter.return?gt:null;return{tensor:n,canvas:a}}var bg={};Fa(bg,{all:()=>Rie,body:()=>Vk,canvas:()=>Cie,face:()=>Bk,gesture:()=>Wk,hand:()=>jk,object:()=>Uk,options:()=>_i});var dt={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,videoOptimized:!0,warmup:"full",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!1,maxDetected:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetected:1,minConfidence:.2},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,maxDetected:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:41}};var _i={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function R0(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Pi(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function vg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t)e.strokeStyle=n.useDepth&&a[2]?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&a[2]?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.3)`:n.color,e.lineTo(a[0],parseInt(a[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Kd(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){vg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function Wk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let d=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${d}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(u,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(u,6,0+s*a.lineHeight),s+=1}}}async function Bk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let s of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&(a.useRawBoxes?Pi(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Pi(r,s.box[0],s.box[1],s.box[2],s.box[3],a));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),r.fillStyle=a.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),d=o*a.lineHeight+s.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i[o],l+5,d+16)),r.fillStyle=a.labelColor,r.fillText(i[o],l+4,d+15)}if(r.lineWidth=1,s.mesh&&s.mesh.length>0){if(a.drawPoints)for(let o of s.mesh)R0(r,o[0],o[1],o[2],a);if(a.drawPolygons){r.lineWidth=1;for(let o=0;o<zi.length/3;o++){let l=[zi[o*3+0],zi[o*3+1],zi[o*3+2]].map(d=>s.mesh[d]);vg(r,l,a)}if(s.annotations&&s.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;r.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(s.annotations&&s.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;r.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}}}}}var Qr=[];async function Vk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let s=0;s<t.length;s++){if(!Qr[s]&&a.bufferedOutput&&(Qr[s]={...t[s]}),r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&(Pi(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[s].score}%`,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[s].score}%`,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2]))),a.drawPoints)for(let i=0;i<t[s].keypoints.length;i++)r.fillStyle=a.useDepth&&t[s].keypoints[i].position.z?`rgba(${127.5+2*t[s].keypoints[i].position.z}, ${127.5-2*t[s].keypoints[i].position.z}, 255, 0.5)`:a.color,a.bufferedOutput?(Qr[s].keypoints[i][0]=(Qr[s].keypoints[i][0]+t[s].keypoints[i].position.x)/2,Qr[s].keypoints[i][1]=(Qr[s].keypoints[i][1]+t[s].keypoints[i].position.y)/2,R0(r,Qr[s].keypoints[i][0],Qr[s].keypoints[i][1],0,a)):R0(r,t[s].keypoints[i].position.x,t[s].keypoints[i].position.y,0,a);if(a.drawLabels&&(r.font=a.font,t[s].keypoints))for(let i of t[s].keypoints)r.fillStyle=a.useDepth&&i.position.z?`rgba(${127.5+2*i.position.z}, ${127.5-2*i.position.z}, 255, 0.5)`:a.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position.x+4,i.position.y+4);if(a.drawPolygons&&t[s].keypoints){let i,o=[];o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),Kd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),o.length===4&&vg(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),Kd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),Kd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),Kd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>dt.body.minConfidence&&o.push([i.position.x,i.position.y]),Kd(r,o,a)}}}}async function jk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes){r.strokeStyle=a.color,r.fillStyle=a.color;let i;if(!a.calculateHandBox)i=a.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]<i[0]&&(i[0]=o[0]),o[1]<i[1]&&(i[1]=o[1]),o[0]>i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}a.useRawBoxes?Pi(r,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],a):Pi(r,i[0],i[1],i[2],i[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",i[0]+3,1+i[1]+a.lineHeight,i[2])),r.fillStyle=a.labelColor,r.fillText("hand",i[0]+2,0+i[1]+a.lineHeight,i[2])),r.stroke()}if(a.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,R0(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function Uk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,a.useRawBoxes?Pi(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Pi(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function Cie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Rie(e,t,n){let a=Hn(_i,n);!t||!e||e instanceof HTMLCanvasElement&&(Bk(e,t.face,a),Vk(e,t.body,a),jk(e,t.hand,a),Wk(e,t.gesture,a),Uk(e,t.object,a))}var M0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,F0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var Hk="1.8.0";var Zl,Zd,Yd,Li,$0,Jd,D0,O0,z0,Fie=class{constructor(t={}){Zl.set(this,void 0);Zd.set(this,void 0);Yd.set(this,void 0);Li.set(this,void 0);this.analyze=(...t)=>{if(!aa(this,Zd))return;let n=this.tf.engine().state.numTensors,a=aa(this,Zl);as(this,Zl,n);let r=n-a;r!==0&&he(...t,r)};$0.set(this,t=>{if(!aa(this,Yd))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Jd.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=it();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&he("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&he("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&he("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&he(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&he("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&J8();try{await this.tf.setBackend(this.config.backend)}catch(r){he("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&(he("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&he(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(it()-a)}});D0.set(this,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(M0);break;case"full":n=await t(F0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});O0.set(this,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+M0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+F0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));z0.set(this,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(M0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(F0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&he("Warmup tfjs-node not loaded");return a});this.tf=lu,this.draw=bg,this.version=Hk,this.config=Hn(dt,t),this.state="idle",as(this,Zl,0),as(this,Zd,!1),as(this,Yd,!1),as(this,Li,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>xg(n,this.config),this.classes={facemesh:_2,emotion:B2,faceres:H2,body:this.config.body.modelPath.includes("posenet")?tg:pg,hand:lg,nanodet:fg},this.faceTriangulation=dk,this.faceUVMap=pk,this.sysinfo=Og()}similarity(t,n){return q2(t,n)}enhance(t){return X2(t)}match(t,n,a=0){return ck(t,n,a)}async load(t={}){this.state="load";let n=it();t&&(this.config=Hn(this.config,t)),aa(this,Li)&&(this.config.debug&&he(`version: ${this.version}`),this.config.debug&&he(`tfjs version: ${this.tf.version_core}`),this.config.debug&&he("platform:",this.sysinfo.platform),this.config.debug&&he("agent:",this.sysinfo.agent),await aa(this,Jd).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&he("configuration:",this.config),this.config.debug&&he("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?W2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?U2(this.config):null),this.models.handpose||(this.config.hand.enabled?dg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?ag(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?cg(this.config):null),this.models.nanodet||(this.config.object.enabled?Ag(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?G2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await W2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await U2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await dg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await ag(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await cg(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await Ag(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await G2(this.config))),aa(this,Li)&&(this.config.debug&&he("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),as(this,Li,!1));let a=Math.trunc(it()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async detect(t,n={}){return new Promise(async a=>{this.state="config";let r;this.config=Hn(this.config,n),this.state="check";let s=aa(this,$0).call(this,t);s&&(he(s,t),a({error:s}));let i=it();await aa(this,Jd).call(this),await this.load();let o;t&&this.config.videoOptimized&&typeof window!="undefined"&&typeof WorkerGlobalScope!="undefined"&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&gg instanceof ImageBitmap)&&(he("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),r=it();let l=xg(t,this.config);if(!l||!l.tensor){he("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(it()-r),this.analyze("Get Image:");let d,u,p,c,h;this.config.async?(p=this.config.face.enabled?K2(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",r=it(),p=this.config.face.enabled?await K2(this,l.tensor):[],h=Math.trunc(it()-r),h>0&&(this.perf.face=h)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?ng(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(d=this.config.body.enabled?hg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",r=it(),this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?await ng(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(d=this.config.body.enabled?await hg(l.tensor,this.config):[]),h=Math.trunc(it()-r),h>0&&(this.perf.body=h)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?ug(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",r=it(),u=this.config.hand.enabled?await ug(l.tensor,this.config):[],h=Math.trunc(it()-r),h>0&&(this.perf.hand=h)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(c=this.config.object.enabled?yg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",r=it(),c=this.config.object.enabled?await yg(l.tensor,this.config):[],h=Math.trunc(it()-r),h>0&&(this.perf.object=h)),this.analyze("End Object:"),this.config.async&&([p,d,u,c]=await Promise.all([p,d,u,c])),Ee(l.tensor);let m=[];this.config.gesture.enabled&&(r=it(),m=[...zk(p),...Ok(d),...Pk(u),..._k(p)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(it()-r)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(it()-i),this.state="idle";let f={face:p,body:d,hand:u,gesture:m,object:c,performance:this.perf,canvas:l.canvas};a(f)})}async warmup(t={}){let n=it();if(t&&(this.config=Hn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await aa(this,D0).call(this):typeof Image!="undefined"?r=await aa(this,O0).call(this):r=await aa(this,z0).call(this),this.config.videoOptimized=a;let s=it();return this.config.debug&&he("Warmup",this.config.warmup,Math.round(s-n),"ms",r),r}};Zl=new WeakMap,Zd=new WeakMap,Yd=new WeakMap,Li=new WeakMap,$0=new WeakMap,Jd=new WeakMap,D0=new WeakMap,O0=new WeakMap,z0=new WeakMap;export{Fie as Human,Fie as default};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.esm.js.map
|